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Abstract

It is established that a Q−homeomorphism in Rn, n > 2, is absolute continuous on lines,
furthermore, in W 1,1

loc and differentiable a.e. whenever Q ∈ L1
loc.
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1 Introduction

Let G and G′ be domains in Rn, n ≥ 2, and let Q : G → [1,∞] be a measurable
function. A homeomorphism f : G → G′ is called a Q−homeomorphism if

M(fΓ) ≤
∫

G

Q(x) · %n(x) dm(x)(1.1)

for every family Γ of paths in G and every admissible function % for Γ. Here the
notation m refers to the Lebesgue measure in Rn. This conception is a natural
generalization of the geometric definition of a quasiconformal mapping, see 13.1
and 34.6 in [Va].

Recall that, given a family of paths Γ in Rn, a Borel function % : Rn → [0,∞]
is called admissible for Γ, abbr. % ∈ adm Γ, if

∫

γ

% ds ≥ 1(1.2)

for all γ ∈ Γ. The (conformal) modulus of Γ is the quantity

M(Γ) = inf
%∈adm Γ

∫

G

%n(x) dm(x) .(1.3)

This class of Q−homeomorphisms was first introduced and studied in [MRSY1]-
[MRSY2]. The main goal of the theory of Q−homeomorphisms is to clear up
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various interconnections between properties of the majorant Q(x) and the corre-
sponding properties of the mappings themselves. In particular, the problem of
the local and boundary behavior of Q−homeomorphisms has been studied in Rn

first in the case Q ∈ BMO (bounded mean oscillation) in the papers [MRSY1]-
[MRSY2] and [RSY1], and then in the case of Q ∈ FMO (finite mean oscillation)
and other cases in the papers [IR1]-[IR2], [RS] and [RSY2]. The questions on dif-
ferentiability and absolute continuity for mapping classes which are more general
than quasiconformal are recently studied in the work [Go].

In what follows, if A, B and C are sets in Rn, then ∆(A,B,C) denotes a
collection of all continuous curves γ : [a, b] → Rn joining A and B in C, i.e.
γ(a) ∈ A, γ(b) ∈ B and γ(t) ∈ C, t ∈ (a, b).

Here a condenser is a pair E = (A,C) where A ⊂ Rn is open and C is non–
empty compact set contained in A . E is a ringlike condenser if B = A \C is a
ring, i.e., if B is a domain whose complement Rn \B has exactly two components
where Rn = Rn ∪ {∞} is the one point compactification of Rn.

2 On the ACL property of Q–homeomorphisms

2.1. Theorem. Let G and G′ be domains in Rn, n ≥ 2, and f : G → G′ be
Q–homeomorphism with Q ∈ L1

loc. Then f ∈ ACL.

Proof. Let I = {x ∈ Rn : ai < xi < bi, i = 1, . . . , n} be an n-dimensional
interval in Rn such that I ⊂ G. Then I = I0 × J where I0 is an (n − 1)-
dimensional interval in Rn−1 and J is an open segment of the axis xn, J = (an, bn).
Next we identify Rn−1 × R with Rn. We prove that for almost every segment
Jz = {z} × J , z ∈ I0, the mapping f |Jz is absolutely continuous.

Consider the set function Φ(B) = m(f(B × J)) defined over the algebra of
all the Borel sets B in I0. Note that by the Lebesgue theorem on differentiability
for non-negative sub-additive locally finite set functions, see e.g. III.2.4 in [RR],
there exists a finite limit for a.e. z ∈ I0

ϕ(z) = lim
r→0

Φ (B(z, r))

Ωn−1rn−1
(2.2)

where B(z, r) is a ball in I0 ⊂ Rn−1 centered at z ∈ I0 of the radius r > 0.

Let ∆i, i = 1, 2, ..., be some enumeration S of all intervals in J such that
∆i ⊂ J and the ends of ∆i are the rational numbers. Set

ϕi(z) :=
∫

∆i

Q(z, xn) dxn.

Then by the Fubini theorem, see e.g. III. 8.1 in [Sa], the functions ϕi(z) are
a.e. finite and integrable in z ∈ I0. In addition, by the Lebesgue theorem on
differentiability of the indefinite integral there is a.e. a finite limit

lim
r→0

Φi(B(z, r))

Ωn−1rn−1
= ϕi(z)(2.3)
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where Φi for a fixed i = 1, 2, . . . is the set function

Φi(B) =
∫

B

ϕi(ζ) dζ

given over the algebra of all the Borel sets B in I0.

Let us show that the mapping f is absolutely continuous on each segment
Jz, z ∈ I0, where the finite limits (2.2) and (2.3) exist. Fix one of such a point
z. We have to prove that the sum of diameters of the images of an arbitrary
finite collection of mutually disjoint segments in Jz = {z} × J tends to zero with
the total length of the segments. In view of the continuity of the mapping f , it
is sufficient to verify this fact only for mutually disjoint segments with rational
ends in Jz. So, let ∆∗

i = {z} × ∆i ⊂ Jz where ∆i ∈ S, i = 1, ..., k, under the
corresponding re-enumeration of S, are mutually disjoint intervals. Without loss
of generality, we may assume that ∆i , i = 1, ..., k are also mutually disjoint.

Let δ > 0 be an arbitrary rational number which is less than of half the
minimum of the distances between ∆∗

i , i = 1, ..., k, and also less than their
distances to the end-points of the interval Jz. Let ∆∗

i = {z} × [αi, βi] and
Ai = Ai(r) = B(z, r) × (αi − δ, βi + δ), i = 1, ..., k where B(z, r) is an open
ball in I0 ⊂ Rn−1 centered at the point z of the radius r > 0. For small r > 0,
(Ai, ∆

∗
i ), i = 1, ..., k, are ringlike condensers in I and hence (fAi, f∆∗

i ), i = 1, ..., k,
are also ringlike condensers in G′.

According to [Ge], see also [He] and [Sh],

cap (fAi, f∆∗
i ) = M (4 (∂fAi, f∆∗

i ; fAi))

and, in view of homeomorphism of f ,

4 (∂fAi, f∆∗
i ; fAi) = f (4 (∂Ai, ∆

∗
i ; Ai)) .

Thus, since f is a Q–homeomorphism we obtain that

cap (fAi, f∆∗
i ) ≤

∫

G

Q(x) · ρn(x) dx

for every function ρ ∈ adm4(∂Ai, ∆
∗
i ; Ai). In particular, the function

ρ(x) =

{
1
r
, x ∈ Ai,

0, x ∈ Rn \ Ai,

is admissible under r < δ and, thus,

cap (fAi, f∆∗
i ) ≤

1

rn

∫

Ai

Q(x) dx .(2.4)

On the other hand, by Lemma 5.9 in [MRV]

cap (fAi, f∆∗
i ) ≥

(
Cn

dn
i

mi

) 1
n−1

(2.5)
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where di is a diameter of the set f∆∗
i and mi is a volume of the set fAi and Cn

is a constant depending only on n.

Combining (2.4) and (2.5), we have the inequalities

(
dn

i

mi

) 1
n−1

≤ cn

rn

∫

Ai

Q(x) dm(x) , i = 1, ..., k(2.6)

where the constant cn depends only on n.

By the discrete Hölder inequality, see e.g. (17.3) in [BB] with p = n/(n − 1)

and q = n, xk = dk/m
1/n
k and yk = m

1/n
k , we obtain that

k∑

i=1

di ≤



k∑

i=1

(
dn

i

mi

) 1
n−1




n−1
n (

k∑

i=1

mi

) 1
n

,(2.7)

i.e.,
(

k∑

i=1

di

)n

≤



k∑

i=1

(
dn

i

mi

) 1
n−1




n−1

Φ(B(z, r)) ,(2.8)

and in view of (2.6)

(
k∑

i=1

di

)n

≤ γn
Φ(B(z, r))

Ωn−1rn−1




k∑

i=1

∫
Ai

Q(x) dx

Ωn−1rn−1




n−1

,(2.9)

where γn depends only on n. Letting here first r → 0 and then δ → 0, we get by
Lebesgue’s theorem

(
k∑

i=1

di

)n

≤ γnϕ(z)

(
k∑

i=1

ϕi(z)

)n−1

.(2.10)

Finally, in view of (2.10), the absolute continuity of the indefinite integral of
Q over the segment Jz implies the absolute continuity of the mapping f over the
same segment. Hence f ∈ ACL.

3 On differentiability of Q–homeomorphisms

3.1. Theorem. Let G and G′ be domains in Rn, n ≥ 2, and f : G → G′ be a
Q–homeomorphism with Q ∈ L1

loc. Then f is differentiable a.e. in G.

Proof. Let us consider the set function Φ(B) = m(f(B)) defined over the
algebra of all the Borel sets B in G. Recall that by the Lebesgue theorem on the
differentiability of non-negative sub-additive locally finite set functions, see III.2.4
in [RR] or 23.5 in [Va], there exists a finite limit for a.e. z ∈ G

ϕ(x) = lim
ε→0

Φ(B(x, ε))

Ωnεn
(3.2)
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where B(x, ε) is a ball in Rn centered at x ∈ G with the radius ε > 0.

Consider also the spherical ring Rε(x) = {y : ε < |x − y| < 2ε}, x ∈ G, with

ε > 0 such that Rε(x) ⊂ G. Since
(
fB (y, 2ε) , fB (y, ε)

)
are ringlike condensers

in G′, according to [Ge], see also [He] and [Sh],

cap (fB(x, 2ε), fB(x, ε)) = M(4(∂fB(x, 2ε), ∂fB(x, ε); fRε(x)))

and, in view of homeomorphism of f,

4 (∂fB (x, 2ε) , ∂fB (x, ε) ; fRε(x)) = f (4 (∂B(x, 2ε), ∂B(x, ε); Rε(x))) .

Thus, since f is Q−homeomorphism, we obtain that

cap (fB(x, 2ε), fB(x, ε)) ≤
∫

G

Q(x) · ρn(x) dx

for every admissible function ρ for 4(∂B(x, 2ε), ∂B(x, ε); Kε(x)). The function

ρ(x) =

{
1
ε
, if x ∈ Rε(x),

0, if x ∈ G \Rε(x),

is admissible and, thus,

cap (fB(x, 2ε), fB(x, ε)) ≤ 2nΩn

m(B(x, 2ε))

∫

B(x,2ε)

Q(y) dy.(3.3)

On the other hand, by Lemma 5.9 in [MRV] we have that

cap (fB(x, 2ε), fB(x, ε)) ≥
(
Cn

dn(fB(x, ε))

m(fB(x, 2ε))

) 1
n−1

(3.4)

where Cn is a constant depending only on n, d(A) and m(A) denote the diameter
and the Lebesgue measure of a set A in Rn.

Combining (3.3) and (3.4), we obtain that

d(fB(x, ε))

ε
≤ γn

(
m(fB(x, 2ε))

m(B(x, 2ε))

)1/n



1

m(B(x, 2ε))

∫

B(x,2ε)

Q(y) dy




(n−1)/n

and hence

L(x, f) ≤ lim sup
ε→0

d(fB(x, ε))

ε
≤ γnϕ

1/n(x)Q(n−1)/n(x)

where

L(x, f) = lim sup
y→x

|f(y)− f(x)|
|y − x| .(3.5)

Thus, L(x, f) < ∞ a.e. in G. Finally, applying the Rademacher–Stepanov theo-
rem, see e.g. [Sa], p. 311, we conclude that f is differentiable a.e. in G.
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3.6. Corollary. Let G and G′ be domains in Rn, n ≥ 2, and let f : G → G′

be a Q–homeomorphism with Q ∈ L1
loc. Then f belongs to W 1,1

loc .

Proof. For L(x, f) given by (3.5) and a Borel set V ⊂ G, we have that

∫

V

L(x, f) dx ≤ γn

∫

V

ϕ1/n(x)Q(n−1)/n(x) dx

and, applying the Hölder inequality, see e.g. (17.3) in [BB] with p = n and
q = n/(n− 1), we obtain that

∫

V

ϕ1/n(x)Q(n−1)/n(x) dx ≤



∫

V

ϕ(x) dx




1/n 


∫

V

Q(x) dx




(n−1)/n

Finally, in view of Q ∈ L1
loc, by the Lebesgue theorem we see that

∫

V

L(x, f) dx ≤ γn (mV )1/n




∫

V

Q(x) dx




(n−1)/n

< ∞

and the conclusion follows by Theorem 2.1, see also [Maz].
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[Va] Väisälä J., Lectures on n−Dimensional Quasiconformal Mappings, Lecture Notes in
Math. 229, Springer–Verlag, Berlin etc., 1971.

Ruslan Salimov,
Institute of Applied Mathematics and Mechanics,
National Academy of Sciences of Ukraine,
74 Roze Luxemburg str., 83114 Donetsk, UKRAINE
Phone: +38 – (062) – 3110145 Fax: +38 – (062) – 3110285
salimov@iamm.ac.donetsk.ua


