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Abstract. The Fredholm properties of Toeplitz operators on the Bergman

space A2 have been well known for continuous symbols since the 1970s. We
investigate the case p = 1 with continuous symbols under a mild additional

condition, namely that of the logarithmic vanishing mean oscillation in the

Bergman metric. Most differences are related to boundedness properties of
Toeplitz operators acting on Ap that arise when we no longer have 1 < p <∞;

in particular bounded Toeplitz operators on A1 were characterized completely

very recently but only for bounded symbols. We also consider compactness of
Hankel operators on A1.
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1. Introduction

Spectral theory of Toeplitz and Hankel operators has been extensively studied
in the Hilbert space setting, most prolifically in the case of the Hardy space H2

and of the Bergman space A2, but also a very extensive theory exists for Hp and
Ap when 1 < p <∞, see [4]. The endpoint cases have received less attention in the
past, see [15, 18] and references therein for these operators acting on H1 (and on
its dual BMOA). In the present paper we deal with Toeplitz and Hankel operators
on the Bergman space A1.
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Denote the unit disk of the complex plane C by D and the unit circle by T. For
1 ≤ p <∞, the Bergman space Ap consists of all analytic functions that belong to
Lp = Lp(D); the space of all bounded analytic functions in D is denoted by H∞.
The standard Bergman projection is defined by

Pf(z) =
∫

D

f(w)
(1− w̄z)2

dA(w),

where dA(w) = dxdy/π is the normalized Lebesgue measure on D. The Toeplitz
operator with symbol a ∈ L1 is defined by Taf = P (af) and the Hankel operator
by Haf = Q(af) = af −P (af), where Q = I −P is the complementary projection
of P .

The boundedness of the Bergman projection on Lp with 1 < p < ∞ has been
known since the 1960s, from which it directly follows that Hankel and Toeplitz
operators with bounded symbols are bounded on Ap when 1 < p < ∞. The
question of boundedness for unbounded symbols is still an open problem and only
known for some special classes of symbols, such as positive, harmonic and radial
symbols—see [8, 10, 22]. It is well known that the Bergman projection fails to be
bounded on L1 (there are bounded projections from L1 onto A1, however, unlike
in the case of H1), and so boundedness of Toeplitz and Hankel operators needs
further considerations. Indeed, K. Zhu [21] was the first one to study this question
and found a sufficient condition providing a large class of bounded functions that
generate bounded Toeplitz operators on A1. Further conditions can be found in [1]
and [19]. However, as in the case of 1 < p <∞ these results have been inconclusive
in the sense that boundedness is completely characterized only for bounded symbols.
We discuss this in some more detail in Section 3.

The Fredholm properties of Toeplitz operators acting on A2 have been studied for
several classes of symbols—see, e.g., results in Venugopalkrishna [17], Coburn [5],
McDonald [13], McDonald and Sundberg [12], Luecking [11], and Böttcher [3].
Much of the recent progress is due to Grudsky, Karapetyants, and Vasilevski [6, 7,
9, 16]. The case p = 1 has not been exploited previously and so we aim to establish
Fredholm theory first for symbols that are continuous up to the boundary of D and
belong to VMO∂ log; note that the fact that Ta is unbounded for some continuous
symbols causes great difficulties in dealing with most symbol classes familiar from
A2 Fredholm theory.

We also deal with compactness of Hankel operators to a certain extent as needed
in connection with Fredholm theory. Regarding Hankel operators acting on the
Bergman space A2, Stroethoff [14] gave a characterization for compactness when
the symbol is bounded in D, and Zhu [20] found a connection between compactness
and the mean oscillation of a general symbol in the Bergman metric; recall also
Axler’s result [2], which is concerned with analytic symbols and shows that Ha is
compact if and only if a is in the little Bloch space. Here we prove a useful sufficient
condition for compactness of Hankel operators on A1. Part of our approach is based
on certain estimates in connection with the mean oscillation similar to those of Zhu
[21] but now with the logarithmic weight.

We would like to thank Kehe Zhu for a useful discussion that took place when
JAV visited the University of Albany in December 2006.
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2. Logarithmic BMO in the Bergman metric

In this section we recall some results on bounded mean oscillation in the Bergman
metric (see [22] for further details and proofs) and develop analogous theory for the
logarithmic BMO∂ and VMO∂ .

Denote the Bergman metric on D by β(z, w) and the Bergman disk by D(z, r) =
{w ∈ D : β(z, w) < r}. A function f ∈ L1(D) is said to be of bounded mean
oscillation, f ∈ BMO∂ , if

MOr(f)(z) : =

[
1

|D(z, r)|

∫
D(z,r)

∣∣∣f(w)− f̂r(z)
∣∣∣2 dA(w)

] 1
2

=

[
1

2 |D(z, r)|2
∫
D(z,r)

∫
D(z,r)

|f(u)− f(v)|2 dA(u)dA(v)

] 1
2

=
[
|̂f |2r(z)−

∣∣∣f̂r(z)∣∣∣2] 1
2

is bounded, where

f̂r(z) =
1

|D(z, r)|

∫
D(z,r)

f(w)dA(w), z ∈ D;

note that this condition is independent of r as for each r > 0

‖f‖BMOr
:= sup

z∈D
MOr(f)(z)

is equivalent to

‖f‖BMO∂
:= sup

z∈D
MO(f)(z) :=

[
|̃f |2(z)− |f̃(z)|2

]1/2

,

where f̃ is the Berezin transform. Its closed subspace that consists of all functions
f with vanishing mean oscillation,

lim
|z|→1

MO(f)(z) = 0,

is denoted by VMO∂ . Note that for any r > 0, f ∈ VMO∂ if and only if

lim
|z|→1

MOr(f)(z) = 0.

Let us next consider the spaces above with the logarithmic weight, denoted by
BMO∂ log and VMO∂ log, which are equipped with the following norm

‖f‖BMO∂ log
= sup

z∈D
log

1
1− |z|2

MOr(f)(z).

Proposition 1. The spaces L∞∩BMO∂ log and C(D)∩VMO∂ log are both Banach
algebras.

Proof. It suffices to note that∣∣∣fg − f̂rĝr∣∣∣ ≤ ∣∣∣(f − f̂r)g∣∣∣+
∣∣∣(g − ĝr)f̂r∣∣∣

for all f, g ∈ BMO∂ log. �
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In order to describe the image of P on (weighted) BMO∂ and VMO∂ , we state
the definitions of the (logarithmic) Bloch and little Bloch spaces. Let f be analytic
in D. Then we say that f is a Bloch function and write f ∈ B if

sup
z∈D
|f ′(z)| (1− |z|)2 <∞;

if in addition (1− |z|2)f ′(z)→ 0, then f is said to belong to the little Bloch space
B0. The logarithmic versions of these spaces, denoted by LB and LB0, are defined
simply by adding the factor log(1− |z|2)−1 to the two conditions above.

Recall that P (BMO∂) = B and P (VMO∂) = B0; an analogous result, whose
proof we omit here, holds in the case of weighted spaces:

Theorem 2. We have P (BMO∂ log) = LB and P (VMO∂ log) = LB0.

When dealing with Toeplitz operators on A1, we restrict our study to the symbols
in the Banach algebra L∞ ∩BMO∂ log, which is equipped with the following norm

‖f‖ = ‖f‖∞ + ‖f‖BMO∂ log
.

Our next aim is to show that continuous functions can be approximated by C∞

functions in the L∞ ∩BMO∂ log norm. We start with a preliminary lemma.

Lemma 3. Let f ∈ C(D). For every ε > 0, there is a g ∈ C∞(D)∩C(D) such that

(2.1) |f(z)− g(z)| < ε(1− |z|2)

for all z ∈ D.

Proof. We use mollification. Define the usual compactly supported C∞–function
ϕ(z) := exp(−1/(1 − |z|2)), if |z| < 1, and ϕ(z) = 0 otherwise. Let C :=

∫
C
ϕdxdy

and J := ϕ/C. For all δ > 0 and z := x + iy ∈ C let Jδ(z) := δ−2J(z/δ). The
support of Jδ is the disc with center 0 and radius δ, and moreover,

(2.2)
∫
C

Jδ dxdy = 1.

Let us define a positive valued auxiliary function δ on D as follows. Since f is
uniformly continuous on D, for all 0 ≤ r < 1 it is possible to find δ̃(r) > 0 such
that δ̃(r) ≤ (1− r)/2 and

(2.3) sup
|w−z|≤δ̃(|z|)

|f(z)− f(w)| ≤ ε(1− |z|2).

Again by the uniform continuity of f , one can require that δ̃ is bounded from below
by a strictly positive constant on every compact interval [0, R], 0 < R < 1. Hence,
it is possible to find a C∞–function δ : [0, 1[→ R such that 0 < δ(r) ≤ δ̃(r) for all
0 ≤ r < 1. Finally, set δ(z) := δ(|z|) for all z ∈ D.

We define the approximating function g by g(z) = f(z), if |z| = 1, and

g(z) := Jδ(z) ∗ f(z) :=
∫
C

Jδ(z)(z − w)f(w)dw for |z| < 1,

where dw = dxdy and f is extended as 0 outside the closed unit disc; in view of the
support of Jδ(z), it actually does not matter how f is extended there. Differentiating
under the integral sign one verifies that g ∈ C∞(D).
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In view of (2.2), (2.3), the remark on the support of the function Jδ(z) and the
fact that δ(z) ≤ δ̃(z), we have the following estimate for all z ∈ D

|f(z)− g(z)| =
∣∣∣ ∫

C

Jδ(z)(z − w)(f(w)− f(z))dw
∣∣∣

≤
∫
C

Jδ(z)(z − w)|f(w)− f(z)|dw

≤
∫
C

Jδ(z)(z − w)dw sup
|w−z|≤δ̃(|z|)

|f(z)− f(w)|

≤ ε(1− |z|2).

This proves the required approximation. It remains to prove that g is continuous on
the boundary of the unit disc. However, this obviously follows from the continuity
of f on D and from (2.1). �

Theorem 4. The space C∞(D) ∩ C(D) is dense in C(D) ∩BMO∂ log.

Proof. Let f ∈ C(D) ∩ BMO∂ log and ε > 0. According to the previous lemma,
there is a function g ∈ C∞ ∩ C(D) so that |f(z)− g(z)| ≤ ε(1 − |z|). It is clear
that ‖f − g‖∞ < ε, so it remains to estimate the difference in the BMO∂ log norm.
Indeed, we have

MOr(f − g)(z) ≤

[
1

|D(z, r)|

∫
D(z,r)

|f(u)− g(u)|2 dA(u)

]1/2

≤ sup
w∈D(z,r)

|f(w)− g(w)| ,

and thus

log
1

1− |z|2
MOr(f − g)(z) ≤ ε log

1
1− |z|2

sup
w∈D(z,r)

(1− |w|2).

Since Euclidean center and radius of D(z, r) are given by

Cz =
1− s2

1− s2 |z|2
z and Rz =

1− |z|2

1− s2 |z|2
s,

respectively, where s = tanh r ∈ (0, 1), we see that

sup
w∈D(z,r)

(1− |w|2) = 1− (Cz −Rz)2

is asymptotically comparable to 1− |z|2 as |z| → 1. Therefore,

log
1

1− |z|2
sup

w∈D(z,r)

(1− |w|2)

is bounded for all z ∈ D, and it follows that

‖f − g‖ < ε+ Cε

for some absolute constant C. �
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3. Boundedness

Suppose that a ∈ L∞. Then according to [19], the Toeplitz operator Tā is
bounded on A1 if and only if P (a) belongs to the logarithmic Bloch space LB.
This condition is unsuitable for our purposes as we need a symbol algebra to deal
with the Fredholm theory of Toeplitz operators and it is far from clear whether
the condition above forms an algebra. However, the following sufficient condition
enables us to have a large class that is indeed a Banach algebra. According to [21],
Ta is bounded on A1 if

a ∈ L∞ ∩BMO∂ log.

We concentrate on the case in which a is continuous up to the boundary of D
and belongs to VMO∂ log. Note that C(D)∩VMO∂ log contains Hölder continuous
functions.

Observe also that, for bounded symbols a, the boundedness of the Toeplitz oper-
ator Ta is both sufficient and necessary for the Hankel operator Ha to be bounded.
Indeed, sufficiency follows from the following estimate

(3.1) ‖Haf‖ ≤ ‖af‖+ ‖Taf‖ ≤ (‖a‖∞ + ‖Ta‖) ‖f‖ ;

and, conversely, if Ha is bounded,

‖Taf‖ ≤ ‖af‖+ ‖Haf‖

implies that Ta is bounded and thus P (ā) ∈ LB.
In order to give a bound for the norm of these operators in terms of their symbols,

we state a lemma whose proof is contained in the proof of [21, Theorem 4]. We
include the proof for completeness.

Lemma 5. Suppose that a ∈ L∞ ∩BMO∂ log. If f ∈ BMO∂ ,

(3.2) MOr
(
af
)
(z) ≤ 2 ‖a‖∞ ‖f‖BMO∂

+ |f̂r(z)|MOr(a)(z)

for all z ∈ D.

Proof. Write

a(z)f(z)− (âf)r(w) = a(z)
(
f(z)− f̂r(w)

)
+ f̂r(w)

(
a(z)− âr(w)

)
+ f̂r(w)âr(w)− (âf)r(w),

and so

|a(z)f(z)− (âf)r(w)| ≤ ‖a‖∞|f(z)− f̂r(w)|+ |f̂r(w)||a(w)− âr(w)|

+ |f̂r(w)âr(w)− (âf)r(w)|.

Let D = D(w, r). Since

|âr(w)f̂r(w)− (âf)r(w)| =
∣∣∣∣ 1
|D|

∫
D

a(z)
(
f(z)− f̂r(w)

)
dA(z)

∣∣∣∣
≤ ‖a‖∞

(
1
|D|

∫
D

|f(z)− f̂r(w)|2dA(z)
)1/2

≤ ‖a‖∞‖f‖BMO∂ ,
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we have

|a(z)f(z)− (âf)r(w)| ≤ ‖a‖∞‖f‖BMO∂ + ‖a‖∞|f(z)− f̂r(w)|

+ |f̂r(w)||a(z)− âr(w)|.
Therefore,

MOr
(
af
)
(z) ≤ 2 ‖a‖∞ ‖f‖BMO∂

+ |f̂r(z)|MOr(a)(z).

�

Theorem 6. Let a ∈ L∞(D)∩BMOlog. Then there are constants C1 and C2 such
that

‖Ta‖L(A1) ≤ C1 ‖a‖ , ‖Ha‖L(A1,L1) ≤ C2 ‖a‖ ,
where ‖a‖ = ‖a‖∞ + ‖a‖BMO∂ log

.

Proof. Let f ∈ B. Since P is bounded from BMO∂ to the Bloch space B, we have

‖Taf‖B = ‖P (af)‖B ≤ const ‖af‖BMO∂

≤ const ‖a‖∞ ‖f‖BMO∂
+ const sup

z∈D
f̂r(z)MOr(a)(z),

where the last inequality follows from the previous lemma. According to [21, The-
orem 1] and its proof,

sup{|f̂r(z)| : ‖f‖BMO∂
≤ 1, f̂(0) = 0} ≤ constβ(0, z)

for all z ∈ D. Therefore, since Ta is a bounded operator and β(0, z) is comparable
to log(1/|D(z, r)|), it follows that

‖Ta‖ ≤ const
(
‖a‖∞ + ‖a‖BMOlog

)
.

Since Tā : B → B is the adjoint of Ta : A1 → A1, we have the desired inequality.
The claim regarding the Hankel operator Ha now follows from (3.1). �

4. Compactness

As usual, in the study of the Fredholm properties of Toeplitz operators, Hankel
operators play an important role, especially their compactness. Also, we need to pay
attention to the compactness of Toeplitz operators (for comparison, recall however
that nontrivial Toeplitz operators on Hp are never compact).

In the definition of the mean oscillation MOr choose r > 0 so small that always

(4.1) D(z, r) ⊂ {w ∈ D : |w − z| < (1− |z|)/2}.
We also denote W (z) := log(e/(1− |z|)) for all z ∈ D.

We start with a preliminary lemma that provides a key approximation result.

Lemma 7. Let f ∈ VMO∂ log(D) ∩ C(D). (a) Given ε > 0, it is possible to find
h ∈ VMO∂ log(D)∩C(D) such that h is C1 in an annular neighborhood that contains
T and such that

‖f − h‖BMO∂ log ≤ ε and ‖f − h‖∞ ≤ ε.
(b) If in addition f(t) = 0 for all t ∈ T, then it is possible to choose h to be
compactly supported in D.
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Proof. Suppose that ‖f‖BMO∂ log
≤ 1 and ‖f‖∞ ≤ 1. Let ε > 0 and choose

0 < R < 1 such that

(4.2) W (z)MOr(f)(z) ≤ ε/2

for |z| ≥ R. In case (b), we fix R further so that sup{|f(z)| : R < |z| < 1} < ε/2.
Let us define P in a neighborhood of D such that it is C1 and

sup
R<|z|<1

|P (z)− f(z)| ≤ ε/2 .

(To find such a P , one can for example extend f as a uniformly continuous function
on 2 D by setting f(z) = f(z/|z|) for |z| > 1, and then define P , say, on 3

2 D by
mollifying the extended f .) In case (b), we simply set P ≡ 0. As a C1 function, P
definitely belongs to VMO∂ log(D) and thus there exists R′ ∈ (R, 1) such that

(4.3) W (z)MOr(P )(z) ≤ ε/2

for |z| ≥ R′.
In order to define the desired function h, we construct a continuous radial func-

tion ψ : D→ [0, 1] such that

(4.4) ψ(z) = 0 for |z| ≤ 1− δ/2,

where δ = 1−R′, ψ(z) = 1 for z sufficiently close to T, and, in addition,

(4.5) W (z)MOr(ψ)(z) ≤ ε

for all z ∈ D. Indeed, let N ∈ N be such that 2−N = ε′, where ε′ > 0 is so small
that ε′ < δ/4 and 10ε′| log ε′| < ε. Let ν ∈ N be the largest positive integer such

that
ν∑
k=1

1/k ≤ 2N . For all z with |z| ≤ 1−2−N , define ψ(z) = 0. Then (4.4) holds,

by the choice of ε′. For all n, 1 ≤ n ≤ ν, define

ψ(z) =
n∑
k=1

ε′

k
,

where z = 1− 2−N−n. For all n > ν, for z = 1− 2−N−n we simply set

ψ(z) = 1.

We extend ψ affinely for other positive z and then radially all over the disc.
To prove (4.5) it is enough to consider the weighted mean oscillation for D(z, r)

with 1 − 2−N+2 ≤ |z| ≤ 1 − 2−N−ν−2; for other values of z, the mean oscillation
on D(z, r) is 0, since ψ is constant there, see (4.1). If n ≤ ν + 1 is such that
1 − 2−N−n ≤ |z| < 1 − 2−N−n−1, we have 1 − 2−N−n+1 ≤ |w| < 1 − 2−N−n−2 for
all w ∈ D(z, r). Hence,

ε′
n−1∑
k=1

1
k
≤ ψ(w) ≤ ε′

n+2∑
k=1

1
k

and moreover
W (z) ≤ 3 log(2N+n) ≤ 3n| log ε′|
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for all w ∈ D(z, r). Hence,

W (z)MOr(ψ)(z)

≤ 3n| log ε′|
( 1
|D(z, r)|

∫
D(z,r)

|ε′
n+2∑
k=1

1
k
− ε′

n−1∑
k=1

1
k
|2dA(w)

) 1
2

≤ 3n| log ε′|
( 1
|D(z, r)|

∫
D(z,r)

(3ε′

n

)2

dA(w)
) 1

2

≤ 9| log ε′|ε′ < ε(4.6)

for such z, and by the remark above, this estimate holds true for all z ∈ D.
Define h = (1−ψ)f+ψP . Let us show that h is the desired approximation. Note

first that in case (b), the support of h is trivially compact since P ≡ 0. Clearly,
since ψ(z) = 0 for all |z| < R,

‖f − h‖∞ = ‖ψ(f − P )‖∞ < ε

according to the choice of P . So it remains to estimate the other norm. Writing

(4.7) ‖f − h‖BMO∂ log ≤ ‖ψf‖BMO∂ log + ‖ψP‖BMO∂ log

we start with the first term on the right hand side. By (4.4), ψ(w) = 0, if w ∈
D(z, r) with |z| ≤ 1− δ, hence,

‖ψf‖BMO∂ log = sup
|z|≥1−δ

W (z)MOr(ψf)(z).

Let |z| ≥ 1− δ and w ∈ D(z, r). We write Mr(f) = f̂r and

ψ(w)f(w)−Mr(ψf)(z) = ψ(w)
(
f(w)−Mr(f)(z)

)
+Mr(f)(z)

(
ψ(w)−Mr(ψ)(z)

)
+Mr(ψ)(z)Mr(f)(z)−Mr(ψf)(z).

Hence,

W (z)MOr(ψf)(z) ≤ C
( 1
|D(z, r)|

∫
D(z,r)

W (z)2
∣∣∣ψ(w)f(w)−Mr(ψf)(z)

∣∣∣2dA(w)
) 1

2

≤ C

(
1

|D(z, r)|

∫
D(z,r)

(
W (z)2‖ψ‖∞

∣∣∣f(w)−Mr(f)(z)
∣∣∣2

+W (z)2‖f‖∞
∣∣∣ψ(w)−Mr(ψ)(z)

∣∣∣2
+W (z)2

∣∣∣Mr(ψ)(z)Mr(f)(z)−Mr(ψf)(z)
∣∣∣2)dA(w)

) 1
2

≤ C ′W (z)MOr(f)(z) + C ′W (z)MOr(ψ)(z)

+W (z)
∣∣∣Mr(ψ)(z)Mr(f)(z)−Mr(ψf)(z)

∣∣∣ .
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The second and third but last terms are comparable to ε, by (4.2) and (4.5). The
same is true for the last one, since

W (z)
∣∣∣Mr(ψ)(z)Mr(f)(z)−Mr(ψf)(z)

∣∣∣
≤
∣∣∣ W (z)
|D(z, r)|

∫
D(z,r)

f(w)
(
ψ(w)−Mr(ψ)(z)

)
dA(w)

∣∣∣
≤ ‖f‖∞W (z)

( 1
|D(z, r)|

∫
D(z,r)

|ψ(w)−Mr(ψ)(z)|2dA(w)
)1/2

= ‖f‖∞W (z)
( 1
|D(z, r)|

∫
D(z,r)

|ψ(w)−Mr(ψ)(z)|2dA(w)
)1/2

= ‖f‖∞W (z)MOr(ψ)(z) ≤ ε

(4.8)

So we obtained the estimate ‖ψf‖BMO∂ log < Cε. The other term ‖ψP‖BMO∂ log in
(4.7) is treated in the same way, using (4.3) instead of (4.2). �

We can now deal with compactness of Hankel and Toeplitz operators; in partic-
ular, we obtain sufficient conditions for compactness of these operators that are of
great importance in the next section.

Corollary 8. If a ∈ C(D)∩VMO∂ log and a(t) = 0 for all t ∈ T, then Ta : A1 → A1

is compact.

Proof. Suppose that a = 0 on T. If K := supp a is compact and T : A1 → L1 is
defined by Tf(z) = χK(z)f(z), then T is compact, and so Ta = PMaT must also
be compact. Otherwise, use case (b) of Lemma 7 to approximate the given symbol
a by a sequence of ak with supp ak compact, so that ‖Ta − Tak‖ → 0 as k → ∞
according to the norm estimate in Theorem 6. Thus Ta is compact. �

Lemma 9. If h ∈ C(D) ∩ VMO∂ log is C1 in an annular neighborhood Ω that
contains T, then Hh : A1 → L1 is compact.

Proof. One can easily check that the transpose of the operator PHh̄ : C(D)→ B0

is the operator Hh : A1 → C(D)∗ (or, Hh : A1 → L1, since L1 is a closed subspace
of C(D)∗ and Hh is known to map A1 into L1). We prove that Hh̄ : C(D)→ C(D)
is compact. Since P : C(D) → B0 is bounded, the compactness of Hh : A1 → L1

will follow.
Let ε > 0 be so small that {|z| ≥ 1− ε} is contained in Ω. Define a C∞–cut–off

function χ(z) : D→ R such that 0 ≤ χ(z) ≤ 1 for all z and such that χ(z) = 1 for
|z| ≤ 1− 2ε and χ(z) = 0 for |z| ≥ 1− ε.

The integral operator H̃ : C(D)→ C(D),

H̃f(z) :=
∫
D

(h̄(z)− h̄(w))
(1− zw̄)2

χ(w)f(w)dA(w),

is compact (as a consequence of the Arzela–Ascoli theorem), since its kernel is a
continuous function on D×D. Hence, there exist finitely many functions fj ∈ C(D)
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such that

(4.9) H̃(B(0, 1)) ⊂
⋃
j

B(fj , ε);

here B(g, r) denotes the open ball in C(D) with center g and radius r.
On the other hand, since h̄ ∈ C1 on Ω, it is also Lipschitz on Ω, and so we have

|(Hh̄ − H̃)f(z)| ≤
∫
D

|h̄(z)− h̄(w)|
|1− zw̄|2

(1− χ(w))|f(w)|dA(w)

≤ C
∫

|w|≥1−2ε

|z − w|
|1− zw̄|2

dA(w)

for all f ∈ B(0, 1). Since |z − w|/|1− zw̄| ≤ 1, the above integral can be bounded
by a constant times ∫

|w|≥1−2ε

1
|1− zw̄|

dA(w)

By radial symmetry, we may assume that z is positive and obtain, with w = %eiθ,
a further bound

C

1∫
1−2ε

π∫
−π

1
|1− z% cos θ|+ %| sin θ|

%dθd%

≤ C ′
1∫

1−2ε

3π/4∫
−3π/4

1
1− %+ %|θ|

%dθd%+ C ′
1∫

1−2ε

∫
3
4π<|θ|<π

1
|1 + z%/2|

%dθd%

≤ C ′′
1∫

1−2ε

| log(1− %)|d%+ C ′′
1∫

1−2ε

d%

≤ C ′′′ε| log ε| ≤ cε1/2.

Combining this with (4.9) we conclude that

Hh̄(B(0, 1)) ⊂
⋃
j

B(fj , Cε1/2),

i.e. Hh̄ : C(D)→ C(D) is compact. �

Theorem 10. Let a ∈ C(D) ∩ VMO∂ log. Then Ha : A1 → L1 is compact.

Proof. Apply Lemmas 7 and 9. �

5. Fredholmness and index

A bounded linear operator A on a Banach space X is said to be Fredholm if both
its kernel and cokernel are finite-dimensional; the index of a Fredholm operator is
defined by

IndA = dim kerA− dim cokerA.
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We also define the index (or the winding number) of a nonvanishing continuous
function a by

ind a =
[arg a]T

2π
,

where [arg a]T denotes the total increment of arg a(t) when t ranges over T.
Using the results of the previous section we can easily obtain a sufficient condition

for Fredholmness of Ta on A1.

Theorem 11. Suppose that a ∈ C(D) ∩ VMO∂ log with a(t) 6= 0 for any t ∈ T.
Then Ta : A1 → A1 is Fredholm.

Proof. There are ε > 0 and 0 < δ < 1 such that |a(z)| > ε whenever δ < |z| ≤ 1.
Define b = 1/a on {δ < |z| ≤ 1} and extend it continuously to the whole D. Then
it is clear that b ∈ C(D) ∩ BMO∂ log and also, for sufficiently small r, we have
W (z)MOrb(z)→ 0 as |z| → 1. Thus, b ∈ C(D) ∩ VMO∂ log.

Since

TaTb = I − P (I −Mab)− PMa(I − P )Mb

= I − T1−ab − PMaHb,

Propositions 8 and 10 imply that TaTb = I + K for some compact operator K;
similarly TbTa = I +K ′ with K ′ compact. Therefore Tb is a regularizer of Ta and
hence Ta is Fredholm (see, e.g., [4, Theorem 1.12]). �

In order to deal with sufficiency we first consider the index of Fredholm Toeplitz
operators with continuous symbols.

Theorem 12. Suppose that a ∈ C(D) ∩ VMO∂ log and a(t) 6= 0 for any t ∈ T.
Then

IndTa = − ind a|T,
where a|T denotes the restriction of a to T.

Proof. Suppose first that the index of a is nonnegative. According to Lemma 9,
there is a function b ∈ C(D) ∩ VMO∂ log that has no zeros on T and is in C1 in an
annulus containing T and approximates a so that IndTa = IndTb and

ind a|T = ind b|T =: κ.

For τ ∈ [0, 1], we define

Fτ (t) = tκ exp
(
τ log g(t)

)
(t ∈ T),

where g(t) = t−κb(t). Since b ∈ C1(T) and ind g = 0, Fτ is a homotopy in C1(T)
and has no zeros on T. We can now extend Fτ : T→ C to a mapping that belongs
to C(D)∩VMO∂ log. Then TFτ is Fredholm for each τ ∈ [0, 1] by Theorem 11, and
since the index of a Fredholm operator is continuous (see, e.g., [4, Theorem 1.12]),
we have

IndTzκ = IndTF0 = IndTF1 = IndTb = IndTa.

As κ ≥ 0, it is not difficult to show that

−κ = IndTzκ = IndTa.
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The case κ < 0 can be reduced to the preceding one via duality. Indeed recall
that the dual of A1 is the Bloch space under the usual integral pairing

(f, g) =
∫

D
f(z)g(z)dA(z)

and then in particular (Ta)∗ = Tā. Therefore,

− ind a|T = ind ā|T = − IndTā = IndTa

when κ < 0. �

We use the index formula and Lemma 7 to prove that the condition 0 /∈ a(T) is
also necessary for Fredholmness of Ta with a ∈ C(D)∩VMO∂ log. It is worth noting
that our approach is different from that of Coburn [5], where the compactness of
Toeplitz operators and C∗-algebra techniques are applied, which, in our view, is
not applicable to the setting at hand. In particular, we assume that Ta is Fredholm
but the symbol a has a zero, and show that this leads to a contradiction. Before
proceeding to the proof, we consider a result that deals with the distribution of
the zeros of approximating functions and hence allows us to deal with the other
possible zeros of a.

Lemma 13. Assume that the function f ∈ C(D) ∩ VMO∂ log is also defined and
C1 in a neighborhood of T and has finitely many zeros t1, . . . , tN ∈ T. Given η > 0,
one can find b ∈ C(D) ∩ VMO∂ log with

‖f − b‖ < η

as follows: b is also defined and C1 in a neighborhood Ω of T, b(tj) = 0 for all j,
and b has no other zeros in Ω.

Proof. Apply the proof of Lemma 7, where P should now be replaced with

P (reiθ) := rf(eiθ)

for r in a sufficiently small open interval containing 1. For a sufficiently large R < 1
this is the desired approximation of f in the set {z ∈ D : R ≤ |z| ≤ 1} with respect
to sup-norm, and the rest of the proof of Lemma 7 applies word for word. �

Theorem 14. Let a ∈ C(D) ∩ VMO∂ log. If Ta is Fredholm on A1, then a(t) 6= 0
for any t ∈ T.

Proof. Assume that Ta is Fredholm. Let ε > 0 be so small that IndTa = IndTf
for every symbol f ∈ C(D) ∩ VMO∂ log with

(5.1) ‖a− f‖ ≤ ε

(see Theorem 6). Supposing that a has a zero on the boundary we construct two
symbols with (5.1) for which the indices are different.

First, using Lemma 7, we approximate a by a function f̃ which is C1 in a
neighborhood of T such that ‖a − f̃‖ ≤ ε/10. There exists a constant α ∈ C such
that |α| ≤ ε/10 and such that the function f̃ + α has only a finitely many zeros
on T. (If this were not true, one would pick countably many different numbers zn,
n ∈ N, with |zn| ≤ ε/10. The set Tn := {t ∈ T : f̃(t) = zn} would be infinite for
every n ∈ N, so each set Tn would have an accumulation point wn ∈ T. The set
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{wn : n ∈ N} would still have an accumulation point τ ; however, this would lead
to a contradictory behavior of f̃ at τ .)

Set f = f̃ + α. Approximate f by a function b as in Lemma 13 with η := ε/10.
Summing up, we then have

(5.2) ‖a− b‖ ≤ 3ε
10
,

and for some r′ > 1, the function b is defined in a set D′ := {|z| ≤ r′} and C1 in
the set T′ := {1/r′ ≤ |z| ≤ r′}. The numbers tj ∈ T, j = 1, . . . , N , denote the zeros
of b on T, and b does not have other zeros on T′.

Let us select for each j an open disc Bj := B(tj , δj) ⊂ T′ such that B(tj , 2δj) ∩
B(tk, 2δk) = ∅ for j 6= k.

Since |∇b| is bounded on T′, we can find, using the mean value theorem, a
number 0 < δ < (1− 1/r′)/10 with the following property

(5.3) |b(z)− b(w)| ≤ ε

10N
,

for all z, w ∈ D′ with |z − w| ≤ 100δ. Moreover, we assume δ is so small that
W (z)MO(b)(z) < ε/(10N) for z with |z| ≥ 1 − 4δ. If necessary, we diminish the
numbers δj so that each of them satisfies δj ≤ δ.

We next modify the function b on each of the sets B(tj , δj) as follows. We start
with j = 1, and without loss of generality we may assume t1 = 1. Let z = x+iy ∈ D.
We define

f1(z) = b(z)
if x ≤ 1− δ2

1/100, and
f1(z) = b(1− δ2

1/100 + iy),
if x ≥ 1− δ2

1/100 (notice that then z = x+ iy ∈ B1).
We also define

f2(z) = b(z)
if x ≤ 1− δ2

1/100, and

f2(z) = b(1− δ2
1/100 + 2(x− (1− δ2

1/100)) + iy)

if x ≥ 1− δ2
1/100.

Since the functions fk coincide with b except in the set B1, we have

sup
z∈D\B1

|fk(z)− b(z)| = 0.

If z ∈ B1, then, by the construction of the functions fk, we have

(5.4) fk(z) = b(w)

for a number w such that |z − w| ≤ δ1. Hence, we still obtain by (5.3)

|fk(z)− b(z)| = |b(w)− b(z)| < ε

10N
.

Therefore, ‖fk − b‖∞ ≤ ε/10N .
Concerning ‖fk − b‖BMO∂ log , we show that

W (z)MO(fk)(z) ≤ 4ε
10N

for the numbers z with |z| ≥ 1 − 4δ. Indeed, if |z| ≥ 1 − 4δ, then the Euclidean
radius of the set D(z) is smaller than 50δ. Moreover, (5.4) still holds. (If z /∈ B1,
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then fk(z) = b(z)). Hence, by (5.3) and (5.4), |fk(w) − fk(ζ)| ≤ 4ε/(10N) for all
w, ζ ∈ D(z), which implies W (z)MO(fk)(z) ≤ 4ε/(10N).

On the other hand, for such z, we have W (z)MO(b)(z) ≤ ε/(10N) by assump-
tion, so we get for |z| ≥ 1− 4δ the bound W (z)MO(b− fk)(z) < 5ε/(10N).

For |z| ≤ 1 − 4δ we have W (z)MO(b − fk)(z) = 0, since the functions coincide
on D(z). As a conclusion,

(5.5) ‖b− fk‖ ≤
ε

2N
for k = 1, 2.

As for the other discs Bj , j = 1, . . . , N , we modify b on them analogously to f1

above. Eventually we thus get two modifications of b, namely b2, which has exactly
one zero in T′ (the one sitting in B1), and b1, which has no zeros in T′. Moreover,
both functions satisfy,

‖bk − b‖ <
4ε
10
,

hence, by (5.2),
‖bk − a‖ < ε,

and by construction, the indices of b′k := bk � T (k = 1, 2) are different since
the increments of arg b′1(t) and arg b′2(t) are the same when t ranges over T \ B1

but differ when t ranges over T ∩ B1. This contradicts the index theorem (see
Theorem 12). �

As a consequence, we see that the condition a � T ≡ 0 is also necessary for the
compactness of Ta acting on A1:

Proposition 15. Let a ∈ C(D) ∩ VMO∂ log. Then Ta is compact on A1 if and
only if a(t) = 0 for all t ∈ T.

Proof. For sufficiency, see Corollary 8. Assume that Ta is compact but a(t0) 6= 0
for some t0 ∈ T. It is well known that K − λ is Fredholm for all λ 6= 0 whenever
K is compact (the Riesz’s theorem for compact operators). In particular, Ta−a(t0)

must then be Fredholm, which contradicts the previous theorem. �
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[3] A. Böttcher, Toeplitz operators on the disk with locally sectorial symbols, Rocky Mountain
J. Math. 23 (1993), no. 3, 803–816.
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