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1 Introduction

The present preprint is a continuation of our last preprint [RSY1] in the subject
where we have obtained one extension of the Lehto theorem on the existence of
homeomorphic solutions for the Beltrami equation, see Section 2. The goal here is
to show that the extension has as corollaries the main known existence theorems as
well as a series of more advanced theorems for the Beltrami equation, see Sections
4 and 5. The base for these advances is some lemmas on measure and integral in
Section 3. The corresponding historic comments and some comparisons can be
found in Section 6.

Let D be a domain in the complex plane C, i.e., open and connected subset
of C, and let µ : D → C be a measurable function with |µ(z)| < 1 a.e. The
Beltrami equation is

fz = µ(z) · fz(1.1)

where fz = ∂f = (fx + ify)/2, fz = ∂f = (fx − ify)/2, z = x + iy, and fx and fy

are partial derivatives of f in x and y, correspondingly. The Beltrami equation
plays a great role in the mapping theory and has an independent interest itself.

The function µ is called the complex coefficient and

Kµ(z) =
1 + |µ(z)|
1− |µ(z)|(1.2)

the maximal dilatation or in short the dilatation of the equation (1.1). The
Beltrami equation (1.1) is said to be degenerate if ess sup Kµ(z) = 1.
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Use will be made also the tangential dilatation with respect to a point
z0 ∈ D which is defined by

KT
µ (z, z0) =

∣∣∣1− z−z0

z−z0
µ(z)

∣∣∣
2

1− |µ(z)|2 .(1.3)

Recall that a mapping f : D → C is absolutely continuous on lines, abbr.
f ∈ACL, if, for every closed rectangle R in D whose sides are parallel to the
coordinate axes, f |R is absolutely continuous on almost all line segments in R
which are parallel to the sides of R. In particular, f is ACL if it belongs to the
Sobolev class W 1,1

loc , see e.g. [Ma], p. 8. Note that, if f ∈ ACL, then f has
partial derivatives fx and fy a.e. and, thus, by the well-known Gehring-Lehto
theorem every ACL homeomorphism f : D → C is differentiable a.e., see [GL]
or [LV], p. 128. For a sense-preserving ACL homeomorphism f : D → C, the
Jacobian Jf (z) = |fz|2−|fz|2 is nonnegative a.e., see [LV], p. 10. In this case, the
complex dilatation of f is the ratio µ(z) = fz/fz, and |µ(z)| ≤ 1 a.e., and the
dilatation of f is Kµ(z) from (1.2) and Kµ(z) ≥ 1 a.e. Here we set by definition
µ(z) = 0 and, correspondingly, Kµ(z) = 1 if fz = 0. The complex dilatation and
the dilatation of f will also be denoted by µf and Kf , respectively.

Given a measurable function Q : D → [1,∞], we say that a homeomorphism
f : D → C is a Q-homeomorphism if

M(fΓ) ≤
∫

D

Q(z) · ρ2(z) dxdy(1.4)

holds for every path family Γ in D and each ρ ∈ adm Γ. This term was introduced
in [MRSY1], see also [MRSY2] and [MRSY3], and the inequality was used in
[RSY2] and [RSY3] for studying the so-called BMO-quasiconformal mappings.

Recall that, given a family of paths Γ in C, a Borel function ρ : C→ [0,∞] is
called admissible for Γ, abbr. ρ ∈ adm Γ, if

∫

γ

ρ(z) |dz| ≥ 1(1.5)

for each γ ∈ Γ. The modulus of Γ is defined by

M(Γ) = inf
ρ∈adm Γ

∫

C

ρ2(z) dxdy .(1.6)

We say that a property P holds for almost every (a.e.) path γ in a family Γ if
the subfamily of all paths in Γ for which P fails has modulus zero. In particular,
almost all paths in C are rectifiable.

Given a domain D and two sets E and F in C, Γ(E,F,D) denotes the family
of all paths γ : [a, b] → C which join E and F in D, i.e., γ(a) ∈ E, γ(b) ∈ F and
γ(t) ∈ D for a < t < b. We set Γ(E, F ) = Γ(E,F,C) if D = C. A ring domain,
or shortly a ring in C is a doubly connected domain R in C. Let R be a ring in
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C. If C1 and C2 are the connected components of C \R, we write R = R(C1, C2).
The capacity of R can be defined by

cap R(C1, C2) = M(Γ(C1, C2, R)) ,(1.7)

see e.g. [Ge1]. Note also, see e.g. Theorem 11.3 in [Va], that

M(Γ(C1, C2, R)) = M(Γ(C1, C2)) .(1.8)

Motivated by the ring definition of quasiconformality in [Ge2], we introduced
in [RSY4] the following notion that localizes and extends the notion of a Q–
homeomorphism. Let D be a domain in C, z0 ∈ D, r0 ≤ dist(z0, ∂D) and Q :
D(z0, r0) → [0,∞] a measurable function in the disk

D(z0, r0) = {z ∈ C : |z − z0| < r0} .(1.9)

Set
A(z0, r1, r2) = {z ∈ C : r1 < |z − z0| < r2} ,(1.10)

C(z0, ri) = {z ∈ C : |z − z0| = ri}, i = 1, 2.(1.11)

We say that a homeomorphism f : D → C is a ring Q–homeomorphism at the
point z0 ∈ D if

M(Γ(fC1, fC2)) ≤
∫

A

Q(z) · η2(|z − z0|) dxdy(1.12)

for every annulus A = A(z0, r1, r2), 0 < r1 < r2 < r0, and for every measurable
function η : (r1, r2) → [0,∞] such that

r2∫

r1

η(r) dr = 1 .(1.13)

Note that every Q–homeomorphism f : D → C is a ring Q–homeomorphism at
each point z0 ∈ D.

An ACL homeomorphism fµ : D → C is called a ring solution of the

Beltrami equation (1.1) if f satisfies (1.1) a.e., f−1
µ ∈ W 1,2

loc and f is a ring

Q–homeomorphism at every point z0 ∈ D with Qz0(z) = KT
µ (z, z0).

The condition f−1 ∈ W 1,2
loc given in the definition of a ring solution implies that

a.e. point z is a regular point for the mapping f, i.e., f is differentiable at z and
Jf (z) 6= 0. Note that the condition Kµ ∈ L1

loc is necessary for a homeomorphic

ACL solution f of (1.1) to have the property g = f−1 ∈ W 1,2
loc because this property

implies that

∫

C

Kµ(z) dxdy ≤ 4
∫

C

dxdy

1− |µ(z)|2 = 4
∫

f(C)

|∂g|2 dudv < ∞
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for every compact set C ⊂ D. Note also that every homeomorphic ACL solution
f of the Beltrami equation with Kµ ∈ L1

loc belongs to the class W 1,1
loc as in all our

theorems. Note also that if, in addition, Kµ ∈ Lp
loc, p ∈ [1,∞], then fµ ∈ W 1,s

loc

where s = 2p/(1 + p) ∈ [1, 2]. In the classical case when ‖µ‖∞ < 1, equivalently,
when Kµ ∈ L∞, every ACL homeomorphic solution f of the Beltrami equation

(1.1) is in the class W 1,2
loc together with its inverse mapping f−1. In the case

‖µ‖∞ = 1 and when Kµ ≤ Q ∈ BMO, again f−1 ∈ W 1,2
loc and f belongs to

W 1,s
loc for all 1 ≤ s < 2 but not necessarily to W 1,2

loc , see [RSY2] and [RSY3]. The
inequality (1.12), which ring solutions satisfy, is an important tool in deriving
various properties of the solutions.

2 Extension of Lehto’s existence theorem

Lehto considers in [Le] degenerate Beltrami equations in the special case where
the singular set Sµ

Sµ = {z ∈ C : lim
ε→0

‖Kµ‖L∞(D(z,ε)) = ∞}(2.1)

of the complex coefficient µ in (1.1) is of measure zero and shows that, if for every
z0 ∈ C and every r1 and r2 ∈ (0,∞) the integral

r2∫

r1

dr

r(1 + qT
z0

(r))
, r2 > r1 ,(2.2)

where

qT
z0

(r) =
1

2π

2π∫

0

|1− e−2iϑµ(z0 + reiϑ)|2
1− |µ(z0 + reiϑ)|2 dϑ ,(2.3)

is positive and tends to ∞ as either r1 → 0 or r2 → ∞, then there exists a
homeomorphism f : C → C which is ACL in C \ Sµ and satisfies (1.1) a.e. Note
that the integrand in (2.3) is just the tangential dilatation KT

µ (z, z0), see (1.3).

In this section we reformulate the extension of Lehto’s existence theorem first
obtained in [RSY1], cf. alternative formulations and proofs of this important
result in [RSY4]–[RSY6], and then, in Sections 4 and 5, derive from it some new
existence theorems. In this extension we state the existence of a ring solution in
a domain D ⊂ C. By the definition of a ring solution, see the introduction, our
solution is, in particular, ACL in D and not only in D\Sµ. Note that the situation
where Sµ = D is possible in the following theorem. Note also that the condition
(2.5) in our theorem is weaker than the condition in Lehto’s existence theorem.
See Remark 5.33 for the case where ∞ ∈ D.

2.4. Theorem. Let D be a domain in C and let µ : D → C be a measurable
function with |µ(z)| < 1 a.e. and Kµ ∈ L1

loc such that at every point z0 ∈ D

δ(z0)∫

0

dr

rqT
z0

(r)
= ∞(2.5)
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where δ(z0) < dist (z0, ∂D) and qT
z0

(r) is the mean of KT
µ (z, z0) over |z − z0| = r.

Then the Beltrami equation (1.1) has a ring solution fµ.

As a simplest consequence of Theorem 2.4, we have the following statement.

2.6. Corollary. If |µ(z)| < 1 a.e. and Kµ ∈ L1
loc and at every point z0 ∈ D

qT
z0

(r) = O
(
log

1

r

)
as r → 0 ,(2.7)

then (1.1) has a ring solution.

As one more consequence of Theorem 2.4 we obtain the following result which
is due to Miklyukov and Suvorov [MS] for the case Kµ ∈ Lp

loc, p > 1.

2.8. Corollary. If Kµ ∈ Lp
loc for p ≥ 1 and (2.5) holds for Kµ(z) instead of

KT
µ (z, z0) for every point z0 ∈ D, then (1.1) has a W 1,s

loc homeomorphic solution
where s = 2p/(p + 1).

Other corollaries will be formulated in Sections 4 and 5 after some measure
and integral considerations in Section 3 related to the condition (2.5).

3 Integral and measure conditions

One may use integral constraints and measure constraints on dilatations in existence
theorems for the Beltrami equation (1.1). Below we show that integral constraints
are reduced to the corresponding constraints in measure. Hence we consider first
of all the constraints in measure which have a more general nature.

If Q(z) : U → [0,∞] is a measurable function in U ⊂ C and Φ : [0,∞] → [0,∞]
is non-decreasing and

∫

U

Φ(Q(z)) dxdy ≤ C < ∞ ,(3.1)

then, arguing by contradiction, we obtain that

M(t) ≤ C

Φ(t)
∀t ∈ [0,∞)(3.2)

where
M(t) = MQ,U(t) = |{z ∈ U : Q(z) > t }| , t ≥ 0 .(3.3)

Thus, every integral condition implies the corresponding measure constraint and
we may restrict ourselves to measure constraints.

Let U be an open set in C, Q : U → [0,∞] a measurable function, and let

M(t) ≤ ϕ(t)(3.4)

for some function ϕ : [0,∞] → [0,∞] where M(t) is defined by (3.3).
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We may assume here with no loss of generality that ϕ is non-increasing and
continuous from the right. Indeed, if ϕL is the lower envelope of ϕ, i.e.,

ϕL(t) = lim
b→t+0

inf
0≤a≤b

ϕ(a) ,(3.5)

in other words, the greatest function which is non-increasing and continuous from
the right such that ϕL(t) ≤ ϕ(t) for all t ∈ [0,∞], then (3.4) is equivalent to

M(t) ≤ ϕL(t) .(3.6)

For every non-increasing function ϕ : [0,∞] → [0,∞], the inverse function
ϕ−1 : [0,∞] → [0,∞] can be well defined by setting

ϕ−1(τ) = inf
ϕ(t)≤τ

t .(3.7)

As usual, here inf is equal to ∞ if the set of t ∈ [0,∞] such that ϕ(t) ≤ τ is
empty. Note that the function ϕ−1 is also non-increasing.

Similarly, for every non-decreasing function Φ : [0,∞] → [0,∞], we set

Φ−1(τ) = inf
Φ(t)≥τ

t .(3.8)

Again, here inf is equal to ∞ if the set of t ∈ [0,∞] such that Φ(t) ≥ τ is empty.
Note that the function Φ−1 is non-decreasing, too.

3.9. Proposition. Let ψ : [0,∞] → [0,∞] be a sense–reversing homeomorphism
and ϕ : [0,∞] → [0,∞] a monotone function. Then

[ψ ◦ ϕ]−1(τ) = ϕ−1 ◦ ψ−1(τ) ∀τ ∈ [0,∞](3.10)

and
[ϕ ◦ ψ]−1(τ) ≤ ψ−1 ◦ ϕ−1(τ) ∀τ ∈ [0,∞](3.11)

and, except a countable collection of τ ∈ [0,∞],

[ϕ ◦ ψ]−1(τ) = ψ−1 ◦ ϕ−1(τ) .(3.12)

The equality (3.12) holds for all τ ∈ [0,∞] iff the function ϕ : [0,∞] → [0,∞] is
strictly monotone.

3.13. Remark. If ψ is a sense–preserving homeomorphism, then (3.10) and
(3.12) are obvious for every monotone function ϕ.

Proof of Proposition 3.9. Let us first prove (3.10). If ϕ is non-increasing, then

[ψ ◦ ϕ]−1 (τ) = inf
ψ(ϕ(t))≥τ

t = inf
ϕ(t)≤ψ−1(τ)

t = ϕ−1 ◦ ψ−1(τ) .

Similarly, if ϕ is non-decreasing, then

[ψ ◦ ϕ]−1 (τ) = inf
ψ(ϕ(t))≤τ

t = inf
ϕ(t)≥ψ−1(τ)

t = ϕ−1 ◦ ψ−1(τ) .
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Now, let us prove (3.11) and (3.12). If ϕ is non-increasing, then applying the
substitution η = ψ(t) we have

[ϕ ◦ ψ]−1 (τ) = inf
ϕ(ψ(t))≥τ

t = inf
ϕ(η)≥τ

ψ−1(η) = ψ−1

(
sup

ϕ(η)≥τ
η

)
≤

≤ ψ−1

(
inf

ϕ(η)≤τ
η

)
= ψ−1 ◦ ϕ−1 (τ) ,

i.e., (3.11) holds for all τ ∈ [0,∞]. Evidently that here the strict inequality
is possible only for a countable collection of τ ∈ [0,∞] because an interval of
constancy of ϕ corresponds to every such τ. Hence (3.12) holds for all τ ∈ [0,∞]
if and only if ϕ is decreasing.

Similarly, if ϕ is non-decreasing, then

[ϕ ◦ ψ]−1 (τ) = inf
ϕ(ψ(t))≤τ

t = inf
ϕ(η)≤τ

ψ−1(η) = ψ−1

(
sup

ϕ(η)≤τ
η

)
≤

≤ ψ−1

(
inf

ϕ(η)≥τ
η

)
= ψ−1 ◦ ϕ−1 (τ) ,

i.e., (3.11) holds for all τ ∈ [0,∞] and again the strict inequality is possible only
for a countable collection of τ ∈ [0,∞]. In the case, (3.12) holds for all τ ∈ [0,∞]
if and only if ϕ is increasing.

3.14. Corollary. In particular, if ϕ : [0,∞] → [0,∞] is a monotone
function and ψ = j where j(t) = 1/t, then j−1 = j and

[j ◦ ϕ]−1(τ) = ϕ−1 ◦ j(τ) ∀τ ∈ [0,∞](3.15)

i.e.,
ϕ−1(τ) = Φ−1(1/τ) ∀τ ∈ [0,∞](3.16)

where Φ = 1/ϕ,

[ϕ ◦ j]−1(τ) ≤ j ◦ ϕ−1(τ) ∀τ ∈ [0,∞](3.17)

i.e., the inverse function of ϕ(1/t) is dominated by 1/ϕ−1, and except a countable
collection of τ ∈ [0,∞]

[ϕ ◦ j]−1(τ) = j ◦ ϕ−1(τ) .(3.18)

1/ϕ−1 is the inverse function of ϕ(1/t) if and only if the function ϕ is strictly
monotone.

Now, let (X, Σ) and (X ′, Σ′) be measurable spaces and let g : X → X ′ be a
measurable transformation, i.e., S = g−1S ′ ∈ Σ for all S ′ ∈ Σ′. If m is a measure
on the σ–algebra Σ, then the measure m′ = mg−1 on the σ–algebra Σ′ is given by
the equality

m′(S ′) = mg−1(S ′) = m(g−1(S ′)) ∀ S ′ ∈ Σ′(3.19)
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Below we use the following statement on the change of measure, see Theorem 39C
in [Ha]. R denotes the extended real axes R = R ∪ {+∞} ∪ {−∞}.

3.20. Proposition. Let g : X → X ′ be a measurable transformation from
the measurable space (X, Σ) with a measure m into a measurable space (X ′, Σ′).
Then a function f : X ′ → R is integrable with respect to the measure m′ = mg−1

if and only if the function f ◦ g is integrable with respect to the measure m and,
in the case of integrability, the equality

∫

g−1(S′)

f(g(x)) dm =
∫

S′

f(x′) dm′(3.21)

holds for every set S ′ ∈ Σ′ .

Let (X, Σ) be a measurable space and let m be a measure on the σ–algebra Σ.
Below we also use the measure function M(t) for g : X → R

M(t) = Mg(t) = m({x ∈ X : g(x) > t })(3.22)

for which the following statement holds, see e.g. [MZ], p. 3.

3.23. Proposition. Let (X, Σ) be a measurable space and let g : X →
[0,∞] be a measurable function with respect to a measure m on Σ. Then

∫

X

g dm =

+∞∫

0

M(t) dt .(3.24)

By the geometric sense of integral as a consequence of Proposition 3.23 we have
the following statement.

3.25. Proposition. Let (X, Σ) be a measurable space and let g : X →
[0,∞] be a measurable function with respect to a measure m on Σ. Then

∫

Z

g dm ≤
m(Z)∫

0

M−1(τ) dτ(3.26)

for every measurable set Z ⊂ X and, moreover,

∫

X

g dm =

m(X)∫

0

M−1(τ) dτ .(3.27)

Proof. Indeed, fix τ0 ≤ M(0) and set t0 = M−1(τ0). Note that M(t0) = τ0

because M(t) is continuous from the right. Hence among all measurable sets
Z ⊆ X with m(Z) = τ0 , the integral from the left hand side in (3.26) attains the
greatest possible value on the set

Z0 = {x ∈ X : g(x) > t0}
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for which we have

MZ0(t) : = m ({x ∈ Z0 : g(x) > t}) = M (t) ∀ t ≥ t0

and MZ0(t) ≡ m(Z0) = τ0 for all t < t0 . Consider the function g0(x) = g(x)−t0 ≥
0 given on the set Z0. Then

M0(t) : = m ({x ∈ Z0 : g0(x) > t}) = MZ (t + t0) ∀ t ≥ 0

and by Proposition 3.23

∫

Z

g dm ≤
∫

Z0

g dm = t0 · τ0 +

∞∫

0

M0(t) dt = t0 · τ0 +

∞∫

t0

M(t) dt .

Finally, by the geometric sense of integral from the right hand side, we obtain
(3.26). The above arguments imply also the second relation (3.27).

For integrable functions f and g : [0, 1] → [0,∞], it is said that g majorizes
f or f is majorized by g and written f ≺ g if

x∫

0

M−1
f (t) dt ≤

x∫

0

M−1
g (t) dt ∀x ∈ [0, 1](3.28)

and
1∫

0

M−1
f (t) dt =

1∫

0

M−1
g (t) dt .(3.29)

Note that M−1
f and M−1

g are non–increasing (equi–measurable) rearrangements
of f and g, cf. [HLP1], [HLP2] and [MO].

The continuity of functions in the following lemma is understood in the sense
of the topology of the extended positive real axes [0,∞].

3.30. Lemma. Let κ : [0,∞] → [0,∞] be a continuous non–increasing
convex function and η : [0, 1] → [0,∞] a continuous non-increasing function.
Then the inequality

1∫

0

η(t) κ(f(t)) dt ≥
1∫

0

η(t) κ(g(t)) dt(3.31)

holds for all integrable functions f and g : [0, 1] → [0,∞] such that g is non–
increasing and f ≺ g.

3.32. Remark. The discrete version of the inequality (3.31) can be found
as H.2.b in [MO], p. 92, that is applied below under the proof of Lemma 3.30.

Proof. Without loss of generality we may assume that the left hand side in
(3.31) is finite.
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1) First consider the case where the functions κ and η are bounded. Let f
and g : [0, 1] → [0,∞] be integrable, g non–increasing and f ≺ g. Set fn and
gn the functions which are equal to the averages of f and g on the intervals
(k · 2−n, (k + 1) · 2−n), k = 0, 1, . . . , 2n − 1, n = 1, 2, . . . , correspondingly. By the
well–known Lebesgue theorem on differentiability of indefinite integral, see e.g.
IV(6.3) in [Sa], fn → f and gn → g a.e. as n →∞. Note that by the construction
fn and gn are measurable and bounded in view of integrability of f and g and,
moreover, fn ≺ gn for every n = 1, 2, . . . . The latter is true because by (3.27) and
(3.29)

1∫

0

fn(t) dt =

1∫

0

f(t) dt =

1∫

0

g(t) dt =

1∫

0

gn(t) dt

and by (3.26) and (3.28)

ck,n∫

0

fn(t) dt =

ck,n∫

0

f(t) dt ≤
ck,n∫

0

g(t) dt =

ck,n∫

0

gn(t) dt

for all ck,n = k2−n, k = 1, . . . , 2n, and between the points ck,n the indefinite
integrals of fn and gn are linear functions in the variable x. The discrete variant
of the inequality (3.31), see H.2.b in [MO], p. 92, gives

1∫

0

ηn(t) κ(fn(t)) dt ≥
1∫

0

ηn(t) κ(gn(t)) dt

where ηn(t) = η((k + 1) · 2−n) on the intervals (k · 2−n, (k + 1) · 2−n), k =
0, 1, . . . , 2n − 1, n = 1, 2, . . . , correspondingly. Note that ηn(t) ≤ η(t) n = 1, 2, . . .
and ηn(t) → η(t) a.e. as n →∞. Moreover, by the Jensen inequality with weights,
see e.g. Theorem 2.6.2 in [Ra], applied on the intervals (k · 2−n, (k + 1) · 2−n),
k = 0, 1, . . . , 2n − 1, n = 1, 2, . . . , we obtain that

1∫

0

ηn(t) κ(fn(t)) dt ≤
1∫

0

η(t) κ(f(t)) dt < ∞

and hence also

1∫

0

ηn(t) κ(gn(t)) dt ≤
1∫

0

η(t) κ(f(t)) dt < ∞ .

Thus, by the Fatou lemma, see e.g. [Ha], p. 113,

1∫

0

η(t) κ(f(t)) dt = lim
n→∞

1∫

0

ηn(t) κ(fn(t)) dt

and
1∫

0

η(t) κ(g(t)) dt = lim
n→∞

1∫

0

ηn(t) κ(gn(t)) dt



EXTENSION OF LEHTO’S EXISTENCE THEOREM 11

and hence (3.31) holds.

2) Now, if either κ or η is not bounded, then consider the functions κn or ηn

given by the relations

ηn(t) =

{
η(t), if η(t) ≤ n,

n, if η(t) > n

and

κn(t) =

{
κ(u), if u ≥ un,

an + bn(u− un), if u ≤ un

where un = κ−1(n), an = κ(un) and bn = lim
u→un+0

κ′(u). Note that by the construction

ηn is continuous, bounded and non–increasing and κn(t) is continuous, bounded,
convex and non–increasing, see e.g. Proposition 1.4.8 in [Bo]. Thus, by the point
1) of the proof we obtain that

1∫

0

ηn(t) κn(f(t)) dt ≥
1∫

0

ηn(t) κn(g(t)) dt(3.33)

for all integrable functions f and g : [0, 1] → [0,∞] such that g is non–increasing
and f ≺ g. Note also that by the construction ηn(t) ≤ η(t) and κn(u) ≤ k(u),
n = 1, 2, . . . and ηn(t) → η(t) and κn(u) → k(u) everywhere as n →∞. Hence

1∫

0

ηn(t) κn(f(t)) dt ≤
1∫

0

η(t) κ(f(t)) dt

and by the Lebesgue bounded convergence theorem, see e.g. [Ha], p. 110,

lim
n→∞

1∫

0

ηn(t) κn(f(t)) dt =

1∫

0

η(t) κ(f(t)) dt .

By (3.33) we also have that

1∫

0

ηn(t) κn(g(t)) dt ≤
1∫

0

η(t) κ(f(t)) dt < ∞ .

Hence by the Fatou lemma

lim
n→∞

1∫

0

ηn(t) κn(g(t)) dt =

1∫

0

η(t) κ(g(t)) dt

and, finally, by (3.33) we obtain (3.31).

Below we use the notation of the unit disk

D = { z ∈ C : |z| < 1 } .(3.34)
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3.35. Lemma. Let Q : D → [0,∞] be an integrable function and ϕ :
[0,∞] → [0,∞] non-increasing. If

M(t) : = |{z ∈ D : Q(z) > t }| ≤ ϕ(t) ∀ t ∈ [0,∞] ,(3.36)

then
1∫

0

dr

rq(r)
≥ 1

2

π∫

0

dτ

τϕ−1(τ)
(3.37)

where q(r) is the mean value of Q(z) over the circle |z| = r.

Proof. Set α(0) = 0 and α(a) = q
(√

a
π

)
for a ∈ (0, π]. Note that

πρ2∫

0

α(a) da =
∫

|z|<ρ

Q(z) dxdy ∀ρ ∈ (0, 1)

Hence by Proposition 3.25

A∫

0

α(a) da ≤
A∫

0

M−1(τ) dτ ∀A ∈ [0, π]

and
π∫

0

α(a) da =

π∫

0

M−1(τ) dτ < ∞ ,

i.e. α ≺ M−1, and by Lemma 3.30 we have that

1∫

0

da

aα(a)
≥

π∫

0

dτ

τM−1(τ)

and after the change of variables a = πr2 we come to the inequality (3.37) because
M−1(τ) ≤ ϕ−1(τ).

3.38. Theorem. Let ϕ : [0,∞] → [0,∞] be a non-increasing function such
that

π∫

0

dτ

τϕ−1(τ)
= ∞ .(3.39)

Then
1∫

0

dr∫
|z|=r

Q(z)
= ∞ ,(3.40)

for every integrable function Q : D→ [0,∞] such that

|{z ∈ D : Q(z) > t }| ≤ ϕ(t) ∀ t ∈ [0,∞] .(3.41)

Proof. The statement follows immediately from Lemma 3.35.
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3.42. Remark. Note that

KT
µ (z, z0) ≤ Kµ(z) a.e.(3.43)

and, thus, KT
µ (z, z0) is locally integrable in D if Kµ(z) is so. This is a base for the

following applications of Theorem 3.38 to the existence problem for the Beltrami
equation below.

4 Existence theorems with measure constraints

The following existence theorem is a direct consequence of Theorems 2.4 and 3.38.

4.1. Theorem. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood Uz0

where
|{z ∈ Uz0 : KT

µ (z, z0) > t}| ≤ ϕz0(t) ∀t ∈ [0,∞)(4.2)

for a non-increasing function ϕz0 : [0,∞] → [0,∞] such that

δ(z0)∫

0

dτ

τϕ−1
z0

(τ)
= ∞(4.3)

for some δ(z0) < ϕz0(+0). Then the Beltrami equation (1.1) has a ring solution.

Note that the additional condition δ(z0) < ϕz0(+0) is necessary because by the
definition ϕ−1

z0
(τ) = 0 for all τ ≥ ϕz0(+0). Really it is important only degree of

convergence ϕ−1
z0

(τ) →∞ as τ → 0 or, the same, degree of convergence ϕz0(t) → 0
as t →∞.

Proof. Indeed, if δ(z0) < ϕz0(+0), then ϕ−1
z0

(δ(z0)) > 0 and hence, for every
δ ∈ (0, δ(z0)),

δ(z0)∫

δ

dτ

τϕ−1
z0

(τ)
≤ 1

ϕ−1
z0

(δ(z0))
log

δ(z0)

δ
< ∞ .(4.4)

Thus, the condition (4.3) implies that

δ∫

0

dτ

τϕ−1
z0

(τ)
= ∞(4.5)

for every δ ∈ (0, δ(z0)). Let

D(z0, ρ) = { z ∈ D : |z − z0| ≤ ρ } ⊂ Uz0(4.6)

such that δ = πρ2 ∈ (0, δ(z0)) and set ζ = (z − z0)/ρ, Q(ζ) = KT
µ (z0 + ρζ, z0),

ζ ∈ D. Then

M(t) : = |{ζ ∈ D : Q(ζ) > t }| ≤ ϕ(t) ∀ t ∈ [0,∞](4.7)
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where ϕ(t) = ϕz0(t)/ρ
2. By Proposition 3.9 ϕ−1(τ) = ϕ−1

z0
(ρ2τ), ϕ−1

z0
(τ) = ϕ−1(τ/ρ2),

and then by (4.5)
π∫

0

dτ

τϕ−1(τ)
= ∞ .(4.8)

Thus, by Theorem 3.38
ρ∫

0

dr

rqT
z0

(r)
= ∞(4.9)

where qT
z0

(r) is the mean value of KT
µ (z, z0) over the circle |z − z0| = r. Finally,

by Theorem 2.4 we have the conclusion of Theorem 4.1.

Since KT
µ (z, z0) ≤ Kµ(z) we have, in particular, the following consequence of

Theorem 4.1 in terms of the maximal dilatation Kµ(z).

4.10. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that

|{z ∈ D : Kµ(z) > t}| ≤ ϕ(t) ∀t ∈ [1,∞)(4.11)

for a non-increasing function ϕ : [0,∞] → [0,∞] such that

δ∫

0

dτ

τϕ−1(τ)
= ∞(4.12)

for some δ < ϕ(+0). Then the Beltrami equation (1.1) has a ring solution.

Here we may assume without loss of generality that ϕ(t) = ϕ(1 + 0) for all
t ∈ [0, 1] and, thus, ϕ(+0) = ϕ(1+0). Furthermore, we may assume that ϕ(t) = ∞
for all t ∈ [0, T ] with any prescribed T > 1.

The following statement gives a series of equivalent and sufficient conditions
for (4.3) and (4.12) that follows immediately from Proposition 3.9 and Corollary
3.14. Below, in (4.15) and (4.16), we complete the definition of integrals by ∞ if
ϕ(t) = 0, i.e., H(t) = ∞, for all t ≥ T < ∞.

4.13. Proposition. Let ϕ : [0,∞] → [0,∞] be a non-increasing function
and set

H(t) = log
1

ϕ(t)
.(4.14)

Then the equality
∞∫

∆

H ′(t)
dt

t
= ∞(4.15)

implies the equality
∞∫

∆

dH(t)

t
= ∞(4.16)
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and (4.16) is equivalent to
∞∫

∆

H(t)
dt

t2
= ∞(4.17)

for some ∆ > 0, and (4.17) is equivalent to every of the following equalities:

δ∫

0

H
(

1

t

)
dt = ∞(4.18)

for some δ > 0,
∞∫

∆∗

dη

H−1(η)
= ∞(4.19)

for some ∆∗ > H(+0),
δ∗∫

0

dτ

τϕ−1(τ)
= ∞(4.20)

for some δ∗ < ϕ(+0).

Moreover, (4.15) is equivalent to (4.16) and hence (4.15)–(4.20) are equivalent
each to other if ϕ is absolutely continuous and non–increasing. In particular, all
the conditions (4.15)–(4.20) are equivalent if ϕ is convex and non–increasing.

Proof. The equality (4.15) implies (4.16) because

∞∫

4

dH(t)

t
≥

∞∫

4
H ′(t)

dt

t
,

see e.g. Theorem 7.4 of Chapter IV in [Sa] p. 119. The equality (4.16) is equivalent
to (4.17) by integration by parts, see e.g. Theorem 14.1 of Chapter III in [Sa], p.
102.

Now, (4.17) is equivalent to (4.18) by the change of variables t → 1/t, and
(4.18) is equivalent to (4.19) by the geometric sense of integral and by Corollary
3.14.

By Corollary 3.14 the inverse function of H (1/t) coincides with 1/H−1(t) at
all points except a countable collection and, thus, by geometric sense of integral
(4.19) is equivalent to (4.18).

Further, set ψ(ξ) = log (1/ξ). Then H = ψ ◦ ϕ and by Proposition 3.9 H−1 =
ϕ−1 ◦ ψ−1, i.e., H−1(η) = ϕ−1(e−η), and by the substitutions τ = e−η, η =
log (1/τ) we have the equivalence of (4.19) and (4.20).

Finally, (4.15) and (4.16) are equivalent if ϕ is absolutely continuous, see e.g.
Theorem 7.4 of Chapter IV in [Sa] p. 119.

In particular, Proposition 4.13 makes possible to formulate the following con-
sequences of Theorem 4.1.
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4.21. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. If the condition (4.2) holds at every point z0 ∈ D with a
non-increasing function ϕz0 : [0,∞) → [0,∞) such that

∞∫

∆(z0)

log
1

ϕz0(t)

dt

t2
= ∞(4.22)

for some ∆(z0) > 0, then (1.1) has a ring solution.

4.23. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. If the condition (4.2) holds at every point z0 ∈ D for a
non–increasing function ϕz0 : [0,∞) → [0,∞) such that

∞∫

∆(z0)

(
log

1

ϕz0(t)

)′
dt

t
= ∞(4.24)

for some ∆(z0) > 0, then (1.1) has a ring solution.

The following theorem gives the most general form of criteria in terms of
measure for the existence of ACL homeomorphic solutions of the Beltrami equation.

4.25. Theorem. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood Uz0

where
|{z ∈ Uz0 : KT

µ (z, z0) > t}| ≤ ϕz0(t) ∀t ∈ [0,∞)(4.26)

for a function ϕz0 : [0,∞] → [0,∞] such that

δ(z0)∫

0

dτ

τψz0(τ)
= ∞(4.27)

for some δ(z0) < lim inf
t→0

ϕz0(t) where

ψz0(τ) = inf
ϕz0 (t)≤τ

t .(4.28)

Then the Beltrami equation (1.1) has a ring solution.

Proof. Indeed, the condition (4.26) can be rewritten in terms of the lower
envelope of the function ϕz0 , see (3.5) for the definition,

|{z ∈ Uz0 : KT
µ (z, z0) > t}| ≤ (ϕz0)L(t) , ∀t ∈ [0,∞) .(4.29)

Moreover, it is clear that (ϕz0)
−1
L ≤ ψz0 because (ϕz0)L ≤ ϕz0 and hence (4.27)

implies the condition
δ(z0)∫

0

dτ

τ(ϕz0)
−1
L (τ)

= ∞(4.30)
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for δ(z0) < (ϕz0)L(+0). Thus, we may apply Theorem 4.1 to (ϕz0)L.

4.31. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that

|{z ∈ D : Kµ(z) > t}| ≤ ϕ(t) ∀t ∈ [1,∞)(4.32)

for a function ϕ : [0,∞] → [0,∞] such that

δ∫

0

dτ

τψ(τ)
= ∞(4.33)

for some δ < lim inf
t→0

ϕ(t) where

ψ(τ) = inf
ϕ(t)≤τ

t .(4.34)

Then the Beltrami equation (1.1) has a ring solution.

4.35. Remark. Note, here we do not assume that the function ϕ is non–
increasing and hence it has no sense to say on the criterion ψ as on the inverse
function of ϕ. However, the ψ–criterion effectively works in the general case.

5 Existence theorems with integral constraints

By (3.2) and (3.16) we have the following consequence of Theorem 4.1.

5.1. Theorem. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood Uz0

where ∫

Uz0

Φz0(K
T
µ (z, z0)) dxdy < ∞(5.2)

for a non-decreasing function Φz0 : [0,∞) → [0,∞] such that

∞∫

∆(z0)

dτ

τΦ−1
z0

(τ)
= ∞(5.3)

for some ∆(z0) > Φz0(+0). Then the Beltrami equation (1.1) has a ring solution.

Note that the additional condition ∆(z0) > Φz0(+0) is necessary because by
the definition Φ−1

z0
(τ) = 0 for all τ ≤ Φz0(+0). Really it is important only degree

of convergence Φ−1
z0

(τ) → ∞ as τ → ∞ or, the same, degree of convergence
Φz0(t) →∞ as t →∞.

5.4. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that
∫

D

Φ(Kµ(z)) dxdy < ∞(5.5)
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for a non-decreasing function Φ : [0,∞) → [0,∞] such that

∞∫

∆

dτ

τΦ−1(τ)
= ∞(5.6)

for some ∆ > Φ(+0). Then the Beltrami equation (1.1) has a ring solution.

Here we may assume without loss of generality that Φ(t) = Φ(1 + 0) = 0 for
all t ∈ [0, 1] and, thus, Φ(+0) = Φ(1 + 0) = 0. Furthermore, we may assume that
Φ(t) = 0 for all t ∈ [0, T ] under any prescribed T > 1.

By Proposition 4.13 we obtain a series of conditions which are sufficient and
equivalent for (5.3) and (5.6), see also (3.16) in Corollary 3.14. Below, in (5.9) and
(5.10), we complete the definition of integrals by ∞ if Φ(t) = ∞, i.e., H(t) = ∞,
for all t ≥ T < ∞. More precisely, the following statement holds.

5.7. Proposition. Let Φ : [0,∞] → [0,∞] be a non-decreasing function
and let

H(t) = log Φ(t) .(5.8)

Then the equality
∞∫

∆

H ′(t)
dt

t
= ∞(5.9)

implies the equality
∞∫

∆

dH(t)

t
= ∞(5.10)

and (5.10) is equivalent to
∞∫

∆

H(t)
dt

t2
= ∞(5.11)

for some ∆ > 0, and (5.11) is equivalent to every of the equalities:

δ∫

0

H
(

1

t

)
dt = ∞(5.12)

for some δ > 0,
∞∫

∆∗

dη

H−1(η)
= ∞(5.13)

for some ∆∗ > H(+0),
∞∫

δ∗

dτ

τΦ−1(τ)
= ∞(5.14)

for some δ∗ > Φ(+0).
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Moreover, (5.9) is equivalent to (5.10) and hence (5.9)–(5.14) are equivalent
each to other if Φ is absolutely continuous and non–decreasing. In particular, all
the conditions (5.9)–(5.14) are equivalent if Φ is convex and non–decreasing.

5.15. Remark. In Theorem 5.1 and its corollaries below, the condition that
Φz0 is non-decreasing can be omitted, however, then in (5.3) and in the relations
of type (5.9)–(5.14) it is necessary to use instead of Φz0 the function

Ψz0(t) = inf
η≥t

Φz0(η) ≤ Φz0(t)(5.16)

because (5.2) implies that

∫

Uz0

Ψz0(K
T
µ (z, z0)) dxdy < ∞ .(5.17)

5.18. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. If the condition (5.2) holds at every point z0 ∈ D with a
non-decreasing function Φz0 : [0,∞) → [0,∞) such that

∞∫

∆(z0)

log Φz0(t)
dt

t2
= ∞(5.19)

for some ∆(z0) > 0, then (1.1) has a ring solution.

5.20. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. If the condition (5.2) holds at every point z0 ∈ D for a
continuous non–decreasing function Φz0 : [0,∞) → [0,∞) such that

∞∫

∆(z0)

(log Φz0(t))
′ dt

t
= ∞(5.21)

for some ∆(z0) > 0, then (1.1) has a ring solution.

5.22. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. If the condition (5.2) holds at every point z0 ∈ D for Φz0 =
exp Hz0 where Hz0 is non–constant, non–decreasing and convex, then (1.1) has a
ring solution.

5.23. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. If the condition (5.2) holds at every point z0 ∈ D for
Φz0 = exp Hz0 with a twice continuously differentiable increasing function Hz0

such that

H ′′
z0

(t)) ≥ 0 , t ≥ t(z0) ,(5.24)

then (1.1) has a ring solution.



20 V. RYAZANOV, U. SREBRO AND E. YAKUBOV

5.25. Theorem. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc such that
∫

D

Φ(Kµ(z)) dxdy < ∞(5.26)

where Φ : [0,∞) → [0,∞] is non-decreasing such that

∞∫

∆

log Φ(t)
dt

t2
= ∞(5.27)

for some ∆ > 0. Then the Beltrami equation (1.1) has a ring solution fµ.

5.28. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. If the condition (5.26) holds with a non–decreasing function
Φ : [0,∞) → [0,∞) such that

∞∫

t0

(log Φ(t))′
dt

t
= ∞(5.29)

for some t0 > 0, then (1.1) has a ring solution.

5.30. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. If the condition (5.26) holds for Φ = eH where H is non–constant, non–
decreasing and convex, then (1.1) has a ring solution.

5.31. Corollary. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. If the condition (5.26) holds for Φ = eH where H is twice continuously
differentiable, increasing and

H ′′(t) ≥ 0 , t ≥ t0 ,(5.32)

then (1.1) has a ring solution.

Note that among twice continuously differentiable functions, the condition
(5.32) is equivalent to the convexity of H(t), t ≥ t0. Of course, the convexity
of H(t) implies the convexity of Φ(t) = eH(t), t ≥ t0, because the function exp x is
convex. However, in general, the convexity of Φ does not imply the convexity of
H(t) = log Φ(t) and it is known that the convexity of Φ(t) in (5.26) is not sufficient
for the existence of ACL homeomorphic solutions of the Beltrami equation. There
exist examples of the complex coefficients µ such that Kµ ∈ Lp with an arbitrarily
large p ≥ 1 for which the Beltrami equation (1.1) has no ACL homeomorphic
solutions, see e.g. [RSY2].

5.33. Remark. Theorem 2.4 and its consequences can be extended by
Theorem 4.23 in [RSY1] to the case where ∞ ∈ D ⊂ C in the standard way if one
replaces (2.5) by the following condition at ∞

∞∫

δ

dr

rq(r)
= ∞(5.34)
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where δ > 0 and

q(r) =
1

2π

2π∫

0

|1− e−2iϑµ(reiϑ)|2
1− |µ(reiϑ)|2 dϑ .(5.35)

In this case, there exists a homeomorphic W 1,1
loc solution f = fµ in D with f(∞) =

∞ and f−1
µ ∈ W 1,2

loc . Here f ∈ W 1,1
loc in D means that f ∈ W 1,1

loc in D \ {∞} and

that f ∗(z) = 1/f(1/z) belongs to W 1,1 in a neighborhood of 0. The statement
f−1 ∈ W 1,2

loc has a similar meaning.

Similarly, the integral condition (5.2) can be replaced by the following condition
at ∞ ∫

|z|>δ

Φ∞(KT
µ (z,∞))

dxdy

|z|4 < ∞(5.36)

where δ > 0, Φ∞ satisfies the conditions of either Theorem 5.1 or equivalent
conditions in Proposition 5.7 and

KT
µ (z,∞) =

∣∣∣1− z
z
µ(z)

∣∣∣
2

1− |µ(z)|2 .(5.37)

The measure condition (4.2) is replaced at ∞ by the condition

S({|z| > R : KT
µ (z,∞) > t}) ≤ ϕ∞(t) , t ∈ [t0,∞) .(5.38)

Here S(E) for E ⊂ C notes the spherical area of E, i.e.,

S(E) =
∫

E

dxdy

(1 + |z|2)2
,(5.39)

and ϕ∞(t) satisfies the condition of either Theorem 4.1 or equivalent conditions
in Proposition 4.13. For points z0 ∈ D∩C, one may use the spherical area instead
of the Euclidean one because the spherical and Euclidean metrics are equivalent
on compact subsets in C.

6 Historic comments and comparisons

The existence problem for degenerate Beltrami equations is currently an active
area of research. It has been studied extensively and many contributions have
been made, see e.g. [BJ1]–[BJ2], [Da], [GMSV], [IM], [Kr], [Le], [MM], [MMV],
[MS], [Pe], [Tu], [RSY1]–[RSY8] and [Ya], see also the survey [SY]. Many of those
and new theorems can be derived from Theorem 2.4 as it was shown above.

The first investigation of the existence problem for degenerate Beltrami equa-
tions with integral constraints (5.26) as in Theorem 5.25 has been made by Pesin
[Pe] who studied the special case where Φ(t) = etα − 1 with α > 1. Basically,
Corollary 5.31 is due to Kruglikov [Kr]. The first contribution in the existence
problem with measure constraints (4.2) as in Theorem 4.1 but with Kµ(z) instead
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of KT
µ (z, z0) is due to David [Da] and Tukia [Tu] who considered the special case

where ϕz0(t) ≡ ϕ(t) = α · e−βt.

The next step has been made by Brakalova and Jenkins [BJ1] who proved the
existence of ACL homeomorphic solutions for the case of the integral constraints
(5.2) as in Theorem 5.1 with Kµ(z) instead of KT

µ (z, z0) and with

Φz0(t) ≡ Φ(t) = exp

(
t+1
2

1 + log t+1
2

)
.(6.1)

Note that, in the case [BJ1], the condition (5.9) in Proposition 5.7 can be easy
verified by the calculations

(log Φ(t))′ =
1

2

log t+1
2

(1 + log t+1
2

)2
∼ 1

2

1

log t
.(6.2)

Later on Iwaniec and Martin [IM] proved the existence of solutions in the
Orlicz–Sobolev classes in the case where

Φz0(t) ≡ Φ(t) = exp

(
pt

1 + log t

)
(6.3)

for some p > 0.

Corollary 5.18 is due to Gutlyanskii, Martio, Sugawa and Vuorinen in [GMSV]
where they have established the existence of ACL homeomorphic solutions of (1.1)
under Kµ ∈ Lp

loc with p > 1 for

Φz0(t) ≡ Φ(t) : = exp H(t)(6.4)

with H(t) being a continuous increasing function such that Φ(t) is convex and

∞∫

δ

H(t)
dt

t2
= ∞(6.5)

for some δ > 0.

Recently Brakalova and Jenkins have proved the existence of ACL homeomorphic
solutions under (5.2) again with Kµ(z) instead of KT

µ (z, z0) and with

Φz0(t) ≡ Φ(t) = exp h
(

t + 1

2

)
(6.6)

where they assumed that h is increasing and convex and h(x) ≥ Cλx
λ for any

λ > 1 with some Cλ > 0 and

∞∫

∆(z0)

dτ

τh−1(τ)
= ∞ .(6.7)

Note, the condition h(x) ≥ Cλx
λ for any λ > 1 as well as the convexity and

sub-exponential conditions imply, in particular, that Kµ is locally integrable with
any degree p ∈ [1,∞).
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Many of the given conditions are not necessary as it is clear from Theorem 5.1,
Proposition 5.7 and the following lemma.

6.8. Lemma. There exist continuous increasing convex functions Φ :
[1,∞) → [1,∞) such that

∞∫

1

log Φ(t)
dt

t2
= ∞ ,(6.9)

lim inf
t→∞

log Φ(t)

log t
= 1(6.10)

and, in addition,
Φ(t) ≥ t ∀t ∈ [1,∞) .(6.11)

Moreover, there exist non-decreasing functions Φ : [1,∞) → [1,∞) with the
properties (6.9)–(6.10) which are neither continuous, nor strictly monotone and
nor convex in any neighborhood of ∞ . Furthermore, Φ(t) = αn+1 for all t ∈
(γn, αn+1] and has a jump at γn where γn < αn+1 < γn+1 , n = 1, 2, . . . , and
γn →∞ as n →∞.

6.12. Remark. The condition (6.10) implies, in particular, that there exist
no λ > 1, C > 0 and T ∈ (1,∞) such that

Φ(t) ≥ C tλ ∀ t ≥ T .(6.13)

In addition, for the example of Φ given in the proof of Lemma 6.8,

lim sup
t→∞

log Φ(t)

log t
= ∞ .(6.14)

Proof of Lemma 6.8. Below we use the known criterion which says that a
function Φ is convex on an open interval I if and only if Φ is continuous and its
derivative Φ′ exists and is non-decreasing in I except a countable set of points in
I, see e.g. Proposition 1.4.8 in [Bo].We construct Φ by induction sewing together
pairs of functions of the two types ϕ(t) = α + βt and ψ(t) = aebt with suitable
positive parameters a, b and β and possibly negative α.

More precisely, set Φ(t) = ϕ1(t) for t ∈ [1, γ∗1 ] and Φ(t) = ψ1(t) for t ∈ [γ∗1 , γ1]
where ϕ1(t) = t, γ∗1 = e, ψ1(t) = e−(e−1)et, γ1 = e + 1. Let us assume that we
already constructed Φ(t) on the segment [1, γn] and hence that Φ(t) = anebnt

on the last subsegment [γ∗n, γn] of the segment [γn−1, γn]. Then we set ϕn+1(t) =
αn+1 + βn+1t where the parameters αn+1 and βn+1 are found from the conditions
ϕn+1(γn) = Φ(γn) and ϕ′n+1(γn) ≥ Φ′(γn − 0), i.e., αn+1 + βn+1γn = ane

bnγn and
βn+1 ≥ anbne

bnγn . Let βn+1 = anbne
bnγn and αn+1 = ane

bnγn (1− bnγn) , choose a
large enough γ∗n+1 > γn from the condition

log
(
αn+1 + βn+1γ

∗
n+1

)
≤

(
1 +

1

n

)
log γ∗n+1(6.15)
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and, finally, set Φ(t) ≡ ϕn+1(t) on [γn, γ
∗
n+1].

Next, we set ψn+1(t) = an+1e
bn+1t where parameters an+1 and bn+1 are found

from the conditions that ψn+1(γ
∗
n+1) = ϕn+1(γ

∗
n+1) and ψ′n+1(γ

∗
n+1) ≥ ϕ′n+1(γ

∗
n+1) ,

i.e.,

bn+1 =
1

γ∗n+1

log
αn+1 + βn+1γ

∗
n+1

an+1

(6.16)

and, taking into account (6.16),

bn+1 ≥ βn+1

αn+1 + βn+1γ∗n+1

.(6.17)

Note that (6.17) holds if we take small enough an+1 > 0 in (6.16). In addition,
we may choose here bn+1 > 1.

Now, let us choose a large enough γn+1 with e−1γn+1 ≥ γ∗n+1 from the condition
that

log ψn+1

(
e−1γn+1

)
≥ e−1γn+1 ,(6.18)

i.e.,

log an+1 + bn+1e
−1γn+1 ≥ e−1γn+1 .(6.19)

Note that (6.19) holds for all large enough γn+1 because bn+1 > 1 although log an+1

can be negative.

Setting Φ(t) = ψn+1(t) on the segment [γ∗n+1, γn+1], we have that

log Φ(t) ≥ t ∀ t ∈ [e−1γn+1, γn+1](6.20)

where the subsegment [e−1γn+1, γn+1] ⊆ [γ∗n+1, γn+1] has the logarithmic length 1.

Thus, (6.11) holds because by the construction Φ(t) is absolutely continuous,
Φ(1) = 1 and Φ′(t) ≥ 1 for all t ∈ [1,∞); the equality (6.9) holds by (6.20); (6.10)
by (6.11) and (6.15); (6.14) by (6.20).

Finally, the corresponding example of a non-decreasing function Φ which is
neither continuous, nor strictly monotone and nor convex in any neighborhood of
∞ is obtained in the above construction if we take βn+1 = 0 and αn+1 > γn such
that αn+1 > Φ(γn) and Φ(t) = αn+1 for all t ∈ (γn, γ∗n+1], γ∗n+1 = αn+1.

6.21. Proposition. Let Φ : [0,∞) → [0,∞) be a measurable function such
that

∞∫

δ

log Φ(t)
dt

t2
= ∞(6.22)

for some δ > 0. Then

lim sup
t→∞

Φ(t)

tλ
= ∞ ∀ λ ∈ R .(6.23)
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6.24. Remark. In particular, (6.23) itself implies the relation (6.14). Indeed,
we have from (6.23) that there exists a monotone sequence tn → ∞ as n → ∞
such that

Φ(tn) ≥ tnn , n = 1, 2, . . . ,(6.25)

i.e.,
log Φ(tn)

log tn
≥ n, n = 1, 2, . . . .(6.26)

Proof of Proposition 6.21. It is sufficient to consider the case λ > 0. Set
H(t) = log Φ(t), i.e., Φ(t) = eH(t). Note that ex ≥ xn/n! for all x ≥ 0 and

n = 1, 2 . . . , because ex =
∞∑

n=0
xn/n! . Fix λ > 0 and n > λ. Then q: = λ/n

belongs to (0, 1) and

H(t)

tq
≤


Φ(t)

tλ

1
n


 · n

√
n! .

Let us assume that

C: = lim sup
t→∞

Φ(t)

tλ
< ∞ .(6.27)

Then
∞∫

4
H(t)

dt

t2
< 2

n
√

Cn!

∞∫

4

dt

t2−q
= − 2

1− q

n
√

Cn!

t1−q
|∞4 =

=
2

1− q

n
√

Cn!

41−q
< ∞

for large enough 4 > δ > 0 . The latter contradicts (6.22). Hence the assumption
(6.27) was not true and, thus, (6.23) holds for all λ ∈ R .

6.28. Remark. Lemma 6.8 shows that, generally speaking, lim sup in (6.23)
cannot be changed by lim for an arbitrary λ > 1 under the condition (6.22) even
if Φ is continuous, increasing and convex.
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