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Abstract

It is investigated the problem on extending to the boundary of the so–called Q−homeomor-
phisms between domains in metric spaces with measures. It is formulated conditions on the
function Q(x) and boundaries of the domains under which every Q−homeomorphism admits
a continuous or homeomorphic extension to the boundary. The results can be applied, in
particular, to Riemannian manifolds, the Loewner spaces, the groups by Carnot and Heisenberg.
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1 Introduction

It is studied properties of weakly flat spaces which are a far-reaching generalization
of recently introduced spaces by Loewner, see e.g. [BK], [BY], [He1], [HK] and
[Ty], including, in particular, the well–known groups by Carnot and Heisenberg,
see e.g. [He2], [HH], [KRe1], [KRe2], [MaM], [MarV], [Mit], [Pa] and [Vo]. On this
base, it is created the theory of the boundary behavior and removable singularities
for quasiconformal mappings and their generalizations that can be applied to
any of the counted classes of spaces. In particular, it is proved a generalization
and strengthening of the known theorem by Gehring-Martio on homeomorphic
extension to the boundary of quasiconformal mappings between domains of quasi-
extremal distance in R

n, n ≥ 2, see [GM].

Various modulus inequalities play a great role in the theory of quasiconformal
mappings and their generalizations. In this connection, the following conception
has been introduced by Professor Olli Martio, see e.g. [MRSY1]-[MRSY3]. Let
G and G′ be domains in R

n, n ≥ 2, and let Q : G → [1,∞] be a measurable
function. A homeomorphism f : G→ G′ is called a Q−homeomorphism if

M(fΓ) ≤
∫

G

Q(x) · %n(x) dm(x)(1.1)
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for every family Γ of paths in G and every admissible function % for Γ. Here the
notation m refers to the Lebesgue measure in R

n. This conception is a natural
generalization of the geometric definition of a quasiconformal mapping, see 13.1
and 34.6 in [Va] and it is closely related to the theory of moduli with weights, see
e.g. [Ca1], [Ca2], [Oh1], [Oh2] and [Ta].

Recall that, given a family of paths Γ in R
n, a Borel function % : R

n → [0,∞]
is called admissible for Γ, abbr. % ∈ admΓ, if

∫

γ

% ds ≥ 1(1.2)

for all γ ∈ Γ. The (conformal) modulus of Γ is the quantity

M(Γ) = inf
%∈adm Γ

∫

G

%n(x) dm(x) .(1.3)

The main goal of the theory of Q−homeomorphisms is to clear up various in-
terconnections between properties of the majorant Q(x) and the corresponding
properties of the mappings themselves. The problem of the local and bound-
ary behavior of Q−homeomorphisms is studied in R

n first in the case Q∈BMO
(bounded mean oscillation) in the papers [MRSY1]-[MRSY3] and [RSY1]-[RSY2],
and then in the case of Q∈FMO (finite mean oscillation) and other cases in the
papers [IR1]-[IR2] and [RSY3]-[RSY6]. The modulus techniques for metric spaces
are developed, for instance, in the papers [Fu], [He1], [HK] and [Ma].

In what follows, (X, d, µ) denotes a space X with a metric d and a locally finite
Borel measure µ. An open set in X all whose points can pairwise be connected
by continuous curves is called a domain in X.

Now, let G and G′ be domains with finite Hausdorff dimensions α and α′ ≥ 1 in
spaces (X, d, µ) and (X ′, d′, µ′), and let Q : G→ [0,∞] be a measurable function.
We say that a homeomorphism f : G→ G′ is a Q−homeomorphism if

M(fΓ) ≤
∫

G

Q(x) · %α(x) dµ(x)(1.4)

for every family Γ of paths in G and every admissible function % for Γ.

The modulus of Γ in the space (X, d, µ) is given by the equality

M(Γ) = inf
%∈adm Γ

∫

G

%α(x) dµ(x)(1.5)

where the admissible functions for Γ, as before, are defined by the condition of the
type (1.2). Moreover, in the case of the space (X ′, d′, µ′), we take the Hausdorff
dimension α′ of the domain G′ in (1.5).

Recall, given a continuous way γ : [a, b] → X in a metric space (X, d), its
length is the supremum of the sums

k∑

i=1

d(γ(ti), γ(ti−1))
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over all partitions a = t0 ≤ t1 ≤ ... ≤ tk = b of the interval [a, b]. The curve γ is
called rectifiable if its length is finite.

A space (X, d, µ) is called α−regular by Ahlfors if there is a constant C ≥ 1
such that

C−1rα ≤ µ(Br) ≤ Crα(1.6)

for all balls Br inX with the radius r < diamX. As known, α−regular spaces have
the Hausdorff dimension α, see e.g. [He1], p. 61. We say that a space (X, d, µ) is
regular by Ahlfors if it is α−regular by Ahlfors for some α ∈ (1,∞).

We will say that a space (X, d, µ) is upper α−regular at a point x0 ∈ X if
there is a constant C > 0 such that

µ(B(x0, r)) ≤ Crα(1.7)

for all balls B(x0, r) centered at x0 ∈ X with the radius r < r0. We will also say
that a space (X, d, µ) is upper α−regular if the condition (1.7) holds at every
point of X.

2 Connectedness in topological spaces

Let us give definitions of some topological notions and related remarks of a general
character which will be useful in what follows. Let T be an arbitrary topological
space. A curve (or path) in T is a continuous mapping γ : [a, b] → T. Later
on, |γ| denotes the locus γ([a, b]). If A,B and C are sets in T, then ∆(A,B,C)
denotes a collection of all curves γ joining A and B in C, i.e. γ(a) ∈ A, γ(b) ∈ B
and γ(t) ∈ C, t ∈ (a, b).

Recall that a topological space is connected if it is impossible to split it into
two non-empty open sets. Compact connected spaces are called continua. A
topological space T is said to be arc connected if any two points x1 and x2 in T
can be joined by a path γ : [0, 1] → T, γ(0) = x1 and γ(1) = x2. A domain in T
is an open arc connected set in T. We say that a metric space T is rectifiable if
any two points x1 and x2 in T can be joined by a rectifiable path. In particular,
we say that a domain G in T is rectifiable if it is a rectifiable space. A domain G
in a topological space T is called locally connected at a point x0 ∈ ∂G if, for
every neighborhood U of the point x0, there is its neighborhood V ⊆ U such that
V ∩ G is connected, [Ku], c. 232. Similarly, we say that a domain G is locally
arc connected (rectifiable) at a point x0 ∈ ∂G if, for every neighborhood U
of the point x0, there is its neighborhood V ⊆ U such that V ∩G is arc connected
(rectifiable).

2.1. Proposition. Let T be a topological (metric) space with a base of
topology B consisting of arc connected (rectifiable) sets. Then an arbitrary open
set Ω in T is connected if and only if Ω is arc connected (rectifiable).

2.2. Corollary. An open set Ω in R
n , n ≥ 2 , or in any manifolds is

connected if and only if Ω is arc connected (rectifiable).



4 V. RYAZANOV AND R. SALIMOV

2.3. Remark. Thus, if a domain G in R
n , n ≥ 2 , is locally connected

at a point x0 ∈ ∂G, then it is also arc connected at x0. The same is true for
manifolds. As we will show later on, the connectedness and the arc connectedness
are equivalent for open sets in a wide class of the so–called weakly flat spaces
which include the known spaces by Loewner and, in particular, the well–known
groups by Carnot and Heisenberg.

Proof of Proposition 2.1. Let first Ω be arc connected. If Ω is simultaneously
not connected, then Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are open non–empty and
disjoint sets in T. Take x1 ∈ Ω1 and x2 ∈ Ω2 and connect them with a curve γ :
[0, 1] → Ω , γ(0) = x1 and γ(1) = x2. Then the sets ω1 = γ−1Ω1 and ω2 = γ−1Ω2

are disjoint non–empty and open in [0, 1] by continuity of γ. However, the last
contradicts to the connectedness of the segment [0, 1].

Now, let Ω is connected. Take an arbitrary point x0 ∈ Ω and denote by Ω0 the
set of all points x∗ in Ω which can be connected with x0 through a finite chain
of sets Bk ⊂ Ω in the base B, k = 1, ..., m, such that x0 ∈ B1 , x∗ ∈ Bm, and
Bk ∩ Bk+1 6= ∅ , k = 1, ..., m− 1.

Note, firstly, that the set Ω0 is open. Indeed, if a point y0 ∈ Ω0, then there
is its a neighborhood B0 ⊆ Ω in the base B and all points of this neighborhood
belongs to Ω0 . Secondly, the set Ω0 is closed in Ω.

Really, assume that ∂Ω0 ∩ Ω 6= ∅. Then for every point z0 ∈ ∂Ω0 ∩ Ω there is
its neighborhood B0 ⊆ Ω in the base B, and in this neighborhood there is a point
x∗ ∈ Ω0 because z0 ∈ ∂Ω0. Thus, z0 ∈ Ω0 by the definition of the set Ω0. However,
Ω0 is open and hence Ω0 ∩ ∂Ω0 = ∅. The obtained contradiction disproves the
above assumption.

Thus, Ω0 is simultaneously open and closed in Ω and, consequently, being non-
empty it coincides with the set Ω in view of its connectivity. But Ω0 by the
construction is obviously arc connected.

Finally, if the space T has a base of topology B consisting of rectifiable domains,
then, covering any path γ in T by the elements of this base, we are able to choose
its finite subcovering leading to the construction of the corresponding rectifiable
path.

2.4. Proposition. If a domain G in a metric space (X, d) is locally arc
connected (rectifiable) at a point x0 ∈ ∂G, then x0 is accessible from G through
a (locally rectifiable) path γ : [0, 1] → X, γ([0, 1)) ⊂ G, γ(1) = x0.

Proof. Choose a sequence of neighborhoods Vm of the point x0 where Wm =
Vm∩G are arc connected (rectifiable) and Wm ⊂ B(x0, 2

−m) and also a sequence of
the points xm ∈ Wm, m = 1, 2, . . . , and connect the points xm and xm+1 pairwise
with (rectifiable) curves γm in Wm. Uniting the curves γm, m = 1, 2, . . . , and
joining x0 in the end, we obtain the desired (locally rectifiable) path to the point
x0 from G.

Recall it is said that a family of curves Γ1 in T is minorized by a family of
curves Γ2 in T , abbr. Γ1 > Γ2, if, for every curve γ1 ∈ Γ1, there is a curve γ2 ∈ Γ2

such that γ2 is a restriction of γ1.
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2.5. Proposition. Let Ω be an open set in an arbitrary topological space
T. Then

∆(Ω, T \ Ω, T ) > ∆(Ω, ∂Ω,Ω) .

Proof. Indeed, for an arbitrary curve γ : [a, b] → T with γ(a) ∈ Ω and
γ(b) ∈ T \ Ω, by continuity of γ the preimage ω = γ−1(Ω) is an open set in [a, b]
including the point a. Similarly, the preimage ω = γ−1(T \Ω) is also open in [a, b].
Thus, in view of connectivity of the segment [a, b], there is c ∈ γ−1(∂Ω) such that
γ([a, c)) ⊂ Ω.

2.6. Proposition. Let γ be a rectifiable curve in a metric space (X, d)
connecting points x1 ∈ B(x0, r1) and x2 ∈ X \ B(x0, r2) where 0 < r1 < r2 < ∞
and let ρ : [0,∞] → [0,∞] be a Borel function. Then

∫

γ

ρ(d(x, x0)) ds ≥

r2∫

r1

ρ(r) dr.

Proof. Indeed, by the definition for the length of a curve in a metric space
γ : [a, b] → X, the length of a segment of the curve

s(t1, t2) ≥ d(γ(t1), γ(t2)) .

Moreover, by the triangle inequality

d(x0, γ(t2)) ≤ d(x0, γ(t1)) + d(γ(t1), γ(t2))

and
d(x0, γ(t1)) ≤ d(x0, γ(t2)) + d(γ(t1), γ(t2)) ,

thus,
d(γ(t1), γ(t2)) ≥ |d(x0, γ(t2)) − d(x0, γ(t1))| .

Consequently,
ds ≥ |dr|

where r = d(x, x0) , x = x(s). Finally, by the Darboux property of connected
sets, the continuous function d(x, x0) takes all intermediate values on γ, see e.g.
[Ku]. Hence the multiplicity of any value r in the interval (r1, r2) of the curve is
not less than 1 and the desired inequality follows.

2.7. Proposition. If Ω and Ω′ are open sets in metric spaces (X, d) and
(X ′, d′), correspondingly, and f : Ω → Ω′ is a homeomorphism, then the cluster
set of f at every point x0 ∈ ∂Ω,

C(x0, f) := { x′ ∈ X ′ : x′ = lim
n→∞

f(xn), xn → x0, xn ∈ Ω } ,

belongs to the boundary of the set Ω′.

Proof. Indeed, assume that some point y0 ∈ C(x0, f) is inside of the domain
Ω′. Then by the definition of the cluster set, there is a sequence xn → x0 as
n→ ∞ such that yn = f(xn) → y0. In view of continuity of the inverse mapping
g = f−1, we have that xn = g(yn) → g(y0) = x∗ ∈ Ω. However, the convergent
sequence xn cannot have two limits x0 ∈ ∂Ω and x∗ ∈ Ω in view of the triangle
inequality d(x∗, x0) ≤ d(x∗, xn) + d(xn, x0).
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3 On weakly flat and strictly accessible boundaries

In this section, G is a domain of a finite Hausdorff dimension α ≥ 1 in a space
(X, d, µ) with a metric d and a locally finite Borel measure µ.

We will say that the boundary of G is weakly flat at a point x0 ∈ ∂G if,
for every number P > 0 and every neighborhood U of the point x0 there is its
neighborhood V ⊂ U such that

M(∆(E, F ;G)) ≥ P(3.1)

for all continua E and F in G intersecting ∂U and ∂V.
We will also say that the boundary of the domain G is strictly accessible

at a point x0 ∈ ∂G, if, for every neighborhood U of the point x0, there exist a
compact set E ⊂ G, a neighborhood V ⊂ U of the point x0 and a number δ > 0
such that

M(∆(E, F ;G)) ≥ δ

for every continuum F in G intersecting ∂U and ∂V.
Finally, we say that the boundary ∂G is weakly flat and strictly accessible

if the corresponding properties hold at every point of the boundary.

3.2. Remark. In the definitions of the weakly flat and strictly accessible
boundaries, one can restrict itself by a base of neighborhoods of a point x0 and,
in particular, one can take as the neighborhoods U and V of the point x0 only
small enough balls (open or closed) centered at the point x0. Moreover, here one
may restrict itself only by continua E and F in U.

3.3. Proposition. If the boundary ∂G is weakly flat at a point x0 ∈ ∂G,
then ∂G is strictly accessible at the point x0.

Proof. Let P ∈ (0,∞) and U = B(x0, r0) where 0 < r0 < d0 = sup
x∈G

d(x, x0).

Then by the condition there is r ∈ (0, r0) such that the inequality (3.1) holds for
all continua E and F intersecting ∂B(x0, r0) and ∂B(x0, r). By arc connectedness
of G there exist points y1 ∈ G ∩ ∂B(x0, r0) and y2 ∈ G ∩ ∂B(x0, r). Choose as a
compactum E an arbitrary curve connecting the points y1 and y2 in G.

Then, for every continuum F in G intersecting ∂U and ∂V where V = B(x0, r),
the inequality (3.1) holds.

3.4. Lemma. Let G be a (rectifiable) domain in (X, d, µ). If ∂G is weakly
flat at a point x0 ∈ ∂G, then G is locally arc connected (rectifiable) at x0.

Proof. Let us assume that the domain G is not locally arc connected (recti-
fiable) at the point x0. Then there is r0 ∈ (0, d0), d0 = sup

x∈G

d(x, x0) such that

µ0 := µ(G ∩ B(x0, r0)) < ∞ and, for every neighborhood V ⊆ U := B(x0, r0) of
the point x0, at least one of the following conditions holds:

1) V ∩ G has at least two arc connected (rectifiable) components K1 and K2

such that x0 ∈ K1 ∩K2;
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2) V ∩ G has infinitely many arc connected (rectifiable) components K1, ...,
Km, ... such that x0 = lim

m→∞
xm for some xm ∈ Km. Note that Km ∩ ∂U 6= ∅ for

all m = 1, 2, ... in view of the arc connectedness of G.

In particular, either 1) or 2) holds for the neighborhood V = U = B(x0, r0).
Let r∗ ∈ (0, r0). Then

M(∆(K∗

i , K
∗

j ;G)) ≤M0 :=
µ0

[2(r0 − r∗)]
α <∞

where K∗

i = Ki ∩ B(x0, r∗) and K∗

j = Kj ∩ B(x0, r∗) for all i 6= j. Indeed, one of
the admissible functions for the family Γij of all rectifiable curves in ∆(K∗

i , K
∗

j ;G)
is

ρ(x) =

{
1

2(r0−r∗)
, x ∈ B0 \B∗,

0, x ∈ X \ (B0 \B∗),

where B0 = B(x0, r0) and B∗ = B(x0, r∗) because the components Ki and Kj

cannot be connected by a (rectifiable) path in V = B(x0, r0) and every (rectifiable)
path connecting K∗

i and K∗

j at least twice intersect the ring B0 \B∗.
In view of 1) - 2), the above modulus estimate contradicts to the condition of

the weak flatness at the point x0. Really, by the condition, for instance, there is
r ∈ (0, r∗) such that

M(∆(K∗

i0
, K∗

j0
;G)) ≥M0 + 1

for some pair i0 and j0, i0 6= j0, because in the corresponding K∗

i0
and K∗

j0
there

is at least one curve intersecting ∂B(x0, r∗) and ∂B(x0, r).
Thus, the above assumption on the absence of the arc connectedness (rectifia-

bility) of G at the point x0 was not true.

3.5. Corollary. A (rectifiable) domain with a weakly flat boundary is
locally arc connected (rectifiable) at every point of its boundary.

4 On finite mean oscillation with respect to a measure

Let G be a domain in a space (X, d, µ). Similarly to [IR1], cf. also [HKM], we
say that a function ϕ : G→ R has finite mean oscillation at a point x0 ∈ G,
abbr. ϕ ∈ FMO(x0), if

lim
ε→0

−
∫

G(x0,ε)
|ϕ(x) − ϕε| dµ(x) <∞(4.1)

where

ϕε = −
∫

G(x0,ε)
ϕ(x) dµ(x) =

1

µ(G(x0, ε))

∫

G(x0,ε)

ϕ(x) dµ(x)

is the mean value of the function ϕ(x) over the set

G(x0, ε) = {x ∈ G : d(x, x0) < ε}
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with respect to the measure µ. Here the condition (4.1) includes the assumption
that ϕ is integrable with respect to the measure µ over a set G(x0, ε) for some
ε > 0.

4.2. Proposition. If for some collection of numbers ϕε ∈ R, ε ∈ (0, ε0],

lim
ε→0

−
∫

G(x0,ε)
|ϕ(x) − ϕε| dµ(x) <∞ ,(4.3)

then ϕ ∈ FMO(x0).

Proof. Indeed, by the triangle inequality

−
∫

G(x0,ε)
|ϕ(x) − ϕε| dµ(x) ≤ −

∫

G(x0,ε)
|ϕ(x) − ϕε| dµ(x) + |ϕε − ϕε| ≤

≤ 2 · −
∫

G(x0,ε)
|ϕ(x) − ϕε| dµ(x) .

4.4. Corollary. In particular, if

lim
ε→0

−
∫

G(x0,ε)
|ϕ(x)| dµ(x) <∞ ,(4.5)

then ϕ ∈ FMO(x0).

Variants of the following lemma have been first proved for the BMO functions
and inner points of a domain G in R

n under n = 2 and n ≥ 3, correspondingly, in
[RSY1]-[RSY2] and [MRSY2]-[MRSY3], and then for boundary points of G in R

n,
n ≥ 2, with the condition on doubling of a measure and for the FMO functions
in [IR1].

4.6. Lemma. Let G be a domain in a space (X, d, µ) which is upper
α−regular with α ≥ 2 at a point x0 ∈ G and

µ(G ∩ B(x0, 2r)) ≤ γ · logα−2 1

r
· µ(G ∩ B(x0, r)) ∀ r ∈ (0, r0) .(4.7)

Then, for every non–negative function ϕ : G→ R of the class FMO(x0),

∫

G∩A(ε,ε0)

ϕ(x) dµ(x)(
d(x, x0) log 1

d(x,x0)

)α = O
(
log log

1

ε

)
(4.8)

as ε→ 0 and some ε0 ∈ (0, δ0) where δ0 = min (e−e, d0), d0 = sup
x∈G

d(x, x0),

A(ε, ε0) = {x ∈ X : ε < d(x, x0) < ε0}.

Proof. Choose ε0 ∈ (0, δ0) such that the function ϕ is integrable in G0 = G∩B0

with respect the measure µ where B0 = B(x0, ε0),

δ = sup
r∈(0,ε0)

−
∫

G(r)
|ϕ(x) − ϕr| dµ(x) <∞ ,
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G(r) = G ∩ B(r), B(r) = B(x0, r) = {x ∈ X : d(x, x0) < r}. Further, let
ε < 2−1ε0, εk = 2−kε0, Ak = {x ∈ X : εk+1 ≤ d(x, x0) < εk}, Bk = B(εk) and
let ϕk be the mean value of the function ϕ(x) in Gk = G∩Bk, k = 0, 1, 2 . . . with
respect to the measure µ. Choose a natural number N such that ε ∈ [εN+1, εN)

and denote κ(t) = (t log2 1/t)−α. Then G ∩ A(ε, ε0) ⊂ ∆(ε) :=
N⋃

k=0
∆k where

∆k = G ∩ Ak and

η(ε) =
∫

∆(ε)

ϕ(x) κ(d(x, x0)) dµ(x) ≤ |S1| + S2,

S1(ε) =
N∑

k=1

∫

∆k

(ϕ(x) − ϕk) κ(d(x, x0)) dµ(x) ,

S2(ε) =
N∑

k=1

ϕk

∫

∆k

κ(d(x, x0)) dµ(x) .

Since Gk ⊂ G(2d(x, x0)) for x ∈ ∆k, then by the condition (1.7) µ(Gk) ≤
µ(G(2d(x, x0))) ≤ C · 2α · d(x, x0)

α, .. 1
d(x,x0)α ≤ C · 2α 1

µ(Gk)
.

Moreover, 1
(log2

1
d(x,x0)

)α ≤ 1
kα for x ∈ ∆k and, thus,

|S1| ≤ δC · 2α
N∑

k=1

1

kα
≤ 2δC · 2α

because under α ≥ 2
∞∑

k=2

1

kα
<
∫

∞

1

dt

tα
=

1

α− 1
≤ 1.

Further, ∫

∆k

κ(d(x, x0)) dµ(x) ≤
1

kα

∫

Ak

dµ(x)

d(x, x0)α
≤

≤
C · 2α

kα
·
µ(Gk) − µ(Gk+1)

µ(Gk)
≤
C2α

kα
.

Moreover, by the condition (4.7)

µ(Gk−1) = µ(B(2εk) ∩G)) ≤ γ · logα−2
2

1

εk

· µ(Gk)

and hence

|ϕk − ϕk−1| =
1

µ(Gk)

∣∣∣∣∣∣∣

∫

Gk

(ϕ(x) − ϕk−1) dµ(x)

∣∣∣∣∣∣∣
≤

≤
γ · logα−2

2
1
εk

µ(Gk−1)

∫

Gk−1

|(ϕ(x) − ϕk−1)| dµ(x) ≤ δ · γ · logα−2
2

1

εk



10 V. RYAZANOV AND R. SALIMOV

and, by decreasing εk,

ϕk = |ϕk| ≤ ϕ1 +
k∑

l=1

|ϕl − ϕl−1| ≤ ϕ1 + kδγ · logα−2
2

1

εk

.

Consequently, because under α ≥ 2

∞∑

k=1

1

kα
≤ 1 +

∞∫

1

dt

tα
= 1 +

1

α− 1
≤ 2 ,

we have the following estimates

S2 = |S2| ≤ C2α
N∑

k=1

ϕk

kα
≤ C2α

N∑

k=1

ϕ1 + kδγ · logα−2
2

1
εk

kα
≤

≤ C2α

(
2ϕ1 + δγ

N∑

k=1

(k + log2 ε
−1
0 )α−2

kα−1

)
=

= C2α

(
2ϕ1 + δγ

N∑

k=1

1

k

(k + log2 ε
−1
0 )α−2

kα−2

)
≤

≤ C2α

(
2ϕ1 + δγ(1 + log2 ε

−1
0 )α−2

N∑

k=1

1

k

)

and

η(ε) ≤ 2α+1C(δ + ϕ1) + 2αCδγ(1 + log2 ε
−1
0 )α−2

N∑

k=1

1

k
.

Since
N∑

k=2

1

k
<

N∫

1

dt

t
= logN < log2N

and, for ε0 ∈ (0, 2−1) and ε < εN ,

N < N + log2

(
1

ε0

)
= log2

1

εN

< log2

1

ε
,

then under ε0 ∈ (0, δ0), δ0 = min(e−e, d0) and ε→ 0

η(ε) ≤ 2α+1C(δ + ϕ1) + 2αCδγ(1 + log2 ε
−1
0 )α−2

(
1 + log2 log2

1

ε

)
=

= O
(
log log

1

ε

)
.

4.9. Remark. Note that the condition (4.7) is weaker than the condition
on doubling of a measure,

µ(G ∩B(x0, 2r)) ≤ γ · µ(G ∩B(x0, r)) ∀ r ∈ (0, r0)(4.10)

applied before it in the context of R
n, n ≥ 2 , in the paper [IR1]. Note also that

the condition (4.10) automatically holds in the inner points of the domain G if X
is regular by Ahlfors.
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5 On a continuous extension to the boundary

In what follows, (X, d, µ) and (X ′, d′, µ′) are spaces with metrics d and d′ and
locally finite Borel measures µ and µ′, and G and G′ domains with finite Hausdorff
dimensions α and α′ ≥ 1 in (X, d) and (X ′, d′), correspondingly.

5.1. Lemma. Let a domain G be locally arc connected at a point x0 ∈ ∂G,
G′ be compact and let f : G → G′ be a Q−homeomorphism such that ∂G′ is
strictly accessible at least at one point of the cluster set

C(x0, f) = {y ∈ X ′ : y = lim
k→∞

f(xk), xk → x0, xk ∈ G} ,(5.2)

Q : G→ [0,∞] is a measurable function satisfying the condition
∫

G(x0,ε)

Q(x) · ψα
x0,ε(d(x, x0)) dµ(x) = o(Iα

x0
(ε))(5.3)

as ε→ 0 where

G(x0, ε) = {x ∈ G : ε < d(x, x0) < ε(x0)}, ε(x0) ∈ (0, d(x0)), d(x0) = sup
x∈G

d(x, x0),

and ψx0,ε(t) is a family of non-negative measurable (by Lebesgue) functions on
(0,∞) such that

0 < Ix0(ε) =

ε0∫

ε

ψx0,ε(t) dt < ∞ ∀ ε ∈ (0, ε0) .(5.4)

Then f can be extended to the point x0 by continuity in (X ′, d′).

Proof. Let us show that the cluster set E = C(x0, f) is a singleton. Note
that E 6= ∅ in view of the compactness of G′, see e.g. Remark 3 of the section
41 in [Ku]. By the condition of the lemma, ∂G′ is strictly accessible at a point
y0 ∈ E. Assume that there is one more point y∗ ∈ E. Let U = B(y0, r0) where
0 < r0 < d(y0, y

∗).
In view of the local arc connectedness of the domain G at the point x0, there

is a sequence of neighborhoods Vm of the point x0 such that Gm = G ∩ Vm are
domains and d(Vm) → 0 as m → ∞. Then there exist points ym and y∗m ∈ Fm

which a close enough to y0 and y∗, correspondingly, for which d′(y0, ym) < r0 and
d′(y0, y

∗

m) > r0 and which can be joined by curves Cm in the domains Fm = fGm.
By the construction

Cm ∩ ∂B(x0, r0) 6= ∅

in view of the connectedness of Cm.
By the condition of the strict accessibility there is a compact set C ⊂ G′ and

a number δ > 0 such that

M(∆(C,Cm, G
′)) ≥ δ

for large m because dist(y0, Cm) → 0 as m → ∞. Note that K = f−1(C) is
compact as a continuous image of a compact set. Thus, ε0 = dist(x0, K) > 0.
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Let Γε be the family of all paths in G connecting the ball Bε = {x ∈ X :
d(x, x0) < ε}, ε ∈ (0, ε0), with the compactum K. Let ψ∗

x0,ε be a Borel function
such that ψ∗

x0,ε(t) = ψx0,ε(t) for a.e. t ∈ (0,∞) which exists by the Lusin theorem,
see e.g. 2.3.5 in [Fe].

Then the function

ρε(x) =

{
ψ∗

x0,ε(d(x, x0))/Ix0(ε), x ∈ G(x0, ε),
0, x ∈ X\G(x0, ε),

is admissible for Γε by Proposition 2.6 and, consequently,

M(fΓε) ≤
∫

G

Q(x) · ρα
ε (x) dµ(x) .

Hence M(fΓε) → 0 as ε→ 0 in view of (5.3).
On the other hand, for any ε ∈ (0, ε0), Gm ⊂ Bε for large m, hence Cm ⊂ fBε

for such m and, thus,

M(fΓε) ≥M(∆(C,Cm;G′)) .

The obtained contradiction disproves the above assumption that the cluster set
E is not degenerated to a point.

5.5. Corollary. In particular, if

lim
ε→0

∫

ε<d(x,x0)<ε0

Q(x) · ψα(d(x, x0)) dµ(x) < ∞(5.6)

where ψ(t) is a measurable function on (0,∞) such that

0 < I(ε, ε0) :=

ε0∫

ε

ψ(t) dt < ∞ ∀ ε ∈ (0, ε0)

and I(ε, ε0) → ∞ as ε → 0, then any Q−homeomorphism f : G → G′ can be
extended to the point x0 by continuity in (X ′, d′).

Here we assume that the function Q is extended by zero outside of G.

5.7. Remark. In the other words, it is sufficient for the singular integral
(5.6) to be convergent in the sense of the principal value at the point x0 at least
for one kernel ψ with a non-integrable singularity at zero. Furthermore, as the
lemma shows it is even sufficient for the given integral to be divergent but with
the controlled speed

∫

ε<d(x,x0)<ε0

Q(x) · ψα(d(x, x0)) dµ(x) = o(Iα(ε, ε0))(5.8)

Choosing in Lemma 5.1 ψ(t) ≡ 1/t, we obtain the following theorem.
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5.9. Theorem. Let G be locally arc connected at a point x0 ∈ ∂G, G′

compact and ∂G′ strictly accessible. If a measurable function Q : G → [0,∞]
satisfies the condition

∫

G(x0,ε,ε0)

Q(x)dµ(x)

d(x, x0)α
= o

([
log

1

ε

]α)
(5.10)

as ε → 0 where G(x0, ε, ε0) = {x ∈ G : ε < d(x, x0) < ε0} for ε0 < d(x0) =
sup
x∈G

d(x, x0), then any Q−homeomorphism f : G → G′ can be extended to x0 by

continuity in (X ′, d′).

5.11. Corollary. In particular, the conclusion of Theorem 5.9 is valid if
the singular integral

∫
Q(x)dµ(x)

d(x, x0)α
(5.12)

is convergent at the point x0 in the sense of the principal value.

Here as in Corollary 5.5 we assume that Q is extended by zero outside of G.

Combining Lemmas 4.6 and 5.1, choosing ψε(t) ≡ t log 1
t
, t ∈ (0, δ0), we obtain

the following theorem.

5.13. Theorem. Let X be upper α−regular at a point x0 ∈ ∂G, α ≥ 2,
where G is locally arc connected and satisfies the condition (4.7), and let G′ be
compact and ∂G′ strictly accessible. IfQ ∈ FMO(x0), then anyQ−homeomorphism
f : G→ G′ can be extended to the point x0 by continuity in (X ′, d′).

Finally, combining Theorem 5.13 and Corollary 4.4, we obtain the following
statement.

5.14. Corollary. In particular, if

lim
ε→0

−
∫

G(x0,ε)
Q(x) dµ(x) <∞(5.15)

where G(x0, ε) = {x ∈ G : d(x, x0) < ε}, then any Q−homeomorphism f : G →
G′ can be extended to the point x0 by continuity in (X ′, d′).

6 On extending the inverse mappings to the boundary

Here, as it was before, see (5.2), C(x0, f) denotes the cluster set of the mapping
f at a point x0 ∈ ∂G.

6.1. Lemma. Let f : G→ G′ be a Q−homeomorphism with Q ∈ L1
µ(G). If

the domain G is locally arc connected at points x1 and x2 ∈ ∂G, x1 6= x2, and G′

has a weakly flat boundary, then C(x1, f) ∩ C(x2, f) = ∅.
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Proof. Set Ei = C(xi, f), i = 1, 2, and δ = d(x1, x2). Let us assume that
E1 ∩ E2 6= ∅.

Since the domain G is locally arc connected at the points x1 and x2, there
exist neighborhoods U1 and U2 of the points x1 and x2, correspondingly, such that
W1 = G ∩ U1 and W2 = G ∩ U2 are domains and U1 ⊂ B1 = B(x1, δ/3) and
U2 ⊂ B2 = B(x2, δ/3). Then by the triangle inequality dist(W1,W2) ≥

δ
3

and the
function

ρ(x) =

{
3
δ
, x ∈ G,

0, x ∈ X \G

is admissible for the path family Γ = ∆(W1,W2;G). Thus,

M(fΓ) ≤
∫

X

Q(x) ρα(x) dµ(x) ≤
3α

δα

∫

G

Q(x) dµ(x) < ∞

because Q ∈ L1
µ(G).

The last estimate contradicts, however, to the condition of the weak flatness
(3.1) if there is a point y0 ∈ E1 ∩ E2 . Indeed, then y0 ∈ fW1 ∩ fW2 and in
the domains W ∗

1 = fW1 and W ∗

2 = fW2 there exist paths intersecting any pre-
scribed spheres ∂B(y0, r0) and ∂B(y0, r∗) with small enough radii r0 and r∗ , see
Proposition 2.5 and Lemma 3.4. Hence the assumption that E1 ∩E2 6= ∅ was not
true.

By Lemma 6.1 we obtain, in particular, the following conclusion.

6.2. Theorem. Let G be locally arc connected at all its boundary points
and G compact, G′ with a weakly flat boundary, and let f : G → G′ be a
Q−homeomorphism with Q ∈ L1

µ(G). Then the inverse homeomorphism g =

f−1 : G′ → G admits a continuous extension g : G′ → G.

6.3. Remark. In fact, as it is clear from the above proof, see also Proposi-
tion 2.7, it is sufficient in Lemma 6.1 and Theorem 6.2 as well as in all successive
theorems to request instead of the condition Q ∈ L1

µ(G) the integrability of Q in
a neighborhood of ∂G assuming Q to be extended by zero outside of G.

7 On a homeomorphic extension to the boundary

Combining the results of the previous sections, we obtain the following theorems.

7.1. Lemma. Let G be locally arc connected at its boundary, G′ have a
weakly flat boundary and G, G′ be compact. If a function Q : G → [0, ∞] of
the class L1

µ(G) satisfies the condition (5.3) at every point x0 ∈ ∂G, then any

Q−homeomorphism f : G→ G′ is extended to a homeomorphism f : G→ G′.

7.2. Theorem. Let G and G′ have weakly flat boundaries and G and G′ be
compact and let Q : G→ [0, ∞] be a function of the class L1

µ(G) with
∫

G(x0,ε,ε0)

Q(x)dµ(x)

d(x, x0)α
= o

([
log

1

ε

]α)
(7.3)
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at every point x0 ∈ ∂G where G(x0, ε, ε0) = {x ∈ G : ε < d(x, x0) < ε0}, ε0 =
ε(x0) < d(x0) = sup

x∈G

d(x, x0) . Then any Q−homeomorphism f : G → G′ admits

an extension to a homeomorphism f : G→ G′.

7.4. Corollary. In particular, the conclusion of Theorem 7.2 holds if the
singular integral ∫ Q(x)dµ(x)

d(x, x0)α
(7.5)

is convergent in the sense of the principal value at all boundary points.

As before, here it is assumed that Q has been extended by zero outside of G.

7.6. Theorem. Let G be a domain in an upper α−regular space (X, d, µ),
α ≥ 2, which is locally arc connected and satisfies the condition (4.7) at all
boundary points, G′ be a domain with a weakly flat boundary in a space (X ′, d′, µ′)
and G and G′ be compact. If a function Q : G→ [0,∞] has finite mean oscillation
at all boundary points, then any Q−homeomorphism f : G→ G′ can be extended
to a homeomorphism f : G→ G′.

7.7. Corollary. In particular, the conclusion of Theorem 7.6 holds if

lim
ε→0

−
∫

G(x0,ε)
Q(x) dµ(x) <∞(7.8)

at all points x0 ∈ ∂G where G(x0, ε) = {x ∈ G : d(x, x0) < ε}.

7.9. Remark. If the conditions of the type (5.3), (7.3), (7.5), (7.8) or
finiteness of the mean oscillation hold only on a closed set E ⊂ ∂G, Q, extended
by zero outside of the set E, is integrable in a neighborhood of E, G and G′ are
compact, G is locally connected at every point of E, and ∂G′ is weakly flat at all
points of the cluster set

E ′ = C(E, f) = {x′ ∈ X ′ : x′ = lim
k→∞

f(xk), xk ∈ G, xk → x0 ∈ E} ,(7.10)

then the Q–homeomorphism f : G → G′ admits a homeomorphic extension f :
G ∪ E → G′ ∪ E ′.

8 On moduli of families of paths going through a point

In this section we establish conditions on a measure µ under which the modulus
of a family of all paths in a space (X, d, µ) going through a fixed point is equal
zero.

8.1. Lemma. Let the condition

∫

A(x0,r,R0)

ψα(d(x, x0)) dµ(x) = o







R0∫

r

ψ(t) dt




α

(8.2)
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holds as r → 0 where

A(x0, r, R0) = {x ∈ X : r < d(x, x0) < R0}, R0 ∈ (0,∞) ,

and let ψ(t) be a non–negative function on (0,∞) such that

0 <

R0∫

r

ψ(t) dt <∞ ∀ r ∈ (0, R0)

Then the family of all paths in X going through the point x0 has the modulus
zero.

8.3. Remark. The condition (8.2) implies that under r → 0

∫

A(x0,r,r0)

ψα(d(x, x0)) dµ(x) = o






r0∫

r

ψ(t) dt




α
 ∀ r0 ∈ (0, R0) .(8.4)

Proof of Lemma 8.1. Let Γ be the family of all paths in X going through

the point x0. Then Γ =
∞⋃

k=1
Γk where Γk are the families of all paths in X going

through x0 and intersecting the spheres Sk = S(x0, rk) for some sequence such
that rk ∈ (0, R0) , rk → 0 as k → ∞.

However, M(Γk) = 0. Indeed, the function

ρ(x) =




ψ(d(x, x0))

(rk∫
r
ψ(t) dt

)−1

, x ∈ Ak(r),

0, x ∈ X\Ak(r),

where Ak(r) = A(x0, r, rk), is admissible for the family Γk(r) of all paths inter-
secting the spheres Sk and S(x0, r), r ∈ (0, rk). Since Γk > Γk(r), then

M(Γk) ≤M(Γk(r)) ≤




rk∫

r

ψ(t) dt




−α ∫

Ak(r)

ψα(d(x, x0)) dµ(x)

and by the condition (8.2), cf. also (8.4), it follows that M(Γk) = 0 because
r ∈ (0, rk) is arbitrary.

Finally, from the subadditivity of the modulus, it follows that

M(Γ) ≤
∞∑

k=1

M(Γk) = 0.

8.5. Theorem. Let, for some R0 ∈ (0,∞), under r → 0

∫

A(x0,r,R0)

dµ(x)

dα(x, x0)
= o

([
log

R0

r

]α)
.(8.6)

Then the family of all paths in X going through the point x0 has the modulus
zero.



On the mapping theory in metric spaces 17

8.7. Remark. For X = R
n, n ≥ 2 , and R0 ∈ (0,∞),

∫

A(x0,r,R0)

dm(x)

|x− x0|n
= ωn−1 log

(
R0

r

)
= o

([
log

R0

r

]n)
(8.8)

where m denotes the Lebesgue measure and ωn−1 the area of the unit sphere in
R

n.
For spaces (X, d, µ) which are upper α-regular at the point x0 with α > 1,

∫

r<d(x0,x)<R0

dµ(x)

d(x, x0)α
= O

(
log

R0

r

)
,(8.9)

see [He1], cf. 54, and, thus, the condition (8.6) is also automatically holds in such
spaces.

9 On weakly flat and strictly connected spaces

Recall that a topological space T is said to be locally (arc) connected at a
point x0 ∈ T if, for every neighborhood U of the point x0, there is a neighborhood
V ⊆ U of the point x0 which is (arc) connected, see [Ku], p. 232. We will say
that a space T is (arc) connected at a point x0 if, for every neighborhood U of
the point x0, there is a neighborhood V ⊆ U of the point x0 such that V \ {x0} is
(arc) connected. Note that (arc) connectedness of a space T at a point x0 implies
its local (arc) connectedness at the point x0. The inverse conclusion is, generally
speaking, not true.

Here (X, d, µ) is a space with a metric d, a locally finite Borel measure µ and
a finite Hausdorff dimension α ≥ 1.

We say that an arc connected space (X, d, µ) is weakly flat at a point x0 ∈ X
if, for every neighborhood U of the point x0 and every number P > 0, there is a
neighborhood V ⊆ U of x0 such that

M(∆(E, F ;X)) ≥ P

for any continua E and F in X intersecting ∂V and ∂U .
We also say that an arc connected space (X, d, µ) is strictly connected at a

point x0 ∈ X if, for every neighborhood U of the point x0, there is a neighborhood
V ⊆ U of x0 , a compact set E in X and a number δ > 0 such that

M(∆(E, F ;X)) ≥ δ

for any continua F in X intersecting ∂V and ∂U .

Finally, we say that a space (X, d, µ) is weakly flat (strictly connected) if
it is weakly flat (strictly connected) at every point.

9.1. Remark. In the definitions of weakly flat and strictly connected spaces,
we may restrict ourselves by a base of neighborhoods of a point x0 and, in partic-
ular, one may take as U and V (open or closed) only small enough balls centered
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at the point x0. Moreover, here one may restrict itself only by continua E and F
in U. It is also obvious that every domain in a weakly flat space is a weakly flat
space.

The following statement is not so important and proved similarly to Proposition
3.3 and hence we omit its proof here.

9.2. Proposition. If a space (X, d, µ) is weakly flat at a point x0 ∈ X,
then X is strictly connected at the point x0.

In what follows, the following statement is much more important.

9.3. Lemma. If a space (X, d, µ) is weakly flat at a point x0 ∈ X, then
(X, d, µ) is locally arc connected at the point x0.

Proof. Let us assume that the space X is not locally arc connected at the point
x0. Then there is r0 ∈ (0, d0), d0 = sup

x∈G

d(x, x0), such that µ0 := µ(B(x0, r0)) <∞

and every neighborhood V ⊆ U := B(x0, r0) of the point x0 has an arc connected
component K0 including x0 and infinitely many arc connected components K1,
..., Km, ... such that x0 = lim

m→∞
xm for some xm ∈ Km. Note that Km ∩ ∂U 6= ∅

for all m = 1, 2, ... in view of the arc connectedness of X, see Proposition 2.5.

In particular, this is true for the neighborhood V = U = B(x0, r0). Let
r∗ ∈ (0, r0). Then for all i = 1, 2, ...

M(∆(K∗

i , K
∗

0 ;G)) ≤M0 :=
µ0

[2(r0 − r∗)]
α <∞

where K∗

i = Ki∩B(x0, r∗) and K∗

0 = K0∩B(x0, r∗). Indeed, one of the admissible
functions for the family Γi of all rectifiable curves in ∆(K∗

i , K
∗

0 ;G) is

ρ(x) =

{
1

2(r0−r∗)
, x ∈ B0 \B∗,

0, x ∈ X \ (B0 \B∗),

where B0 = B(x0, r0) and B∗ = B(x0, r∗) because the components Ki and K0

cannot be connected by a path in V = B(x0, r0) and every path connecting K∗

i

and K∗

0 at least twice intersects the ring B0 \B∗, see Proposition 2.6.
However, the above modulus estimate contradicts to the condition of the weak

flatness at the point x0. Really, by this condition, for instance, there is r ∈ (0, r∗)
such that

M(∆(K∗

i0
, K∗

0 ;G)) ≥M0 + 1

for some i0 = 1, 2, ... because in the corresponding K∗

i0
and K∗

0 there exist paths
intersecting ∂B(x0, r∗) and ∂B(x0, r), see Proposition 2.5.

Thus, the above assumption on the absence of the arc connectedness of the
space X at the point x0 was not true.

Combining Lemma 9.3 with Proposition 2.1, we obtain the following conclusion.
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9.4. Corollary. An open set Ω in a weakly flat space (X, d, µ) is arc
connected if and only if it is connected.

9.5. Corollary. A domain G in a weakly flat space (X, d, µ) is locally arc
connected at a point x0 ∈ ∂G if and only if G is locally connected at the point x0.

Combining Lemmas 8.1 and 9.3, we obtain the following result.

9.6. Theorem. If a space (X, d, µ) is weakly flat at a point x0 ∈ X and the
condition (8.2), in particular, (8.6) holds, then (X, d, µ) is arc connected at the
point x0.

By Remark 8.7 we come to the following conclusion.

9.7. Corollary. If a space X is weakly flat and upper α–regular at a point
x0 ∈ X with α > 1, then X is arc connected at the point x0.

9.8. Remark. R
n, n ≥ 2 , is a weakly flat space because

M(∆(E, F ; R
n)) ≥ cn log

R

r
(9.9)

for all continua E and F intersecting the boundaries of the balls B
n(R) and B

n(r),
see e.g. 10.12 in [Va].

10 On quasiextremal distance domains

Similarly to [GM], we say that a domain G in (X, d, µ) is a quasiextremal
distance domain, abbr., a QED domain, if

M(∆(E, F ;X)) ≤ KM(∆(E, F ;G))(10.1)

for a finite number K ≥ 1 and all continua E and F in G.

As it is easy to see from the definitions, a QED domain G in a weakly flat
space has a weakly flat boundary and, as a consequence, ∂G is strictly accessible
and, moreover, G is locally arc connected at all points of the boundary. Thus, all
the above results on the extension of Q−homeomorphisms to the boundary hold
for QED domains in weakly flat spaces. Let us give a resume of these results.

10.2. Lemma. Let f be a Q−homeomorphism between QED domains G
and G′ in weakly flat spaces X and X ′, correspondingly, G′ compact and let at a
point x0 ∈ ∂G

∫

A(x0,ε,ε0)

Q(x)ψα(d(x, x0)) dµ(x) = o






ε0∫

ε

ψ(t) dt




α
(10.3)

as ε→ 0 where

A(x0, ε, ε0) = {x ∈ G : ε < d(x, x0) < ε0}
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and ψ(t) is a non–negative function on (0,∞) such that

0 <

ε0∫

ε

ψ(t) dt <∞ ∀ ε ∈ (0, ε0)

Then there is a limit of f(x) as x→ x0.

10.4. Corollary. In particular, the limit of f(x) as x→ x0 exists if
∫

A(x0,ε,ε0)

Q(x)ψα(d(x, x0)) dµ(x) < ∞(10.5)

and

lim
ε→0

ε0∫

ε

ψ(t) dt = ∞ .(10.6)

10.7. Theorem. Let f be a Q−homeomorphism between QED domains G
and G′ in weakly flat spaces X and X ′, correspondingly, and let G′ be compact.
If at a point x0 ∈ ∂G

∫

A(x0,ε,ε0)

Q(x) dµ(x)

d(x, x0)α
= o

([
log

ε0

ε

]α)
,(10.8)

then f admits a continuous extension to the point x0.

10.9. Corollary. In particular, the conclusion of Theorem 10.7 holds if the
singular integral

∫
Q(x) dµ(x)

d(x, x0)
(10.10)

is convergent at x0 in the sense of the principal value.

Here we assume that Q is extended by zero outside of the domain G.

10.11. Lemma. Let f be a Q−homeomorphism between QED domains G
and G′ in weakly flat spaces X and X ′, correspondingly, and let G be compact.
If Q ∈ L1

µ(G), then the inverse homeomorphism g = f−1 admits a continuous

extension g : G′ → G.

10.12. Theorem. Let f be a Q−homeomorphism between QED−domains
G and G′ in weakly flat spaces X and X ′ and let G and G′ be compact. If
Q ∈ L1

µ(G) satisfies one of the conditions (10.8) or (10.10) at every point x0 ∈ ∂G,

then f admits a homeomorphic extension f : G→ G′.

10.13. Theorem. Let f be a Q−homeomorphism between QED domains
G and G′ in weakly flat spaces X and X ′, correspondingly, and let G and G′ be
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compact. If at a point x0 ∈ ∂G the function Q : X → [0,∞] has finite mean
oscillation and

µ(B(x0, 2r)) ≤ γ · logα−2 1

r
· µ(B(x0, r)) ∀ r ∈ (0, r0)(10.14)

and (X, d, µ) is upper α−regular with α ≥ 2 at x0, then f admits a continuous
extension to the point x0. If the last two conditions hold at every point of ∂G,
then f admits a homeomorphic extension to the boundary.

10.15. Remark. In the case of regular by Ahlfors spaces, even the condition
on doubling measure holds which stronger than the condition (10.14), see Remark
4.9. In view of the compactness of G, Q is integrable in a neighborhood of ∂G
that follows from the condition of finite mean oscillation at all points of ∂G, see
Remark 6.3. If Q is given only in a domain G, then it can be extended by zero
outside of G. In particular, to have Q ∈ FMO(x0) for x0 ∈ ∂G it is sufficient to
have the condition

lim
ε→0

−
∫

B(x0,ε)
Q(x) dµ(x) <∞ .(10.16)

By [GM], the QED domains coincide in the class of finitely connected plane
domains with the so–called uniform domains introduced in the work [MS]. The
following example shows that, even among simply connected plane domains, the
class of domains with weakly flat boundaries is more wide than the class of QED
domains. The example is based on the fact that QED domains satisfy the con-
dition on doubling measure (4.10) at every boundary point, see Lemma 2.13 in
[GM]. The below example just shows that the property on doubling measure is,
generally speaking, not valid for domains with weakly flat boundaries.

Example. Consider a simply connected plane domain D of the form

D =
∞⋃

k=1

Rk

where
Rk = { (x, y) ∈ R

2 : 0 < x < wk, 0 < y < hk }

is a sequence of rectangles with quickly decreasing widths wk = 2−α2k

→ 0 as
k → ∞ where α > 1

log 2
> 1 and monotonically increasing heights hk = 2−1 + . . .+

2−k → 1 as k → ∞.

It is easy to see that D has a weakly flat boundary. This fact is not obvious
only for its boundary point z0 = (0, 1). Take according to Remark 9.1 as a base
of neighborhoods of the point z0 the rectangles centered at z0

Pk = { (x, y) ∈ R
2 : |x| < wk, |y − 1| ≤ 1 − hk−1 = 2−(k−1) } ,

k = 1, 2, . . . . Note that

Pk ∩D =
∞⋃

l=k

Sl
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for all k > 1 where

Sl = { (x, y) ∈ R
2 : 0 < x < wl, hl−1 ≤ y < hl }

Let E and F be an arbitrary pair of continua inD intersecting ∂Sl, i.e. intersecting
the horizontal lines y = hl−1 and y = hl. Denote by S0

l the interiority of Sl. Then
∆(E, F, S0

l ) ⊂ ∆(E, F,D) and ∆(E, F, S0
l ) minorizes the family Γl of all paths

joining the vertical sides of S0
l in S0

l . Hence, see e.g. 7.2 in [Va],

M(∆(E, F,D)) ≥ 2−l/wl ≥ 2(α−1)l → ∞ .

Thus, the domain D really has a weakly flat boundary.

Now, set rk = 1 − hk−1 = 2−k(1 + 2−1 + . . .) = 2−(k−1) and Bk = B(z0, rk).
Then

lim
k→∞

|D ∩ Pk|

|D ∩ Bk|
= 1

because wk/rk ≤ 2−(α−1)k → 0. However,

|D ∩ Pk| =
∞∑

l=k

|Sl| =
∞∑

l=k

wl · (hl − hl−1) =
∞∑

l=k

wl 2−l

and hence

|D ∩ Pk|

|D ∩ Pk+1|
=

∞∑
l=k

wl2
−l

∞∑
l=k+1

wl2−l

=

wk2
−k +

∞∑
l=k+1

wl2
−l

∞∑
l=k+1

wl2−l

=

= 1 +
1

∞∑
m=1

wk+m

wk
2−m

≥ 1 +
1

wk+1

wk

= 1 +
wk

wk+1
= 1 + 2α2k

→ ∞ .

Consequently,

lim
k→∞

|D ∩Bk|

|D ∩Bk+1|
= ∞ .

Thus, the domain D has not the property on doubling measure at the point
z0 ∈ ∂D and then D is not a QED domain.

11 On nullsets for extremal distance

We say that a closed set A in a space (X, d, µ) is a nullset for extremal dis-
tance, abbr., NED set, if

M(∆(E, F ;D)) = M(∆(E, F ;D \ A))(11.1)

for any domain D in X and any continua E and F in D.

As in R
n, n ≥ 2, NED sets A in a weakly flat space X cannot have inner points

and, moreover, they do not split the space X even locally, i.e., G \A has only one
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component of the arc connectedness for any domain G in X. Thus, the comple-
ment of a NED set A in such X is a very partial case of QED domains. Hence
NED sets in weakly flat spaces play the same role in the problems of removability
of singular sets under quasiconformal mappings and their generalizations as in R

n,
n ≥ 2.

11.2. Proposition. Let A be a NED set in a weakly flat space (X, d, µ)
that is not a singleton. Then

1) A has no inner point;
2) G \ A is a domain for every domain G in X.

Proof. 1) Let us assume that there is a point x0 ∈ A such that B(x0, r0) ⊆ A
for some r0 > 0. Let x∗ ∈ X, x∗ 6= x0, and γ be a curve joining x0 and x∗ in
X, γ : [0, 1] → X, γ(0) = x0 and γ(1) = x∗. For small enough t, the continuum
Ct = γ([0, t]) is in the ball B(x0, r0) and, consequently, γ([0, t]) ∩ (X \ A) = ∅.
Moreover, by Proposition 2.5 one can choose t = t0 such that Ct0 \ {x0} 6= ∅ .
Hence, setting E = F = Ct0 , we have M(∆(E, F,X)) = ∞ because the space
X is weakly flat and, on the other hand, M(∆(E, F ;X \ A)) = 0. The obtained
contradiction disproves the above assumption.

2) Denote by Ω∗ one of the connected components of the open set G\A. Let us
assume that there is one more connected component ofG\A. Then Ω = G\Ω∗ 6= ∅
and, considering G as a topological space T , and Ω as its (open) set, by Proposition
2.5 we have that there is a path γ0 : [0, 1] → G such that γ0([0, 1)) ⊆ Ω and
x0 := γ0(1) ∈ ∂Ω ∩ ∂Ω∗ ∩ G. Note that the mutually complement sets Ω and
Ω∗ in the space G have a common boundary and ∂Ω∗ ⊂ ∂Ω∗. Let x∗ ∈ Ω∗ and
xn ∈ Ω∗, n = 1, 2, ..., xn → x0 and γn be paths joining x∗ and xn in Ω∗. Then
M(∆(|γ0|, |γn|, G)) → ∞ as n→ ∞, but M(∆(|γ0|, |γn|, G \ A)) = 0.

The obtained contradiction disproves the above assumption that G \ A has
more than one connected components.

11.3. Lemma. Let X and X ′ be compact weakly flat spaces, G be a domain
in X, A ⊂ G be a NED set in G and let f be a homeomorphism of D = G \ A
into X ′. If the cluster set

A′ := C(A, f) = {x′ ∈ X ′ : x′ = lim
k→∞

f(xk), xk ∈ D, lim
k→∞

xk ∈ A}(11.4)

is aNED set inX ′ andD′ = f(D), then G′ = D′∪A′ is a domain inX ′. Moreover,
there exist domains G∗ in X with the property A ⊂ G∗

b G and A′ ∩ A∗ = ∅

where A∗ := C(∂G∗, f).

Proof. First note that the NED set A is compact as a closed set in a compact
space X and hence ε0 = dist(A, ∂G) > 0. Thus, A belongs to the open set

Ω = {x ∈ X : dist (x,A) < ε}

for any (fixed) ε ∈ (0, ε0) which is itself in G. Since A is compact, A is contained
in a finite number of the connected components Ω1, . . . ,Ωm of Ω. Let x0 be an
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arbitrary point of the domain G and let xk ∈ Ωk, k = 1, . . . , m. Then there exist
paths γk : [0, 1] → G with γk(0) = x0 and γk(1) = xk, k = 1, . . . , m. Note that

the set C =
m⋃

k=1
|γk| is compact and hence δ0 = dist(C, ∂G) > 0.

Consider the open sets

Gδ = {x ∈ G : dist(x, ∂G) > δ} .

By the triangle inequality the set

C0 = C
⋃
(

m⋃

k=1

Ωk

)

is contained in Gδ for any δ ∈ (0, d0) where d0 = min (ε0−ε, δ0). Furthermore, C0

is contained in only one of the connected components G∗

δ of the set Gδ because
the set C0 is connected.

By the construction G∗

δ ⊂ G, G∗

δ are domains in X and, consequently, they
are weakly flat spaces and by Proposition 11.2 the sets Dδ = G∗

δ \A are domains
with weakly flat boundaries A in the spaces G∗

δ, δ ∈ (0, d0). All the more, A is
a weakly flat boundary of the domains D∗

δ = G∗

δ \ A in the compact spaces G∗

δ ,
δ ∈ (0, d0).

Let f ∗

δ = f |D∗

δ
and g∗δ = (f ∗

δ )−1 : D′

δ → D∗

δ where D′

δ = fδ(D
∗

δ). Then as it
follows by Proposition 2.7 we have the symmetry

A = C(A′, g∗δ), A′: = C(A, f ∗

δ ), ∀ δ ∈ (0, d0) .

Note that ∂G∗

δ are compact subsets of the domain D and, consequently, f∂G∗

δ

is a compact subsets of the domain D′ = f(D) which by Proposition 2.7 do not
intersect A′. Thus, dδ = dist(A′, f∂G∗

δ) > 0 for all δ ∈ (0, d0). By Lemma 9.3
the space X ′ is locally arc connected and hence, for every point x0 ∈ A′, there is
a domain U ⊂ B(x0, dδ) which is a neighborhood of x0 and by Proposition 11.2
V = U \ A′ is also a domain which is a subdomain of D′ by the construction.
Thus, G′ = D′ ∪ A′ is a domain in X ′.

Finally, by Proposition 11.2 and Lemma 11.3 we obtain the following conse-
quences for NED sets, see also Remarks 6.3 and 7.9.

11.5. Lemma. Let X and X ′ be compact weakly flat spaces, G a domain
in X, A a NED set in X and let f be a Q−homeomorphism of D = G \ A into
X ′ such that the cluster set C(A, f) is a NED set in X ′. If at a point x0 ∈ A the
condition (10.3) holds, then f admits a continuous extension to the point x0.

11.6. Remark. In particular, f admits an extension to x0 ∈ A by continuity
if at least one of the conditions (10.5)–(10.6), (10.8), (10.10) or (10.14) with
Q ∈ FMO(x0), (10.16) holds at the point.

11.7. Lemma. Let X and X ′ be compact weakly flat spaces, G a domain in
X, A a NED set in G and let f be a Q−homeomorphism of D = G \ A into X ′

such that the cluster set A′ = C(A, f) is a NED set in X ′. If Q ∈ L1
µ(G), then
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the inverse homeomorphism g = f−1 : D′ → D, D′ = f(D), admits a continuous
extension g : G′ → G where G′ = D′ ∪ A′.

11.8. Remark. Thus, if Q ∈ L1
µ(D) satisfies at least one of the conditions

(10.5)–(10.6), (10.8), (10.10) or (10.14) with Q ∈ FMO(x0), (10.16) at every point
x0 ∈ A, then any Q−homeomorphism f of the domain D = G \ A into X ′ with
NED sets A and A′ = C(A, f) admits a homeomorphic extension f : G → G′

where G′ = D′ ∪ A′, D′ = f(D).

11.9. Theorem. Let X and X ′ be compact weakly flat spaces, G be a
domain in X, A ⊂ G be a NED set in G and let f be a Q−homeomorphism of
D = G \A into X ′ with a NED set A′ := C(A, f). If Q has finite mean oscillation
and X is upper α–regular by Ahlfors with α ≥ 2 at every point x0 ∈ A, then f
admits a homeomorphic extension fG→ G′ where G′ = D′ ∪ A′ and D′ = f(D).

12 On a continuous extension to an isolated singular point

As before, here (X, d, µ) and (X ′, d′, µ′) are spaces with metrics d and d′ and
locally finite Borel measures µ and µ′ , G and G′ are domains in X and X ′ with
finite Hausdorff dimensions α and α′ ≥ 1, correspondingly.

12.1. Lemma. Let a space X be arc connected at a point x0 ∈ G which
has a compact neighborhood, X ′ be a compact weakly flat space and let f :
G \ {x0} → G′ be a Q−homeomorphism where Q : G → [0,∞] is a measurable
function satisfying the condition

∫

ε<d(x0,x)<ε0

Q(x) · ψα
x0,ε(d(x, x0)) dµ(x) = o(Iα

x0
(ε))(12.2)

as ε → 0 where ε0 < dist(x0, ∂G) and ψx0,ε(t) is a family of non–negative
(Lebesgue) measurable functions on (0,∞) such that

0 < Ix0(ε) =

ε0∫

ε

ψx0,ε(t) dt < ∞ , ε ∈ (0, ε0) .(12.3)

Then f can be extended to the point x0 by continuity in X ′.

Proof. Let us show that the cluster set E = C(x0, f) is a singleton. The set E
is contained in ∂G′ by Proposition 2.7. Moreover, E is a continuum because the
domain G is connected at the point x0. Indeed,

E = lim sup
m→∞

f(Gm) =
∞⋂

m=1

f(Gm)

where Gm = G ∩ Um is a decreasing sequence of domains with neighborhoods
Um of the point x0 and d(Gm) → 0 as m → ∞. Note that lim inf

m→∞
f(Gm) =

lim inf
m→∞

f(Gm) 6= ∅ in view of the compactness of X ′, see e.g. Remark 3, Section
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41 in [Ku]. Consequently, E 6= ∅ is connected, see e.g. I(9.12) in [Wh], p. 15.
Moreover, E is closed by the construction and hence it is compact as a closed
subspace of the compact space X ′, see e.g. Theorem 2, IV, Section 41 in [Bou].

In view of the connectedness of G at the point x0, there is a connected com-
ponent G∗ of the set G \ {x0} ∩ B(x0, r0), 0 < r0 < dist(x0, ∂G), contain-
ing G \ {x0} ∩ B(x0, r∗) for some r∗ ∈ (0, r0). If ∂G = ∅, then we set here
dist(x0, ∂G) = ∞. Since x0 has a compact neighborhood one may suppose that
B(x0, r0) is compact.

Consider G′

∗
= fG∗. Let us show that the cluster set E = C(x0, f) is an

isolated connected component of ∂G′

∗
. Indeed, K = ∂G∗ \ {x0} is a compact set

as a closed subset of the compact set B(x0, r0) and, consequently, K∗ = fK ⊂ G′

is compact. On the other hand, the compact set E is contained in ∂G′, i.e.,
E ∩K∗ = ∅. Thus, dist(E,K∗) > 0. Finally, if y0 ∈ ∂G′

∗
, then by Proposition 2.7

C(y0, g) ⊂ ∂G∗ = K ∪ {x0} where g = f−1|G′

∗
and, consequently, either y0 ∈ E or

y0 ∈ K∗.

Let z0 ∈ G′

∗
. Then by Proposition 2.4 there is a path γ0 : [a, b) → G∗ from

γ0(a) = f−1(z0) to x0 = lim
t→b

γ0(t) in G∗. Setting γ′0 = fγ0 : [a, b) → G′

∗
, we have

that dist(γ′0(t), E) → 0 as t → b by definition of E = C(x0, f) in view of the
compactness of the space X ′. Set C∗ = γ′0([a, b)) and

Γ = ∆(C∗, E,X
′) .

Consider also the families of paths

Γ0 = ∆(C∗, E,G
′

∗
)

and
Γ∗ = {γ ∈ Γ : |γ| ∩ R 6= ∅}

where
R = X ′ \ {G′

∗
∪ E} .

Note, firstly, that M(Γ0) = M(Γ̃) where Γ̃ = Γ \ Γ∗. Indeed, on one hand,

Γ0 ⊂ Γ̃ and hence M(Γ0) ≤M(Γ̃). On the other hand, Γ0 < Γ̃ by Proposition 2.5

and hence M(Γ0) ≥M(Γ̃), see e.g. Theorem 1 in [Fu]. Note, secondly, that

M(Γ∗) ≤ M∗ :=
µ(X ′)

(2 dist(C∗ ∪ E, ∂G′
∗
\ E))α′

<∞

because C∗ ∪ E and ∂G′

∗
\ E are non–intersecting compact sets and µ′(X ′) < ∞

in view of the compactness of X ′ and the local finiteness of the measure µ′.

Let us assume that the continuum E is not degenerate. Let y0 ∈ E is a
limit point of γ′0(t) as t → b and y∗ ∈ E , y∗ 6= y0. By the Darboux property
of connected sets ∂B(y0, r) is intersecting C∗ and E for all r ∈ (0, r0) where
r0 = min{d′(y0, γ0(a)), d

′(y0, y∗)}. Consider continua C(t) = γ0([a, t]), t ∈ [a, b).
Note that dist (C(t), E) → 0 as t→ b by the construction. Thus,

M(∆(C(t), E,X ′)) → ∞
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as t → b because the space X ′ is weakly flat. Consequently, there is t0 ∈ [a, b)
such that

M0 := M(∆(C(t0), E,X
′)) > M∗ .

Recall that Γ = Γ̃ ∪ Γ∗ and we obtain by monotonicity and subadditivity of
the modulus

M∗ < M0 ≤M(Γ) ≤M(Γ̃) +M(Γ∗) = M(Γ0) +M(Γ∗) ≤M(Γ0) +M∗ .

Consequently,
M(Γ0) > 0 .

However,

Γ0 =
∞⋃

n=1

Γn

where Γn = ∆(C(tn), E,G′

∗
), tn → b as n → ∞, and by subadditivity of the

modulus

M(Γ0) ≤
∞∑

n=1

M(Γn) .

Thus, there is a continuum C = C(tn) such that

M(∆(C,E,G′

∗
)) > 0 .

Note that C0 = f−1(C) is a compact set as a continuous image of a compact
set. Thus, ε0 = dist(x0, C0) > 0. Let

Γε = ∆(C0, B(x0, ε), G∗), ε ∈ (0, ε0) ,

and let ψ∗

x0,ε is a Borel function such that ψ∗

x0,ε(t) = ψx0,ε(t) for a.e. t ∈ (0,∞)
which there is in view of the Lusin theorem, see e.g. 2.3.5 in [Fe].

Then by Proposition 2.6 the function

ρε(x) =

{
ψ∗

x0,ε(d(x, x0))/I(ε, ε0), x ∈ A(x0, ε, ε0),
0, x ∈ X\A(x0, ε, ε0),

where
A(x0, ε, ε0) = {x ∈ X : ε < d(x, x0) < ε0} ,

is admissible for Γε and, consequently,

M(fΓε) ≤
∫

G

Q(x) · ρα
ε (x) dµ(x) ,

i.e. M(fΓε) → 0 as ε→ 0 in view of (12.2).

On the other hand, M(fΓε) ≥M(∆(C,E,G′

∗
)) > 0 because ∆(C0, {x0}, G∗) >

Γε and
f−1∆(C,E,G′

∗
) ⊆ ∆(C0, {x0}, G∗)
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for any ε ∈ (0, ε0) by Proposition 2.7 applied to the homeomorphism f−1 and
g = f−1|G′

∗
, and x′0 ∈ E, x′0 = γ(b), γ ∈ ∆(C,E,G′

∗
). The obtained contradiction

disproves the assumption that E is not degenerate.

12.4. Corollary. In particular, if

lim
ε→0

∫

ε<d(x,x0)<ε0

Q(x) · ψα(d(x, x0)) dµ(x) < ∞(12.5)

where ψ(t) is a non–negative measurable function on (0,∞) such that

0 < I(ε, ε0) :=

ε0∫

ε

ψ(t) dt < ∞ , ∀ ε ∈ (0, ε0) ,

and I(ε, ε0) → ∞ as ε→ 0, then any Q−homeomorphism f : G\{x0} → G′ ⊂ X ′

is extended to the point x0 by continuity in X ′.

12.6. Remark. In the other words, it is sufficient for the singular integral
(12.5) to be convergent in the sense of the principal value at the point x0 at
least for one kernel ψ with a non–integrable singularity at zero. Furthermore, as
Lemma 12.1 shows it is sufficient for the given integral even to be divergent but
with the controlled speed:

∫

ε<d(x,x0)<ε0

Q(x) · ψα(d(x, x0)) dµ(x) = o(Iα(ε, ε0))(12.7)

Choosing in Lemma 12.1 ψ(t) ≡ 1/t, we obtain the following theorem.

12.8. Theorem. Let X and X ′ be compact spaces, X be arc connected at a
point x0 ∈ G, X ′ be weakly flat. If a measurable function Q : G→ [0,∞] satisfies
the condition ∫

ε<d(x,x0)<ε0

Q(x) dµ(x)

d(x, x0)α
= o

([
log

1

ε

]α)
(12.9)

as ε→ 0 where ε0 < dist(x0, ∂G) , then any Q−homeomorphism f : G\{x0} → G′

is extended by continuity to the point x0.

12.10. Corollary. In particular, the conclusion of Theorem 12.8 holds if
the singular integral

∫
Q(x) dµ(x)

d(x, x0)α
(12.11)

is convergent in a neighborhood of the point in the sense of the principal value.

Combining Lemmas 4.6 and 12.1, choosing ψε(t) ≡ t log 1
t
, t ∈ (0, δ0), in the

latter, we obtain the following theorem.
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12.12. Theorem. Let X and X ′ be compact weakly flat spaces, G be a
domain in X which is upper α−regular with α ≥ 2 and arc connected at a point
x0 ∈ G and

µ(B(x0, 2r)) ≤ γ · logα−2 1

r
· µ(B(x0, r)) ∀ r ∈ (0, r0) .(12.13)

If Q ∈ FMO(x0), then any Q−homeomorphism f of the domain G \ {x0} into
X ′ is extended by continuity to the point x0.

Combining Corollary 4.4 and Theorem 12.8, we obtain the following statement.

12.14. Corollary. In particular, if

lim
ε→0

−
∫

B(x0,ε)
Q(x) dµ(x) <∞ ,(12.15)

then any Q−homeomorphism f : G \ {x0} → G′ ⊂ X ′ is extended by continuity
to the point x0.

The following simple example shows that the above extension f of f to x0 can
be not a homeomorphism.

Example. Let G = X where X is a space which coincides with a closed
equilateral triangle T on one of the coordinate planes in R

3 minus one of its
vertices v. It is clear that X is not compact although it is locally compact. Let
us roll up the triangle T without any distortion in such a way that the vertex
v will be touched to the center c of its opposite side. The obtained space X ′ is
compact. Let x0 = c. The above (rolling up) mapping f : X \ {x0} → X ′ \ {x0}
is conformal if we take in X the usual Euclidean distance as the metric d and the
usual area as the Borel measure µ and in X ′ set d′ to be geodesic (thus, the arc
length is invariant under f) and µ′(B′ \ {x0}) = µ(f−1(B′ \ {x0})) for every Borel
set in X ′ and µ′({x0}) = µ({x0}) = 0. By the construction, the mapping f can
continuously be extended to x0 and the extension f is injective, of course, but not
a homeomorphism (the inverse mapping of f is not continuous).

12.16. Remark. By Proposition 2.7 the extension of f at the point x0 is
an injective mapping and, thus, a homeomorphism on any subdomain G∗ ⊂⊂ G,
i.e., if G∗ is compact in G. The latter is, generally speaking, not true for the
domain G itself as it was shown by the above example. However, this is true if,
for instance, G = X is compact, see e.g. [Ku].

Moreover, if the family of all paths in X ′ (or only in G∗) going through the
point y0 = f(x0) has the modulus zero, see Section 8, then the restriction of the
mapping g = f |G∗

will be a Q−homeomorphism. For the regular by Ahlfors spaces
this always holds, see Lemma 7.18 in the book [He1]. Thus, an isolated singular
point of Q−homeomorphism in regular weakly flat spaces is locally removable
under the conditions on Q enumerated above.
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13 On conformal and quasiconformal mappings

Finally, let us give a resume of results for conformal and quasiconformal map-
pings which are direct consequences of the theory of Q−homeomorphisms in met-
ric spaces with measures developed above. Namely, let as before (X, d, µ) and
(X ′, d′, µ′) be spaces with metrics d and d′ and locally finite Borel measures µ and
µ′ , and with finite Hausdorff dimensions α and α′ ≥ 1, correspondingly.

Similarly to the geometric definition by Vaisala in R
n, n ≥ 2, see 13.1 in

[Va], we say that a homeomorphism f : G → G′ is called K−quasiconformal,
K ∈ [1,∞], if

K−1M(Γ) ≤M(fΓ) ≤ KM(Γ)(13.1)

for every family Γ of paths in G. We say also that a homeomorphism f : G →
G′ is quasiconformal if f is K−quasiconformal for some K ∈ [1,∞), i.e., if
the distortion of moduli of path families under the mapping f is bounded. In
particular, we say that a homeomorphism f : G→ G′ is conformal if

M(fΓ) = M(Γ)(13.2)

for any paths families in G.

By Theorem 6.2 we obtain the following important conclusion.

13.3. Theorem. Let G have a weakly flat boundary, G′ be locally arc con-
nected at all its boundary points and let G′ be compact. Then any quasiconformal
mapping f : G→ G′ admits a continuous extension to the boundary f : G→ G′.

Combining Theorem 13.3 with Lemma 3.4, we come to the following statement.

13.4. Corollary. If G and G′ are domains with weakly flat boundaries and
compact closures G and G′, then any quasiconformal mapping f : G→ G′ admits
a homeomorphic extension f : G→ G′.

13.5. Remark. In particular, the last conclusion holds for quasiconformal
mappings between QED domains with compact closures in weakly flat spaces.
Note that the closures of the domains are always compact in compact spaces.
Recall also that locally compact spaces always admits the so–called one–point
compactification, see e.g. I.9.8. [Bou].

On the base of Lemmas 3.4 and 11.3 and Theorem 13.3, we obtain the following
theorem.

13.6. Theorem. LetX andX ′ be compact weakly flat spaces, G a domain in
X, A ⊂ G a NED set and f a quasiconformal mapping of the domain D = G \A
into X ′. If the cluster set A′ = C(A, f) is also a NED set, then f admits a
quasiconformal extension to G.

By results of the previous section, single out also the following consequences
on removability of isolated singularities.
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13.7. Lemma. Let X be arc connected at a point x0 ∈ G with a c com-
pact neighborhood, X ′ a compact weakly flat space and f : G \ {x0} → G′ a
quasiconformal mapping. If µ satisfies the condition

∫

ε<d(x0,x)<ε0

ψα(d(x, x0)) dµ(x) = o(Iα(ε, ε0))(13.8)

as ε→ 0 where ε0 < dist(x0, ∂G) and ψ(t) is a non-negative (Lebesgue) measur-
able function on (0,∞) such that

0 < I(ε, ε0) =

ε0∫

ε

ψ(t) dt < ∞ ∀ ε ∈ (0, ε0) ,

then the mapping f is extended by continuity to the point x0.

13.9. Theorem. Let X be arc connected at a point x0 ∈ G with a c com-
pact neighborhood, X ′ a compact weakly flat space and f : G \ {x0} → G′ a
quasiconformal mapping. If µ satisfies the condition

∫

ε<d(x,x0)<ε0

dµ(x)

d(x, x0)α
= o

([
log

1

ε

]α)
(13.10)

as ε→ 0 where ε0 < dist(x0, ∂G), then the mapping f is extended by continuity
to the point x0.

Finally, in view of Remarks 4.9 and 8.7, we have the following important con-
clusion from Theorem 13.9.

13.11. Corollary. Let X and X ′ be regular by Ahlfors compact weakly
flat spaces. Then any quasiconformal mapping X \ {x0} into X ′ is extended to
quasiconformal mapping of X into X ′.

13.12. Corollary. Isolated singularities of quasiconformal mappings are
locally removable in regular by Ahlfors weakly flat spaces X and X ′ if in addtion
X is locally compact and X ′ is compact.

Thus, the results of the paper extend (and strengthen) the well–known theo-
rems by J. Vaisala, M. Vuorinen, F. Gehring, O. Martio, P. Nakki and others on
quasiconformal mappings in R

n, n ≥ 2, to Q−homeomorphisms in metric spaces,
see e.g. [GM], [MV], [Na], [Va] [Vu], cf. also [IR1]–[IR2], [KR] and [MRSY1]–
[MRSY3].

Acknowledgments. Research of the first author was partially supported by
the (Ukrainian) Foundation of Fundamental Investigations (FFI), Grant number
F25.1/055. He would like also to thank for a support Department of Mathematics
of the Helsinki University.



32 V. RYAZANOV AND R. SALIMOV

References

[BK] Balogh Z., Koskela P. Quasiconformality, quasisymmetry, and removability in

Loewner spaces, with an appendix by Jussi Vaisala, Duke Math. J. 101, N 3 (2000),
554-577.

[BY] Brania A., Yang Sh. Domains with controlled modulus and quasiconformal mappings

Nonlinear Stud. 9, N 1 (2002), 57-73.

[Bou] Bourbaki N., General Topology. Chapters 1–4, Springer, Berlin, 1998.

[Ca1] Cazacu A.C., On the length–area dilatation, Complex Var. Theory Appl. 50 (2005), no.
7–11, 765–776.

[Ca2] Cazacu A.C., Some formulae on the extremal length in n−dimensional case, Proc. Rom.-
Finn. Sem. on Teichmüller Spaces and Quasiconformal Mappings (Brazov, 1969), pp. 87–
102, Publ. House of Acad. Soc. Rep. Romania, Bucharest, 1971.

[Fe] Federer H., Geometric Measure Theory, Springer, Berlin etc., 1969.

[Fu] Fuglede B., Extremal length and functional completion, Acta Math. 98 (1957), 171–219.

[GM] Gehring F.W. and Martio O., Quasiextremal distance domains and extension of

quasiconformal mappings, J. d’Anal. Math. 24 (1985), 181–206.

[He1] Heinonen J., Lectures on Analysis on metric spaces, Springer, New York, 2001.

[He2] Heinonen J. A capacity estimate on Carnot groups, Bull. Sci. Math. 119, N 1 (1995),
475-484.

[HH] Heinonen J. and Holopainen I. Quasiregular mappings on Carnot groups, J. Geom.
Anal. 7. N 1 (1997), 109-148.

[HK] Heinonen J. and Koskela P., Quasiconformal maps in metric spaces with controlled

geometry, Acta Math. 181 (1998), no. 1, 1–61.

[HKM] Heinonen J., Kilpelainen T. and Martio O. Nonlinear Potential Theory of De-

generate Elliptic Equations, Clarendon Press, New York, 1993.

[IR1] Ignat’ev A. and Ryazanov V., Finite mean oscillation in the mapping theory,
Ukrainian Math. Bull. 2 (2005), no. 3, 403–424.

[IR2] Ignat’ev A. and Ryazanov V., To the theory of the boundary behavior of space

mappings, Ukrainian Math. Bull. 3 (2006), no. 2, 189–201.

[KRe1] Koranyi A. and Reimann H., Quasiconformal mappings on the Heisenberg group,
Invent. Math. 80 (1985), 309-338.

[KRe2] Koranyi A. and Reimann H., Foundations for the theory of quasiconformal mappings

on the Heisenberg group, Adv. Math. 111 (1995), 1-87.

[KR] Kovtonyuk D. and Ryazanov V., To the theory of boundaries of space domains, Proc.
Inst. Appl. Math. Mech. NASU 13 (2006), 110-120.

[Ku] Kuratowski K., Topology, v. 2, Academic Press, New York – London, 1968.

[MaM] Margulis G. A. and Mostow G. D., The differential of quasi-conformal mapping of

a Carnot-Caratheodory space, Geom. and Func. Anal. 5 (1995), no. 2, 402-433.

[MarV] Markina I. and Vodop’yanov S., On value distribution for quasimeromorphic map-

pings on H-type Carnot groups, Bull. Sci. Math. Mexicana. 130 (2006), no. 6, 467-523.

[Ma] Martio O., Modern tools in the theory of quasiconformal maps, Texts in Math. Ser. B,
27. Univ. Combra, Dept. Mat., Coimbra (2000), 1–43.



On the mapping theory in metric spaces 33

[MRSY1] Martio O., Ryazanov V., Srebro U. and Yakubov E., Mappings with finite

length distortion, J. d’Anal. Math. 93 (2004), 215–236.

[MRSY2] Martio O., Ryazanov V., Srebro U. and Yakubov E., Q−homeomorphisms,
Contemporary Math. 364 (2004), 193–203.

[MRSY3] Martio O., Ryazanov V., Srebro U. and Yakubov E., On Q−homeomorp-

hisms, Ann. Acad. Sci. Fenn. 30 (2005), 49–69.

[MV] Martio O. and Vuorinen M., Whitney cubes, p−capacity and Minkowski coutent,
Expo. Math. 5 (1980), 17-40.

[MS] Martio O. and Sarvas J., Injectivity theorems in plane and space, Ann. Acad. Sci.
Fenn. Ser. A1 Math. 4 (1978/1979), 384–401.

[Mit] Mitchell J., On Carnot-Caratheodory metrics, J. Differential Geometry 21 (1985), 35-
45.

[Na] Nakki R., Boundary behavior of quasiconformal mappings in n−space, Ann. Acad. Sci.
Fenn. Ser. A1. No. 484 (1970), 1–50.

[Oh1] Ohtsuka M., Extremal length and precise functions, Gakkotosho Co., Ltd., Tokyo,
(2003).

[Oh2] Ohtsuka M., On weighted extremal length of families of curves, Complex analysis,
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