COMPOSITION OPERATORS FROM WEAK TO STRONG SPACES OF VECTOR-VALUED ANALYTIC FUNCTIONS

JUSSI LAITILA, HANS-OLAV TYLLI, AND MAOFA WANG

Abstract

Let φ be an analytic self-map of the unit disk, X a complex infinite-dimensional Banach space and $2 \leq p<\infty$. It is shown that the composition operator $C_{\varphi} ; f \mapsto f \circ \varphi$, is bounded $w H^{p}(X) \rightarrow H^{p}(X)$ if and only if C_{φ} is a Hilbert-Schmidt operator $H^{2} \rightarrow H^{2}$. Here $H^{p}(X)$ is the X-valued Hardy space and $w H^{p}(X)$ is a related weak vector-valued Hardy space. A similar result is established for vector-valued Bergman spaces.

1. Introduction

Let X be a complex Banach space and $1 \leq p<\infty$. The vector-valued Hardy space $H^{p}(X)$ consists of the analytic functions $f: \mathbb{D} \rightarrow X$ which satisfy

$$
\|f\|_{H^{p}(X)}:=\sup _{0<r<1}\left(\int_{\mathbb{T}}\|f(r \xi)\|_{X}^{p} d m(\xi)\right)^{1 / p}<\infty
$$

where \mathbb{D} is the unit disk in the complex plane and $d m$ is the normalized Lebesgue measure on the unit circle $\mathbb{T}=\partial \mathbb{D}$. Analogously, the vector-valued Bergman space $B_{p}(X)$ consists of the analytic functions $f: \mathbb{D} \rightarrow X$ such that

$$
\|f\|_{B_{p}(X)}:=\left(\int_{\mathbb{D}}\|f(z)\|_{X}^{p} d A(z)\right)^{1 / p}<\infty
$$

where $d A$ is the normalized 2-dimensional Lebesgue measure on \mathbb{D}. (The customary notation $H^{p}(\mathbb{C})=H^{p}$ and $B_{p}(\mathbb{C})=B_{p}$ will be used in the scalar-valued case.) These classes of vector-valued spaces have been studied quite extensively, see e.g. $[\mathrm{B} 2],[\mathrm{H}]$ and the survey $[\mathrm{B} 4]$. The following weak versions of these spaces were considered by e.g. Blasco [B1] and Bonet, Domański and Lindström [BDL]: the weak spaces $w H^{p}(X)$ and $w B_{p}(X)$ consist of the analytic functions $f: \mathbb{D} \rightarrow X$ for which

$$
\|f\|_{w H^{p}(X)}:=\sup _{\left\|x^{*}\right\| \leq 1}\left\|x^{*} \circ f\right\|_{H^{p}}, \quad\|f\|_{w B_{p}(X)}:=\sup _{\left\|x^{*}\right\| \leq 1}\left\|x^{*} \circ f\right\|_{B_{p}}
$$

are finite, respectively. Such weak spaces $w E(X)$ can be introduced under fairly general conditions on the Banach space E consisting of analytic maps $\mathbb{D} \rightarrow \mathbb{C}$, see section 4 .

[^0]Let φ be an analytic self-map of \mathbb{D} into itself. There is recent interest into properties of the analytic composition maps

$$
C_{\varphi} ; \quad f \mapsto f \circ \varphi
$$

in various vector-valued settings, see e.g. [LST], [BDL], [L1], [LT], [Wa] and [L2]. It is known (cf. [LST, p. 298]) that C_{φ} always defines a bounded linear operator $H^{p}(X) \rightarrow H^{p}(X)$ and $B_{p}(X) \rightarrow B_{p}(X)$ for any Banach space X and $1 \leq p<\infty$, and it is easily checked that C_{φ} is also bounded on the weak spaces $w H^{p}(X)$ and $w B_{p}(X)$. Hence it is a natural problem to characterize the analytic maps $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ for which C_{φ} is bounded from $w H^{p}(X)$ to $H^{p}(X)$, or from $w B_{p}(X)$ to $B_{p}(X)$. This problem is motivated e.g. by the fact that $H^{p}(X)$ and $w H^{p}(X)$ are completely different spaces for any infinitedimensional Banach space X. In fact, $H^{p}(X) \varsubsetneqq w H^{p}(X)$ and $\|\cdot\|_{w H^{p}(X)}$ is not equivalent to $\|\cdot\|_{H^{p}(X)}$ on $H^{p}(X)$, see [FGR, Cor. 12], or [L1, Ex. 15], [LT, sect. 6]. The properties of C_{φ} from $w H^{p}(X)$ to $H^{p}(X)$ further reflect these differences. Note that $w H^{p}(\mathbb{C})=H^{p}$ and $w B_{p}(\mathbb{C})=B_{p}$, so our question does not arise for $X=\mathbb{C}$. The theory of composition operators on various spaces of scalar-valued analytic functions is very extensive, see e.g. [CM] and [S] for comprehensive overviews.

Our main results establish that for $2 \leq p<\infty$ and any complex infinitedimensional Banach space X the operator C_{φ} is bounded $w H^{p}(X) \rightarrow H^{p}(X)$ if and only if

$$
\begin{equation*}
\int_{\mathbb{T}} \frac{1}{1-|\varphi(\xi)|^{2}} d m(\xi)<\infty \tag{1.1}
\end{equation*}
$$

and C_{φ} is bounded $w B_{p}(X) \rightarrow B_{p}(X)$ if and only if

$$
\begin{equation*}
\int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z)<\infty \tag{1.2}
\end{equation*}
$$

In (1.1) the a.e. radial limit function of φ on \mathbb{T} is also denoted $\xi \mapsto \varphi(\xi)$. The appearence of (1.1) and (1.2) in this context is somewhat surprising. In fact, φ satisfies (1.1) if and only if C_{φ} is a Hilbert-Schmidt operator $H^{2} \rightarrow H^{2}$, while analogously φ satisfies (1.2) if and only if C_{φ} is a Hilbert-Schmidt operator $B_{2} \rightarrow B_{2}$ (see Remarks 4 and 8 for a more careful discussion). As a contrasting example we observe that C_{φ} is bounded $w B M O A\left(\ell^{2}\right) \rightarrow$ $B M O A\left(\ell^{2}\right)$ if and only if C_{φ} is bounded $\mathcal{B} \rightarrow B M O A$, where \mathcal{B} is the Bloch space. For completeness we also include concrete examples where the norms $\|\cdot\|_{w B_{p}(X)}$ and $\|\cdot\|_{B_{p}(X)}$ are not equivalent on $B_{p}(X)$ for any infinite-dimensional X and $1 \leq p<\infty$.

We are indebted to Sten Kaijser for asking during a conference at Oxford, Ohio, about the boundedness of composition operators from $w H^{2}\left(\ell^{2}\right)$ to $H^{2}\left(\ell^{2}\right)$, as well as to Paweł Domański for a subsequent discussion.

2. Composition operators from weak to strong Hardy spaces

The following straightforward upper bound for the norm of C_{φ} between weak and strong Hardy spaces holds for any $1 \leq p<\infty$.

Lemma 1. Let X be any complex Banach space and $1 \leq p<\infty$. Then

$$
\left\|C_{\varphi}: w H^{p}(X) \rightarrow H^{p}(X)\right\| \leq \sup _{0<r<1}\left(\int_{\mathbb{T}} \frac{1}{1-|\varphi(r \zeta)|^{2}} d m(\zeta)\right)^{1 / p}
$$

Proof. Any analytic map $f: \mathbb{D} \rightarrow \mathbb{C}$ satisfies $|f(z)|^{p} \leq\left(1-|z|^{2}\right)^{-1}\|f\|_{H^{p}}^{p}$ for $z \in \mathbb{D}$ (see e.g. [CM, p. 18]). Hence

$$
\|f(z)\|_{X}^{p}=\sup _{\left\|x^{*}\right\| \leq 1}\left|\left(x^{*} \circ f\right)(z)\right|^{p} \leq \frac{1}{1-|z|^{2}}\|f\|_{w H^{p}(X)}^{p}
$$

for $f \in w H^{p}(X)$. Consequently

$$
\begin{aligned}
\left\|C_{\varphi} f\right\|_{H^{p}(X)}^{p} & =\sup _{0<r<1} \int_{\mathbb{T}}\|f(\varphi(r \zeta))\|_{X}^{p} d m(\zeta) \\
& \leq\|f\|_{w H_{p}(X)}^{p} \sup _{0<r<1} \int_{\mathbb{T}} \frac{1}{1-|\varphi(r \zeta)|^{2}} d m(\zeta)
\end{aligned}
$$

We will require Dvoretzky's well-known theorem: for any $n \in \mathbb{N}$ and $\varepsilon>0$ there is $m(n, \varepsilon) \in \mathbb{N}$ so that for any Banach space X of dimension at least $m(n, \varepsilon)$ there is a linear (into) embedding $T_{n}: \ell_{2}^{n} \rightarrow X$ so that

$$
\begin{equation*}
(1+\varepsilon)^{-1}\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{j=1}^{n} a_{j} T_{n} e_{j}\right\| \leq\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

for any scalars a_{1}, \ldots, a_{n}. Here $\left(e_{1}, \ldots, e_{n}\right)$ is some fixed orthonormal basis of ℓ_{2}^{n}. For proofs see e.g. [DJT, Ch. 19] or [P, Ch. 4].

The following result is the main one of this section. Here " $\approx=$ " means equivalence up to constants only depending on p.

Theorem 2. Let X be any complex infinite-dimensional Banach space. Then

$$
\begin{equation*}
\left\|C_{\varphi}: w H^{p}(X) \rightarrow H^{p}(X)\right\| \approx\left(\int_{\mathbb{T}} \frac{1}{1-|\varphi(\zeta)|^{2}} d m(\zeta)\right)^{1 / p} \tag{2.2}
\end{equation*}
$$

for $2<p<\infty$, and

$$
\begin{equation*}
\left\|C_{\varphi}: w H^{2}(X) \rightarrow H^{2}(X)\right\|=\left(\int_{\mathbb{T}} \frac{1}{1-|\varphi(\zeta)|^{2}} d m(\zeta)\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

Note that it is already hard to compute the norm of $C_{\varphi}: H^{2} \rightarrow H^{2}$ (cf. [BFHS] and its references), so the general identity (2.3) comes as a pleasant bonus. Before embarking on the proof of Theorem 2 we record an elementary numerical estimate that will be applied below.

Lemma 3. There is $c>0$ such that for any $-1<\alpha \leq 1$ and $1 / 2 \leq t<1$ one has

$$
\sum_{k=1}^{\infty} k^{\alpha} t^{k} \geq \frac{c}{(1-t)^{\alpha+1}}
$$

Proof. Suppose first that $-1<\alpha \leq 0$. Then $\sum_{k=1}^{\infty} k^{\alpha} t^{k} \geq \int_{1}^{\infty} x^{\alpha} t^{x} d x$, since the map $x \mapsto x^{\alpha} t^{x}=x^{\alpha} e^{-x \log (1 / t)}$ decreases on $[1, \infty)$. By changing variables
$x=y /(\log (1 / t))$, and applying $0<\log (1 / t) \leq 2(1-t)$ for $1 / 2 \leq t<1$, we get that

$$
\begin{aligned}
\sum_{k=1}^{\infty} k^{\alpha} t^{k} & \geq \int_{1}^{\infty} x^{\alpha} e^{-x \log (1 / t)} d x=\frac{1}{(\log (1 / t))^{\alpha+1}} \int_{\log (1 / t)}^{\infty} y^{\alpha} e^{-y} d y \\
& \geq \frac{1}{2^{\alpha+1}(1-t)^{\alpha+1}} \int_{\log 2}^{\infty} y^{\alpha} e^{-y} d y
\end{aligned}
$$

If $0<\alpha \leq 1$, then $x \mapsto x^{\alpha} e^{-x \log (1 / t)}$ decreases for $x \geq \alpha /(\log (1 / t))$. By arguing as before we obtain (with $a(t, \alpha)=\frac{\alpha}{\log (1 / t)+1}$) that

$$
\sum_{k=1}^{\infty} k^{\alpha} t^{k} \geq \int_{a(t, \alpha)}^{\infty} x^{\alpha} e^{-x \log (1 / t)} d x \geq(2(1-t))^{-\alpha-1} \int_{\alpha+\log 2}^{\infty} y^{\alpha} e^{-y} d y
$$

The above calculations yield the claim with $c=2^{-2} \int_{1+\log 2}^{\infty} y^{-1} e^{-y} d y$.
Proof of Theorem 2. We first recall how the upper estimate

$$
\begin{equation*}
\left\|C_{\varphi}\right\| \leq\left(\int_{\mathbb{T}} \frac{1}{1-|\varphi(\zeta)|^{2}} d m(\zeta)\right)^{1 / p} \tag{2.4}
\end{equation*}
$$

follows from Lemma 1 for $2 \leq p<\infty$. If the right-hand side of (2.4) is finite, then $|\varphi(\zeta)|<1$ for a.e. $\zeta \in \mathbb{T}$, so that $\left(1-|\varphi(\zeta)|^{2}\right)^{-1}=\sum_{k=0}^{\infty}|\varphi(\zeta)|^{2 k}$ a.e. on \mathbb{T}. Monotone convergence and the subharmonicity of $|\varphi(\cdot)|^{2 k}$ yield that

$$
\begin{aligned}
\int_{\mathbb{T}} \frac{1}{1-|\varphi(\zeta)|^{2}} d m(\zeta) & =\sum_{k=0}^{\infty} \sup _{0<r<1} \int_{\mathbb{T}}|\varphi(r \zeta)|^{2 k} d m(\zeta) \\
& \geq \sup _{0<r<1} \int_{\mathbb{T}} \frac{1}{1-|\varphi(r \zeta)|^{2}} d m(\zeta)
\end{aligned}
$$

We next derive the lower estimate for $\left\|C_{\varphi}\right\|$ in the case $2<p<\infty$, before indicating the modifications required for (2.3). Suppose that $x \in X$ satisfies $\|x\|=1$, and let $g: \mathbb{D} \rightarrow X$ be the constant map $g(z)=x$ for $z \in \mathbb{D}$. Clearly $\|g\|_{w H^{p}(X)}=1$, so that $\left\|C_{\varphi}\right\| \geq\|g \circ \varphi\|_{H^{p}(X)}=\|x\|=1$. Hence

$$
\begin{equation*}
\int_{\left\{\zeta \in \mathbb{T}:|\varphi(r \zeta)|^{2}<\frac{1}{2}\right\}} \frac{1}{1-|\varphi(r \zeta)|^{2}} d m(\zeta) \leq 2 \leq 2\left\|C_{\varphi}\right\|^{p}, \tag{2.5}
\end{equation*}
$$

for $0<r<1$. Consequently it will suffice towards (2.2) to find a uniform constant $K>0$ so that

$$
\begin{equation*}
\int_{\left\{\zeta \in \mathbb{T}:|\varphi(r \zeta)|^{2} \geq \frac{1}{2}\right\}} \frac{1}{1-|\varphi(r \zeta)|^{2}} d m(\zeta) \leq K\left\|C_{\varphi}\right\|^{p} \tag{2.6}
\end{equation*}
$$

for $0<r<1$.
Let $n \in \mathbb{N}$ and $\varepsilon>0$. Use Dvoretzky's theorem to fix a linear embedding $T_{n}: \ell_{2}^{n} \rightarrow X$ so that $\left\|T_{n}\right\|=1$ and $\left\|T_{n}^{-1}\right\| \leq 1+\varepsilon$ as in (2.1). Put $x_{k}^{(n)}=T_{n} e_{k}$ for $k=1, \ldots, n$, where $\left(e_{1}, \ldots, e_{n}\right)$ is some fixed ortonormal basis of ℓ_{2}^{n}. Let $\lambda_{k}=k^{1 / p-1 / 2}$ for $k \in \mathbb{N}$ and consider the sequence $\left(f_{n}\right)$ of analytic polynomials $\mathbb{D} \rightarrow X$ defined by

$$
f_{n}(z)=\sum_{k=1}^{n} \lambda_{k} z^{k} x_{k}^{(n)}=T_{n}\left(\sum_{k=1}^{n} \lambda_{k} z^{k} e_{k}\right), \quad z \in \mathbb{D} .
$$

According to Duren [D, Thm. 1] the sequence $\left(\lambda_{k}\right)$ is a bounded coefficient multiplier from H^{2} to H^{p} for $2<p<\infty$. This means that there is $c_{1}>0$ so that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \lambda_{k} a_{k} z^{k}\right\|_{H^{p}} \leq c_{1}\left\|\sum_{k=1}^{n} a_{k} z^{k}\right\|_{H^{2}}=c_{1}\left(\sum_{k=1}^{n}\left|a_{k}\right|^{2}\right)^{1 / 2}, \tag{2.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and complex polynomials $\sum_{k=1}^{n} a_{k} z^{k}$. We get from (2.7) for any $x^{*} \in B_{X^{*}}$ that

$$
\begin{aligned}
\left\|x^{*} \circ f_{n}\right\|_{H^{p}} & =\left\|\sum_{k=1}^{n} \lambda_{k} x^{*}\left(x_{k}^{(n)}\right) z^{k}\right\|_{H^{p}} \leq c_{1}\left(\sum_{k=1}^{n}\left|x^{*}\left(x_{k}^{(n)}\right)\right|^{2}\right)^{1 / 2} \\
& =c_{1}\left(\sum_{k=1}^{n}\left|T_{n}^{*} x^{*}\left(e_{k}\right)\right|^{2}\right)^{1 / 2}=c_{1}\left\|T_{n}^{*} x^{*}\right\| \leq c_{1}
\end{aligned}
$$

Thus $\sup _{n}\left\|f_{n}\right\|_{w H^{p}(X)} \leq c_{1}$ and $\left\|C_{\varphi}\right\| \geq c_{1}^{-1} \lim \sup _{n}\left\|f_{n} \circ \varphi\right\|_{H^{p}(X)}$. We get from Fatou's lemma that

$$
\begin{aligned}
\left\|C_{\varphi}\right\|^{p} & \geq \frac{1}{c_{1}^{p}} \limsup _{n} \int_{\mathbb{T}}\left\|T_{n}\left(\sum_{k=1}^{n} \lambda_{k} \varphi(r \zeta)^{k} e_{k}\right)\right\|_{X}^{p} d m(\zeta) \\
& \geq \frac{1}{c_{1}^{p}(1+\varepsilon)^{p}} \limsup _{n} \int_{\mathbb{T}}\left\|\sum_{k=1}^{n} \lambda_{k} \varphi(r \zeta)^{k} e_{k}\right\|_{\ell_{2}^{n}}^{p} d m(\zeta) \\
& =\frac{1}{c_{1}^{p}(1+\varepsilon)^{p}} \limsup _{n} \int_{\mathbb{T}}\left(\sum_{k=1}^{n} k^{2 / p-1}|\varphi(r \zeta)|^{2 k}\right)^{p / 2} d m(\zeta) \\
& \geq \frac{1}{c_{1}^{p}(1+\varepsilon)^{p}} \int_{\mathbb{T}}\left(\sum_{k=1}^{\infty} k^{2 / p-1}|\varphi(r \zeta)|^{2 k}\right)^{p / 2} d m(\zeta)
\end{aligned}
$$

for any $0<r<1$. Lemma 3, applied with $\alpha=2 / p-1$ and $t=|\varphi(r \zeta)|^{2}$, yields that

$$
\sum_{k=1}^{\infty} k^{2 / p-1}|\varphi(r \zeta)|^{2 k} \geq \frac{c_{2}}{\left(1-|\varphi(r \zeta)|^{2}\right)^{2 / p}}
$$

for those $\zeta \in \mathbb{T}$ that satisfy $|\varphi(r \zeta)|^{2} \geq 1 / 2$. Consequently

$$
\left\|C_{\varphi}\right\|^{p} \geq \frac{c_{2}^{p / 2}}{c_{1}^{p}(1+\varepsilon)^{p}} \int_{\left\{\zeta \in \mathbb{T}:|\varphi(r \zeta)|^{2} \geq 1 / 2\right\}} \frac{1}{1-|\varphi(r \zeta)|^{2}} d m(\zeta),
$$

for $0<r<1$. This proves (2.6) with $K=c_{1}^{p} 2^{p} c_{2}^{-p / 2}$ (and $\varepsilon=1$). Hence, from Fatou once more, (2.5) and (2.6), there is $c_{p}>0$ with

$$
\begin{aligned}
\left\|C_{\varphi}: w H^{p}(X) \rightarrow H^{p}(X)\right\| & \geq c_{p} \cdot \limsup _{r \rightarrow 1}\left(\int_{\mathbb{T}} \frac{1}{1-|\varphi(r \zeta)|^{2}} d m(\zeta)\right)^{1 / p} \\
& \geq c_{p} \cdot\left(\int_{\mathbb{T}} \frac{1}{1-|\varphi(\zeta)|^{2}} d m(\zeta)\right)^{1 / p}
\end{aligned}
$$

so that (2.2) holds.

For (2.3) it is convenient to use the X-valued polynomials

$$
g_{n}(z)=\sum_{k=1}^{n} z^{k-1} x_{k}^{(n)}=T_{n}\left(\sum_{k=1}^{n} z^{k-1} e_{k}\right), \quad z \in \mathbb{D}
$$

for $n \in \mathbb{N}$. Since $\left(z^{k}\right)$ is orthonormal in H^{2} it follows that $\left\|x^{*} \circ g_{n}\right\|_{H^{2}}^{2}=$ $\sum_{k=1}^{n}\left|T_{n}^{*} x^{*}\left(e_{k}\right)\right|^{2} \leq 1$ for $x^{*} \in B_{X^{*}}$, so that $\left\|g_{n}\right\|_{w H^{2}(X)} \leq 1$ for each n. We obtain as above that

$$
\begin{aligned}
\left\|C_{\varphi}\right\|^{2} & \geq \frac{1}{(1+\varepsilon)^{2}} \limsup _{n} \int_{\mathbb{T}}\left\|\sum_{k=1}^{n} \varphi(r \xi)^{k-1} e_{k}\right\|_{\ell_{2}^{n}}^{2} d m(\xi) \\
& \geq \frac{1}{(1+\varepsilon)^{2}} \int_{\mathbb{T}} \sum_{k=1}^{\infty}|\varphi(r \xi)|^{2 k-2} d m(\xi)
\end{aligned}
$$

for any $0<r<1$. Thus

$$
\begin{aligned}
\left\|C_{\varphi}\right\|^{2} & \geq \frac{1}{(1+\varepsilon)^{2}} \limsup _{r \rightarrow 1} \int_{\mathbb{T}} \frac{1}{1-|\varphi(r \xi)|^{2}} d m(\xi) \\
& \geq \frac{1}{(1+\varepsilon)^{2}} \int_{\mathbb{T}} \frac{1}{1-|\varphi(\xi)|^{2}} d m(\xi)
\end{aligned}
$$

so that (2.3) holds as $\varepsilon>0$ was arbitrary.
Remarks 4. (i) The preceding argument was suggested by the case $X=\ell^{2}$ and $p=2$. Let $f(z)=\sum_{k=0}^{\infty} z^{k} e_{k+1}$, where $\left(e_{k}\right)$ is the unit vector basis of ℓ^{2}. Then $\|f(\varphi(z))\|_{\ell^{2}}^{2}=\frac{1}{1-\mid \varphi\left(\left.z\right|^{2}\right.}$ for $z \in \mathbb{D}$ and $f \in B_{w H^{2}\left(\ell^{2}\right)}$, so that as above

$$
\left\|C_{\varphi}\right\|^{2} \geq\|f \circ \varphi\|_{H^{2}\left(\ell^{2}\right)}^{2}=\lim _{r \rightarrow 1} \int_{\mathbb{T}} \frac{1}{1-|\varphi(r \xi)|^{2}} d m(\xi) \geq \int_{\mathbb{T}} \frac{1}{1-|\varphi(\xi)|^{2}} d m(\xi) .
$$

(ii) The boundedness of $C_{\varphi}: w H^{p}(X) \rightarrow H^{p}(X)$ forces φ to belong to a restricted class of symbols, but (1.1) is unexpected here. Recall that C_{φ} is a Hilbert-Schmidt operator on H^{2} if and only if (1.1) is satisfied, see [ST, Thm. 3.1] or [CM, p. 146], where the right-hand side of (2.3) equals the Hilbert-Schmidt norm. Thus (1.1) is much stricter than the compactness condition for $C_{\varphi}: H^{2} \rightarrow H^{2}$ due to J.H. Shapiro, see e.g. [CM, Thm. 3.20] or $[\mathrm{S}$, p. 26]. Moreover, if φ maps \mathbb{D} into a polygon inscribed in the unit circle, then (1.1) holds (cf. [ST, Cor. 3.2] or [CM, Prop. 3.25]) so that C_{φ} is bounded $w H^{2}(X) \rightarrow H^{2}(X)$. In particular, there are φ so that $\|\varphi\|_{\infty}=1$ and C_{φ} maps $w H^{2}(X)$ boundedly into $H^{2}(X)$ for any X.
(iii) (Suggested by Eero Saksman.) Let U be a bounded operator $H^{2} \rightarrow$ H^{2}. Suppose that

$$
\begin{equation*}
\left(U \otimes I_{\ell^{2}}\right)(g x)=(U g) x, \quad g \in H^{2}, x \in \ell^{2} \tag{2.8}
\end{equation*}
$$

extends to a well-defined bounded operator $U \otimes I_{\ell^{2}}: w H^{2}\left(\ell^{2}\right) \rightarrow H^{2}\left(\ell^{2}\right)$, where $g x$ denotes the analytic map $z \mapsto g(z) x$ for $g \in H^{2}, x \in \ell^{2}$ and $z \in \mathbb{D}$. Then U is a Hilbert-Schmidt operator $H^{2} \rightarrow H^{2}$, that is, $\sum_{n=0}^{\infty}\left\|U g_{n}\right\|_{H^{2}}^{2}$ is finite, where $g_{n}(z)=z^{n}$ for $n=0,1, \ldots$ and $z \in \mathbb{D}$.

To see this fact note first that $\sum_{n=0}^{\infty} g_{n} e_{n+1} \in B_{w H^{2}\left(\ell^{2}\right)}$ by orthonormality. Hence one gets from (2.8) that

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left\|U g_{n}\right\|_{2}^{2} & =\int_{\mathbb{T}}\left(\sum_{n=0}^{\infty}\left|\left(U g_{n}\right)(\zeta)\right|^{2}\right) d m(\zeta)=\int_{\mathbb{T}}\left\|\sum_{n=0}^{\infty}\left(U g_{n}\right)(\zeta) e_{n+1}\right\|_{\ell^{2}}^{2} d m(\zeta) \\
& =\left\|\sum_{n=0}^{\infty}\left(U g_{n}\right) e_{n+1}\right\|_{H^{2}\left(\ell^{2}\right)}^{2}=\left\|\left(U \otimes I_{\ell^{2}}\right)\left(\sum_{n=0}^{\infty} g_{n} e_{n+1}\right)\right\|_{H^{2}\left(\ell^{2}\right)}^{2} \\
& \leq\left\|U \otimes I_{\ell^{2}}: w H^{2}\left(\ell^{2}\right) \rightarrow H^{2}\left(\ell^{2}\right)\right\|^{2} .
\end{aligned}
$$

An analogous comment also applies to the Bergman case in section 3.
It remains unclear whether (2.2) holds for $1 \leq p<2$. In this case the bounded coefficient multipliers $H^{2} \rightarrow H^{p}$ correspond precisely to $\left(\lambda_{k}\right) \in \ell^{\infty}$, see [JJ, Thm. 2]. By applying the ideas of Theorem 2 to $\left(\lambda_{k}\right)=(1,1,1, \ldots)$ one only obtains the weaker lower bound

$$
\left\|C_{\varphi}: w H^{p}(X) \rightarrow H^{p}(X)\right\| \geq c_{p} \cdot\left(\int_{\mathbb{T}}\left(\frac{1}{1-|\varphi(\zeta)|^{2}}\right)^{p / 2} d m(\zeta)\right)^{1 / p}
$$

where $c_{p}>0$ is independent of φ. We leave the details to the reader.

3. Composition operators from weak to strong Bergman spaces

Let X be an arbitrary infinite-dimensional complex Banach space and $2 \leq p<\infty$. In this section we relate the norm of $C_{\varphi}: w B_{p}(X) \rightarrow B_{p}(X)$ to the known condition for C_{φ} to be a Hilbert-Schmidt operator $B_{2} \rightarrow B_{2}$.

We include concrete examples demonstrating that $w B_{p}(X)$ and $B_{p}(X)$ differ for any $p \in[1, \infty)$ and infinite-dimensional X, since this fact does not seem to have been made explicit in the literature. (Theorem 7 below also implies this for $2 \leq p<\infty$, but only indirectly.) The argument will use the following fact about lacunary series in $B_{p}(X)$: let X be any complex Banach space and $p \in[1, \infty)$. Then there are $a_{p}, b_{p}>0$ so that

$$
\begin{equation*}
a_{p}\left(\sum_{n=0}^{\infty}\left\|x_{n}\right\|^{p} 2^{-n}\right)^{1 / p} \leq\left\|\sum_{n=0}^{\infty} z^{2^{n}} x_{n}\right\|_{B_{p}(X)} \leq b_{p}\left(\sum_{n=0}^{\infty}\left\|x_{n}\right\|^{p} 2^{-n}\right)^{1 / p} \tag{3.1}
\end{equation*}
$$

for any sequence $\left(x_{n}\right) \subset X$. (See the survey $[B 4$, Prop. 4.4 and Cor. 4.5] for a proof.)

Proposition 5. Let X be any complex infinite-dimensional Banach space and $p \in[1, \infty)$. Then $B_{p}(X) \nsubseteq w B_{p}(X)$ and $\|\cdot\|_{w B_{p}(X)}$ is not equivalent to $\|\cdot\|_{B_{p}(X)}$ on $B_{p}(X)$.
Proof. Fix for $n \in \mathbb{N}$ a linear embedding $T_{n}: \ell_{2}^{n} \rightarrow X$ so that $\left\|T_{n}\right\|=1$ and $\left\|T_{n}^{-1}\right\| \leq 2$ as in (2.1). Put $x_{k}^{(n)}=T_{n} e_{k}$ for $k=1, \ldots, n$, where $\left(e_{1}, \ldots, e_{n}\right)$ is some fixed ortonormal basis of ℓ_{2}^{n}. Consider the sequence of X-valued lacunary polynomials

$$
f_{n}(z)=\sum_{k=1}^{n} 2^{k / p} z^{2^{k}} x_{k}^{(n)}=T_{n}\left(\sum_{k=1}^{n} 2^{k / p} z^{2^{k}} e_{k}\right), \quad z \in \mathbb{D},
$$

for $n \in \mathbb{N}$. Observe that

$$
\begin{equation*}
\left\|f_{n}\right\|_{B_{p}(X)} \approx n^{1 / p} \quad \text { and } \quad\left\|f_{n}\right\|_{w B_{p}(X)} \leq c_{p} \tag{3.2}
\end{equation*}
$$

where the constants are independent of n. In fact, by applying (3.1) for $X=\ell^{2}$ we get that

$$
\left\|f_{n}\right\|_{B_{p}(X)} \approx\left\|\sum_{k=1}^{n} 2^{k / p} z^{2^{k}} e_{k}\right\|_{B_{p}\left(\ell_{2}^{n}\right)} \approx\left(\sum_{k=1}^{n}\left\|2^{k / p} e_{k}\right\|_{\ell_{2}^{n}}^{p} 2^{-k}\right)^{1 / p}=n^{1 / p}
$$

uniformly in n for any fixed $p \in[1, \infty)$.
Let $2 \leq p<\infty$ and $x^{*} \in B_{X^{*}}$. The scalar version of (3.1) yields that

$$
\begin{aligned}
\left\|x^{*} \circ f_{n}\right\|_{B_{p}} & =\left\|\sum_{k=1}^{n} 2^{k / p} z^{2^{k}} T_{n}^{*} x^{*}\left(e_{k}\right)\right\|_{B_{p}} \leq b_{p}\left(\sum_{k=1}^{n}\left|T_{n}^{*} x^{*}\left(e_{k}\right)\right|^{p}\right)^{1 / p} \\
& \leq b_{p}\left(\sum_{k=1}^{n}\left|T_{n}^{*} x^{*}\left(e_{k}\right)\right|^{2}\right)^{1 / 2} \leq b_{p}
\end{aligned}
$$

For $p \in[1,2)$ Hölder's inequality and the above estimate imply that

$$
\left\|f_{n}\right\|_{w B_{p}(X)} \leq\left\|f_{n}\right\|_{w B_{2}(X)} \leq b_{2}
$$

Concrete functions $f \in w B_{p}(X) \backslash B_{p}(X)$ can be produced e.g. by mimicking the argument for the vector-valued Hardy spaces in [LT, Ex. 6.2]. Consecutive applications of Dvoretzky's theorem as above yield embeddings $T_{n}: \ell_{2}^{2^{n}} \rightarrow X_{n}$ for each n, where $X_{n}=\left[y_{m_{n}+1}, \ldots, y_{m_{n+1}}\right]$ are suitable block subspaces of some fixed Schauder basic sequence $\left(y_{k}\right) \subset X$. Here $\left(m_{n}\right) \subset \mathbb{N}$ is some rapidly enough increasing sequence. The desired analytic function $f: \mathbb{D} \rightarrow X$ can be chosen as

$$
f(z)=\sum_{n=1}^{\infty} 2^{-\alpha n / p} T_{n}\left(\sum_{k=1}^{2^{n}} 2^{k / p} z^{2^{k}} e_{k}\right), \quad z \in \mathbb{D},
$$

where $0<\alpha<1 / 2$. In fact, the series converges geometrically in $w B_{p}(X)$ by (3.2). Since (X_{n}) is a finite-dimensional Schauder decomposition in X there is $c>0$ so that $\left\|\sum_{n=1}^{\infty} x_{n}\right\| \geq c \cdot \sup _{n}\left\|x_{n}\right\|$ whenever $\sum_{n=1}^{\infty} x_{n}$ converges in X and $x_{n} \in X_{n}$ for each n, see [LTz, p. 47]. By combining these estimates

$$
\begin{aligned}
\left\|\sum_{n=1}^{N} 2^{-\alpha n / p} T_{n}\left(\sum_{k=1}^{2^{n}} 2^{k / p} z^{2^{k}} e_{k}\right)\right\|_{B_{p}(X)} & \geq c \cdot 2^{-\alpha N / p}\left\|T_{N}\left(\sum_{k=1}^{2^{N}} 2^{k / p} z^{2^{k}} e_{k}\right)\right\|_{B_{p}(X)} \\
& \geq c \cdot d_{p} \cdot 2^{(N / p)(1-\alpha)} \rightarrow \infty
\end{aligned}
$$

as $N \rightarrow \infty$. Above $d_{p}>0$ is independent of N.
We next give a general upper bound for the norm of the composition operators $C_{\varphi}: w B_{p}(X) \rightarrow B_{p}(X)$.

Lemma 6. Let X be any complex Banach space and $1 \leq p<\infty$. Then

$$
\left\|C_{\varphi}: w B_{p}(X) \rightarrow B_{p}(X)\right\| \leq\left(\int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z)\right)^{1 / p}
$$

Proof. Any analytic map $f \in B_{p}$ satisfies $|f(z)| \leq\left(1-|z|^{2}\right)^{-2 / p}\|f\|_{B_{p}}$ for $z \in \mathbb{D}$, see [V1]. Thus

$$
\|f(z)\|_{X}=\sup _{\left\|x^{*}\right\| \leq 1}\left|\left(x^{*} \circ f\right)(z)\right| \leq\left(1-|z|^{2}\right)^{-2 / p}\|f\|_{w B_{p}(X)}
$$

for $f \in w B_{p}(X)$ and $z \in \mathbb{D}$. It follows that

$$
\begin{aligned}
\left\|C_{\varphi} f\right\|_{B_{p}(X)} & =\left(\int_{\mathbb{D}}\|f(\varphi(w))\|_{X}^{p} d A(w)\right)^{1 / p} \\
& \leq\|f\|_{w B_{p}(X)}\left(\int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(w)|^{2}\right)^{2}} d A(w)\right)^{1 / p}
\end{aligned}
$$

The following result is the analogue of Theorem 2 in the Bergman case.
Theorem 7. Let X be any complex infinite-dimensional Banach space. Then

$$
\begin{equation*}
\left\|C_{\varphi}: w B_{p}(X) \rightarrow B_{p}(X)\right\| \approx\left(\int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z)\right)^{1 / p} \tag{3.3}
\end{equation*}
$$

for $2<p<\infty$ and

$$
\begin{equation*}
\left\|C_{\varphi}: w B_{2}(X) \rightarrow B_{2}(X)\right\|=\left(\int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z)\right)^{1 / 2} \tag{3.4}
\end{equation*}
$$

Proof. The upper estimate $\left\|C_{\varphi}\right\| \leq\left(\int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z)\right)^{1 / p}$ holds by the preceding lemma for $2 \leq p<\infty$. The strategy of the rest of the proof will be similar to that of Theorem 2, but involving different functions.

It will again suffice as in the Hardy case to verify for $2<p<\infty$ that

$$
\int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2} \geq \frac{1}{2}\right\}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z) \leq K\left\|C_{\varphi}\right\|^{p}
$$

where $K>0$ is a suitable constant. Fix for any given $n \in \mathbb{N}$ and $\varepsilon>0$ a linear embedding $T_{n}: \ell_{2}^{n} \rightarrow X$ so that $\left\|T_{n}\right\|=1$ and $\left\|T_{n}^{-1}\right\| \leq 1+\varepsilon$ as in (2.1). Let $x_{k}^{(n)}=T_{n} e_{k}$ for $k=1, \ldots, n$, where $\left(e_{1}, \ldots, e_{n}\right)$ is an ortonormal basis of ℓ_{2}^{n}. Consider the X-valued polynomials

$$
f_{n}(z)=\sum_{k=1}^{n} \lambda_{k} z^{k} x_{k}^{(n)}, \quad z \in \mathbb{D}
$$

where $\lambda_{k}=k^{2 / p-1 / 2}$ for $k \in \mathbb{N}$. By a result of Vukotić [V2, Thm. 2] the sequence $\left(k^{2 / p-1}\right)$ is a coefficient multiplier $B_{2} \rightarrow B_{p}$ for $2<p<\infty$. Hence there is $c_{1}>0$ so that

$$
\left\|\sum_{k=1}^{n} \lambda_{k} a_{k} z^{k}\right\|_{B_{p}} \leq c_{1}\left\|\sum_{k=1}^{\infty} k^{1 / 2} a_{k} z^{k}\right\|_{B_{2}} \leq c_{1}\left(\sum_{k=1}^{n}\left|a_{k}\right|^{2}\right)^{1 / 2}
$$

for all $n \in \mathbb{N}$ and complex polynomials $\sum_{k=1}^{n} a_{k} z^{k}$, since $\left(\sqrt{n+1} z^{n}\right)$ is an orthonormal sequence in B_{2}. If $x^{*} \in B_{X^{*}}$ then we get that

$$
\left\|x^{*} \circ f_{n}\right\|_{B^{p}}=\left\|\sum_{k=1}^{n} \lambda_{k} x^{*}\left(x_{k}^{(n)}\right) z^{k}\right\|_{B^{p}} \leq c_{1}\left(\sum_{k=1}^{n}\left|x^{*}\left(x_{k}^{(n)}\right)\right|^{2}\right)^{1 / 2} \leq c_{1}
$$

so that $\left\|f_{n}\right\|_{w B^{p}(X)} \leq c_{1}$ for all n.
It follows that $\left\|C_{\varphi}\right\| \geq c_{1}^{-1} \lim \sup _{n}\left\|f_{n} \circ \varphi\right\|_{B_{p}(X)}$. By applying Lemma 3 , with $\alpha=4 / p-1 \in(-1,1]$ and $t=|\varphi(z)|^{2}$, for those $z \in \mathbb{D}$ which satisfy $|\varphi(z)|^{2} \geq 1 / 2$ we get from Fatou's lemma that

$$
\begin{aligned}
\left\|C_{\varphi}\right\|^{p} & \geq \frac{1}{c_{1}^{p}(1+\varepsilon)^{p}} \limsup _{n} \int_{\mathbb{D}}\left\|\sum_{k=1}^{n} \lambda_{k} \varphi(z)^{k} e_{k}\right\|_{\ell_{2}^{n}}^{p} d A(z) \\
& \geq \frac{1}{c_{1}^{p}(1+\varepsilon)^{p}} \int_{\mathbb{D}}\left(\sum_{k=1}^{\infty} k^{4 / p-1}|\varphi(z)|^{2 k}\right)^{p / 2} d A(z) \\
& \geq \frac{c_{2}^{p / 2}}{c_{1}^{p}(1+\varepsilon)^{p}} \int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2} \geq 1 / 2\right\}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z) .
\end{aligned}
$$

This proves the claim with $K=c_{1}^{p} 2^{p} c_{2}{ }^{-p / 2}$, so that (3.3) holds.
Towards (3.4) consider instead

$$
g_{n}(z)=\sum_{k=0}^{n-1} \sqrt{k+1} z^{k} x_{k}^{(n)}=T_{n}\left(\sum_{k=0}^{n-1} \sqrt{k+1} z^{k} e_{k}\right), \quad z \in \mathbb{D},
$$

for $n \in \mathbb{N}$. It follows that $\left\|g_{n}\right\|_{w B_{2}(X)} \leq 1$ for any n, since $\left\|x^{*} \circ g_{n}\right\|_{B_{2}}^{2}=$ $\sum_{k=1}^{n}\left|T_{n}^{*} x^{*}\left(e_{k}\right)\right|^{2} \leq 1$ by orthonormality for any $x^{*} \in B_{X^{*}}$. We obtain as above, using some elementary calculus, that

$$
\begin{aligned}
\left\|C_{\varphi}\right\|^{2} & \geq \int_{\mathbb{D}}\left\|T_{n}\left(\sum_{k=0}^{\infty} \sqrt{k+1} \varphi(z)^{k} e_{k}\right)\right\|_{X}^{2} d A(z) \\
& \geq \frac{1}{(1+\varepsilon)^{2}} \int_{\mathbb{D}}\left(\sum_{k=0}^{\infty}(k+1) \cdot|\varphi(z)|^{2 k}\right) d A(z) \\
& \geq \frac{1}{(1+\varepsilon)^{2}} \int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z) .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary we get the desired lower bound in (3.4).
Remarks 8. (i) Define $f: \mathbb{D} \rightarrow \ell_{2}$ by $f(z)=\sum_{k=0}^{\infty} \sqrt{k+1} z^{k} e_{k+1}$ for $z \in \mathbb{D}$, where $\left(e_{k}\right)$ is the standard unit basis of ℓ^{2}. One verifies as above that $f \in$ $B_{w B_{2}\left(\ell_{2}\right)}$, while $\|f(z)\|_{\ell_{2}}^{2}=\frac{1}{\left(1-|z|^{2}\right)^{2}}$ for $z \in \mathbb{D}$. Hence the lower bound

$$
\left\|C_{\varphi}: w B_{2}\left(\ell_{2}\right) \rightarrow B_{2}\left(\ell_{2}\right)\right\|^{2} \geq \int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(w)|^{2}\right)^{2}} d A(w)
$$

is immediate in this special case.
(ii) Boyd [Bo, Thm. 4.1] showed that C_{φ} is a Hilbert-Schmidt operator on B_{2} if and only if (1.2) holds. Moreover, if φ maps \mathbb{D} into a polygon inscribed in the unit circle, then C_{φ} is Hilbert-Schmidt on B_{2}, see [Bo, Thm. 4.3]. Thus the class of self-maps φ for which $C_{\varphi}: w H^{p}(X) \rightarrow H^{p}(X)$ is bounded for $2 \leq p<\infty$ lies strictly between those where $\|\varphi\|_{\infty}<1$ and where C_{φ} is compact on B_{2}. Compactness was characterized by MacCluer and Shapiro in terms of the angular derivatives of φ, see [CM, Thm. 3.22]).

For $1 \leq p<2$ the preceding ideas only yield a weaker lower bound, and this case remains unresolved. In fact, here $\left(k^{\alpha}\right)$ is a bounded coefficient
multiplier $B_{2} \rightarrow B_{p}$ if and only if $\alpha<1 / p-1 / 2$, see [W, Prop. 4]. The computations of Theorem 7 applied to these sequences yield that

$$
\left\|C_{\varphi}: w B_{p}(X) \rightarrow B_{p}(X)\right\| \geq c_{p, \beta} \cdot\left(\int_{\mathbb{D}} \frac{1}{\left(1-|\varphi(z)|^{2}\right)^{\beta}} d A(z)\right)^{1 / p}
$$

for $1<\beta<1+p / 2$. The details are left to the reader.

4. Other weak and strong spaces

Suppose that $\left(E,\|\cdot\|_{E}\right)$ is a Banach space consisting of analytic functions $\mathbb{D} \rightarrow \mathbb{C}$ such that
(i) E contains the constant functions,
(ii) the unit ball B_{E} is compact in the topology of uniform convergence on compact subsets of \mathbb{D}.

For any complex Banach space X the analytic function $f: \mathbb{D} \rightarrow X$ belongs to the weak vector-valued space $w E(X)$ if

$$
\|f\|_{w E(X)}=\sup _{x^{*} \in B_{X^{*}}}\left\|x^{*} \circ f\right\|_{E}<\infty .
$$

Then $w E(X)$ is a Banach space which is isometric to the space $L\left(V_{*}, X\right)$ of bounded operators, where V_{*} is a certain predual of E, see [BDL, p. 244]. Here $w E(X)=E(X)$ may occur. This is so e.g. if $E=H^{\infty}$ or $E=\mathcal{B}$, the Bloch space, but recall that $w H^{p}(X)$ and $w B_{p}(X)$ always differ from the respective strong spaces.

It is easy to check that C_{φ} is bounded $w E(X) \rightarrow w E(X)$ if and only if C_{φ} is bounded $E \rightarrow E$, and some results for composition operators on weak spaces of analytic (or even harmonic) functions are found in [BDL], [L1] and [LT]. We point out here as an example that the condition for C_{φ} to be bounded wBMOA($\left.\ell^{2}\right) \rightarrow B M O A\left(\ell^{2}\right)$ is unrelated to the Hilbert-Schmidt conditions (2.3) and (3.4). Recall that $B M O A(X)$ consists of the analytic functions $f: \mathbb{D} \rightarrow X$ for which

$$
\|f\|_{B M O A(X)}=\|f(0)\|_{X}+\sup _{a \in \mathbb{D}}\left\|f \circ \sigma_{a}-f(a)\right\|_{H^{2}(X)}<\infty,
$$

where $\sigma_{a}(z)=\frac{a-z}{1-\bar{a} z}$ for $a \in \mathbb{D}$. The weak space $w B M O A(X)$ differs from $B M O A(X)$ for any infinite-dimensional X, see [L1, Ex. 15].

Example 9. C_{φ} is bounded $w B M O A\left(\ell^{2}\right) \rightarrow B M O A\left(\ell^{2}\right)$ if and only if

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)}{\left(1-|\varphi(z)|^{2}\right)^{2}} d A(z)<\infty . \tag{4.1}
\end{equation*}
$$

Proof. The known estimates for the point evaluations on $B M O A$ (see e.g. [G, p. 95]) imply that

$$
\|f(z)\|_{\ell^{2}} \leq M(z)\|f\|_{w B M O A\left(\ell^{2}\right)}, \quad\left\|f^{\prime}(z)\right\|_{\ell^{2}} \leq \frac{1}{1-|z|^{2}}\|f\|_{w B M O A\left(\ell^{2}\right)}
$$

for $z \in \mathbb{D}$, where $M(z)=1+\frac{1}{2} \log \frac{1+|z|}{1-|z|}$. If $f \in B_{w B M O A\left(\ell^{2}\right)}$, then $[\mathrm{B} 3$, Cor. 1.1] yields that

$$
\begin{aligned}
\left\|C_{\varphi} f\right\|_{B M O A\left(\ell^{2}\right)} & \leq C \cdot\left(\|f(\varphi(0))\|_{\ell^{2}}+\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left\|f^{\prime}(\varphi(z))\right\|_{\ell^{2}}^{2}\left|\varphi^{\prime}(z)\right|^{2} d \mu_{a}(z)\right) \\
& \leq C \cdot\left(M(\varphi(0))+\sup _{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}} d \mu_{a}(z)\right),
\end{aligned}
$$

where $C>0$ is a uniform constant and $d \mu_{a}(z)=\left(1-\left|\sigma_{a}(z)\right|^{2}\right) d A(z)$.
Conversely, define $g: \mathbb{D} \rightarrow \ell^{2}$ by $g(z)=\sum_{k=0}^{\infty} \frac{z^{k+1}}{\sqrt{k+1}} e_{k+1}$ for $z \in \mathbb{D}$. It follows that $g \in w B M O A\left(\ell^{2}\right)$ (e.g. use Hardy's inequality, see [L1, Ex. 15]) and $\left\|g^{\prime}(z)\right\|_{\ell^{2}}^{2}=\frac{1}{\left(1-|z|^{2}\right)^{2}}$ as above. Thus

$$
\begin{aligned}
\left\|C_{\varphi}\right\| & \geq c \cdot\left\|C_{\varphi} g\right\|_{B M O A\left(\ell^{2}\right)} \geq c \cdot \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left\|g^{\prime}(\varphi(z))\right\|_{\ell^{2}}^{2}\left|\varphi^{\prime}(z)\right|^{2} d \mu_{a}(z) \\
& =c \cdot \sup _{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}} d \mu_{a}(z) .
\end{aligned}
$$

Remark 10. C_{φ} is bounded from the Bloch space \mathcal{B} to $B M O A$ if and only if (4.1) holds, see e.g. [T, Prop. 3.8] or [MT, Prop. 3.1].

References

[B1] O. Blasco: Boundary values of vector-valued harmonic functions considered as operators, Studia Math. 86 (1987), 19-33.
[B2] O. Blasco: Hardy spaces of vector-valued functions: duality, Trans. Amer. Math. Soc. 308 (1988), 495-507.
[B3] O. Blasco: Remarks on vector-valued BMOA and vector-valued multipliers, Positivity 4 (2000), 339-356.
[B4] O. Blasco: Introduction to vector valued Bergman spaces, in: Functions spaces and operator theory (Joensuu, 2003), Univ. Joensuu Dept. Math. Rep. Ser. 8 (2005), pp. 9-30.
[BDL] J. Bonet, P. Domański and M. Lindström: Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), 233-248.
[BFHS] P.S. Bourdon, E.E. Fry, C. Hammond and C.H. Spofford: Norms of linearfractional composition operators, Trans. Amer. Math. Soc. 356 (2004), 2459-2480.
[Bo] D.M. Boyd: Composition operators on the Bergman spaces, Colloq. Math. 34 (1975), 127-136.
[CM] C.C. Cowen and B.D. MacCluer: Composition operators on spaces of analytic functions. CRC Press (1995).
[DJT] J. Diestel, H. Jarchow and A. Tonge: Absolutely summing operators. Cambridge University Press (1995).
[D] P.L. Duren: On the multipliers of H^{p} spaces, Proc. Amer. Math. Soc. 22 (1969), 24-27.
[FGR] F.J. Freniche, J.C. García-Vázquez and L. Rodríguez-Piazza: Operators into Hardy spaces and analytic Pettis integrable functions, in: Recent progress in functional analysis (Valencia, 2000), North-Holland Mathematical Studies 189 (2001), pp. 349-362.
[G] D. Girela: Analytic functions of bounded mean oscillation, in: Complex Function Spaces (Mekrijärvi, 1999), Univ. Joensuu Dept. Math. Rep. Ser. 4 (2001), pp. 61170.
[H] W. Hensgen, On the dual space of $H^{p}, 1<p<\infty$, J. Funct. Anal. 92 (1990), 348-371.
[JJ] M. Jevtić and I. Jovanović: Coefficient multipliers of mixed norm spaces, Canad. Math. Bull. 36 (1993), 283-285.
[L1] J. Laitila: Weakly compact composition operators on vector-valued BMOA, J. Math. Anal. Appl. 308 (2005), 730-745.
[L2] J. Laitila: Composition operators and vector-valued BMOA, Reports in Mathematics \# 425 (2006), Dept. Math. Stat., Univ. Helsinki.
[LT] J. Laitila and H.-O. Tylli: Composition operators on vector-valued harmonic functions and Cauchy transforms, Indiana Univ. Math. J. 55 (2006), 719-746.
[LTz] J. Lindenstrauss and L. Tzafriri: Classical Banach spaces I. Sequence spaces. Ergebnisse der Mathematik 92, Springer-Verlag (1977).
[LST] P. Liu, E. Saksman and H.-O. Tylli: Small composition operators on analytic vectorvalued function spaces. Pacific J. Math. 184 (1998), 295-309.
[MT] S. Makhmutov and M. Tjani: Composition operators on some Möbius invariant Banach spaces, Bull. Austral. Math. Soc. 62 (2000), 1-19.
[P] G. Pisier: The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics 94, Cambridge University Press (1989).
[S] J.H. Shapiro: Composition operators and classical function theory. Springer-Verlag (1993).
[ST] J.H. Shapiro and P.D. Taylor: Compact, nuclear and Hilbert-Schmidt composition operators on H^{2}, Indiana Univ. Math. J. 23 (1973), 471-496.
[T] M. Tjani: Compact composition operators on some Möbius invariant Banach spaces. Ph.D. thesis, Michigan State University (1996).
[V1] D. Vukotić: A sharp estimate for A_{α}^{p} functions in \mathbb{C}^{n}, Proc. Amer. Math. Soc. 117 (1993), 753-756.
[V2] D. Vukotić: On the coefficient multipliers of Bergman spaces, J. London Math. Soc. (2) 50 (1994), 341-348.
[Wa] M. Wang: Composition operators on analytic vector-valued Nevanlinna classes, Acta Math. Sci. 25 (2005), 771-780.
[W] P. Wojtaszczyk: On multipliers into Bergman spaces and Nevanlinna class, Canad. Math. Bull. 33 (1990), 151-161.
(J. Laitila) Department of Mathematics and Statistics, P.B. 68 (Gustaf Hällströmin katu 2b), FIN-00014 University of Helsinki, Finland

E-mail address: jussi.laitila@helsinki.fi
(H.-O. Tylli) Department of Mathematics and Statistics, P.B. 68 (Gustaf Hällströmin katu 2b), FIN-00014 University of Helsinki, Finland

E-mail address: hojtylli@cc.helsinki.fi
(M. Wang) School of Mathematics and Statistics, Wuhan University, Wuhan 430072 , China

E-mail address: whuwmf@163.com

[^0]: 2000 Mathematics Subject Classification. Primary: 47B33; Secondary: 46E40.
 Laitila and Tylli were partly supported by the Academy of Finland project \#210970, and Wang was partly supported by the Väisälä Foundation, Finnish Academy of Science and Letters.

