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Abstract. Let ϕ be an analytic self-map of the unit disk, X a complex
infinite-dimensional Banach space and 2 ≤ p < ∞. It is shown that the
composition operator Cϕ; f 7→ f ◦ ϕ, is bounded wHp(X) → Hp(X) if
and only if Cϕ is a Hilbert-Schmidt operator H2

→ H2. Here Hp(X) is
the X-valued Hardy space and wHp(X) is a related weak vector-valued
Hardy space. A similar result is established for vector-valued Bergman
spaces.

1. Introduction

Let X be a complex Banach space and 1 ≤ p < ∞. The vector-valued
Hardy space Hp(X) consists of the analytic functions f : D → X which
satisfy

‖f‖Hp(X) := sup
0<r<1

(
∫

T

‖f(rξ)‖p
Xdm(ξ)

)1/p

< ∞,

where D is the unit disk in the complex plane and dm is the normalized
Lebesgue measure on the unit circle T = ∂D. Analogously, the vector-valued
Bergman space Bp(X) consists of the analytic functions f : D→ X such that

‖f‖Bp(X) :=

(
∫

D

‖f(z)‖p
XdA(z)

)1/p

< ∞,

where dA is the normalized 2-dimensional Lebesgue measure on D. (The
customary notation Hp(C) = Hp and Bp(C) = Bp will be used in the
scalar-valued case.) These classes of vector-valued spaces have been stud-
ied quite extensively, see e.g. [B2], [H] and the survey [B4]. The following
weak versions of these spaces were considered by e.g. Blasco [B1] and Bonet,
Domański and Lindström [BDL]: the weak spaces wHp(X) and wBp(X)
consist of the analytic functions f : D→ X for which

‖f‖wHp(X) := sup
‖x∗‖≤1

‖x∗ ◦ f‖Hp , ‖f‖wBp(X) := sup
‖x∗‖≤1

‖x∗ ◦ f‖Bp

are finite, respectively. Such weak spaces wE(X) can be introduced under
fairly general conditions on the Banach space E consisting of analytic maps
D→ C, see section 4.
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Let ϕ be an analytic self-map of D into itself. There is recent interest into
properties of the analytic composition maps

Cϕ; f 7→ f ◦ ϕ,

in various vector-valued settings, see e.g. [LST], [BDL], [L1], [LT], [Wa] and
[L2]. It is known (cf. [LST, p. 298]) that Cϕ always defines a bounded linear
operator Hp(X) → Hp(X) and Bp(X) → Bp(X) for any Banach space X
and 1 ≤ p < ∞, and it is easily checked that Cϕ is also bounded on the weak
spaces wHp(X) and wBp(X). Hence it is a natural problem to characterize
the analytic maps ϕ : D → D for which Cϕ is bounded from wHp(X) to
Hp(X), or from wBp(X) to Bp(X). This problem is motivated e.g. by the
fact that Hp(X) and wHp(X) are completely different spaces for any infinite-
dimensional Banach space X. In fact, Hp(X)  wHp(X) and ‖ · ‖wHp(X)

is not equivalent to ‖ · ‖Hp(X) on Hp(X), see [FGR, Cor. 12], or [L1, Ex.
15], [LT, sect. 6]. The properties of Cϕ from wHp(X) to Hp(X) further
reflect these differences. Note that wHp(C) = Hp and wBp(C) = Bp, so our
question does not arise for X = C. The theory of composition operators on
various spaces of scalar-valued analytic functions is very extensive, see e.g.
[CM] and [S] for comprehensive overviews.

Our main results establish that for 2 ≤ p < ∞ and any complex infinite-
dimensional Banach space X the operator Cϕ is bounded wHp(X) → Hp(X)
if and only if

(1.1)

∫

T

1

1 − |ϕ(ξ)|2 dm(ξ) < ∞,

and Cϕ is bounded wBp(X) → Bp(X) if and only if

(1.2)

∫

D

1

(1 − |ϕ(z)|2)2 dA(z) < ∞.

In (1.1) the a.e. radial limit function of ϕ on T is also denoted ξ 7→ ϕ(ξ). The
appearence of (1.1) and (1.2) in this context is somewhat surprising. In fact,
ϕ satisfies (1.1) if and only if Cϕ is a Hilbert-Schmidt operator H2 → H2,
while analogously ϕ satisfies (1.2) if and only if Cϕ is a Hilbert-Schmidt
operator B2 → B2 (see Remarks 4 and 8 for a more careful discussion).
As a contrasting example we observe that Cϕ is bounded wBMOA(`2) →
BMOA(`2) if and only if Cϕ is bounded B → BMOA, where B is the
Bloch space. For completeness we also include concrete examples where
the norms ‖ · ‖wBp(X) and ‖ · ‖Bp(X) are not equivalent on Bp(X) for any
infinite-dimensional X and 1 ≤ p < ∞.

We are indebted to Sten Kaijser for asking during a conference at Oxford,
Ohio, about the boundedness of composition operators from wH 2(`2) to
H2(`2), as well as to Paweł Domański for a subsequent discussion.

2. Composition operators from weak to strong Hardy spaces

The following straightforward upper bound for the norm of Cϕ between
weak and strong Hardy spaces holds for any 1 ≤ p < ∞.
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Lemma 1. Let X be any complex Banach space and 1 ≤ p < ∞. Then

‖Cϕ : wHp(X) → Hp(X)‖ ≤ sup
0<r<1

(
∫

T

1

1 − |ϕ(rζ)|2 dm(ζ)

)1/p

.

Proof. Any analytic map f : D→ C satisfies |f(z)|p ≤ (1 − |z|2)−1‖f‖p
Hp for

z ∈ D (see e.g. [CM, p. 18]). Hence

‖f(z)‖p
X = sup

‖x∗‖≤1
|(x∗ ◦ f)(z)|p ≤ 1

1 − |z|2 ‖f‖
p
wHp(X)

for f ∈ wHp(X). Consequently

‖Cϕf‖p
Hp(X) = sup

0<r<1

∫

T

‖f(ϕ(rζ))‖p
Xdm(ζ)

≤ ‖f‖p
wHp(X)

sup
0<r<1

∫

T

1

1 − |ϕ(rζ)|2 dm(ζ).

�

We will require Dvoretzky’s well-known theorem: for any n ∈ N and ε > 0
there is m(n, ε) ∈ N so that for any Banach space X of dimension at least
m(n, ε) there is a linear (into) embedding Tn : `n

2 → X so that

(2.1) (1 + ε)−1(
n
∑

j=1

|aj |2)1/2 ≤ ‖
n
∑

j=1

ajTnej‖ ≤ (
n
∑

j=1

|aj |2)1/2

for any scalars a1, . . . , an. Here (e1, . . . , en) is some fixed orthonormal basis
of `n

2 . For proofs see e.g. [DJT, Ch. 19] or [P, Ch. 4].
The following result is the main one of this section. Here "≈" means

equivalence up to constants only depending on p.

Theorem 2. Let X be any complex infinite-dimensional Banach space. Then

(2.2) ‖Cϕ : wHp(X) → Hp(X)‖ ≈
(
∫

T

1

1 − |ϕ(ζ)|2 dm(ζ)

)1/p

for 2 < p < ∞, and

(2.3) ‖Cϕ : wH2(X) → H2(X)‖ =

(
∫

T

1

1 − |ϕ(ζ)|2 dm(ζ)

)1/2

.

Note that it is already hard to compute the norm of Cϕ : H2 → H2 (cf.
[BFHS] and its references), so the general identity (2.3) comes as a pleasant
bonus. Before embarking on the proof of Theorem 2 we record an elementary
numerical estimate that will be applied below.

Lemma 3. There is c > 0 such that for any −1 < α ≤ 1 and 1/2 ≤ t < 1
one has

∞
∑

k=1

kαtk ≥ c

(1 − t)α+1
.

Proof. Suppose first that −1 < α ≤ 0. Then
∑∞

k=1 kαtk ≥
∫∞
1 xαtxdx, since

the map x 7→ xαtx = xαe−x log(1/t) decreases on [1,∞). By changing variables
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x = y/(log(1/t)), and applying 0 < log(1/t) ≤ 2(1 − t) for 1/2 ≤ t < 1, we
get that

∞
∑

k=1

kαtk ≥
∫ ∞

1
xαe−x log(1/t)dx =

1

(log(1/t))α+1

∫ ∞

log(1/t)
yαe−ydy

≥ 1

2α+1(1 − t)α+1

∫ ∞

log 2
yαe−ydy.

If 0 < α ≤ 1, then x 7→ xαe−x log(1/t) decreases for x ≥ α/(log(1/t)). By
arguing as before we obtain (with a(t, α) = α

log(1/t)+1 ) that

∞
∑

k=1

kαtk ≥
∫ ∞

a(t,α)
xαe−x log(1/t)dx ≥ (2(1 − t))−α−1

∫ ∞

α+log 2
yαe−ydy.

The above calculations yield the claim with c = 2−2
∫∞
1+log 2 y−1e−ydy. �

Proof of Theorem 2. We first recall how the upper estimate

(2.4) ‖Cϕ‖ ≤
(
∫

T

1

1 − |ϕ(ζ)|2 dm(ζ)

)1/p

follows from Lemma 1 for 2 ≤ p < ∞. If the right-hand side of (2.4) is finite,
then |ϕ(ζ)| < 1 for a.e. ζ ∈ T, so that (1 − |ϕ(ζ)|2)−1 =

∑∞
k=0 |ϕ(ζ)|2k a.e.

on T. Monotone convergence and the subharmonicity of |ϕ(·)|2k yield that
∫

T

1

1 − |ϕ(ζ)|2 dm(ζ) =
∞
∑

k=0

sup
0<r<1

∫

T

|ϕ(rζ)|2kdm(ζ)

≥ sup
0<r<1

∫

T

1

1 − |ϕ(rζ)|2 dm(ζ).

We next derive the lower estimate for ‖Cϕ‖ in the case 2 < p < ∞, before
indicating the modifications required for (2.3). Suppose that x ∈ X satisfies
‖x‖ = 1, and let g : D→ X be the constant map g(z) = x for z ∈ D. Clearly
‖g‖wHp(X) = 1, so that ‖Cϕ‖ ≥ ‖g ◦ ϕ‖Hp(X) = ‖x‖ = 1. Hence

(2.5)

∫

{ζ∈T : |ϕ(rζ)|2< 1

2
}

1

1 − |ϕ(rζ)|2 dm(ζ) ≤ 2 ≤ 2‖Cϕ‖p,

for 0 < r < 1. Consequently it will suffice towards (2.2) to find a uniform
constant K > 0 so that

(2.6)

∫

{ζ∈T : |ϕ(rζ)|2≥ 1

2
}

1

1 − |ϕ(rζ)|2 dm(ζ) ≤ K‖Cϕ‖p,

for 0 < r < 1.
Let n ∈ N and ε > 0. Use Dvoretzky’s theorem to fix a linear embedding

Tn : `n
2 → X so that ‖Tn‖ = 1 and ‖T−1

n ‖ ≤ 1+ε as in (2.1). Put x
(n)
k = Tnek

for k = 1, . . . , n, where (e1, . . . , en) is some fixed ortonormal basis of `n
2 .

Let λk = k1/p−1/2 for k ∈ N and consider the sequence (fn) of analytic
polynomials D→ X defined by

fn(z) =
n
∑

k=1

λkz
kx

(n)
k = Tn(

n
∑

k=1

λkz
kek), z ∈ D.
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According to Duren [D, Thm. 1] the sequence (λk) is a bounded coefficient
multiplier from H2 to Hp for 2 < p < ∞. This means that there is c1 > 0
so that

(2.7) ‖
n
∑

k=1

λkakz
k‖Hp ≤ c1‖

n
∑

k=1

akz
k‖H2 = c1

(

n
∑

k=1

|ak|2
)1/2

,

for all n ∈ N and complex polynomials
∑n

k=1 akz
k. We get from (2.7) for

any x∗ ∈ BX∗ that

‖x∗ ◦ fn‖Hp = ‖
n
∑

k=1

λkx
∗(x(n)

k )zk‖Hp ≤ c1

(

n
∑

k=1

|x∗(x(n)
k )|2

)1/2

= c1

(

n
∑

k=1

|T ∗
nx∗(ek)|2

)1/2

= c1‖T ∗
nx∗‖ ≤ c1.

Thus supn ‖fn‖wHp(X) ≤ c1 and ‖Cϕ‖ ≥ c−1
1 lim supn ‖fn ◦ ϕ‖Hp(X). We get

from Fatou’s lemma that

‖Cϕ‖p ≥ 1

cp
1

lim sup
n

∫

T

‖Tn(

n
∑

k=1

λkϕ(rζ)kek)‖p
Xdm(ζ)

≥ 1

cp
1(1 + ε)p

lim sup
n

∫

T

‖
n
∑

k=1

λkϕ(rζ)kek‖p
`n
2

dm(ζ)

=
1

cp
1(1 + ε)p

lim sup
n

∫

T

(

n
∑

k=1

k2/p−1|ϕ(rζ)|2k

)p/2

dm(ζ)

≥ 1

cp
1(1 + ε)p

∫

T

( ∞
∑

k=1

k2/p−1|ϕ(rζ)|2k

)p/2

dm(ζ)

for any 0 < r < 1. Lemma 3, applied with α = 2/p − 1 and t = |ϕ(rζ)|2,
yields that

∞
∑

k=1

k2/p−1|ϕ(rζ)|2k ≥ c2

(1 − |ϕ(rζ)|2)2/p

for those ζ ∈ T that satisfy |ϕ(rζ)|2 ≥ 1/2. Consequently

‖Cϕ‖p ≥ c
p/2
2

cp
1(1 + ε)p

∫

{ζ∈T : |ϕ(rζ)|2≥1/2}

1

1 − |ϕ(rζ)|2 dm(ζ),

for 0 < r < 1. This proves (2.6) with K = cp
12

pc
−p/2
2 (and ε = 1). Hence,

from Fatou once more, (2.5) and (2.6), there is cp > 0 with

‖Cϕ : wHp(X) → Hp(X)‖ ≥ cp · lim sup
r→1

(
∫

T

1

1 − |ϕ(rζ)|2 dm(ζ)

)1/p

≥ cp ·
(
∫

T

1

1 − |ϕ(ζ)|2 dm(ζ)

)1/p

,

so that (2.2) holds.
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For (2.3) it is convenient to use the X-valued polynomials

gn(z) =

n
∑

k=1

zk−1x
(n)
k = Tn(

n
∑

k=1

zk−1ek), z ∈ D,

for n ∈ N. Since (zk) is orthonormal in H2 it follows that ‖x∗ ◦ gn‖2
H2 =

∑n
k=1 |T ∗

nx∗(ek)|2 ≤ 1 for x∗ ∈ BX∗ , so that ‖gn‖wH2(X) ≤ 1 for each n. We
obtain as above that

‖Cϕ‖2 ≥ 1

(1 + ε)2
lim sup

n

∫

T

‖
n
∑

k=1

ϕ(rξ)k−1ek‖2
`n
2
dm(ξ)

≥ 1

(1 + ε)2

∫

T

∞
∑

k=1

|ϕ(rξ)|2k−2dm(ξ)

for any 0 < r < 1. Thus

‖Cϕ‖2 ≥ 1

(1 + ε)2
lim sup

r→1

∫

T

1

1 − |ϕ(rξ)|2 dm(ξ)

≥ 1

(1 + ε)2

∫

T

1

1 − |ϕ(ξ)|2 dm(ξ),

so that (2.3) holds as ε > 0 was arbitrary. �

Remarks 4. (i) The preceding argument was suggested by the case X = `2

and p = 2. Let f(z) =
∑∞

k=0 zkek+1, where (ek) is the unit vector basis of

`2. Then ‖f(ϕ(z))‖2
`2 = 1

1−|ϕ(z)|2 for z ∈ D and f ∈ BwH2(`2), so that as

above

‖Cϕ‖2 ≥ ‖f ◦ ϕ‖2
H2(`2) = lim

r→1

∫

T

1

1 − |ϕ(rξ)|2 dm(ξ) ≥
∫

T

1

1 − |ϕ(ξ)|2 dm(ξ).

(ii) The boundedness of Cϕ : wHp(X) → Hp(X) forces ϕ to belong to a
restricted class of symbols, but (1.1) is unexpected here. Recall that Cϕ is
a Hilbert-Schmidt operator on H2 if and only if (1.1) is satisfied, see [ST,
Thm. 3.1] or [CM, p. 146], where the right-hand side of (2.3) equals the
Hilbert-Schmidt norm. Thus (1.1) is much stricter than the compactness
condition for Cϕ : H2 → H2 due to J.H. Shapiro, see e.g. [CM, Thm. 3.20]
or [S, p. 26]. Moreover, if ϕ maps D into a polygon inscribed in the unit
circle, then (1.1) holds (cf. [ST, Cor. 3.2] or [CM, Prop. 3.25]) so that Cϕ is
bounded wH2(X) → H2(X). In particular, there are ϕ so that ‖ϕ‖∞ = 1
and Cϕ maps wH2(X) boundedly into H2(X) for any X.

(iii) (Suggested by Eero Saksman.) Let U be a bounded operator H 2 →
H2. Suppose that

(2.8) (U ⊗ I`2)(gx) = (Ug)x, g ∈ H2, x ∈ `2,

extends to a well-defined bounded operator U ⊗ I`2 : wH2(`2) → H2(`2),
where gx denotes the analytic map z 7→ g(z)x for g ∈ H 2, x ∈ `2 and z ∈ D.
Then U is a Hilbert-Schmidt operator H2 → H2, that is,

∑∞
n=0 ‖Ugn‖2

H2 is
finite, where gn(z) = zn for n = 0, 1, . . . and z ∈ D.



COMPOSITIONS FROM WEAK TO STRONG SPACES 7

To see this fact note first that
∑∞

n=0 gnen+1 ∈ BwH2(`2) by orthonormality.
Hence one gets from (2.8) that

∞
∑

n=0

‖Ugn‖2
2 =

∫

T

(

∞
∑

n=0

|(Ugn)(ζ)|2
)

dm(ζ) =

∫

T

‖
∞
∑

n=0

(Ugn)(ζ)en+1‖2
`2dm(ζ)

= ‖
∞
∑

n=0

(Ugn)en+1‖2
H2(`2) = ‖(U ⊗ I`2)(

∞
∑

n=0

gnen+1)‖2
H2(`2)

≤ ‖U ⊗ I`2 : wH2(`2) → H2(`2)‖2.

An analogous comment also applies to the Bergman case in section 3.

It remains unclear whether (2.2) holds for 1 ≤ p < 2. In this case the
bounded coefficient multipliers H2 → Hp correspond precisely to (λk) ∈ `∞,
see [JJ, Thm. 2]. By applying the ideas of Theorem 2 to (λk) = (1, 1, 1, . . .)
one only obtains the weaker lower bound

‖Cϕ : wHp(X) → Hp(X)‖ ≥ cp ·
(

∫

T

(

1

1 − |ϕ(ζ)|2
)p/2

dm(ζ)

)1/p

,

where cp > 0 is independent of ϕ. We leave the details to the reader.

3. Composition operators from weak to strong Bergman spaces

Let X be an arbitrary infinite-dimensional complex Banach space and
2 ≤ p < ∞. In this section we relate the norm of Cϕ : wBp(X) → Bp(X) to
the known condition for Cϕ to be a Hilbert-Schmidt operator B2 → B2.

We include concrete examples demonstrating that wBp(X) and Bp(X)
differ for any p ∈ [1,∞) and infinite-dimensional X, since this fact does not
seem to have been made explicit in the literature. (Theorem 7 below also
implies this for 2 ≤ p < ∞, but only indirectly.) The argument will use the
following fact about lacunary series in Bp(X): let X be any complex Banach
space and p ∈ [1,∞). Then there are ap, bp > 0 so that

(3.1) ap

( ∞
∑

n=0

‖xn‖p2−n

)1/p

≤ ‖
∞
∑

n=0

z2n

xn‖Bp(X) ≤ bp

( ∞
∑

n=0

‖xn‖p2−n

)1/p

for any sequence (xn) ⊂ X. (See the survey [B4, Prop. 4.4 and Cor. 4.5] for
a proof.)

Proposition 5. Let X be any complex infinite-dimensional Banach space
and p ∈ [1,∞). Then Bp(X)  wBp(X) and ‖ · ‖wBp(X) is not equivalent to
‖ · ‖Bp(X) on Bp(X).

Proof. Fix for n ∈ N a linear embedding Tn : `n
2 → X so that ‖Tn‖ = 1 and

‖T−1
n ‖ ≤ 2 as in (2.1). Put x

(n)
k = Tnek for k = 1, . . . , n, where (e1, . . . , en)

is some fixed ortonormal basis of `n
2 . Consider the sequence of X-valued

lacunary polynomials

fn(z) =
n
∑

k=1

2k/pz2k

x
(n)
k = Tn(

n
∑

k=1

2k/pz2k

ek), z ∈ D,
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for n ∈ N. Observe that

(3.2) ‖fn‖Bp(X) ≈ n1/p and ‖fn‖wBp(X) ≤ cp,

where the constants are independent of n. In fact, by applying (3.1) for
X = `2 we get that

‖fn‖Bp(X) ≈ ‖
n
∑

k=1

2k/pz2k

ek‖Bp(`n
2
) ≈

(

n
∑

k=1

‖2k/pek‖p
`n
2

2−k

)1/p

= n1/p

uniformly in n for any fixed p ∈ [1,∞).
Let 2 ≤ p < ∞ and x∗ ∈ BX∗ . The scalar version of (3.1) yields that

‖x∗ ◦ fn‖Bp = ‖
n
∑

k=1

2k/pz2k

T ∗
nx∗(ek)‖Bp ≤ bp

(

n
∑

k=1

|T ∗
nx∗(ek)|p

)1/p

≤ bp

(

n
∑

k=1

|T ∗
nx∗(ek)|2

)1/2

≤ bp.

For p ∈ [1, 2) Hölder’s inequality and the above estimate imply that

‖fn‖wBp(X) ≤ ‖fn‖wB2(X) ≤ b2.

Concrete functions f ∈ wBp(X) \ Bp(X) can be produced e.g. by mim-
icking the argument for the vector-valued Hardy spaces in [LT, Ex. 6.2].
Consecutive applications of Dvoretzky’s theorem as above yield embeddings
Tn : `2n

2 → Xn for each n, where Xn = [ymn+1, . . . , ymn+1
] are suitable block

subspaces of some fixed Schauder basic sequence (yk) ⊂ X. Here (mn) ⊂ N
is some rapidly enough increasing sequence. The desired analytic function
f : D→ X can be chosen as

f(z) =

∞
∑

n=1

2−αn/pTn(

2n
∑

k=1

2k/pz2k

ek), z ∈ D,

where 0 < α < 1/2. In fact, the series converges geometrically in wBp(X) by
(3.2). Since (Xn) is a finite-dimensional Schauder decomposition in X there
is c > 0 so that ‖

∑∞
n=1 xn‖ ≥ c · supn ‖xn‖ whenever

∑∞
n=1 xn converges in

X and xn ∈ Xn for each n, see [LTz, p. 47]. By combining these estimates

‖
N
∑

n=1

2−αn/pTn(

2n
∑

k=1

2k/pz2k

ek)‖Bp(X) ≥ c · 2−αN/p‖TN (

2N
∑

k=1

2k/pz2k

ek)‖Bp(X)

≥ c · dp · 2(N/p)(1−α) → ∞
as N → ∞. Above dp > 0 is independent of N . �

We next give a general upper bound for the norm of the composition
operators Cϕ : wBp(X) → Bp(X).

Lemma 6. Let X be any complex Banach space and 1 ≤ p < ∞. Then

‖Cϕ : wBp(X) → Bp(X)‖ ≤
(
∫

D

1

(1 − |ϕ(z)|2)2 dA(z)

)1/p

.
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Proof. Any analytic map f ∈ Bp satisfies |f(z)| ≤ (1 − |z|2)−2/p‖f‖Bp for
z ∈ D, see [V1]. Thus

‖f(z)‖X = sup
‖x∗‖≤1

|(x∗ ◦ f)(z)| ≤ (1 − |z|2)−2/p‖f‖wBp(X),

for f ∈ wBp(X) and z ∈ D. It follows that

‖Cϕf‖Bp(X) =

(
∫

D

‖f(ϕ(w))‖p
XdA(w)

)1/p

≤ ‖f‖wBp(X)

(
∫

D

1

(1 − |ϕ(w)|2)2 dA(w)

)1/p

.

�

The following result is the analogue of Theorem 2 in the Bergman case.

Theorem 7. Let X be any complex infinite-dimensional Banach space. Then

(3.3) ‖Cϕ : wBp(X) → Bp(X)‖ ≈
(
∫

D

1

(1 − |ϕ(z)|2)2 dA(z)

)1/p

for 2 < p < ∞ and

(3.4) ‖Cϕ : wB2(X) → B2(X)‖ =

(
∫

D

1

(1 − |ϕ(z)|2)2 dA(z)

)1/2

.

Proof. The upper estimate ‖Cϕ‖ ≤
(

∫

D

1
(1−|ϕ(z)|2)2 dA(z)

)1/p
holds by the

preceding lemma for 2 ≤ p < ∞. The strategy of the rest of the proof will
be similar to that of Theorem 2, but involving different functions.

It will again suffice as in the Hardy case to verify for 2 < p < ∞ that
∫

{z∈D : |ϕ(z)|2≥ 1

2
}

1

(1 − |ϕ(z)|2)2 dA(z) ≤ K‖Cϕ‖p,

where K > 0 is a suitable constant. Fix for any given n ∈ N and ε > 0 a
linear embedding Tn : `n

2 → X so that ‖Tn‖ = 1 and ‖T−1
n ‖ ≤ 1 + ε as in

(2.1). Let x
(n)
k = Tnek for k = 1, . . . , n, where (e1, . . . , en) is an ortonormal

basis of `n
2 . Consider the X-valued polynomials

fn(z) =
n
∑

k=1

λkz
kx

(n)
k , z ∈ D,

where λk = k2/p−1/2 for k ∈ N. By a result of Vukotić [V2, Thm. 2] the

sequence (k2/p−1) is a coefficient multiplier B2 → Bp for 2 < p < ∞. Hence
there is c1 > 0 so that

‖
n
∑

k=1

λkakz
k‖Bp ≤ c1‖

∞
∑

k=1

k1/2akz
k‖B2

≤ c1

(

n
∑

k=1

|ak|2
)1/2

,

for all n ∈ N and complex polynomials
∑n

k=1 akz
k, since (

√
n + 1zn) is an

orthonormal sequence in B2. If x∗ ∈ BX∗ then we get that

‖x∗ ◦ fn‖Bp = ‖
n
∑

k=1

λkx
∗(x(n)

k )zk‖Bp ≤ c1

(

n
∑

k=1

|x∗(x(n)
k )|2

)1/2

≤ c1,
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so that ‖fn‖wBp(X) ≤ c1 for all n.

It follows that ‖Cϕ‖ ≥ c−1
1 lim supn ‖fn ◦ϕ‖Bp(X). By applying Lemma 3,

with α = 4/p − 1 ∈ (−1, 1] and t = |ϕ(z)|2, for those z ∈ D which satisfy
|ϕ(z)|2 ≥ 1/2 we get from Fatou’s lemma that

‖Cϕ‖p ≥ 1

cp
1(1 + ε)p

lim sup
n

∫

D

‖
n
∑

k=1

λkϕ(z)kek‖p
`n
2
dA(z)

≥ 1

cp
1(1 + ε)p

∫

D

( ∞
∑

k=1

k4/p−1|ϕ(z)|2k

)p/2

dA(z)

≥ c
p/2
2

cp
1(1 + ε)p

∫

{z∈D : |ϕ(z)|2≥1/2}

1

(1 − |ϕ(z)|2)2 dA(z).

This proves the claim with K = cp
12

pc2
−p/2, so that (3.3) holds.

Towards (3.4) consider instead

gn(z) =

n−1
∑

k=0

√
k + 1 zkx

(n)
k = Tn(

n−1
∑

k=0

√
k + 1 zkek), z ∈ D,

for n ∈ N. It follows that ‖gn‖wB2(X) ≤ 1 for any n, since ‖x∗ ◦ gn‖2
B2

=
∑n

k=1 |T ∗
nx∗(ek)|2 ≤ 1 by orthonormality for any x∗ ∈ BX∗ . We obtain as

above, using some elementary calculus, that

‖Cϕ‖2 ≥
∫

D

‖Tn(

∞
∑

k=0

√
k + 1 ϕ(z)kek)‖2

XdA(z)

≥ 1

(1 + ε)2

∫

D

( ∞
∑

k=0

(k + 1) · |ϕ(z)|2k

)

dA(z)

≥ 1

(1 + ε)2

∫

D

1

(1 − |ϕ(z)|2)2 dA(z).

Since ε > 0 is arbitrary we get the desired lower bound in (3.4). �

Remarks 8. (i) Define f : D→ `2 by f(z) =
∑∞

k=0

√
k + 1 zkek+1 for z ∈ D,

where (ek) is the standard unit basis of `2. One verifies as above that f ∈
BwB2(`2), while ‖f(z)‖2

`2
= 1

(1−|z|2)2 for z ∈ D. Hence the lower bound

‖Cϕ : wB2(`2) → B2(`2)‖2 ≥
∫

D

1

(1 − |ϕ(w)|2)2 dA(w)

is immediate in this special case.
(ii) Boyd [Bo, Thm. 4.1] showed that Cϕ is a Hilbert-Schmidt operator on

B2 if and only if (1.2) holds. Moreover, if ϕ maps D into a polygon inscribed
in the unit circle, then Cϕ is Hilbert-Schmidt on B2, see [Bo, Thm. 4.3].
Thus the class of self-maps ϕ for which Cϕ : wHp(X) → Hp(X) is bounded
for 2 ≤ p < ∞ lies strictly between those where ‖ϕ‖∞ < 1 and where Cϕ is
compact on B2. Compactness was characterized by MacCluer and Shapiro
in terms of the angular derivatives of ϕ, see [CM, Thm. 3.22]).

For 1 ≤ p < 2 the preceding ideas only yield a weaker lower bound, and
this case remains unresolved. In fact, here (kα) is a bounded coefficient
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multiplier B2 → Bp if and only if α < 1/p − 1/2, see [W, Prop. 4]. The
computations of Theorem 7 applied to these sequences yield that

‖Cϕ : wBp(X) → Bp(X)‖ ≥ cp,β ·
(
∫

D

1

(1 − |ϕ(z)|2)β dA(z)

)1/p

for 1 < β < 1 + p/2. The details are left to the reader.

4. Other weak and strong spaces

Suppose that (E, ‖ · ‖E) is a Banach space consisting of analytic functions
D→ C such that

(i) E contains the constant functions,
(ii) the unit ball BE is compact in the topology of uniform convergence

on compact subsets of D.
For any complex Banach space X the analytic function f : D→ X belongs

to the weak vector-valued space wE(X) if

‖f‖wE(X) = sup
x∗∈BX∗

‖x∗ ◦ f‖E < ∞.

Then wE(X) is a Banach space which is isometric to the space L(V∗, X) of
bounded operators, where V∗ is a certain predual of E, see [BDL, p. 244].
Here wE(X) = E(X) may occur. This is so e.g. if E = H∞ or E = B, the
Bloch space, but recall that wHp(X) and wBp(X) always differ from the
respective strong spaces.

It is easy to check that Cϕ is bounded wE(X) → wE(X) if and only if
Cϕ is bounded E → E, and some results for composition operators on weak
spaces of analytic (or even harmonic) functions are found in [BDL], [L1] and
[LT]. We point out here as an example that the condition for Cϕ to be
bounded wBMOA(`2) → BMOA(`2) is unrelated to the Hilbert-Schmidt
conditions (2.3) and (3.4). Recall that BMOA(X) consists of the analytic
functions f : D→ X for which

‖f‖BMOA(X) = ‖f(0)‖X + sup
a∈D

‖f ◦ σa − f(a)‖H2(X) < ∞,

where σa(z) = a−z
1−az for a ∈ D. The weak space wBMOA(X) differs from

BMOA(X) for any infinite-dimensional X, see [L1, Ex. 15].

Example 9. Cϕ is bounded wBMOA(`2) → BMOA(`2) if and only if

sup
a∈D

∫

D

|ϕ′(z)|2(1 − |σa(z)|2)
(1 − |ϕ(z)|2)2 dA(z) < ∞.(4.1)

Proof. The known estimates for the point evaluations on BMOA (see e.g.
[G, p. 95]) imply that

‖f(z)‖`2 ≤ M(z)‖f‖wBMOA(`2), ‖f ′(z)‖`2 ≤ 1

1 − |z|2 ‖f‖wBMOA(`2)
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for z ∈ D, where M(z) = 1 + 1
2 log 1+|z|

1−|z| . If f ∈ BwBMOA(`2), then [B3, Cor.

1.1] yields that

‖Cϕf‖BMOA(`2) ≤ C ·
(

‖f(ϕ(0))‖`2 + sup
a∈D

∫

D

‖f ′(ϕ(z))‖2
`2 |ϕ′(z)|2dµa(z)

)

≤ C ·
(

M(ϕ(0)) + sup
a∈D

∫

D

|ϕ′(z)|2
(1 − |ϕ(z)|2)2 dµa(z)

)

,

where C > 0 is a uniform constant and dµa(z) = (1 − |σa(z)|2)dA(z).

Conversely, define g : D → `2 by g(z) =
∑∞

k=0
zk+1√
k+1

ek+1 for z ∈ D. It

follows that g ∈ wBMOA(`2) (e.g. use Hardy’s inequality, see [L1, Ex. 15])
and ‖g′(z)‖2

`2 = 1
(1−|z|2)2 as above. Thus

‖Cϕ‖ ≥ c · ‖Cϕg‖BMOA(`2) ≥ c · sup
a∈D

∫

D

‖g′(ϕ(z))‖2
`2 |ϕ′(z)|2dµa(z)

= c · sup
a∈D

∫

D

|ϕ′(z)|2
(1 − |ϕ(z)|2)2 dµa(z).

�

Remark 10. Cϕ is bounded from the Bloch space B to BMOA if and only
if (4.1) holds, see e.g. [T, Prop. 3.8] or [MT, Prop. 3.1].
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