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Abstract. We study a wide class of supersolutions of the porous
medium equation. These supersolutions are defined as lower semi-
continuous functions obeying the comparison principle. We show
that they have a spatial Sobolev gradient and give sharp summab-
ility exponents. We also study pointwise behaviour.

1. Introduction

The porous medium equation

∆(um) =
∂u

∂t
(1.1)

has been studied intensively during the last decades and the theory for
its solutions is rather complete by now. Especially the slow diffusion
case m > 1 has attracted the interest of many mathematicians, because
disturbances propagate with finite speed and interfaces may appear.
We refer to [12] and [11] for the theory of this fascinating equation. The
objective of our work is to study a class of supersolutions, defined in
an analogous way as in classical potential theory. The leading example
with a singularity is the so-called Barenblatt solution, which is the
fundamental solution of the porous medium equation.

The supersolutions that we have in mind are defined as lower semi-
continuous functions obeying the parabolic comparison principle with
respect to solutions. For lack of a better name, we have taken ourselves
the liberty to call these pointwise defined functions viscosity supersolu-
tions, thus distinguishing them from the ordinary supersolutions. In
the stationary case the viscosity supersolutions v are exactly charac-
terized by the property that the power vm is a superharmonic function,
defined as in classical potential theory. In the case m = 1 the equation
reduces to the heat equation and we have the supercaloric functions.
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Ordinary supersolutions are weak solutions of the inequality

∆(um) ≤ ∂u

∂t

defined in the usual way with the test functions under the integral
sign. Thus they are called weak supersolutions. Belonging, by defin-
ition, to a parabolic Sobolev space, they are more tractable, when it
comes to a priori estimates. The reader should carefully distinguish
between viscosity supersolutions (Definition 3.1) and weak supersolu-
tions (Definition 2.1). To this we may add that an even more restricted
class of supersolutions has been treated in [9]. Among those it is the
viscosity supersolutions that form a good class, closed under monotone
convergence.

The most important example is a celebrated function found by Baren-
blatt [3] and Zel’dovich and Kompaneets [13]. It has the formula

Bm(x, t) =




t−λ

(
C − λ(m− 1)

2mN

|x|2

t2λ/N

)1/(m−1)

+

, t > 0,

0, t ≤ 0,

(1.2)

where |x|2 = x2
1 + x2

2 + · · · + x2
N and

λ =
N

N(m− 1) + 2
.

The constant C > 0 is at our disposal and m > 1. Here f+ = max(f, 0)
is the positive part of f . As m → 1+ we can obtain the heat kernel.
Notice the interface (free boundary), having the equation

t = c|x|N(m−1)+2.

The function Bm is, indeed, a weak solution when t > 0, but the
singularity at the origin prevents Bm from being a solution in RN ×R.
Strictly speaking, it is not even a weak supersolution because

∫ 1

−1

∫

|x|<1

|∇Bmm(x, t)|2 dx dt = ∞,

violating the a priori summability in the definition. However, the func-
tion Bm is a viscosity supersolution in the whole space RN×R. Needless
to say, a definition that would exclude the Barenblatt solution cannot
be regarded as satisfactory. As a matter of fact, the Barenblatt solution
is extrem in many ways. We will utilize it to show that some results
are sharp.

Our first result is that locally bounded viscosity supersolutions are weak
supersolutions. Also the converse statement is true, provided the issue
of semicontinuity is properly handled. We establish the existence of the
spatial gradient ∇(|v|m−1v) in Sobolev’s sense. Nothing like this holds
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for the time derivative, which is merely a distribution. For example,
the function

v(x, t) =

{
1, t > 0,

0, t ≤ 0,

is a viscosity supersolution. Dirac’s delta function appears in the time
derivative. More generally, all functions of the type v(x, t) = g(t) are
viscosity supersolutions, if g(t) is a lower semicontinuous increasing
function. -We have the following theorem.

Theorem 1.3. Let m ≥ 1. Suppose that v is a locally bounded viscosity
supersolution in Ω ⊂ RN+1. Then the Sobolev derivatives

∂(|v|m−1v)

∂xi
, i = 1, 2, . . . , N,

exist and the local summability
∫ t2

t1

∫

D

|∇(|v|m−1v)|2 dx dt <∞

holds for each D × (t1, t2) b Ω. Moreover, we have
∫ t2

t1

∫

D

(
∇(|v|m−1v) · ∇ϕ− v

∂ϕ

∂t

)
dx dt ≥ 0

whenever ϕ ∈ C∞
0 (D × (t1, t2)) and ϕ ≥ 0.

The proof is based on a delicate approximation procedure. The approx-
imants are constructed as solutions of auxiliary variational inequalities
coming from a sequence of obstacle problems. The obstacles are smooth
functions approximating the original function pointwise from below.

For unbounded viscosity supersolutions we can extract information by
applying the theorem to the truncated functions min(v(x, t), j), j =
1, 2, . . . , which are weak supersolutions. By an iterative procedure we
obtain estimates which are independent of the level of truncation. The
result is the theorem below.

Theorem 1.4. Let m ≥ 1. Suppose that v is a viscosity supersolu-
tion in Ω ⊂ RN+1. Then v ∈ Lqloc(Ω), whenever 0 < q < m + 2/N .
Moreover, the Sobolev derivatives

∂(|v|m−1v)

∂xi
, i = 1, 2, . . . , N,

exist and the local summability
∫ t2

t1

∫

D

|∇(|v|m−1v)|q dx dt <∞

holds for each D × (t1, t2) b Ω, whenever 0 < q < 1 + 1/(1 +mN).
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The Barenblatt solution shows that the bounds for the exponents q are
sharp in the theorem above. There is a reason for using the mth power
in the theorems. It appears even for solutions. For a nonnegative
solution u it may happen that the derivative ∇(uα) does not exist in
Sobolev’s sense, if 0 < α < (m− 1)/2. This is the case for the Baren-
blatt solution. For a viscosity supersolution we have the restrictions

m− 1

2
< α < m+

1

N
on the power α to guarantee that ∇(uα) exists in Sobolev’s sense. This
phenomenon is studied in the final section of the paper, where we give
a Caccioppoli estimate in the above range of powers.

This phenomenon also causes a technical difficulty for the mollifications
with respect to the time variable. We have to mollify |v|m−1v instead
of v itself. We have found the convolution

f ∗(x, t) =
1

σ

∫ t

0

e(s−t)/σf(x, s) ds, σ > 0,

to be very useful, in particular because its time deivative (f ∗)t has a
convenient form. Some technical difficulties can be concentrated in an
excess term which disappears from the final estimate. The excess term
is zero for smooth functions. So far, we have not been able to find any
other practical way to compensate for the missing time derivative.

We have also included a section about the fine properties. While weak
supersolutions are defined only almost everywhere, a distict feature of
the viscosity supersolutions is that they are defined at every point in
their domain. Thus the pointwise behaviour can be investigated. A
central result is that, at each point in its domain, a viscosity super-
solution takes the value

v(x, t) = ess lim inf
(y,τ)→(x,t),τ<t

v(y, τ).

This is the content of our theorem in section 6, which is an extension of
Brelot’s classical theorem for superharmonic functions. Here the notion
of the essential limes inferior means that any set of (N+1)-dimensional
Lebesgue measure zero can be neglected in the calculation of the lower
limit.

Let us finally remark that we have deliberately decided to exclude the
fast diffusion case m < 1. In the linear case m = 1 our results can be
read off from linear representation formulas for the heat equation. In
our case the principle of superposition is not available.

Acknowledgements. Part of the research was done while the second
author visited Helsinki University of Techology in September 2006. We
wish to thank the Finnish Academy of Science and Letters, the Vilho,
Yrjö and Kalle Väisälä Foundation for financial support.
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2. Preliminaries

This section contains some notation, definitions, and basic estimates.
Also an interesting convolution is described.

In what follows, Q will always stand for a parallelepiped

Q = (a1, b1) × (a2, b2) × · · · × (aN , bN),

ai < bi, i = 1, 2, . . . , N , in RN and the abbreviations

QT = Q× (0, T ), Qt1,t2 = Q× (t1, t2),

where T > 0 and t1 < t2, are used for the space-time boxes in RN+1.
The parabolic boundary of QT is

ΓT = (Q× {0}) ∪ (∂Q× [0, T ]).

Observe that the interior of the top Q×{T} is not included. Similarly,
Γt1,t2 is the parabolic boundary of Qt1,t2 . The parabolic boundary of a
space-time cylinder Dt1,t2 = D× (t1, t2), where D ⊂ RN is an open set,
has a similar definition. In order to describe the appropriate function
spaces, we recall that H1(Q) denotes the Sobolev space of functions u ∈
L2(Q) whose first distributional partial derivatives belong to L2(Q).
The norm in H1(Q) is

‖u‖H1(Q) = ‖u‖L2(Q) + ‖∇u‖L2(Q).

The Sobolev space with zero boundary values, denoted by H1
0 (Q), is the

completion of C∞
0 (Q) with respect to the norm ‖u‖H1(Q). We denote

by L2(t1, t2;H
1(Q)) the space of functions such that for almost every

t, t1 ≤ t ≤ t2, the function x 7→ u(x, t) belongs to H2(Q) and
∫ t2

t1

∫

Q

(
|u(x, t)|2 + |∇u(x, t)|2

)
dx dt <∞.

Notice that the time derivative ut is deliberately avoided. The defini-
tion for the space L2(t1, t2;H

1
0 (Q)) is analogous.

To be on the safe side we give the definition of the (super)solutions of
the porous medium equation, interpreted in the weak sense.

Definition 2.1. Let Ω be an open set in RN+1 and suppose that
|u|m−1u ∈ L2(t1, t2;H

1(Q)) whenever Qt1 ,t2 b Ω. Then u is called
a weak solution, if

∫ t2

t1

∫

Q

(
∇(|u|m−1u) · ∇ϕ− u

∂ϕ

∂t

)
dx dt = 0 (2.2)

whenever Qt1 ,t2 b Ω and ϕ ∈ C∞
0 (Qt1 ,t2). Further, we say that u is

a weak supersolution, if the integral (2.2) is non-negative for all ϕ ∈
C∞

0 (Qt1,t2) with ϕ ≥ 0. If this integral is non-positive instead, we say
that u is a weak subsolution.
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Several remarks are related to the definition. The function |u|m−1u ∈
L1

loc(Ω) is called a distributional solution, if
∫ t2

t1

∫

Q

(
|u|m−1u∆ϕ+ u

∂ϕ

∂t

)
dx dt = 0

whenever Qt1 ,t2 b Ω and ϕ ∈ C∞
0 (Qt1,t2). It is clear that every weak

solution is a distributional solution. On the other hand, it can be shown
that the converse is true as well, but the proof is more involved. The
reverse heat equation is evoked in the proof. See [6] and [2].

By parabolic regularity theory the weak solutions are locally Hölder
continuous, after a possible redefinition on a set of measure zero. A
continuous weak solution is called a solution. Even the spatial gradient
∇u of a weak solution is locally Hölder continuous. See [4] and [11]
for the regularity theory. We will not use the Hölder continuity of the
gradient, but an intrinsic Harnack inequality proved by DiBenedetto is
needed, see [4]. The time derivative ut has to be avoided to a certain
extent, because it does not necessarily exist in Sobolev’s sense. A
regularization will be used to overcome this default.

If the test function ϕ is required to vanish only on the lateral boundary
∂Q× [t1, t2], then the boundary terms

∫

Q

u(x, t1)ϕ(x, t1) dx = lim
σ→0

1

σ

∫ t1+σ

t1

∫

Q

u(x, t)ϕ(x, t) dx dt

and ∫

Q

u(x, t2)ϕ(x, t2) dx = lim
σ→0

1

σ

∫ t2

t2−σ

∫

Q

u(x, t)ϕ(x, t) dx dt

have to be included. A direct evaluation of the integrals on the left-
hand side, without the limit procedure, may occasionally yield wrong
values. In the presence of discontinuities we have to pay due attention
to this notation. In the case of a weak supersolution to the porous
medium equation the condition becomes

∫ t2

t1

∫

Q

(
∇(|u|m−1u) · ∇ϕ− u

∂ϕ

∂t

)
dx dt

+

∫

Q

u(x, t2)ϕ(x, t2) dx−
∫

Q

u(x, t1)ϕ(x, t1) dx ≥ 0

(2.3)

for almost all t1 < t2 with Qt1,t2 b Ω.

The following existence result for the local Cauchy problem will be
useful for us later.

Theorem 2.4. Let ψ be a continuous function on the parabolic bound-
ary ΓT of QT . Then there is a weak solution u ∈ C(QT ) of the porous
medium equation in QT such that u = ψ on ΓT .
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The uniqueness of the solution of the Cauchy problem follows from the
comparison principle below, see [2], [6] and [11].

Theorem 2.5 (Comparison Principle). Let ψ1 and ψ2 be continuous
functions on the parabolic boundary ΓT of QT such that 0 ≤ ψ1 ≤ ψ2.
If u ∈ C(QT ) is a weak subsolution with u = ψ1 on ΓT and v ∈ C(QT )
is a weak supersolution with v = ψ2 on ΓT , then u ≤ v in QT .

There is a principal, well-recognized difficulty with the definition. Namely,
in proving estimates we usually need a test function ϕ that depends on
the solution itself, for example ϕ = uζ where ζ is a smooth cutoff func-
tion. Then one cannot avoid that the “forbidden quantity” ut shows
up in the calculation of ϕt. In most cases one can easily overcome
this complication by using an equivalent definition in terms of Steklov
averages, as in chapter 2 of [11]. We have found the convolution

u∗(x, t) =
1

σ

∫ t

0

e(s−t)/σu(x, s) ds, σ > 0, (2.6)

to be very useful, see page 36 in [10]. The notation hides the dependece
on σ. The advantage is that no values of u(x, t) outside Q× (0, T ) are
needed for the calculation of u∗(x, t) in Q × (0, T ). For continuous or
bounded and semicontinuous functions u the averaged function u∗ is
defined at each point. We have

u∗ + σ
∂u∗

∂t
= u. (2.7)

This implies the expedient fact that

(|u|m−1u− |u∗|m−1u∗)
∂u∗

∂t
≥ 0 (2.8)

when m ≥ 1.

Some properties are listed in the following lemma.

Lemma 2.9. (i) If u ∈ Lp(QT ), then

‖u∗‖p,QT
≤ ‖u‖p,QT

and
∂u∗

∂t
=
u− u∗

σ
∈ Lp(QT ).

Moreover, u∗ → u in Lp(QT ) as σ → 0.

(ii) If, in addition, ∇u ∈ Lp(QT ), then ∇(u∗) = (∇u)∗ componentwise,

‖∇u∗‖p,QT
≤ ‖∇u‖p,QT

,

and ∇u∗ → ∇u in Lp(QT ) as σ → 0.

(iii) Furthermore, if uk → u in Lp(QT ), then also

u∗k → u∗ and
∂u∗k
∂t

→ ∂u∗

∂t
7



in Lp(QT ).

(iv) If ∇uk → ∇u in Lp(QT ), then ∇u∗k → ∇u∗ in Lp(QT ).

(v) Analogous results hold for weak convergence in Lp(QT ).

(vi) Finally, if ϕ ∈ C(QT ), then

ϕ∗(x, t) + e−t/σϕ(x, 0) → ϕ(x, t)

uniformly in QT as σ → 0.

Proof. The proof is rather straightforward and we leave it as an exer-
cise. See [10] and [8].

The averaged equation for a weak supersolution u in Ω is the following.
If QT ⊂ Ω, then

∫ T

0

∫

Q

(
∇(|u|m−1u)∗ · ∇ϕ− u∗

∂ϕ

∂t

)
dx dt

+

∫

Q

u∗(x, T )ϕ(x, T ) dx

≥
∫

Q

u(x, 0)

(
1

σ

∫ T

0

ϕ(x, s)e−s/σ ds

)
dx

(2.10)

for all test functions ϕ ≥ 0 vanishing on the lateral boundary ∂Q×[0, T ]
of QT . The reader can easily verify that we obtain (2.3) as σ → 0. The
averaged equation can also be written as

∫ T

0

∫

Q

(
∇(|u|m−1u)∗ · ∇ϕ+ ϕ

∂u∗

∂t

)
dx dt

≥
∫

Q

u(x, 0)

(
1

σ

∫ T

0

ϕ(x, s)e−s/σ ds

)
dx.

(2.11)

By approximation this is valid for all non-negative ϕ ∈ L2(0, T ;H1
0(Q)).

For positive weak supersolutions many a priori estimates can be derived
from the simpler inequality

∫ T

0

∫

Q

(
∇(um)∗ · ∇ϕ+ ϕ

∂u∗

∂t

)
dx dt ≥ 0 (2.12)

valid for all non-negative ϕ ∈ L2(0, T ;H1
0(Q)). We point out that

(2.11) and (2.12) hold without any assumption about ϕt.

The following lemma contains a Caccioppoli type estimate. For the
reader’s convenience, we give a proof of this well-known result.
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Lemma 2.13 (Caccioppoli). Let |u|m−1u ∈ L2(0, T ;H1
0(Q)) and sup-

pose that |u| ≤M in QT . If u is a weak supersolution, then

∫ T

0

∫

Q

ζ2|∇(|u|m−1u)|2 dx dt

≤ 16M2mT

∫

Q

|∇ζ|2 dx+ 6Mm+1

∫

Q

ζ2 dx,

where ζ depends only on x, ζ ∈ C∞
0 (Q) and ζ ≥ 0.

Proof. In the averaged equation (2.11) we use the test function

ϕ = (Mm − |u|m−1u)ζ2.

The crucial integral containing
∂u∗

∂t
can be written as

∫ T

0

∫

Q

ϕ
∂u∗

∂t
dx dt

=Mm

∫

Q

ζ2(x)u∗(x, T ) dx−
∫ T

0

∫

Q

ζ2|u|m−1u
∂u∗

∂t
dx dt

=Mm

∫

Q

ζ2(x)u∗(x, T ) dx

−
∫ T

0

∫

Q

ζ2
(
|u|m−1u− |u∗|m−1u∗

)∂u∗
∂t

dx dt

−
∫ T

0

∫

Q

ζ2|u∗|m−1u∗
∂u∗

∂t
dx dt.

Now we have come to a decisive point. In the second integral on the
right-hand side

(
|u|m−1u− |u∗|m−1u∗

)∂u∗
∂t

=
(
|u|m−1u− |u∗|m−1u∗

)u− u∗

σ
≥ 0

since both factors have the same sign (recall that m ≥ 1), see (2.7) and
(2.8). It follows that

∫ T

0

∫

Q

ϕ
∂u∗

∂t
dx dt ≤

∫

Q

ζ2(x)
(
Mmu∗(x, T ) − |u∗(x, T )|m+1

m + 1

)
dx
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and hence we obtain an estimate free of the time derivative
∂u∗

∂t
. Taking

this estimate into account and letting σ → 0, we can write (2.11) as

∫ T

0

∫

Q

∇(|u|m−1u) · ∇ϕdx dt

+

∫

Q

ζ2(x)
(
Mmu(x, T ) − |u(x, T )|m+1

m + 1

)
dx

≥
∫

Q

ζ2(x)
(
Mmu(x, 0) − |u(x, 0)|m+1

)
dx

after some simplification. The two single integrals are not symmetric!
A deviation when t = 0 is due to the omission of the term e−t/σu(x, 0)
in the definition of u∗(x, t), see (vi) in Lemma 2.9. A simple estimation
of the two single integrals leads to

−
∫ T

0

∫

Q

∇(|u|m−1u) · ∇ϕdx dt ≤ 3Mm+1

∫

Q

ζ2 dx.

In the elliptic term we write

−∇(|u|m−1u) · ∇ϕ
= ζ2|∇(|u|m−1u)|2 − 2ζ∇(|u|m−1u) · (Mm − |u|m−1u)∇ζ.

The first term on the right-hand side is of the desired type. We estimate
the second term on the right-hand side. The elementary inequality
2ab ≤ ε2a2 + ε−2b2 gives

2

∫ T

0

∫

Q

|ζ∇(|u|m−1u) · (Mm − |u|m−1u)∇ζ| dx dt

≤ε2

∫ T

0

∫

Q

ζ2|∇(|u|m−1u)|2 dx dt

+ ε−2

∫ T

0

∫

Q

(Mm − |u|m−1u)2|∇ζ|2 dx dt

≤ε2

∫ T

0

∫

Q

ζ2|∇(|u|m−1u)|2 dx dt+ ε−2(2Mm)2T

∫

Q

|∇ζ|2 dx.

We choose ε = 1/
√

2 so that the first term on the right-hand side can
be absorbed (the so-called Peter-Paul Principle). The result follows.

It will be crucial for us to be able to move from from one moment of
time to another. The following estimate connects the future to the
past. An excess term appears.
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Theorem 2.14. Let v be a weak supersolution in Ω ⊂ RN+1 and
Qt1,t2 b Ω. Suppose that v ≥ 0 and vm ∈ L2(t1, t2;H

1
0(Q)). Then

1

m + 1

∫

Q

v(x, t2)
m+1 dx− 1

m + 1

∫

Q

v(x, t1)
m+1 dx

+ lim sup
σ→0

∫ t2

t1

∫

Q

(vm − (v∗)m)
∂v∗

∂t
dx dt

+

∫ t2

t1

∫

Q

|∇vm|2 dx dt ≥ 0.

Proof. Choosing ϕ = vm in (2.12) we have the basic estimate
∫ t2

t1

∫

Q

∇(vm)∗ · ∇(vm) dx dt+

∫ t2

t1

∫

Q

vm
∂v∗

∂t
dx dt ≥ 0.

Since∫ t2

t1

vm
∂v∗

∂t
dt =

∫ t2

t1

(v∗)m
∂v∗

∂t
dt+

∫ t2

t1

(
vm − (v∗)m

)∂v∗
∂t

dt

=
1

m+ 1

(
v∗(x, t2)

m+1 − v∗(x, t1)
m+1

)
+

∫ t2

t1

(
vm − (v∗)m

)∂v∗
∂t

dt,

we may safely let σ → 0.

Remark 2.15. (1) Limes superior can be replaced with limes inferior,
since the actual limes exists for all other terms.

(2) The excess term

lim sup
σ→0

∫ t2

t1

∫

Q

(vm − (v∗)m)
∂v∗

∂t
dx dt ≥ 0

is not negligible. To see this, consider the essentially one-dimensional
example, where v(x, t) = 0 if t ≤ 0 and v(x, t) = 1 if t > 0. Then

v(x, t)m − v∗(x, t)m = 1 −
( 1

σ

∫ t

0

e(s−t)/σ ds
)m

= 1 −
(
1 − e−t/σ

)m

and
∂v∗

∂t
(x, t) =

v(x, t) − v∗(x, t)

σ
=

1

σ
e−t/σ

when t > 0. Hence∫ T

0

(vm − (v∗)m)
∂v∗

∂t
dt = 1 − e−T/σ − (1 − e−T/σ)m+1

m + 1

upon integration. Thus the excess term is

lim
σ→0

∫ T

0

∫

Q

(vm − (v∗)m)
∂v∗

∂t
dx dt =

m

m+ 1
|Q| > 0,

a positive quantity.
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The obstacle problem in the calculus of variations is a basic tool in our
study of viscosity supersolutions. Let ψ ∈ C∞(RN+1) and consider the
class Fψ of all functions w ∈ C(QT ) such that

|w|m−1w ∈ L2(0, T ;H1(Q)), w = ψ on ΓT , and w ≥ ψ in QT .

The function ψ acts as an obstacle and also prescribes the boundary
values.

The following existence theorem will be useful for us later.

Lemma 2.16. There is a unique w ∈ Fψ such that
∫ T

0

∫

Q

(
∇(|w|m−1w) · ∇(φ− w) + (φ− w)

∂φ

∂t

)
dx dt

≥ 1

2

∫

Q

|φ(x, T ) − w(x, T )|2 dx
(2.17)

for all smooth functions φ in the class Fψ. In particular, w is a con-
tinuous weak supersolution. Moreover, in the open set {w > ψ} the
function w is a solution.

Proof. The existence can be shown as in the proof of Theorem 3.2 in
[1]. Continuity follows from standard regularity theory, but it seems to
be difficult to find a convenient reference.

3. Viscosity supersolutions

In this section we define the class of viscosity supersolutions and prove
Theorem 1.3. We need approximating weak supersolutions. They are
constructed via an obstacle problem in the calculus of variations. The
procedure will be discussed below.

Let us begin with the definition, which is similar to the classical defin-
ition of superharmonic functions, due to F. Riesz. We remark once
more that the word “viscosity” is only used as a label by us.

Definition 3.1. A function v : Ω → (−∞,∞] is called a viscosity
supersolution if

(1) v is lower semicontinuous in Ω,
(2) v is finite in a dense subset of Ω,
(3) v satisfies the following comparison principle in each subdomain

Dt1 ,t2 b Ω: if h ∈ C(Dt1,t2) is a solution in Dt1 ,t2 and if h ≤ v
on the parabolic boundary of Dt1 ,t2, then h ≤ v in Dt1,t2 .
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It follows immediately that the pointwise minimum

v(x, t) = min(v1(x, t), v2(x, t), . . . , vj(x, t))

of finitely many viscosity supersolutions is a viscosity supersolution.
Another useful construction for a non-negative viscosity supersolution
v is to redefine it as 0 till a given instant t0. In other words

v0(x, t) =

{
0, t ≤ t0,

v(x, t), t ≥ t0,

is a viscosity supersolution. In section 5 a further construction, the
so-called Poisson modification, is discussed.

Notice that a viscosity supersolution is defined at every point in its
domain. No differentiability is presupposed in the definition. The only
tie to the differential equation is through the comparison principle.

It turns out that a viscosity supersolution satisfies the comparison prin-
ciple in more general domains than the cylinders Dt1,t2 . For our pur-
poses it is sufficient that the comparison principle holds for a finite
union of boxes. The proof is a matter of successive comparisons, start-
ing with the earliest boxes.

There is a relation between weak supersolutions and viscosity super-
solutions. Roughly speaking, the weak supersolutions are viscosity su-
persolutions, provided the issue about lower semicontinuity is properly
handled. In particular, a continuous supersolution is a viscosity super-
solution. On the other hand, a bounded viscosity supersolution is a
weak supersolution.

The Barenblatt solution clearly shows that the class of viscosity su-
persolutions contains more than weak supersolutions. Nevertheless, it
turns out that a viscosity supersolution can be approximated point-
wise with an increasing sequence of weak supersolutions, constructed
through successive obstacle problems. Let us describe this procedure.

Theorem 3.2. Suppose that v is a viscosity supersolution in Ω and
let Qt1,t2 b Ω. Then there is a sequence of weak supersolutions vk ∈
C(Qt1,t2), |vk|m−1vk ∈ L2(t1, t2;H

1(Q)), k = 1, 2, . . . , such that v1 ≤
v2 ≤ · · · ≤ v and vk → v pointwise in Qt1,t2 as k → ∞. If, in addition,
v is locally bounded in Ω, then |v|m−1v ∈ L2(t1, t2;H

1(Q)) and v itself
is a weak supersolution.

Proof. The lower semicontinuity implies that there is a sequence of
functions ψk ∈ C∞(Ω), k = 1, 2, . . . , such that

ψ1 < ψ2 < . . . and lim
k→∞

ψk = v

13



at every point of Ω. It is decisive here that the inequality ψk < ψk+1

is strict. Next, using the functions ψk as obstacles, we construct su-
persolutions of (1.1) that approximate v from below. This has to be
done locally, say in a given box Qt1,t2 with Qt1,t2 b Ω. To simplify the

notation we consider QT , assuming that QT b Ω. Let vk ∈ C(QT ),
|v|m−1v ∈ L2(0, T ;H1(Q)), k = 1, 2, . . . , denote the solution of the
obstacle problem in QT with the obstacle ψk, see Lemma 3.2. Thus
vk ∈ Fψk

.

We claim that

v1 ≤ v2 ≤ . . . and vk ≤ v, k = 1, 2, . . . ,

in QT . In particular, ψk ≤ vk ≤ v then gives the desired convergence.
Due to a technical difficulty, we choose an arbitrarily small ε > 0 and
prove that vk(x, t) ≤ v(x, t) when 0 < t < T − ε and x ∈ Q. The set

Kk = {(x, t) : x ∈ Q, 0 ≤ t ≤ T − ε, vk(x, t) ≥ ψk+1(x, t)},
k = 1, 2, . . . , is compact. The distance of Kk to the set where vk(x, t) =
ψk(x, t) is positive, say δ = δ(k, ε). (We tacitly assume that the set
Kk is not empty.) This is due to the continuity of the functions and
the strict inequality ψk+1 > ψk. Recall that in the set where vk(x, t) >
ψk(x, t) the function vk is a solution of the porous medium equation.
Now we want to use the comparison principle.

Suppose that RN+1 has been divided into dyadic cubes in the standard
way. The set Kk can be covered with a finite number of (closed) dyadic
cubes, all of the same size and with a sufficiently small diameter, say
that the diameter of each cube is smaller than δ/2. The interior of
the union of the cubes has its parabolic boundary in the set where
ψk < vk ≤ ψk+1. Thus vk ≤ ψk+1 < v on this parabolic boundary.
By the comparison principle we conclude that vk ≤ v at least in Kk.
Outside Kk the inequality vk < ψk+1 < v holds trivially. This shows
that vk ≤ v in QT since ε > 0 was arbitrary. The inequality vk ≤ vk+1

can be shown in the same way.

If v is locally bounded, a compactness argument is available. The
Caccioppoli estimate (Lemma 2.13) gives

∫ T

0

∫

Q

ζ2|∇vmk |2 dx dt ≤ 16M2mT

∫

Q

|∇ζ|2 dx+ 6Mm+1

∫

Q

ζ2 dx,

where ζ depends only on x, ζ ∈ C∞
0 (Q), ζ ≥ 0 and M is the supremum

of v in the support of ζ. By weak compactness, ∇(|v|m−1v) exists
in Sobolev’s sense and ∇(|vk|m−1vk) → ∇(|v|m−1v) weakly in L2 as
k → ∞. Hence we may proceed to the limit under the integral sign in

∫ T

0

∫

Q

(
∇(|vk|m−1vk) · ∇ϕ− vk

∂ϕ

∂t

)
dx dt ≥ 0,
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where ϕ ∈ C∞
0 (QT ). This shows that v is a weak supersolution.

Theorem 1.3 follows immediately from the previous theorem.

We seize the opportunity to mention that the following result can be
extracted from the end of the previous proof.

Proposition 3.3. Consider a sequence

v1 ≤ v2 ≤ . . .

of weak supersolutions in QT such that |vk| ≤ M and |vk|m−1vk ∈
L2(0, T ;H1(Q)) when k = 1, 2, . . . Then also the limit function

v = lim
k→∞

vk

is a weak supersolution. In particular, |v|m−1v ∈ L2(0, T ;H1(Q′))
whenever Q′ ⊂⊂ Q.

The following Harnack type convergence theorem holds for solutions of
the porous medium equation.

Lemma 3.4 (Harnack). Suppose that hk, k = 1, 2, . . ., is a sequence
of weak solutions in Ω and that 0 ≤ h1 ≤ h2 ≤ · · · pointwise in Ω. If
the limit function

h(x, t) = lim
k→∞

hk(x, t)

is finite in a dense subset of Ω, then h is a weak solution in Ω.

Proof. The intrinsic Harnack inequalities proved by DiBenedetto in [4]
can be passed over from the sequence hk, k = 1, 2, . . . , to the limit
function h. It follows that h is locally bounded. Then we may use
the compactness argument at the end of the proof of Theorem 3.2 to
conclude that the limit of the equations

∫∫

Ω

(
∇hmk · ∇ϕ− hk

∂ϕ

∂t

)
dx dt = 0

as k → 0 is the required equation for h. Here ϕ ∈ C∞
0 (Ω). This proves

the lemma.

4. Preliminary summability estimates

This section is devoted to some technical estimates, where the functions
vm have to be truncated at the level k (the original functions v at the
level k1/m). The notation

wm = (vm)j = min(v(x, t)m, j)
15



will be used for a large index j. We also write

(wm)k = min(vm, k)

for k = 0, 1, . . . , j. A test function used by Kilpeläinen and Malý in [7]
will play an essential role.

Lemma 4.1. Let m > 1 and let Ω ⊂ RN+1 be a domain with QT b Ω.
Suppose that v ≥ 0 is a supersolution in Ω, vm ∈ L2(0, T ;H1

0(Q))
and v(x, 0) = 0 when x ∈ Q. Let j be a positive integer and denote
wm = (vm)j = min(vm, j). Then

∫ T

0

∫

Q

|∇(wm)|2 dx dt+
1

m+ 1

∫

Q

wm+1 dx

+ lim sup
σ→0

∫ T

0

∫

Q

(
wm − (w∗)m

)∂w∗

∂t
dx dt

≤j
( ∫ T

0

∫

Q

|∇(wm)1|2 dx dt+ lim sup
σ→0

∫ T

0

∫

Q

(wm)1
∂w∗

∂t
dx dt

)
.

Remark 4.2. Observe that the familiar excess term appears on the left-
hand side of the estimate. It is needed to counterbalance the excess
term in Theorem 2.14.

Proof. Choose the test function

ϕ =
(
(wm)k − (wm)k−1

)
−

(
(wm)k+1 − (wm)k

)
,

where k = 1, 2, . . . , j − 1. Now ϕ ≥ 0. Since w is a supersolution, we
have ∫ T

0

∫

Q

∇(wm)∗ · ∇ϕdx dt+
∫ T

0

∫

Q

ϕ
∂w∗

∂t
dx dt ≥ 0

according to (2.12). This implies that
∫ T

0

∫

Q

∇(wm)∗ · ∇
(
(wm)k+1 − (wm)k

)
dx dt

+

∫ T

0

∫

Q

(
(wm)k+1 − (wm)k

)∂w∗

∂t
dx dt

≤
∫ T

0

∫

Q

∇(wm)∗ · ∇
(
(wm)k − (wm)k−1

)
dx dt

+

∫ T

0

∫

Q

(
(wm)k − (wm)k−1

)∂w∗

∂t
dx dt.

for every k = 1, 2, . . . , j − 1. We abbreviate the previous expression as

ak+1 ≤ ak
16



from which it follows, by recursion, that

j∑

k=1

ak ≤ ja1. (4.3)

The notation hides the dangerous fact that ak depends on j. Because
of cancellation the sum on the left-hand side of (4.3) can be computed
as

j∑

k=1

ak =

∫ T

0

∫

Q

∇(wm)∗ · ∇(wm)j dx dt+

∫ T

0

∫

Q

(wm)j
∂w∗

∂t
dx dt,

where (wm)j = wm and consequently

(wm)j
∂w∗

∂t
= wm

∂w∗

∂t
=

(
wm − (w∗)m

)∂w∗

∂t
+ (w∗)m

∂w∗

∂t
.

A simple integration gives

∫ T

0

∫

Q

(w∗)m
∂w∗

∂t
dx dt =

1

m+ 1

∫

Q

(w∗)m+1 dx

since w∗(x, 0) = 0. This implies that

j∑

k=1

ak =

∫ T

0

∫

Q

∇(wm)∗ · ∇wm dx dt

+

∫ T

0

∫

Q

(
wm − (w∗)m

)∂w∗

∂t
dx dt+

1

m+ 1

∫

Q

(w∗)m+1 dx.

The left-hand side of (4.3) is

ja1 = j
( ∫ T

0

∫

Q

∇(wm)∗ · ∇(wm)1 dx dt+

∫ T

0

∫

Q

(wm)1
∂w∗

∂t
dx dt

)
.

Thus we have
∫ T

0

∫

Q

∇(wm)∗ · ∇wm dx dt+

∫ T

0

∫

Q

(
wm − (w∗)m

)∂w∗

∂t
dx dt

+
1

m+ 1

∫

Q

(w∗)m+1 dx

≤ j
( ∫ T

0

∫

Q

∇(wm)∗·∇(wm)1 dx dt+

∫ T

0

∫

Q

(wm)1
∂w∗

∂t
dx dt

)
.

The claim follows from this letting the smoothing parameter σ → 0.
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Let us proceed a little further under the same assumptions. Let 0 <
t1 < T and t1 ≤ τ ≤ T . By Theorem 2.14 we have

1

m + 1

∫

Q

w(x, t)m+1 dx

≤
∫ τ

0

∫

Q

|∇(wm)|2 dx dt+
1

m+ 1

∫

Q

w(x, τ)m+1 dx

+ lim sup
σ→0

∫ τ

0

∫

Q

(wm − (w∗)m)
∂w∗

∂t
dx dt

for every 0 < t < t1. Together with Lemma 4.1 this implies that

ess sup
0<t<t1

1

m+ 1

∫

Q

w(x, t)m+1 dx

≤
∫ τ

0

∫

Q

|∇(wm)|2 dx dt+
1

m + 1

∫

Q

w(x, τ)m+1 dx

+ lim sup
σ→0

∫ τ

0

∫

Q

(wm − (w∗)m)
∂w∗

∂t
dx dt

≤j
( ∫ τ

0

∫

Q

|∇(wm)1|2 dx dt+ lim sup
σ→0

∫ τ

0

∫

Q

(wm)1
∂w∗

∂t
dx dt

)
.

Using Lemma 4.1 again we conclude that

ess sup
0<t<t1

1

m+ 1

∫

Q

w(x, t)m+1 dx+

∫ t1

0

∫

Q

|∇(wm)|2 dx dt

≤ 2j
( ∫ τ

0

∫

Q

|∇(wm)1|2 dx dt

+ lim sup
σ→0

∫ τ

0

∫

Q

(wm)1
∂w∗

∂t
dx dt

)
.

(4.4)

Observe that the excess term disappeared.

The estimation of the right-hand side of (4.4) is postponed till section
5. We proceed by assuming, for the moment, that we already have
archieved the bound

ess sup
0<t<t1

1

m+ 1

∫

Q

w(x, t)m+1 dx+

∫ t1

0

∫

Q

|∇(wm)|2 dx dt

≤ cj
( ∫

Q

w(x, τ) dx+ T |Q|
)
.

(4.5)
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We integrate both sides of this inequality with respect to τ over the
interval [t1, T ] and divide by T − t1. This implies

ess sup
0<t<t1

1

m+ 1

∫

Q

w(x, t)m+1 dx +

∫ t1

0

∫

Q

|∇(wm)|2 dx dt

≤ cj
( 1

T − t1

∫ T

0

∫

Q

w(x, t) dx dt+
T

T − t1
|Q|

)
.

Recall that wm = min(vm, j). Hence the previous estimate implies that

ess sup
0<t<t1

1

m+ 1

∫

Q

min(vm, j)1+1/m dx

+

∫ t1

0

∫

Q

|∇min(vm, j)|2 dx dt

≤cj
( 1

T − t1

∫ T

0

∫

Q

min(vm, j)1/m dx dt+
T |Q|
T − t1

)

≤cj
( T |Q|
T − t1

j1/m +
T |Q|
T − t1

)

≤cj1+1/m T |Q|
T − t1

.

(4.6)

The constant c may change from one line to the next.

Let κ = 1 + 1/N + 1/(mN) and define the sets

Ej =
{
(x, t) ∈ Qt1 : j ≤ vm(x, t) < 2j

}

for j = 1, 2, . . . Sobolev’s inequality and (4.6) imply that

j2κ|Ej| ≤
∫∫

Ej

(min(vm, 2j))2κ dx dt

≤
∫ T

0

∫

Q

(min(vm, 2j))2κ dx dt

≤c
∫ T

0

∫

Q

|∇min(vm, 2j)|2 dx dt

·
(

ess sup
0<t<T

∫

Q

min(vm, 2j)1+1/m dx
)2/N

≤cj(1+1/m)(1+2/N)
( T |Q|
T − t1

)1+2/N

,

for j = 1, 2, . . .

It follows that

|Ej| ≤ cj−1+1/m
( T |Q|
T − t1

)1+2/N
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for j = 1, 2, . . . Let α > 0. From this we conclude that the sum in
∫ t1

0

∫

Q

vmα dx dt ≤ T |Q| +
∞∑

j=1

∫∫

E
2j−1

vmα dx dt

can be majorized by

∞∑

j=1

∫∫

E
2j−1

vmα dx dt ≤
∞∑

j=1

2αj|E2j−1 |

≤ c
( T |Q|
T − t1

)1+2/n
∞∑

j=1

2−j(−α+1−1/m).

The series converges if α < 1 − 1/m. Thus we have a finite majorant.
Indeed, since m > 1 there is a small α1 > 0 such that

∫ t1

0

∫

Q

vmα1 dx dt <∞.

We may assume that 0 < α1 < 1/m.

This was the first step. In order to improve the exponent we iterate
this procedure. At the next step we split 1/m as

1

m
= α1 +

( 1

m
− α1

)
.

Let 0 < t2 < t1. As in (4.6) we have

ess sup
0<t<t2

1

m + 1

∫

Q

min(vm, j)1+1/m dx

+

∫ t2

0

∫

Q

|∇min(vm, j)|2 dx dt

≤cj
( 1

t1 − t2

∫ t1

0

∫

Q

min(vm, j)1/m dx dt+
t1|Q|
t1 − t2

)

≤cj
( 1

t1 − t2

∫ t1

0

∫

Q

min(vm, j)α1 min(vm, j)1/m−α1 dx dt

+
t1|Q|
t1 − t2

)

≤cj1+1/m−α1

( 1

t1 − t2

∫ t1

0

∫

Q

vmα1 dx dt+
t1|Q|
t1 − t2

)
.

The right-hand side of this estimate is a finite number by the first step
of the iteration. Hence we may apply Sobolev’s inequality and estimate
the size of the distribution set Ej as before. It follows that

|Ej| ≤ cj−1+1/m−α1(1+2/N)
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for j = 1, 2, . . . where the constant c depends on various parameters.
From this we conclude that

∫ t2

0

∫

Q

vmα2 dx dt <∞

whenever

α2 < 1 − 1

m
+ α1

(
1 +

2

N

)
.

Certainly α2 > α1. At each step of the iteration we obtain αk+1 > ak.
After a finite number of steps we reach 1/m and here we stop. We
choose k such that αk < 1/m ≤ ak+1. We have now reached at least
all exponents α < 1/m. At the final step of the iteration we use that
ak < α < 1/m from which we conclude that

∫ tk+1

0

∫

Q

vmα dx dt <∞

whenever

α < 1 +
2

mN
.

Indeed, the exponent is the supremum of all

1 − 1

m
+ α

(
1 +

2

N

)
,

where α < 1/m. To reach a given exponent α only a finite number
of steps is needed and hence the influence of the tk’s is under control.
We have proved the following result, in which the correct exponent is
present.

Theorem 4.7. Let m > 1 and let Ω ⊂ RN+1 be a domain with QT b Ω.
Suppose that v ≥ 0 is a weak supersolution in Ω, vm ∈ L2(0, T ;H1

0(Q))
and v(x, 0) = 0 when x ∈ Q. Let j be a positive integer and denote
wm = (vm)j = min(vm, j). Fix t1 < T . If there is a constant c such
that

ess sup
0<t<t1

1

m+ 1

∫

Q

w(x, t)m+1 dx +

∫ t1

0

∫

Q

|∇(wm)|2 dx dt

≤ cj
( ∫

Q

w(x, τ) dx+ T |Q|
)
,

then vm ∈ Lq(QT ) for every 0 < q < 1 + 2/(mN).

Remark 4.8. According to Theorem 3.2 the function v may be a vis-
cosity supersolution in the theorem above.
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5. Summability estimates concluded

In order to complete the proof of Theorem 1.4 we have to modify the
viscosity supersolution v near the parabolic boundary of QT so that
Theorem 4.7 applies. In a strip near ΓT we will replace v with a solution
in such a way that the modified function is a viscosity supersolution.
Therefore we assume that QT ⊂ Ω. Let Q′ ⊂ Q and select t1 and t2
so that 0 < t1 < t2 < T . Then Q′

t1 ,t2 ⊂ QT . Furthermore, we can
redefine v so that v(x, t) = 0, when t ≤ t1. The obtained function v
is a viscosity supersolution in QT . We aim at proving the summability
in Q′

t1,t2
.

Roughly speaking, we want to redefine v in QT \Q′
t1,T

in the following
way:

V =

{
v in Q′

t1 ,T
,

h in QT \Q′
t1,T

,

where h is the solution in QT \Q′
t1,T

with zero boundary values on the
parabolic boundary of QT and h = v on the parabolic boundary of
Q′
t1,T

. Notice that h and v both are zero when t ≤ t1. We say that
V is the Poisson modification of v. We will show that V is a viscosity
supersolution.

Let us first construct h. Lower semicontinuity implies that there is a
sequence of functions ψk ∈ C∞(Ω), k = 1, 2, . . . , such that

0 ≤ ψ1 ≤ ψ2 ≤ . . . and lim
k→∞

ψk = v

at every point of Ω. We assume, as we may, that ψk = 0 in Q× [0, t1].
Let hk denote the unique continuous solution of the porous medium
equation in (Q \Q′) × (0, T ) with the following boundary values

hk =





ψk in ∂Q′ × [0, T ],

0 in ∂Q× [0, T ],

0 in (Q \Q′) × {0}.

We can extend hk continuously up to the boundary so that hk ∈ C((Q\
Q′) × [0, T ]). Actually, hk(x, t) = 0 when t ≤ t1. We have

h1 ≤ h2 ≤ . . . and hk ≤ v in QT \Q′
t1,T

.

By Harnack’s convergence theorem (Lemma 3.4) the function

h = lim
k→∞

hk

is a continuous solution in QT \Q′
t1,T

and clearly h ≤ v. Thus V ≤ h.

It remains to verify the comparison principle for V . Let Da,b = D ×
(a, b) be a subdomain of QT and suppose that H ∈ C(Da,b) is a solution

22



and V ≥ H on the parabolic boundary of Da,b. Since v ≥ V , the
comparison principle valid for v yields v ≥ H in Da,b. In particular,
H(x, t) ≤ 0 when t ≤ t1 (if a < t1). If D ⊂ Q′ we are done. If
not, then a comparison has to be performed in (each component of)
(D \ Q′) × (a, b). We have that h ≥ H on the parabolic boundary of
this set. The points on ∂Q′ × (a, b) require some care. Let (x0, t0) be a
point on ∂Q′ × (a, b). From the construction of h we can deduce that,
given ε > 0, there is an index k such that

H(x0, t0) < hk(x0, t0) + ε.

This implies that

H(x0, t0) ≤ lim inf
(x,t)→(x0,t0)

h(x, t).

Thus h ≥ H by the comparison principle. This concludes the proof of
the inequality V ≥ H in Da,b.

Therefore the function V is a viscosity supersolution in QT . In partic-
ular, V is continuous in QT \ Q′

t1,T
and has zero boundary values on

the parabolic boundary of QT . Our next goal is to obtain a bound for
the right-hand side of (4.4). Notice that V (in place of v) satisfies the
assumptions in the next lemma.

Lemma 5.1. Suppose that v is a weak supersolution in Ω with the
properties v ≥ 0 and vm ∈ L2(0, T ;H1

0(Q)). We assume that there is a
small δ > 0 such that v(x, t) is a solution when dist(x, ∂Q) < δ < 1 and
0 < t < T . In addition, we assume that v(x, t) < 1 when dist(x, ∂Q) <
δ and v(x, 0) = 0 when x ∈ Q. Then

∫ T

0

∫

Q

|∇(vm)1|2 dx dt+ lim sup
σ→0

∫ T

0

∫

Q

(vm)1
∂v∗

∂t
dx dt

≤ 3

∫

Q

v(x, T ) dx+ cδ−2T |Q|.

Proof. We write Q = (a1, b1)×· · ·×(aN , bN ). Let ζmi , i = 1, 2, . . . , n, be
a piecewise linear cutoff function of one variable such that its support
is [ai, bi], ζi = 1 in [ai + δ, bi − δ], 0 ≤ ζi ≤ 1 and |ζ ′i| ≤ 1/δ. We define

ζ(x)m = min(ζ1(x1)
m, ζ2(x2)

m, . . . , ζN(xN )m).

The graph of this function is a truncated pyramid with the base Q. We
aim at using the test function

ϕ(x, t) = ζ(x)m − (v(x, t)m)1

in ∫ T

0

∫

Q

(
∇(vm)∗ · ∇ϕ+ ϕ

∂v∗

∂t

)
dx dt ≥ 0.
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We claim that ϕ ≥ 0. Notice that ∆(ζm) ≤ 0. Thus ζ is a super-
solution of the porous medium equation. More precisely, the function
ζm is superharmonic as a minimum of a finite number of planes. By
comparison in the domains dist(x, ∂Q) < δ we have ζ(x) ≥ (v(x, t))1.
Since (v1)

m = (vm)1, we conclude that ϕ ≥ 0. The substitution of ϕ
implies

∫ T

0

∫

Q

∇(vm)∗ · ∇(vm)1 dx dt+

∫ T

0

∫

Q

(vm)1
∂v∗

∂t
dx dt

≤
∫ T

0

∫

Q

∇(vm)∗ · ∇(ζm) dx dt+

∫ T

0

∫

Q

ζm
∂v∗

∂t
dx dt.

Since ζm = 1 and ∇(ζm) = 0 on the set where vm ≥ 1, an elementary
inequality yields

lim
σ→0

∫ T

0

∫

Q

∇(vm)∗ · ∇(ζm) dx dt =

∫ T

0

∫

Q

∇(vm) · ∇(ζm) dx dt

≤ 1

2

∫ T

0

∫

Q

|∇(vm)1|2 dx dt+
1

2

∫ T

0

∫

Q

|∇(ζm)|2 dx dt.

The estimate ∫ T

0

∫

Q

|∇(ζm)|2 dx dt ≤ cδ−2T |Q|

holds. (Actually it is of magnitude O(δ−1)). On the other hand
∫ T

0

∫

Q

ζm
∂v∗

∂t
dx dt =

∫

Q

ζm
∫ T

0

∂v∗

∂t
dx dt

=

∫

Q

ζmv∗(x, T ) dx ≤
∫

Q

v∗(x, T ) dx

The claim follows from these estimates letting σ → 0.

To conclude the proof of Theorem 1.4 we have to assure that the hypo-
thesis of Theorem 4.7 is valid. The previous considerations yield that
Lemma 5.1 is valid for the function V and so is Theorem 4.7. This
proves Theorem 1.4 for v restriced to Q′ × (t1, t2), because v = V in
this cylinder. Such a local result is enough for us. This concludes the
proof of Theorem 1.4.

6. Pointwise behaviour

A distinct feature is that the viscosity supersolutions are defined at
every point in their domain. Thus it is possible to study their pointwise
behaviour. The value taken at a given point is determinate. Indeed, we
cannot just change the value of a viscosity supersolution at one single
point without destroying the function: the new function is no longer
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a viscosity supersolution. As an illustration of this phenomenon, we
mention a simple proposition.

Proposition 6.1. Suppose that v1 and v2 are viscosity supersolutions
in Ω. If v1 = v2 almost everywhere in Ω, then v1 = v2 at each point in
Ω.

The proposition is a direct consequence of the main theorem in this
section. So is the fact that a viscosity supersolution is finite almost
everywhere (this is much more than what condition (2) in Definition
3.1 directly assures). It is important to pay attention to whether a prop-
erty holds almost everywhere (with respect to the (N +1)-dimensional
Lebesgue measure) or at each point. The concept

ess lim inf
(y,τ)→(x,t)

v(y, τ)

is central. The notion of “essential limes inferior” means that the sets
of (N + 1)-dimensional measure zero are neglected in the calculation
of the limes inferior. For a lower semicontinuous function v defined in
Ω it holds that

v(x, t) ≤ lim inf
(y,τ)→(x,t)

v(y, τ)

≤ ess lim inf
(y,τ)→(x,t)

v(y, τ) ≤ ess lim inf
(y,τ)→(x,t),τ<t

v(y, τ),

when (x, t) ∈ Ω. We show that for a viscosity supersolution, in fact,
equality holds at each step.

Theorem 6.2. Suppose that v is a viscosity supersolution Ω. Then

v(x, t) = ess lim inf
(y,τ)→(x,t),τ<t

v(y, τ)

holds at each point (x, t) ∈ Ω.

For the determination of v(x, t) it is not necessary to include the values
at any future points (y, τ) with τ ≥ t. Only the past, τ < t, counts.
The proof of the theorem is based on the lemma below.

Lemma 6.3. Let v be a viscosity supersolution in Ω and assume that
QT ⊂ Ω. Suppose that there is a constant λ such that

(1) v ≤ λ at each point in QT and
(2) v = λ at almost every point in QT .

Then v = λ at each point in Q× (0, T ].

Proof. Notice that the conclusion is immediate if v happens to be con-
tinuous. The idea is to employ an auxiliary continuous function, viz.
the solution h with boundary values v. It will turn out that h = λ.
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To this end, we repeat the construction of the approximants, as in the
beginning of section 5. Again let ψk ∈ C∞(Ω) be such that

ψ1 < ψ2 < . . . and lim
k→∞

ψk = v

at every point of Ω. Let vk be the solution to the obstacle problem in
QT with ψk acting as the obstacle. Thus vk ∈ Fψk

(QT ),

v1 ≤ v2 ≤ . . . and ψk ≤ vk ≤ v

at each point in QT . To be on the safe side concerning the result also
at the terminal instant t = T , we can solve the obstacle problem in a
slightly larger domain, say in QT+δ with an increment δ > 0.

Select Q′ ⊂⊂ Q. Let hk be the solution in Q′
T+δ with boundary values

vk on the parabolic boundary. At each point in Q′
T+δ we have

h1 ≤ h2 ≤ . . . and hk ≤ vk ≤ v.

By Harnack’s convergence theorem (Lemma 3.4) the limit function h =
lim hk is a solution in Q′

T+δ. We have

h(x, t) ≤ v(x, t) ≤ λ

at each point in Q′× (0, T ]. This is clear by (1) when t < T and at the
terminal points t = T the lower semicontinuity of v yields v(x, T ) ≤ λ.
So far, the inequalities are valid at each point in question.

We claim that h(x, t) = λ in Q′ × (0, T ]. Let us first see how the
theorem follows from this claim. It is clear that it implies that v = λ
in Q′

T . To extend this to the terminal time t = T , one only needs the
identity h(x, T ) = λ at each x ∈ Q′, which fact is true by the continuity
of h. Thus the claim implies that v = λ in Q′ × (0, T ]. Since Q′ was
arbitrary, the desired result follows in the whole Q× (0, T ].

The proof of the claim is based on the fact that both the function h and
the constant λ solve the same boundary value problem. By uniqueness
we can then conclude that h = λ. The uniqueness proof is based on
Oleinik’s celebrated test function

ϕ(x, t) =

∫ T

t

(
|vk(x, τ)|m−1vk(x, τ) − |hk(x, τ)|m−1hk(x, τ)

)
dτ,

which can be used in the two equations
∫ T

0

∫

Q′

(
− hϕt + ∇(|h|m−1h) · ∇ϕ

)
dx dt = 0

and ∫ T

0

∫

Q′

(
− λϕt + ∇(|λ|m−1λ) · ∇ϕ

)
dx dt = 0.
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Subtracting the equations and inserting ϕ, we obtain

−
∫ T

0

∫

Q′
(λ− h)(|vk|m−1vk − |hk|m−1hk) dx dt

=

∫ T

0

∫

Q′

∫ T

t

∇
(
|λ|m−1λ− |h(x, t)|m−1h(x, t)

)

· ∇
(
|vk(x, τ)|m−1vk(x, τ) − |hk(x, τ)|m−1hk(x, τ)

)
dτ dx dt.

We want to proceed to the limit as k → ∞. Using the Caccioppoli
estimate (Lemma 2.13) for vk we obtain a uniform bound like

∫ T

0

∫

Q′
|∇(|vk|m−1vk)|2 dx dt ≤ C1.

Applying the Caccioppoli estimate to the Poisson modification of vk
(described in the beginning of section 5) we also obtain

∫ T

0

∫

Q′
|∇(|hk|m−1hk)|2 dx dt ≤ C2.

(In practical terms, hk is the restriction to Q′
T+δ of a viscosity su-

persolution defined in the larger set QT+δ.) Therefore we can extract
subsequences so that

∇(|vk|m−1vk) → ∇(|v|m−1v) and ∇(|hk|m−1hk) → ∇(|h|m−1h)

weakly in L2(Q′
T ). This is sufficient to justify the passage to the limit

under the integral sign.

After some manipulations, involving the integral formula
∫ T

0

∫ T

t

f(x, t)f(x, τ) dτ dt =
1

2

( ∫ T

0

f(x, t) dt
)2

,

we can write the resulting limit formula as

−
∫ T

0

∫

Q′
(λ− h)(|v|m−1v − |h|m−1h) dx dt

=
1

2

∫

Q′

N∑

i=1

( ∫ T

0

∂

∂xi
(|λ|m−1λ− |h|m−1h) dt

)2

dx ≥ 0.

Using assumption (2) about the validity of an identity almost every-
where, we can replace v by λ in the integral. We arrive at

∫ T

0

∫

Q′
(λ− h)(|λ|m−1λ− |h|m−1h) dx dt ≤ 0.

Because of the elementary inequality

(λ− h)(|λ|m−1λ− |h|m−1h) ≥ 21−m|h− λ|m,
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we conclude that h = λ almost everywhere in Q′
T . The continuity of

the solution h implies that h(x, t) = λ at each point in Q′× (0, T ]. The
claim is proved. This concludes the proof.

We rewrite the previous lemma in the following more practical way.

Corollary 6.4. Suppose that v is a viscosity supersolution in Ω and
that QT ⊂⊂ Ω. If for some constant λ, it holds that

min(v(x, t), λ) = λ

for almost every (x, t) ∈ QT , then v(x, t) ≥ λ at each point (x, t) ∈
Q× (0, T ].

Proof. The function min(v(x, t), λ) is a viscosity supersolution and it
satisfies the assumptions in the previous lemma. Hence min(v(x, t), λ) =
λ at each point in Q× (0, T ]. The result follows.

Now we are ready for the proof of Theorem 6.2. Let (x0, t0) be an
arbitrary point in Ω. Denote

γ = ess lim inf
(x,t)→(x0,t0),t<t0

v(x, t).

We have already seen that γ ≥ v(x0, t0). Thus it is sufficient to prove
that γ ≤ v(x0, t0). The case v(x0, t0) = ∞ is clear. (So is the impossible
case γ = −∞.) Let us first assume that −∞ < γ < ∞. Given ε > 0
we can find δ > 0 and a small parallelepiped Q with midpoint x0 such
that the closure of Q× (t0 − δ, t0) is comprised in Ω and

v(x, t) > γ − ε = λ

for almost every (x, t) ∈ Q × (t0 − δ, t0). This is the definition of
the essential limes inferior, which assumes the inequality only almost
everywhere.

Now the above corollary applies with λ = γ−ε. It follows that v(x, t) ≥
λ at each point (x, t) ∈ Q × (t0 − δ, t0]. In particular, v(x0, t0) ≥ λ.
Since ε > 0 was arbitrary, we conclude that v(x0, t0) ≥ γ. This was
our claim.

Finally, the case γ = +∞ is easily reached via the functions

vk = min(v(x, t), k), k = 1, 2, . . . ,

for which the lemma has already been proved.
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7. Differentiability of lower powers

The attentive reader has probably noticed that, beginning with the
definition of a solution, the theory is formulated in terms of the the
gradient of vm, while the gradient of v itself is avoided. Indeed, the
validity of the rule ∇(vm) = mvm−1∇v is not clear on the interface, but
the open set where v(x, t) > ε > 0 offers no problem in this respect. To
this we may add that, concerning the mollification (2.6) it may happen
that ∇(v∗) does not exist in Sobolev’s sense. In fact, this phenomenon
occurs already for the Barenblatt solution B(x, t) even if the origin is
excluded. Thus the use of convolutions like (2.6) requires caution.

Calculations with B(x, t) reveal that, in the domain where it is a
solution (t > 0), the Sobolev gradient ∇(Bq) exists if and only if
q > (m − 1)/2. This gives a restriction for the power of a solution.
Including the singularity at the origin we obtain a further restriction
for viscosity supersolutions. The gradient ∇(Bq) exists if and only if

m− 1

2
< q < m +

1

N
.

We also have ∇(Bq) ∈ L2
loc(RN × R) if and only if

m− 1

2
< q <

m

2
.

This shows that the bound for the power in the next theorem is sharp.

Theorem 7.1. Suppose that v is a nonnegative viscosity supersolution
in Ω. Then the Sobolev derivative ∇(vq) exists and belongs to L2

loc(Ω)
if

m− 1

2
< q <

m

2
.

Moreover, we have the estimate

2mα

(m− α)2

∫ t2

t1

∫

D

ζ2
∣∣∇(v(m−α)/2)

∣∣2 dx dt

+
1

1 − α

∫

D

ζ2(x)v(x, t1)
1−α dx

≤ 2m

α

∫ t2

t1

∫

D

vm−α|∇ζ|2 dx dt

+
1

1 − α

∫

D

ζ2(x)v(x, t2)
1−α dx

(7.2)

wheever 0 < α < 1 and D × (t1, t2) b Ω. Here ζ = ζ(x) depends only
on x, ζ ∈ C∞

0 (D) and ζ ≥ 0.
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Proof. The proof requires several steps. First, notice that it is enough
to prove the Caccioppoli estimate (7.2). Second, it is enough to con-
sider bounded functions v. Indeed, we can apply the estimate for the
truncated functions min(v, j) and the passage j → ∞ offers no diffi-
culties.

Hence we assume that v is bounded. The test function v(x, t)−αζ2(x)
formally yields the desired inequality. We use the modified test function

ϕ(x, t) =
ζ2(x)

(v(x, t)m + ε)α/m
,

where ε > 0 is an auxiliary parameter. Here vm appears in a convenient
way. Observe that ϕ ∈ L2(t1, t2;H

1
0(D)) and we may use it as a test

function in (2.12). By (2.7) we have
∫ t2

t1

ϕ
∂(v∗)

∂t
dt = ζ2(x)

∫ t2

t1

(vm + ε)−α/m
∂(v∗)

∂t
dt

=ζ2(x)

∫ t2

t1

(
(vm + ε)−α/m − ((v∗)m + ε)−α/m

)v − v∗

σ
dt

+ ζ2(x)

∫ t2

t1

((v∗)m + ε)−α/m
∂(v∗)

∂t
dt

≤ζ2(x)

∫ t2

t1

((v∗)m + ε)−α/m
∂(v∗)

∂t
dt.

In the inequality, we used the fact that one of the integrands is non-
positive. The integral on the right-hand side can, in principle, be eval-
uated. We have the bound

∫ t2

t1

ϕ
∂(v∗)

∂t
dt ≤ ζ2(x)

∫ v∗(x,t2)

v∗(x,t1)

(zm + ε)−α/m dz, (7.3)

where it is decisive that α < 1. Integrating with respect to x and
letting σ → 0, we arrive at

lim sup
σ→0

∫ t2

t1

∫

D

ϕ
∂(v∗)

∂t
dt dx ≤

∫

D

ζ2(x)

∫ v(x,t2)

v(x,t1)

(zm + ε)−α/m dz dx.

So far, (2.12) takes the form

−
∫ t2

t1

∫

D

∇ϕ · ∇(vm) dx dt ≤
∫

D

ζ(x)2

∫ v(x,t2)

v(x,t1)

(zm + ε)−α/m dz,

where σ is no longer present.

We observe that the obtained upper bound has the limit

1

1 − α

∫

D

ζ2
(
v(x, t2)

1−α − v(x, t1)
1−α) dx

as ε→ 0.
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Next we consider the elliptic term of (2.12), where we already wrote
∇ϕ · ∇(vm) instead of ∇ϕ · ∇(vm)∗. We have

∇ϕ · ∇(vm) = − α

m

ζ2|∇(vm)|2

(vm + ε)1+α/m
+

2ζ∇ζ · ∇(vm)

(vm + ε)α/m
. (7.4)

The elementary inequality 2ab ≤ βa2 + β−1b2 yields

2ζ|∇ζ||∇(vm)|
(vm + ε)α/m

≤ β
ζ2|∇(vm)|2

(vm + ε)1+α/m
+

1

β
|∇ζ|2(vm + ε)1−α/m.

When β is small, say β = α/(2m), the first term on the right-hand side
is absorbed by the similar term in (7.4). Writing

ζ2|∇(vm)|2

(vm + ε)1+α/m
=

( 2m

m− α

)2∣∣∇(vm + ε)(m−α)/(2m)
∣∣2,

we finally arrive at

2mα

(m− α)2

∫ t2

t1

∫

D

ζ2
∣∣∇(vm + ε)(m−α)/(2m))

∣∣2 dx dt

≤2m

α

∫ t2

t1

∫

D

(vm + ε)(m−α)/m|∇ζ|2 dx dt

+

∫

D

ζ2(x)

∫ v(x,t2)

v(x,t1)

(zm + ε)−α/m dz dx

after some arithmetic. Now we can obviously let ε → 0 and use a
standard weak compactness argument to conclude that ∇(v(m−α)/2)
exists in Sobolev’s sense. This concludes the proof.
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[9] J.L. Lions, Quelques méthodes de résolution des problemès aux limites non
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