SCALING INVARIANT SOBOLEV-LORENTZ CAPACITY ON \mathbf{R}^{n}

SERBAN COSTEA

Abstract

We develop a capacity theory based on the definition of Sobolev functions on \mathbf{R}^{n} with respect to the Lorentz norm. Basic properties of capacity, including monotonicity, finite subadditivity and convergence results are included. We also provide sharp estimates for the capacity of balls. SobolevLorentz capacity and Hausdorff measures are related.

1. Introduction

We recall that for $1 \leq p<\infty$ and $0 \leq \lambda \leq n$, the Morrey space $\mathcal{L}^{p, \lambda}\left(\mathbf{R}^{n}\right)$ is defined to be the linear space of measurable functions $u \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$ such that

$$
\|u\|_{\mathcal{L}^{p, \lambda}\left(\mathbf{R}^{n}\right)}=\sup _{x \in \mathbf{R}^{n}} \sup _{r>0}\left(r^{-\lambda} \int_{B(x, r)}|u(y)|^{p} d y\right)^{1 / p}<\infty .
$$

In other words, the fractional maximal function

$$
M_{n-\lambda} u(x)=\sup _{r>0}\left(r^{n-\lambda} \frac{1}{|B(x, r)|} \int_{B(x, r)}|u(y)|^{p} d y\right)^{1 / p}
$$

is bounded in \mathbf{R}^{n}. In particular, $\mathcal{L}^{n, 0}\left(\mathbf{R}^{n}\right)=L^{n}\left(\mathbf{R}^{n}\right)$. We refer to [Gia83, p. 65] for more information about Morrey spaces and their use in the theory of partial differential equations. One notices that the weak Lebesgue space $L^{n, \infty}\left(\mathbf{R}^{n}\right)$ is contained in $\mathcal{L}^{p, n-p}\left(\mathbf{R}^{n}\right)$ for every $p \in[1, n)$. Similarly we can define the Morrey space $\mathcal{L}^{p, \lambda}\left(\mathbf{R}^{n} ; \mathbf{R}^{m}\right)$ for vector-valued measurable functions. Capacities related to Morrey spaces were studied by Adams and Xiao in [AX04].

We already noticed that the Lorentz spaces embed continuously into the Morrey spaces; that is, $L^{n, q}\left(\mathbf{R}^{n}\right) \hookrightarrow L^{n, \infty}\left(\mathbf{R}^{n}\right) \hookrightarrow \mathcal{L}^{p, n-p}\left(\mathbf{R}^{n}\right)$ whenever $1 \leq p<n<q \leq$ ∞. Sobolev-Lorentz spaces have recently been studied by Kauhanen, Koskela, and Malý in [KKM99] and by Malý, Swanson, and Ziemer in [MSZ05].

Our results concerning the Sobolev-Lorentz capacity generalize some of the results concerning s-capacity on \mathbf{R}^{n} for $s \in(1, n]$. See [HKM93, Chapter 2] for the s-capacity on \mathbf{R}^{n} and [KM96], [KM00] for capacity on general metric spaces.

Using [HKM93, 2.13], we provide sharp estimates for the Sobolev-Lorentz $n, q-$ capacity of pairs $(\bar{B}(0, r), B(0,1))$ for $n<q \leq \infty$ and small r. The SobolevLorentz capacity and Hausdorff measures are also related; we obtain results that are Sobolev-Lorentz analogues of those obtained by Reshetnyak in [Res69], Martio in [Mar79], Maz'ja in [Maz85] and others.

This is part of my thesis at the University of Michigan under the guidance of Professor Juha Heinonen.

2. Preliminaries

Our notation in this paper is standard and generally as in [HKM93]. Here Ω will denote a nonempty open subset of \mathbf{R}^{n}, while $d x=d m_{n}(x)$ will denote the Lebesgue n-measure in \mathbf{R}^{n}, where $n \geq 2$ is integer. For two sets $A, B \subset \mathbf{R}^{n}$, we define $\operatorname{dist}(A, B)$, the distance between A and B, by

$$
\operatorname{dist}(A, B)=\inf _{a \in A, b \in B}|a-b| .
$$

For $n \geq 2$ integer $\Omega_{n}=|B(0,1)|$ denotes the measure of the n-dimensional unit ball, that is $\Omega_{n}=|B(0,1)|$. Thus, $\omega_{n-1}=n \Omega_{n}$, where ω_{n-1} denotes the spherical measure of the n-1-dimensional sphere.

For a measurable $u: \Omega \rightarrow \mathbf{R}^{n}$, supp u is the smallest closed set such that u vanishes outside $\operatorname{supp} u$. We also define

$$
\begin{aligned}
C_{0}(\Omega) & =\{\varphi \in C(\Omega): \operatorname{supp} \varphi \subset \subset \Omega\} \\
\operatorname{Lip}(\Omega) & =\{\varphi: \Omega \rightarrow \mathbf{R}: \varphi \text { is Lipschitz }\} .
\end{aligned}
$$

For a function $\varphi \in \operatorname{Lip}(\Omega) \cap C_{0}(\Omega)$ we write

$$
\nabla \varphi=\left(\partial_{1} \varphi, \partial_{2} \varphi, \ldots, \partial_{n} \varphi\right)
$$

for the gradient of φ. This notation makes sense, since from Rademacher's theorem ([Fed69, Theorem 3.1.6]) every Lipschitz function on \mathbf{R}^{n} is a.e. differentiable.

Throughout this section we will assume that $m \geq 1$ is a positive integer. Let $f: \Omega \rightarrow \mathbf{R}^{m}$ be a measurable function. We define $\lambda_{[f]}$, the distribution function of f as follows (see [BS88, Definition II.1.1] and [SW75, p. 57]):

$$
\lambda_{[f]}(t)=|\{x \in \Omega:|f(x)|>t\}|, \quad t \geq 0 .
$$

We define f^{*}, the nonincreasing rearrangement of f by

$$
f^{*}(t)=\inf \left\{v: \lambda_{[f]}(v) \leq t\right\}, \quad t \geq 0 .
$$

(See [BS88, Definition II.1.5] and [SW75, p. 189].) We notice that f and f^{*} have the same distribution function. Moreover, for every positive α we have $\left(|f|^{\alpha}\right)^{*}=\left(|f|^{*}\right)^{\alpha}$ and if $|g| \leq|f|$ a.e. on Ω, then $g^{*} \leq f^{*}$. (See [BS88, Proposition II.1.7].) We also define $f^{* *}$, the maximal function of f^{*} by

$$
f^{* *}(t)=m_{f^{*}}(t)=\frac{1}{t} \int_{0}^{t} f^{*}(s) d s, \quad t>0 .
$$

(See [BS88, Definition II.3.1] and [SW75, p. 203].)
Throughout this paper, we will denote by p^{\prime} the Hölder conjugate of $p \in[1, \infty]$, that is

$$
p^{\prime}=\left\{\begin{array}{lc}
\infty & \text { if } p=1 \\
\frac{p}{p-1} & \text { if } 1<p<\infty \\
1 & \text { if } p=\infty
\end{array}\right.
$$

The Lorentz space $L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right), 1<p<\infty, 1 \leq q \leq \infty$, is defined as follows:
$L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)=\left\{f: \Omega \rightarrow \mathbf{R}^{m}: f\right.$ is measurable and $\left.\|f\|_{L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)}<\infty\right\}$,
where

$$
\|f\|_{L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)}=\||f|\|_{p, q}=\left\{\begin{array}{cc}
\left(\int_{0}^{\infty}\left(t^{\frac{1}{p}} f^{*}(t)\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}} & 1 \leq q<\infty \\
\sup _{t>0} t \lambda_{[f]}(t)^{\frac{1}{p}}=\sup _{s>0} s^{\frac{1}{p}} f^{*}(s) & q=\infty \\
2
\end{array}\right.
$$

(See [BS88, Definition IV.4.1] and [SW75, p. 191].) If $1 \leq q \leq p$, then $\|\cdot\|_{L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)}$ already represents a norm, but for $p<q \leq \infty$ it represents a quasinorm, equivalent to the norm $\|\cdot\|_{L^{(p, q)}\left(\Omega ; \mathbf{R}^{m}\right)}$, where

$$
\|f\|_{L^{(p, q)}\left(\Omega ; \mathbf{R}^{m}\right)}=\||f|\|_{(p, q)}=\left\{\begin{array}{lc}
\left(\int_{0}^{\infty}\left(t^{\frac{1}{p}} f^{* *}(t)\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}} & 1 \leq q<\infty \\
\sup _{t>0} t^{\frac{1}{p}} f^{* *}(t) & q=\infty
\end{array}\right.
$$

(See [BS88, Definition IV.4.4].) Namely, from [BS88, Lemma IV.4.5] we have that

$$
\||f|\|_{L^{p, q}(\Omega)} \leq\||f|\|_{L^{(p, q)}(\Omega)} \leq \frac{p}{p-1}\|\mid f\|_{L^{p, q}(\Omega)}
$$

for every $1 \leq q \leq \infty$ and every measurable function $f: \Omega \rightarrow \mathbf{R}^{m}$.
It is known that $\left(L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right),\|\cdot\|_{L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)}\right)$ is a Banach space for $1 \leq q \leq p$, while $\left(L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right),\|\cdot\|_{L^{(p, q)}\left(\Omega ; \mathbf{R}^{m}\right)}\right)$ is a Banach space for $1<p<\infty, 1 \leq q \leq \infty$. These spaces are reflexive if $1<q<\infty$. (See [BS88, Theorem IV.4.7, Corollaries I.4.3 and IV.4.8], the definition of $L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)$ and the discussion after Definition 2.1.)

Definition 2.1. (See [BS88, Definition I.3.1].) Let $1<p<\infty$ and $1 \leq q \leq \infty$. Let $X=L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)$. A function f in X is said to have absolutely continuous norm in X if and only if $\left\|f \chi_{E_{k}}\right\|_{X} \rightarrow 0$ for every sequence E_{k} satisfying $E_{k} \rightarrow \emptyset$ a.e.

Let X_{a} be the subspace of X consisting of functions of absolutely continuous norm and let X_{b} be the closure in X of the set of simple functions. It is known that $X_{a}=X_{b}$. (See [BS88, Theorem I.3.13].) Moreover, we have $X_{a}=X_{b}=X$ whenever $1 \leq q<\infty$. (See [BS88, Theorem IV.4.7 and Corollary IV.4.8] and the definition of $L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)$.)

We prove now that $X_{a} \neq X$ for $X=L^{p, \infty}\left(\Omega ; \mathbf{R}^{m}\right)$. Without loss of generality we can assume that $m=1$ and that $\Omega=B(0,2) \backslash\{0\}$. We define $u: \Omega \rightarrow \mathbf{R}$,

$$
u(x)=\left\{\begin{array}{cl}
|x|^{-\frac{n}{p}} & \text { if } 0<|x|<1 \tag{1}\\
0 & \text { if } 1 \leq|x| \leq 2
\end{array}\right.
$$

It is easy to see that $u \in L^{p, \infty}(\Omega)$ and moreover,

$$
\left\|u \chi_{B(0, \alpha)}\right\|_{L^{p, \infty}(\Omega)}=\|u\|_{L^{p, \infty}(\Omega)}=\Omega_{n}^{1 / p}
$$

for every $\alpha>0$. This shows that u does not have absolutely continuous weak L^{p}-norm and therefore $L^{p, \infty}(\Omega)$ does not have absolutely continuous norm. Since $L^{p, \infty}(\Omega)$ can be identified with $\left(L^{p^{\prime}, 1}(\Omega)\right)^{*}$ (see [BS88, Corollary IV.4.8]), it follows from [BS88, Corollaries I.4.3, I.4.4, IV.4.8 and Theorem IV.4.7] that neither $L^{p, 1}(\Omega)$, nor $L^{p, \infty}(\Omega)$ are reflexive whenever $1<p<\infty$.

Remark 2.2. It is also known (see [BS88, Proposition IV.4.2]) that for every $p \in$ $(1, \infty)$ and $1 \leq r<s \leq \infty$ there exists a constant $C(p, r, s)$ such that

$$
\begin{equation*}
\||f|\|_{L^{p, s}(\Omega)} \leq C(p, r, s)\left\||f \||_{L^{p, r}(\Omega)}\right. \tag{2}
\end{equation*}
$$

for all measurable functions $f \in L^{p, r}\left(\Omega ; \mathbf{R}^{m}\right)$ and all integers $m \geq 1$. In particular, we have the embedding $L^{p, r}\left(\Omega ; \mathbf{R}^{m}\right) \hookrightarrow L^{p, s}\left(\Omega ; \mathbf{R}^{m}\right)$.

We have the following generalized Hölder inequality for Lorentz spaces.

Theorem 2.3. Suppose $\Omega \subset \mathbf{R}^{n}$ has finite measure. Let $1<p_{1}, p_{2}, p_{3}<\infty$, $1 \leq q_{1}, q_{2}, q_{3} \leq \infty$ be such that

$$
\frac{1}{p_{1}}=\frac{1}{p_{2}}+\frac{1}{p_{3}}
$$

and either

$$
\frac{1}{q_{1}}=\frac{1}{q_{2}}+\frac{1}{q_{3}}
$$

whenever $1 \leq q_{1}, q_{2}, q_{3}<\infty$ or $1 \leq q_{1}=q_{2} \leq q_{3}=\infty$ or $1 \leq q_{1}=q_{3} \leq q_{2}=\infty$. Then

$$
\|f\|_{L^{p_{1}, q_{1}}\left(\Omega ; \mathbf{R}^{m}\right)} \leq\|f\|_{L^{p_{2}, q_{2}}\left(\Omega ; \mathbf{R}^{m}\right)}\left\|\chi_{\Omega}\right\|_{L^{p_{3}, q_{3}}(\Omega)} .
$$

Proof. From the definition of the Lorentz norms and quasinorms for vector-valued functions, it follows that it is enough to assume that $m=1$. Let $f \in L^{p_{2}, q_{2}}(\Omega)$. Since Ω has finite measure, we have $f^{*}(t)=0$ for every $t \geq|\Omega|$. We have to analyze few distinct cases.
(i) $1 \leq q_{1}, q_{2}, q_{3}<\infty$. We have

$$
\left.\left.\begin{array}{rl}
\|f\|_{L^{p_{1}, q_{1}}(\Omega)} & =\left(\int_{0}^{|\Omega|}\left(f^{*}(t) t^{\frac{1}{p_{1}}-\frac{1}{q_{1}}}\right)^{q_{1}} d t\right)^{\frac{1}{q_{1}}} \\
& =\left(\int _ { 0 } ^ { | \Omega | } \left(f^{*}(t) t^{\frac{1}{p_{2}}-\frac{1}{q_{2}}} t^{\frac{1}{p_{3}}}-\frac{1}{q_{3}}\right.\right.
\end{array}\right)^{q_{1}} d t\right)^{\frac{1}{q_{1}}} .
$$

(ii) $q_{1}=q_{2}=q_{3}=\infty$. Then

$$
\begin{aligned}
\|f\|_{L^{p_{1}, \infty}(\Omega)} & =\sup _{0 \leq t \leq|\Omega|} t^{\frac{1}{p_{1}}} f^{*}(t) \leq|\Omega|^{\frac{1}{p_{1}}-\frac{1}{p_{2}}} \sup _{0 \leq t \leq|\Omega|} t^{\frac{1}{p_{2}}} f^{*}(t) \\
& =|\Omega|^{\frac{1}{p_{3}}}\|f\|_{L^{p_{2}, \infty}(\Omega)}=\|f\|_{L^{p_{2}, \infty}(\Omega)}\left\|\chi_{\Omega}\right\|_{L^{p_{3}, \infty}(\Omega)}
\end{aligned}
$$

(iii) $1 \leq q_{1}=q_{2}<q_{3}=\infty$. Then

$$
\begin{aligned}
\|f\|_{L^{p_{1}, q_{1}}(\Omega)} & =\left(\int_{0}^{|\Omega|}\left(f^{*}(t) t^{\frac{1}{p_{1}}-\frac{1}{q_{1}}}\right)^{q_{1}} d t\right)^{\frac{1}{q_{1}}} \\
& =\left(\int_{0}^{|\Omega|}\left(f^{*}(t) t^{\frac{1}{p_{2}}-\frac{1}{q_{1}}}\right)^{q_{1}} t^{\frac{q_{1}}{p_{3}}} d t\right)^{\frac{1}{q_{1}}} \\
& \leq|\Omega|^{\frac{1}{p_{3}}}\left(\int_{0}^{|\Omega|}\left(f^{*}(t) t^{\frac{1}{p_{2}}-\frac{1}{q_{1}}}\right)^{q_{1}} d t\right)^{\frac{1}{q_{1}}} \\
& =\|f\|_{L^{p_{2}, q_{1}}(\Omega)}\left\|\chi_{\Omega}\right\|_{L^{p_{3}, \infty}(\Omega)}=\|f\|_{L^{p_{2}, q_{2}}(\Omega)}\left\|\chi_{\Omega}\right\|_{L^{p_{3}, \infty}(\Omega)}
\end{aligned}
$$

(iv) $1 \leq q_{1}=q_{3}<q_{2}=\infty$. Then

$$
\begin{aligned}
\|f\|_{L^{p_{1}, q_{1}}(\Omega)} & =\left(\int_{0}^{|\Omega|}\left(f^{*}(t) t^{\frac{1}{p_{1}}-\frac{1}{q_{1}}}\right)^{q_{1}} d t\right)^{\frac{1}{q_{1}}} \\
& =\left(\int_{0}^{|\Omega|}\left(f^{*}(t) t^{\frac{1}{p_{2}}}\right)^{q_{1}}\left(t^{\frac{1}{p_{3}}-\frac{1}{q_{1}}}\right)^{q_{1}} d t\right)^{\frac{1}{q_{1}}} \\
& \leq \sup _{0 \leq t \leq|\Omega|} f^{*}(t) t^{\frac{1}{p_{2}}}\left(\int_{0}^{|\Omega|}\left(t^{\frac{1}{p_{3}}-\frac{1}{q_{1}}}\right)^{q_{1}} d t\right)^{\frac{1}{q_{1}}} \\
& =\|f\|_{L^{p_{2}, \infty}(\Omega)}\left\|\chi_{\Omega}\right\|_{L^{p_{3}, q_{1}}(\Omega)}=\|f\|_{L^{p_{2}}, \infty(\Omega)}\left\|\chi_{\Omega}\right\|_{L^{p_{3}, q_{3}}(\Omega)}
\end{aligned}
$$

This finishes the proof.
As an application of Theorem 2.3 we have the following result.
Corollary 2.4. Let $1<p<q \leq \infty$ and $\varepsilon \in(0, p-1)$ be fixed. Suppose $\Omega \subset \mathbf{R}^{n}$ has finite measure. Then

$$
\begin{equation*}
\|f\|_{L^{p-\varepsilon}\left(\Omega ; \mathbf{R}^{m}\right)} \leq C(p, q, \varepsilon)|\Omega|^{\frac{\varepsilon}{p(p-\varepsilon)}}\|f\|_{L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)} \tag{3}
\end{equation*}
$$

for every integer $m \geq 1$, where

$$
C(p, q, \varepsilon)=\left\{\begin{array}{cc}
\left(\frac{p(q-p+\varepsilon)}{q}\right)^{\frac{1}{p-\varepsilon}-\frac{1}{q}} \varepsilon^{\frac{1}{q}-\frac{1}{p-\varepsilon}}, & p<q<\infty \\
p^{\frac{1}{p-\varepsilon}} \varepsilon^{-\frac{1}{p-\varepsilon}}, & q=\infty .
\end{array}\right.
$$

Proof. From the definition of the Lorentz norms and quasinorms for vector-valued functions, it follows that it is enough to assume that $m=1$. A simple application of Theorem 2.3 gives us the desired conclusion.

We have two interesting results concerning Lorentz spaces.
Theorem 2.5. Suppose $1<p<q \leq \infty$. Let $\Omega \subset \mathbf{R}^{n}$ and let $f_{1}, f_{2} \in L^{p, q}(\Omega)$. We let $f_{3}=\max \left(\left|f_{1}\right|,\left|f_{2}\right|\right)$. Then $f_{3} \in L^{p, q}(\Omega)$ and

$$
\left\|f_{3}\right\|_{L^{p, q}(\Omega)}^{p} \leq\left\|f_{1}\right\|_{L^{p, q}(\Omega)}^{p}+\left\|f_{2}\right\|_{L^{p, q}(\Omega)}^{p} .
$$

Proof. Without loss of generality we can assume that both f_{1} and f_{2} are nonnegative. We have to consider two cases, depending on whether $p<q<\infty$ or $q=\infty$.

Suppose $p<q<\infty$. We have ([KKM99, Proposition 2.1])

$$
\left\|f_{i}\right\|_{L^{p, q}(\Omega)}^{p}=\left(p \int_{0}^{\infty} s^{q-1} \lambda_{\left[f_{i}\right]}(s)^{\frac{q}{p}} d s\right)^{\frac{p}{q}}
$$

where $\lambda_{\left[f_{i}\right]}$ is the distribution function of f_{i} for $i=1,2,3$. From the definition of f_{3} we obviously have $\lambda_{\left[f_{3}\right]}(s) \leq \lambda_{\left[f_{1}\right]}(s)+\lambda_{\left[f_{2}\right]}(s)$ for every $s \geq 0$, which implies that

$$
\begin{aligned}
\left\|f_{3}\right\|_{L^{p, q}(\Omega)}^{p} & \leq\left(p \int_{0}^{\infty} s^{q-1}\left(\lambda_{\left[f_{1}\right]}(s)+\lambda_{\left[f_{2}\right]}(s)\right)^{\frac{q}{p}} d s\right)^{\frac{p}{q}} \\
& \leq\left(p \int_{0}^{\infty} s^{q-1} \lambda_{\left[f_{1}\right]}(s)^{\frac{q}{p}} d s\right)^{\frac{p}{q}}+\left(p \int_{0}^{\infty} s^{q-1} \lambda_{\left[f_{2}\right]}(s)^{\frac{q}{p}} d s\right)^{\frac{p}{q}} \\
& =\left\|f_{1}\right\|_{L^{p, q}(\Omega)}^{p}+\left\|f_{2}\right\|_{L^{p, q}(\Omega)}^{p} .
\end{aligned}
$$

Suppose now $q=\infty$. From the definition of f_{3} we obviously have as before $\lambda_{\left[f_{3}\right]}(s) \leq \lambda_{\left[f_{1}\right]}(s)+\lambda_{\left[f_{2}\right]}(s)$ for every $s \geq 0$. Therefore

$$
s^{p} \lambda_{\left[f_{3}\right]}(s) \leq s^{p} \lambda_{\left[f_{1}\right]}(s)+s^{p} \lambda_{\left[f_{3}\right]}(s)
$$

for every $s \geq 0$ which implies

$$
\begin{equation*}
s^{p} \lambda_{\left[f_{3}\right]}(s) \leq\left\|f_{1}\right\|_{L^{p, \infty}(\Omega)}^{p}+\left\|f_{2}\right\|_{L^{p, \infty}(\Omega)}^{p} \tag{4}
\end{equation*}
$$

for every $s \geq 0$. By taking the supremum over all $s \geq 0$ in (4), we get the desired conclusion.

Theorem 2.6. Suppose $1<p<q \leq \infty$ and $\varepsilon \in(0,1)$. Let $\Omega \subset \mathbf{R}^{n}$ and let $f_{1}, f_{2} \in L^{p, q}(\Omega)$. We denote $f_{3}=f_{1}+f_{2}$. Then $f_{3} \in L^{p, q}(\Omega)$ and

$$
\left\|f_{3}\right\|_{L^{p, q}(\Omega)}^{p} \leq(1-\varepsilon)^{-p}\left\|f_{1}\right\|_{L^{p, q}(\Omega)}^{p}+\varepsilon^{-p}| | f_{2} \|_{L^{p, q}(\Omega)}^{p} .
$$

Proof. Without loss of generality we can assume that both f_{1} and f_{2} are nonnegative. We have to consider two cases, depending on whether $p<q<\infty$ or $q=\infty$.

Suppose $p<q<\infty$. We have ([KKM99, Proposition 2.1])

$$
\left\|f_{i}\right\|_{L^{p, q}(\Omega)}^{p}=\left(p \int_{0}^{\infty} s^{q-1} \lambda_{\left[f_{i}\right]}(s)^{\frac{q}{p}} d s\right)^{\frac{p}{q}}
$$

where $\lambda_{\left[f_{i}\right]}$ is the distribution function of f_{i} for $i=1,2,3$. From the definition of f_{3} we obviously have $\lambda_{\left[f_{3}\right]}(s) \leq \lambda_{\left[f_{1}\right]}((1-\varepsilon) s)+\lambda_{\left[f_{2}\right]}(\varepsilon s)$ for every $s \geq 0$, which implies that

$$
\begin{aligned}
\left\|f_{3}\right\|_{L^{p, q}(\Omega)}^{p} & \leq\left(p \int_{0}^{\infty} s^{q-1}\left(\lambda_{\left[f_{1}\right]}((1-\varepsilon) s)+\lambda_{\left[f_{2}\right]}(\varepsilon s)\right)^{\frac{q}{p}} d s\right)^{\frac{p}{q}} \\
& \leq\left(p \int_{0}^{\infty} s^{q-1} \lambda_{\left[f_{1}\right]}((1-\varepsilon) s)^{\frac{q}{p}} d s\right)^{\frac{p}{q}}+\left(p \int_{0}^{\infty} s^{q-1} \lambda_{\left[f_{2}\right]}(\varepsilon s)^{\frac{q}{p}} d s\right)^{\frac{p}{q}} \\
& =(1-\varepsilon)^{-p}\left\|f_{1}\right\|_{L^{p, q}(\Omega)}^{p}+\varepsilon^{-p}\left\|f_{2}\right\|_{L^{p, q}(\Omega)}^{p} .
\end{aligned}
$$

Suppose now $q=\infty$. From the definition of f_{3} we obviously have as before $\lambda_{\left[f_{3}\right]}(s) \leq \lambda_{\left[f_{1}\right]}((1-\varepsilon) s)+\lambda_{\left[f_{2}\right]}(\varepsilon s)$ for every $s \geq 0$. Therefore

$$
s^{p} \lambda_{\left[f_{3}\right]}(s) \leq s^{p} \lambda_{\left[f_{1}\right]}((1-\varepsilon) s)+s^{p} \lambda_{\left[f_{3}\right]}(\varepsilon s)
$$

for every $s \geq 0$ which implies

$$
\begin{equation*}
s^{p} \lambda_{\left[f_{3}\right]}(s) \leq(1-\varepsilon)^{-p}\left\|f_{1}\right\|_{L^{p, \infty}(\Omega)}^{p}+\varepsilon^{-p}\left\|f_{2}\right\|_{L^{p, \infty}(\Omega)}^{p} \tag{5}
\end{equation*}
$$

for every $s \geq 0$. By taking the supremum over all $s \geq 0$ in (5), we get the desired conclusion.

Theorem 2.6 has an interesting corollary.
Corollary 2.7. Let $\Omega \subset \mathbf{R}^{n}$ be open. Suppose $1<p<\infty$ and $1 \leq q \leq \infty$. Let f_{k} be a sequence of functions in $L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)$ converging to f with respect to the p, q-quasinorm and pointwise a.e. in Ω. Then

$$
\lim _{k \rightarrow \infty}\left\|f_{k}\right\|_{L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)}=\|f\|_{L^{p, q}\left(\Omega ; \mathbf{R}^{m}\right)} .
$$

Proof. We can assume without loss of generality that $m=1$. Since for $1 \leq q \leq p$ $\|\cdot\|_{L^{p, q}(\Omega)}$ is already a norm, the claim is trivial in this case. Hence we can assume without loss of generality that $p<q \leq \infty$. The proof for the case $q=\infty$ was presented to me by Jan Malý.

Since $f^{*} \leq \lim \inf f_{k}^{*}($ see $[\mathrm{BS} 88$, Proposition II.1.7]), it follows easily that

$$
\liminf _{k \rightarrow \infty}\left\|f_{k}\right\|_{L^{p, q}(\Omega)} \geq\|f\|_{L^{p, q}(\Omega)} .
$$

We would be done if we show that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|f_{k}\right\|_{L^{p, q}(\Omega)} \leq\|f\|_{L^{p, q}(\Omega)} \tag{6}
\end{equation*}
$$

In order to do that we fix $\varepsilon \in(0,1)$. From Theorem 2.6 we have

$$
\left\|f_{k}\right\|_{L^{p, q}(\Omega)}^{p} \leq(1-\varepsilon)^{-p}\|f\|_{L^{p, q}(\Omega)}^{p}+\varepsilon^{-p}\left\|f_{k}-f\right\|_{L^{p, q}(\Omega)}^{p}
$$

for every $k=1,2, \ldots$ Taking limsup on both sides and using the fact that f_{k} converges to f with respect to the $L^{p, q}$-quasinorm, we get

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|f_{k}\right\|_{L^{p, q}(\Omega)}^{p} \leq(1-\varepsilon)^{-p}\|f\|_{L^{p, q}(\Omega)}^{p} \tag{7}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0$ in (7) yields (6). This finishes the proof.

We use the notation

$$
u^{+}=\max (u, 0) \text { and } u^{-}=\min (u, 0)
$$

If $u \in C_{0}(\Omega) \cap \operatorname{Lip}(\Omega)$, then obviously $u^{+} \in C_{0}(\Omega) \cap \operatorname{Lip}(\Omega)$ and from [HKM93, Lemmas 1.11 and 1.19] we have

$$
\nabla u^{+}=\left\{\begin{array}{cl}
\nabla u & \text { if } u>0 \tag{8}\\
0 & \text { if } u \leq 0
\end{array}\right.
$$

3. Sobolev-Lorentz n, q Relative capacity

Suppose $1<q \leq \infty$. Let $\Omega \subset \mathbf{R}^{n}$ be an open set. Let $K \subset \Omega$ be compact. The Sobolev-Lorentz n, q-capacity of the pair (K, Ω) is denoted

$$
\operatorname{cap}_{n, q}(K, \Omega)=\inf \left\{\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}^{n}: u \in W(K, \Omega)\right\}
$$

where

$$
W(K, \Omega)=\left\{u \in C_{0}^{\infty}(\Omega): u \geq 1 \text { in a neighborhood of } K\right\} .
$$

We call $W(K, \Omega)$ the set of admissible functions for the condenser (K, Ω).
Lemma 3.1. If $K \subset \Omega$ is compact, then we can get the same capacity if we restrict ourselves to a bigger set, namely

$$
W_{0}(K, \Omega)=\left\{u \in C_{0}(\Omega) \cap \operatorname{Lip}(\Omega): u \geq 1 \text { on } K\right\} .
$$

Proof. Let $u \in W_{0}(K, \Omega)$. We can assume without loss of generality that $u \geq 1$ in a neighborhood $U \subset \subset \Omega$ of K and that Ω is bounded. Let $\eta \in C_{0}^{\infty}(B(0,1))$ be a mollifier. For every integer $j \geq 1$ let $\eta_{j}(x)=j^{n} \eta(j x)$ and let $u_{j}=\eta_{j} * u$ be the convolution defined by

$$
u_{j}(x)=\left(\eta_{j} * u\right)(x)=\int_{\mathbf{R}^{n}} \eta_{j}(x-y) u(y) d y .
$$

For the basic properties of a mollifier see [Zie89, Theorems 1.6.1 and 2.1.3]. Let \widetilde{U} be a neighborhood of K such that $\widetilde{U} \subset \subset U$ and let j_{0} be a positive integer such that

$$
1 / j_{0}<\min \{\operatorname{dist}(\operatorname{supp} u, \partial \Omega), \operatorname{dist}(\widetilde{U}, \partial U)\}
$$

It is easy to see that $u_{j}, j \geq j_{0}$ is a sequence in $W(K, \Omega)$ and since $u \in C_{0}(\Omega) \cap$ $\operatorname{Lip}(\Omega)$, we have from [HKM93, Lemma 1.11] that

$$
\lim _{j \rightarrow \infty}\left(\left\|u_{j}-u\right\|_{L^{n+1}(\Omega)}+\left\|\nabla u_{j}-\nabla u\right\|_{L^{n+1}\left(\Omega ; \mathbf{R}^{n}\right)}\right)=0
$$

This together with (2) and Theorem 2.3 yields

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left(\left\|u_{j}-u\right\|_{L^{n, q}(\Omega)}+\left\|\nabla u_{j}-\nabla u\right\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}\right)=0 \tag{9}
\end{equation*}
$$

An appeal to Corollary 2.7 applied for $p=n$ establishes the assertion, since $W(K, \Omega) \subset W_{0}(K, \Omega)$.

Since truncation decreases the n, q-quasinorm whenever $1<q \leq \infty$, it follows from Lemma 3.1 that we can choose only functions $u \in W_{0}(K, \bar{\Omega})$ that satisfy $0 \leq u \leq 1$ when computing the n, q relative capacity.
3.1. Basic properties of the n, q relative capacity. Usually, a capacity is a monotone and subadditive set function. The following theorem will show, among other things, that this is true in the case of the n, q relative capacity. We follow [HKM93].
Theorem 3.2. Suppose $1<q \leq \infty$. Let $\Omega \subset \mathbf{R}^{n}$ be open. The set function $K \mapsto \operatorname{cap}_{n, q}(K, \Omega), K \subset \Omega, K$ compact, enjoys the following properties:
(i) If $K_{1} \subset K_{2}$, then $\operatorname{cap}_{n, q}\left(K_{1}, \Omega\right) \leq \operatorname{cap}_{n, q}\left(K_{2}, \Omega\right)$.
(ii) If $\Omega_{1} \subset \Omega_{2}$ are open and K is a compact subset of Ω_{1}, then

$$
\operatorname{cap}_{n, q}\left(K, \Omega_{2}\right) \leq \operatorname{cap}_{n, q}\left(K, \Omega_{1}\right)
$$

(iii) If K_{i} is a decreasing sequence of compact subsets of Ω with $K=\bigcap_{i=1}^{\infty} K_{i}$, then

$$
\operatorname{cap}_{n, q}(K, \Omega)=\lim _{i \rightarrow \infty} \operatorname{cap}_{n, q}\left(K_{i}, \Omega\right)
$$

(iv) Suppose $n \leq q \leq \infty$. If $K=\bigcup_{i=1}^{k} K_{i} \subset \Omega$ then

$$
\operatorname{cap}_{n, q}(K, \Omega) \leq \sum_{i=1}^{k} \operatorname{cap}_{n, q}\left(K_{i}, \Omega\right)
$$

where $k \geq 1$ is a positive integer.
(v) If $K=\bigcup_{i=1}^{k} K_{i} \subset \Omega$ then

$$
\operatorname{cap}_{n, q}^{1 / n}(K, \Omega) \leq \sum_{i=1}^{k} \operatorname{cap}_{n, q}^{1 / n}\left(K_{i}, \Omega\right)
$$

where $k \geq 1$ is a positive integer.
Proof. Properties (i) and (ii) are immediate consequences of the definition.
(iii) Let $b=: \lim _{i \rightarrow \infty} \operatorname{cap}_{n, q}\left(K_{i}, \Omega\right)$. We fix a small $\varepsilon>0$ and we pick a function $u \in W(K, \Omega)$ such that

$$
\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}^{n}<\operatorname{cap}_{n, q}(K, \Omega)+\varepsilon
$$

When i is large, the sets K_{i} lie in the compact set $\{u \geq 1-\varepsilon\}$. Therefore

$$
\lim _{i \rightarrow \infty} \operatorname{cap}_{n, q}\left(K_{i}, \Omega\right) \leq \operatorname{cap}_{n, q}(\{u \geq 1-\varepsilon\}, \Omega) \leq \frac{1}{(1-\varepsilon)^{2 n}}\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}^{n}
$$

Letting $\varepsilon \rightarrow 0$ yields $b \leq \operatorname{cap}_{n, q}(K, \Omega)$, whence (iii) follows because obviously $b \geq \operatorname{cap}_{n, q}(K, \Omega)$.

It is enough to prove (iv) and (v) for $k=2$ because then the general finite case follows by induction.
(iv) When $q=n$ we are in the case of the n-capacity and then the claim holds. (See for example [HKM93, Theorem 2.2 (iii)].) So we can assume without loss of generality that $n<q \leq \infty$.

Let $u_{i} \in W_{0}\left(K_{i}, \Omega\right), i=1,2$, such that

$$
\left\|\nabla u_{i}\right\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}^{n}<\operatorname{cap}_{n, q}\left(K_{i}, \Omega\right)+\varepsilon .
$$

We define $u=\max \left(u_{1}, u_{2}\right)$. Since $u=\left(u_{1}-u_{2}\right)^{+}+u_{2}$, it follows from the discussion after Corollary 2.7 and (8) that $u \in W_{0}\left(K_{1} \cup K_{2}, \Omega\right)$ with $|\nabla u| \leq \max \left(\left|\nabla u_{1}\right|,\left|\nabla u_{2}\right|\right)$. This and Theorem 2.5 imply

$$
\begin{aligned}
\operatorname{cap}_{n, q}\left(K_{1} \cup K_{2}, \Omega\right) & \leq\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}^{n} \leq\left\|\nabla u_{1}\right\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}^{n}+\left\|\nabla u_{2}\right\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}^{n} \\
& \leq \operatorname{cap}_{n, q}\left(K_{1}, \Omega\right)+\operatorname{cap}_{n, q}\left(K_{2}, \Omega\right)+2 \varepsilon .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ we complete the proof in the case of two sets, and hence the general finite case.
(v) We notice that (iv) implies (v) when $n \leq q \leq \infty$. So we can assume without loss of generality that $1<q<n$.

Let $u_{i} \in W_{0}\left(K_{i}, \Omega\right), i=1,2$, such that

$$
0 \leq u_{1} \leq 1 \text { and }\left\|\nabla u_{i}\right\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}<\operatorname{cap}_{n, q}^{1 / n}\left(K_{i}, \Omega\right)+\varepsilon
$$

Then $u=u_{1}+u_{2} \in W_{0}\left(K_{1} \cup K_{2}, \Omega\right)$ and since $\|\cdot\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}$ is a norm when $1<q<n$, we have

$$
\begin{aligned}
\operatorname{cap}_{n, q}^{1 / n}\left(K_{1} \cup K_{2}, \Omega\right) & \leq\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)} \leq\left\|\nabla u_{1}\right\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}+\left\|\nabla u_{2}\right\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)} \\
& \leq \operatorname{cap}_{n, q}^{1 / n}\left(K_{1}, \Omega\right)+\operatorname{cap}_{n, q}^{1 / n}\left(K_{2}, \Omega\right)+2 \varepsilon .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ we complete the proof in the case of two sets, and hence the general finite case. The theorem is proved.

Remark 3.3. The definition of the n, q-capacity easily implies

$$
\operatorname{cap}_{n, q}(K, \Omega)=\operatorname{cap}_{n, q}(\partial K, \Omega)
$$

whenever K is a compact set in Ω.
3.2. Estimates for the n, q relative capacity. Suppose $1<q \leq \infty$. Obviously, $\operatorname{cap}_{n, q}(E, \Omega)=\operatorname{cap}_{n, q}(E+x, \Omega+x)$ for every $x \in \mathbf{R}^{n}$. Indeed, the n, q-quasinorm is invariant under translations.

Lemma 3.4. Suppose $1<q \leq \infty$. Let Ω be bounded and $K \subset \Omega$ be compact. Then

$$
\begin{equation*}
\operatorname{cap}_{n, q}(K, \Omega)=\operatorname{cap}_{n, q}(\alpha K, \alpha \Omega), \tag{10}
\end{equation*}
$$

where $\alpha>0$ and $\alpha A=\{\alpha a: a \in A\}$.

Proof. We have to analyze two cases, depending on whether $1<q<\infty$ or $q=\infty$.
We assume first that $1<q<\infty$. Let $u \in C_{0}^{\infty}(\Omega)$. We define $u_{(\alpha)}: \alpha \Omega \rightarrow \mathbf{R}$ by $u_{(\alpha)}(x)=u\left(\frac{x}{\alpha}\right)$. Then $u \in W(E, \Omega)$ if and only if $u_{(\alpha)} \in W(\alpha E, \alpha \Omega)$. We notice that $\nabla u_{(\alpha)}(x)=\frac{1}{\alpha} \nabla u\left(\frac{x}{\alpha}\right)$. We have

$$
\begin{aligned}
\left|\left\{x \in \alpha \Omega:\left|\nabla u_{(\alpha)}(x)\right| \geq t\right\}\right| & =\left|\left\{x \in \alpha \Omega: \frac{1}{\alpha}\left|\nabla u\left(\frac{x}{\alpha}\right)\right| \geq t\right\}\right| \\
=\left|\left\{x \in \alpha \Omega:\left|\nabla u\left(\frac{x}{\alpha}\right)\right| \geq \alpha t\right\}\right| & =\alpha^{n}\left|\left\{\frac{x}{\alpha} \in \Omega:\left|\nabla u\left(\frac{x}{\alpha}\right)\right| \geq \alpha t\right\}\right| .
\end{aligned}
$$

So $\lambda_{\left[\mid \nabla u_{(\alpha) \mid]}\right.}(t)=\alpha^{n} \lambda_{[|\nabla u|]}(\alpha t)$ for every $t \geq 0$. Therefore

$$
\begin{aligned}
\left|\nabla u_{(\alpha)}\right|^{*}(t) & =\inf \left\{v \geq 0: \lambda_{\left[\left|\nabla u_{(\alpha)]}\right|\right]}(v) \leq t\right\}=\inf \left\{v \geq 0: \alpha^{n} \lambda_{[|\nabla u|]}(\alpha v) \leq t\right\} \\
& =\frac{1}{\alpha} \inf \left\{\alpha v \geq 0: \lambda_{[|\nabla u|]}(\alpha v) \leq \frac{t}{\alpha^{n}}\right\}=\frac{1}{\alpha}|\nabla u|^{*}\left(\frac{t}{\alpha^{n}}\right) .
\end{aligned}
$$

Hence we just proved that $\left|\nabla u_{(\alpha)}\right|^{*}(t)=\frac{1}{\alpha}|\nabla u|^{*}\left(\frac{t}{\alpha^{n}}\right)$ for every $t \geq 0$. Therefore

$$
\left\|\nabla u_{(\alpha)}\right\|_{L^{n, q}\left(\alpha \Omega ; \mathbf{R}^{n}\right)}^{q}=\int_{0}^{\infty} t^{\frac{q}{n}}\left(\left|\nabla u_{(\alpha)}\right|^{*}(t)\right)^{q} \frac{d t}{t}=\int_{0}^{\infty} t^{\frac{q}{n}}\left(\frac{1}{\alpha}|\nabla u|^{*}\left(\frac{t}{\alpha^{n}}\right)\right)^{q} \frac{d t}{t}
$$

By making the substitution $\frac{t}{\alpha^{n}}=s$, we have

$$
\int_{0}^{\infty} t^{\frac{q}{n}}\left(\frac{1}{\alpha}|\nabla u|^{*}\left(\frac{t}{\alpha^{n}}\right)\right)^{q} \frac{d t}{t}=\int_{0}^{\infty}\left(s \alpha^{n}\right)^{\frac{q}{n}}\left(\frac{1}{\alpha}|\nabla u|^{*}(s)\right)^{q} \frac{d s}{s}=\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}^{q} .
$$

Thus we get $\left\|\nabla u_{(\alpha)}\right\|_{L^{n, q}\left(\alpha \Omega ; \mathbf{R}^{n}\right)}=\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)}$. This proves the claim when $1<q<\infty$.

Now assume that $q=\infty$. We let $u \in C_{0}^{\infty}(\Omega)$ and we define $u_{(\alpha)}$ as before. Then as before, we have $u \in W(K, \Omega)$ if and only if $u_{(\alpha)} \in W(\alpha K, \alpha \Omega)$ and $\left|\nabla u_{(\alpha)}\right|^{*}(t)=\frac{1}{\alpha}|\nabla u|^{*}\left(\frac{t}{\alpha^{n}}\right)$ for every $t \geq 0$. This implies

$$
\begin{align*}
\left\|\nabla u_{(\alpha)}\right\|_{L^{n, \infty}(\alpha \Omega)}^{n} & =\sup _{t \geq 0} t\left(\left|\nabla u_{(\alpha)}\right|^{*}(t)\right)^{n}=\sup _{t \geq 0} \frac{t}{\alpha^{n}}\left(|\nabla u|^{*}\left(\frac{t}{\alpha^{n}}\right)\right)^{n} \tag{11}\\
& =\sup _{s \geq 0} s\left(|\nabla u|^{*}(s)\right)^{n}=\|\nabla u\|_{L^{n, \infty}(\Omega)}^{n} .
\end{align*}
$$

This finishes the proof.

Corollary 2.4 yields the following Hölder inequality for capacities:
Theorem 3.5. Let $\Omega \subset \mathbf{R}^{n}$ be bounded, let $n<q \leq \infty$, and let $\varepsilon \in(0, n-1)$ be fixed. Then for every $K \subset \Omega$ compact we have

$$
\begin{equation*}
\operatorname{cap}_{n-\varepsilon}^{1 /(n-\varepsilon)}(K, \Omega) \leq C(n, q, \varepsilon)|\Omega|^{\frac{\varepsilon}{n(n-\varepsilon)}} \operatorname{cap}_{n, q}^{1 / n}(K, \Omega) \tag{12}
\end{equation*}
$$

Proof. Let K be compact in Ω. Let $u \in W(K, \Omega)$. Then from Corollary 2.4 applied for $p=n$ and the definition of the $\|\cdot\|_{L^{n-\varepsilon}\left(\Omega ; \mathbf{R}^{n}\right)}$-norm and $\|\cdot\|_{L^{(n, q)}\left(\Omega ; \mathbf{R}^{n}\right)^{-}}$ quasinorm we have

$$
\|\nabla u\|_{L^{n-\varepsilon}\left(\Omega ; \mathbf{R}^{n}\right)} \leq C(n, q, \varepsilon)|\Omega|^{\frac{\varepsilon}{n(n-\varepsilon)}}\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)} .
$$

Taking the infimum on both sides over such functions u, we get the claim for $K \subset \Omega$ compact. This finishes the proof.

Theorem 3.6. Let $n<q \leq \infty$ be fixed. There exists a constant $C(n, q)>0$ such that

$$
C(n, q)^{-1}\left(\ln \frac{1}{r}\right)^{-\frac{n}{q^{\prime}}} \leq \operatorname{cap}_{n, q}(\bar{B}(0, r), B(0,1)) \leq C(n, q)\left(\ln \frac{1}{r}\right)^{-\frac{n}{q^{\prime}}}
$$

for every $0<r<e^{-\frac{1}{n-1}}$, where q^{\prime} is the Hölder conjugate of q.
Proof. We get some lower estimates for $\operatorname{cap}_{n, q}(\bar{B}(0, r), B(0,1))$, where $r>0$ is small. We have to consider two cases, depending on whether $n<q<\infty$ or $q=\infty$.

First we consider the case $n<q<\infty$. From (12) applied for $p=n$ and $n<q<$ ∞, there exists a constant

$$
C(n, \varepsilon, q)=\Omega_{n}^{\frac{\varepsilon}{n(n-\varepsilon)}} \varepsilon^{-\frac{1}{n-\varepsilon}+\frac{1}{q}}\left(\frac{n(q-n+\varepsilon)}{q}\right)^{\frac{1}{n-\varepsilon}-\frac{1}{q}}
$$

such that

$$
\operatorname{cap}_{n-\varepsilon}^{1 /(n-\varepsilon)}(\bar{B}(0, r), B(0,1)) \leq C(n, \varepsilon, q) \operatorname{cap}_{n, q}^{1 / n}(\bar{B}(0, r), B(0,1))
$$

for every $\varepsilon \in(0, n-1)$ and every $r \in(0,1)$. From [HKM93, 2.13] we have

$$
\operatorname{cap}_{n-\varepsilon}(\bar{B}(0, r), B(0,1))=\omega_{n-1}\left(\frac{\varepsilon}{n-\varepsilon-1}\right)^{n-\varepsilon-1}\left(r^{-\frac{\varepsilon}{n-\varepsilon-1}}-1\right)^{1-n+\varepsilon}
$$

Therefore,

$$
\begin{equation*}
\operatorname{cap}_{n, q}^{1 / n}(\bar{B}(0, r), B(0,1)) \geq C_{1}(n, \varepsilon, q) \varepsilon^{1-\frac{1}{q}} r^{\frac{\varepsilon}{n-\varepsilon}} \tag{13}
\end{equation*}
$$

for every $0<\varepsilon<n-1$, where

$$
C_{1}(n, \varepsilon, q)=\omega_{n-1}^{\frac{1}{n-\varepsilon}} \frac{\Omega_{n}^{-\frac{\varepsilon}{n(n-\varepsilon)}}}{(n-\varepsilon-1)^{\frac{n-\varepsilon-1}{n-\varepsilon}}}\left(\frac{n(q-n+\varepsilon)}{q}\right)^{\frac{1}{q}-\frac{1}{n-\varepsilon}}
$$

We define

$$
C_{1}(n, q)=\inf _{0<\varepsilon<n-1} C_{1}(n, \varepsilon, q)
$$

We notice that $C_{1}(n, q)>0$. This together with (13) implies

$$
\begin{equation*}
\operatorname{cap}_{n, q}^{1 / n}(\bar{B}(0, r), B(0,1)) \geq C_{1}(n, q) \varepsilon^{1-\frac{1}{q}} r^{\frac{\varepsilon}{n-\varepsilon}} \tag{14}
\end{equation*}
$$

For $r \in\left(0, e^{-\frac{1}{n-1}}\right)$, we let $\varepsilon=\frac{1}{\ln \frac{1}{r}}$. Then $0<\varepsilon<n-1$ and from (14) it follows that

$$
\begin{equation*}
\operatorname{cap}_{n, q}(\bar{B}(0, r), B(0, r)) \geq \frac{C_{1}(n, q)^{n}}{e^{n}}\left(\ln \frac{1}{r}\right)^{\frac{n}{q}-n} \tag{15}
\end{equation*}
$$

for every $r \in\left(0, e^{-\frac{1}{n-1}}\right)$. This yields the desired lower bound for the relative capacity whenever $n<q<\infty$ and $r \in\left(0, e^{-\frac{1}{n-1}}\right)$.

Now we assume $q=\infty$. From (12) we have

$$
\operatorname{cap}_{n-\varepsilon}^{1 /(n-\varepsilon)}(\bar{B}(0, r), B(0,1)) \leq \Omega_{n}^{\frac{\varepsilon}{n(n-\varepsilon)}} \varepsilon^{-\frac{1}{n-\varepsilon}} n^{\frac{1}{n-\varepsilon}} \operatorname{cap}_{n, \infty}^{1 / n}(\bar{B}(0, r), B(0,1))
$$

for every $\varepsilon \in(0, n-1)$. This together with [HKM93, 2.13] gives

$$
\begin{equation*}
\operatorname{cap}_{n, \infty}^{1 / n}(\bar{B}(0, r), B(0,1)) \geq C_{1}(n, \varepsilon) \varepsilon r^{\frac{\varepsilon}{n-\varepsilon}} \tag{16}
\end{equation*}
$$

for every $0<\varepsilon<n-1$, where

$$
C_{1}(n, \varepsilon)=\omega_{n-1}^{\frac{1}{n-\varepsilon}} \Omega_{n}^{-\frac{\varepsilon}{n(n-\varepsilon)}}(n-\varepsilon-1)^{-\frac{n-\varepsilon-1}{n-\varepsilon}} n^{-\frac{1}{n-\varepsilon}}
$$

We define

$$
C_{1}(n)=\inf _{0<\varepsilon<n-1} C_{1}(n, \varepsilon) .
$$

We notice that $C_{1}(n)>0$. This together with (16) implies

$$
\begin{equation*}
\operatorname{cap}_{n, \infty}^{1 / n}(\bar{B}(0, r), B(0,1)) \geq C_{1}(n) \varepsilon r^{\frac{\varepsilon}{n-\varepsilon}} \tag{17}
\end{equation*}
$$

For $r \in\left(0, e^{-\frac{1}{n-1}}\right)$ we let $\varepsilon=\frac{1}{\ln \frac{1}{r}}$. Then $0<\varepsilon<n-1$ and from (17) it follows that

$$
\begin{equation*}
\operatorname{cap}_{n, \infty}(\bar{B}(0, r), B(0,1)) \geq \frac{C_{1}(n)^{n}}{e^{n}}\left(\ln \frac{1}{r}\right)^{-n} \tag{18}
\end{equation*}
$$

for every $r \in\left(0, e^{-\frac{1}{n-1}}\right)$. We let $C_{1}(n, q)=C_{1}(n)$ when $q=\infty$. This yields the desired lower bound for the relative capacity when $q=\infty$ and $r \in\left(0, e^{-\frac{1}{n-1}}\right)$.

We shall get an upper estimate for $\operatorname{cap}_{n, q}(\bar{B}(0, r), B(0,1))$ whenever $r \in\left(0, e^{-\frac{1}{n-1}}\right)$ and $1<q \leq \infty$. We use the function $u: B(0,1) \rightarrow \mathbf{R}$ defined by

$$
u(x)=\left\{\begin{array}{cl}
1 & \text { if } 0 \leq|x| \leq r \\
\frac{\ln |x|}{\ln r} & \text { if } r<|x|<1 .
\end{array}\right.
$$

Then

$$
|\nabla u(x)|=\left\{\begin{array}{cc}
0 & \text { if } 0 \leq|x|<r \\
\frac{1}{\ln \frac{1}{r}} \frac{1}{|x|} & \text { if } r<|x|<1 .
\end{array}\right.
$$

We notice that $u \notin W_{0}(\bar{B}(0, r), B(0,1))$. However,

$$
\begin{equation*}
\operatorname{cap}_{n, q}(\bar{B}(0, r), B(0,1)) \leq\|\nabla u\|_{L^{n, q}\left(B(0,1) ; \mathbf{R}^{n}\right)}^{n} \tag{19}
\end{equation*}
$$

because

$$
\|\nabla u\|_{L^{n, q}\left(B(0,1) ; \mathbf{R}^{n}\right)}=\lim _{\delta \rightarrow 0}\left\|\nabla u_{\delta}\right\|_{L^{n, q}\left(B(0,1) ; \mathbf{R}^{n}\right)}
$$

where $u_{\delta}, 0<\delta<\frac{1-r}{r}$ is a sequence in $W_{0}(\bar{B}(0, r), B(0,1))$ defined by

$$
u_{\delta}(x)=\left\{\begin{array}{cl}
1 & \text { if } 0 \leq|x| \leq r \\
\frac{\ln (1+\delta)|x|}{\ln r(1+\delta)} & \text { if } r<|x|<\frac{1}{1+\delta} \\
0 & \text { if } \frac{1}{1+\delta} \leq|x| \leq 1
\end{array}\right.
$$

We want to get an upper estimate for $\|\nabla u\|_{L^{n, q}\left(B(0,1) ; \mathbf{R}^{n}\right)}$ whenever $1<q \leq \infty$. We define $v: B(0,1) \rightarrow \mathbf{R}$ by $v(x)=-\ln r|\nabla u(x)|$. We compute $\lambda_{[v]}$. We recall that $\Omega_{n}=|B(0,1)|$. We have

$$
\lambda_{[v]}(t)=\left|\left\{x \in B(0,1) \backslash B(0, r): \frac{1}{|x|}>t\right\}\right|=\left|\left\{x \in B(0,1) \backslash B(0, r):|x|<\frac{1}{t}\right\}\right| .
$$

Hence

$$
\lambda_{[v]}(t)=\left\{\begin{array}{cl}
0 & \text { if } t>\frac{1}{r} \\
\Omega_{n}\left(\frac{1}{t^{n}}-r^{n}\right) & \text { if } 1 \leq t \leq \frac{1}{r} \\
\Omega_{n}\left(1-r^{n}\right) & \text { if } 0 \leq t \leq 1
\end{array}\right.
$$

We notice that

$$
v^{*}(t)=\left\{\begin{array}{cl}
\left(\frac{1}{t / \Omega_{n}+r^{n}}\right)^{\frac{1}{n}} & \text { if } 0 \leq t<\Omega_{n}\left(1-r^{n}\right) \\
0 & \text { if } t \geq \Omega_{n}\left(1-r^{n}\right)
\end{array}\right.
$$

We compute $\|v\|_{L^{n, q}(B(0,1))}$. We have to consider two cases, depending on whether $1<q<\infty$ or $q=\infty$.

We assume first that $1<q<\infty$. Let

$$
J=:\|v\|_{L^{n, q}(B(0,1))}^{q}=\int_{0}^{\Omega_{n}\left(1-r^{n}\right)} t^{\frac{q}{n}}\left(v^{*}(t)\right)^{q} \frac{d t}{t} .
$$

By making the substitution $t=s \Omega_{n} r^{n}$, we get

$$
\begin{aligned}
J & =\int_{0}^{\Omega_{n}\left(1-r^{n}\right)} t^{\frac{q}{n}}\left(\frac{1}{t / \Omega_{n}+r^{n}}\right)^{\frac{q}{n}} \frac{d t}{t}=\Omega_{n}^{\frac{q}{n}} \int_{0}^{\frac{1-r^{n}}{r^{n}}} s^{\frac{q}{n}}\left(\frac{1}{s+1}\right)^{\frac{q}{n}} \frac{d s}{s} \\
& =\Omega_{n}^{\frac{q}{n}}\left(\int_{0}^{1} s^{\frac{q}{n}-1}\left(\frac{1}{s+1}\right)^{\frac{q}{n}} d s+\int_{1}^{\frac{1-r^{n}}{r^{n}}}\left(\frac{s}{s+1}\right)^{\frac{q}{n}} \frac{d s}{s}\right) \\
& \leq \Omega_{n}^{\frac{q}{n}}\left(\frac{n}{q}+\ln \frac{1-r^{n}}{r^{n}}\right) \leq \Omega_{n}^{\frac{q}{n}}\left(\frac{n}{q}+n \ln \frac{1}{r}\right) \leq C_{2}(n, q) \ln \frac{1}{r}
\end{aligned}
$$

if $0<r<e^{-\frac{1}{n-1}}$. Therefore, from (19) and the fact that $v=-\ln r|\nabla u|$ we get

$$
\begin{equation*}
\operatorname{cap}_{n, q}(\bar{B}(0, r), B(0,1)) \leq C_{2}(n, q)^{\frac{n}{q}}\left(\ln \frac{1}{r}\right)^{\frac{n}{q}-n} \tag{20}
\end{equation*}
$$

for every $r \in\left(0, e^{-\frac{1}{n-1}}\right)$ whenever $1<q<\infty$.
From (15) and (20) it follows that there exists a constant

$$
C(n, q)=: \max \left(C_{2}(n, q)^{\frac{n}{q}}, \frac{e^{n}}{C_{1}(n, q)^{n}}\right)
$$

such that

$$
C(n, q)^{-1}\left(\ln \frac{1}{r}\right)^{\frac{n}{q}-n} \leq \operatorname{cap}_{n, q}(\bar{B}(0, r), B(0,1)) \leq C(n, q)\left(\ln \frac{1}{r}\right)^{\frac{n}{q}-n}
$$

for every $0<r<e^{-\frac{1}{n-1}}$ whenever $n<q<\infty$.
Now assume $q=\infty$. We have

$$
\|v\|_{L^{n, \infty}(B(0,1))}^{n}=\sup _{t \geq 0} t\left(v^{*}(t)\right)^{n}=\sup _{0 \leq t \leq \Omega_{n}\left(1-r^{n}\right)} \frac{t}{t / \Omega_{n}+r^{n}}=\Omega_{n}\left(1-r^{n}\right)
$$

Therefore

$$
\|\nabla u\|_{L^{n, \infty}\left(B(0,1) ; \mathbf{R}^{n}\right)}^{n}=\left(\ln \frac{1}{r}\right)^{-n}\|v\|_{L^{n, \infty}(B(0,1))}^{n}=\Omega_{n}\left(1-r^{n}\right)\left(\ln \frac{1}{r}\right)^{-n}
$$

and from (19) we get

$$
\begin{equation*}
\operatorname{cap}_{n, \infty}(\bar{B}(0, r), B(0,1)) \leq \Omega_{n}\left(1-r^{n}\right)\left(\ln \frac{1}{r}\right)^{-n} \tag{21}
\end{equation*}
$$

for every $r \in(0,1)$.
From (18) and (21) it follows that there exists a constant

$$
C(n, q)=: \max \left(\Omega_{n}, \frac{e^{n}}{C_{1}(n, q)^{n}}\right)
$$

such that

$$
C(n, q)^{-1}\left(\ln \frac{1}{r}\right)^{-\frac{n}{q^{\prime}}} \leq \operatorname{cap}_{n, q}(\bar{B}(0, r), B(0,1)) \leq C(n, q)\left(\ln \frac{1}{r}\right)^{-\frac{n}{q^{\prime}}}
$$

for every $0<r<e^{-\frac{1}{n-1}}$ when $q=\infty$. This finishes the proof of the theorem.

Remark 3.7. We actually showed that the upper estimate (20) holds in fact for every $q \in(1, \infty)$ as long as $r \in\left(0, e^{-\frac{1}{n-1}}\right)$. When $q=n$ we are in the case of the n capacity and then (20) is known. (See for example [HKM93, 2.13].) Consequently, for every $1<q \leq \infty$ there exists a constant $C(n, q)>0$ such that

$$
\operatorname{cap}_{n, q}(\bar{B}(0, r), B(0,1)) \leq C(n, q)\left(\ln \frac{1}{r}\right)^{-\frac{n}{q^{\prime}}}
$$

for every $r \in\left(0, e^{-\frac{1}{n-1}}\right)$. We do not know whether a similar lower bound exists when $1<q<n$.

4. Hausdorff measure and the Sobolev-Lorentz n, q-capacity

In this section we examine the relationship between Hausdorff measures and the Sobolev-Lorentz n, q-capacity.

Definition 4.1. Let $1<q<\infty$. Let K be a compact set in \mathbf{R}^{n}. We say that K is of n, q-capacity zero if

$$
\operatorname{cap}_{n, q}(K, \Omega)=0
$$

whenever Ω is an open neighborhood of K. In this case we write $\operatorname{cap}_{n, q}(K)=0$.
Before proceeding, we recall the following version of the Poincaré inequality.
Theorem 4.2. Poincaré inequality for Sobolev-Lorentz spaces. Let $\Omega \subset \mathbf{R}^{n}$ be bounded. Let $1 \leq q \leq \infty$ be fixed. Then there exists a constant $C(n, q)$ such that

$$
\begin{equation*}
\|u\|_{L^{n, q}(\Omega)} \leq C(n, q)|\Omega|^{\frac{1}{n}}\|\nabla u\|_{L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)} \tag{22}
\end{equation*}
$$

for every $u \in C_{0}^{\infty}(\Omega)$.
Proof. For every $u \in C_{0}^{\infty}(\Omega)$ we have (see [GT83, Lemma 7.14]):

$$
\begin{equation*}
|u(x)| \leq \frac{1}{\omega_{n-1}}\left(I_{1}|\nabla u|\right)(x) \tag{23}
\end{equation*}
$$

for every $x \in \mathbf{R}^{n}$. We recall that for every measurable function f in $\mathbf{R}^{n}, I_{1} f$ is its Riesz potential of order 1. (See [BS88, Definition IV.4.17] and [Hei01, p. 20].) An application of Hardy-Littlewood-Sobolev theorem of fractional integration ([BS88, Theorem IV.4.18]) together with Theorem 2.3, [BS88, Proposition II.1.7] and (23) yields the desired conclusion.

Theorem 4.3. Suppose $1<q<\infty$. Let E be a compact set in \mathbf{R}^{n}. If there exists a constant $M>0$ such that

$$
\operatorname{cap}_{n, q}(E, \Omega) \leq M<\infty
$$

for all open sets Ω containing E, then $\operatorname{cap}_{n, q}(E)=0$.

Proof. When $q=n$ we are in the case of the n-capacity and then the claim holds. (See for example [HKM93, Lemma 2.34]). So we can assume without loss of generality that $q \neq n$. We let Ω be a fixed open neighborhood of E. We can assume without loss of generality that Ω is bounded. We choose a descending sequence of open sets

$$
\Omega=\Omega_{1} \supset \supset \Omega_{2} \supset \supset \cdots \supset \supset \cap_{i} \Omega_{i}=E
$$

and we choose $\varphi_{i} \in W\left(E, \Omega_{i}\right), 0 \leq \varphi_{i} \leq 1$ with $\varphi_{i}=1$ on E and

$$
\left\|\nabla \varphi_{i}\right\|_{L^{n, q}\left(\Omega_{i} ; \mathbf{R}^{n}\right)}^{n}<M+1
$$

From the Poincaré inequality for Sobolev-Lorentz spaces (22) we have that ($\varphi_{i}, \nabla \varphi_{i}$) is bounded in the space $L^{n, q}(\Omega) \times L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)$. We notice that φ_{i} converges pointwise to a function ψ which is 1 on E and 0 on $\mathbf{R}^{n} \backslash E$. Hence, from Mazur's lemma ([Yos80, p. 120]), [BS88, Lemma IV.4.5], and the reflexivity of $L^{n, q}(\Omega) \times L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)$ it follows that there exists a subsequence denoted again by φ_{i} such that $\left(\varphi_{i}, \nabla \varphi_{i}\right)$ converges weakly to $(\psi, 0)$ in $L^{n, q}(\Omega) \times L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)$ and a sequence $\widetilde{\varphi}_{i}$ of convex combinations of φ_{i},

$$
\widetilde{\varphi}_{i}=\sum_{j=i}^{j_{i}} \lambda_{i, j} \varphi_{j}, \quad \lambda_{i, j} \geq 0, \quad \sum_{j=i}^{j_{i}} \lambda_{i, j}=1
$$

such that $\left(\widetilde{\varphi}_{i}, \nabla \widetilde{\varphi}_{i}\right)$ converges to $(\psi, 0)$ in $L^{n, q}(\Omega) \times L^{n, q}\left(\Omega ; \mathbf{R}^{n}\right)$. The closedness of $W\left(E, \Omega_{i}\right)$ under finite convex combinations implies that $\widetilde{\varphi}_{i} \in W\left(E, \Omega_{i}\right)$ for every integer $i \geq 1$. Therefore

$$
0 \leq \operatorname{cap}_{n, q}(E, \Omega) \leq \limsup _{i \rightarrow \infty}\left\|\nabla \widetilde{\varphi}_{i}\right\|_{L^{n, q}\left(\Omega_{i} ; \mathbf{R}^{n}\right)}^{n}=0
$$

Theorem 4.4. Suppose that $1<q \leq \infty$ and that E is a compact set in \mathbf{R}^{n}. For $1<q \leq \infty$ we let $h_{n, q}:[0, \infty) \rightarrow \mathbf{R}$ be defined by

$$
h_{n, q}(t)=\left\{\begin{array}{cl}
0 & \text { if } t=0 \\
\left(\ln \frac{1}{t}\right)^{-\frac{n}{q^{\prime}}} & \text { if } 0<t<\frac{1}{2} \\
2(\ln 2)^{-\frac{n}{q^{\prime}}} t & \text { if } t \geq \frac{1}{2}
\end{array}\right.
$$

(i) If $1<q<n$, then $\Lambda_{h_{n, q}^{1 / n}}(E)<\infty$ implies $\operatorname{cap}_{n, q}(E)=0$.
(ii) If $n \leq q<\infty$, then $\Lambda_{h_{n, q}}(E)<\infty$ implies $\operatorname{cap}_{n, q}(E)=0$.
(iii) If $q=\infty$, then $\Lambda_{h_{n, q}}(E)=0$ implies $\operatorname{cap}_{n, \infty}(E, \Omega)=0$ whenever Ω is an open neighborhood of E.

Proof. We have to analyze three cases, depending on whether $1<q<n$ or $n \leq q<$ ∞ or $q=\infty$. It is enough to prove that $\operatorname{cap}_{n, q}(E, \Omega)=0$ whenever Ω is a bounded open neighborhood of E. So let Ω be a bounded open set containing E. We denote by δ the distance from E to the complement of Ω. Without loss of generality we can assume that $0<\delta<e^{-\frac{1}{2(n-1)}}$. Fix $0<\varepsilon<1$ such that $\varepsilon<\frac{1}{4} \delta^{2}$; then $r<\varepsilon$ implies $\ln \left(\frac{\delta}{2 r}\right) \geq \frac{1}{2} \ln \left(\frac{1}{r}\right)$. We cover E by open balls $B\left(x_{i}, r_{i}\right)$ such that $r_{i}<\frac{1}{2} \varepsilon$. Since we may assume that the balls $B\left(x_{i}, r_{i}\right)$ intersect E, we have $B\left(x_{i}, \frac{\delta}{2}\right) \subset \Omega$. In fact, since E is compact, E is covered by finitely many of the balls $B\left(x_{i}, r_{i}\right)$.

We assume first that $1<q<n$. Using Theorem 3.2 (ii) and (v) we obtain

$$
\begin{aligned}
\operatorname{cap}_{n, q}^{1 / n}(E, \Omega) & \leq \sum_{i} \operatorname{cap}_{n, q}^{1 / n}\left(\bar{B}\left(x_{i}, r_{i}\right), \Omega\right) \\
& \leq \sum_{i} \operatorname{cap}_{n, q}^{1 / n}\left(\bar{B}\left(x_{i}, r_{i}\right), B\left(x_{i}, \frac{\delta}{2}\right)\right) \\
& \leq C(n, q) \sum_{i}\left(\ln \frac{1}{r_{i}}\right)^{\frac{1}{q}-1}
\end{aligned}
$$

where in the last step we also used Remark 3.7 together with our choice of ε. Taking the infimum over all such coverings and letting $\varepsilon \rightarrow 0$, we conclude

$$
\operatorname{cap}_{n, q}^{1 / n}(E, \Omega) \leq C(n, q) \Lambda_{h_{n, q}^{1 / n}}(E)<\infty .
$$

Since Ω was an arbitrary bounded open set containing E, the desired conclusion follows from Theorems 3.2 (ii) and 4.3 when $1<q<n$.

We assume now that $n \leq q<\infty$. When $q=n$ we are in the case of the n-capacity and then the claim holds. (See for example [HKM93, Theorem 2.27].) So we can assume without loss of generality that $n<q<\infty$. Using the finite subadditivity and the monotonicity property of the n, q-capacity we obtain

$$
\begin{aligned}
\operatorname{cap}_{n, q}(E, \Omega) & \leq \sum_{i} \operatorname{cap}_{n, q}\left(B\left(x_{i}, r_{i}\right), \Omega\right) \leq \sum_{i} \operatorname{cap}_{n, q}\left(B\left(x_{i}, r_{i}\right), B\left(x_{i}, \frac{\delta}{2}\right)\right) \\
& =\sum_{i} \operatorname{cap}_{n, q}\left(B\left(0, r_{i}\right), B\left(0, \frac{\delta}{2}\right)\right) \leq C(n, q) \sum_{i}\left(\ln \frac{1}{r_{i}}\right)^{\frac{n}{q}-n}
\end{aligned}
$$

where in the last step we also used Remark 3.7 for the n, q-capacity of spherical condensers together with our choice of ε. Taking the infimum over all such coverings, we conclude

$$
\operatorname{cap}_{n, q}(E, \Omega) \leq C(n, q) \Lambda_{h_{n, q}}(E)<\infty
$$

Since Ω was an arbitrary bounded open set containing E, the desired conclusion follows from Theorems 3.2 (ii) and 4.3 when $n<q<\infty$.

We assume now that $q=\infty$. Using the finite subadditivity and the monotonicity property of the n, ∞-capacity we obtain

$$
\begin{aligned}
\operatorname{cap}_{n, \infty}(E, \Omega) & \leq \sum_{i} \operatorname{cap}_{n, \infty}\left(B\left(x_{i}, r_{i}\right), \Omega\right) \leq \sum_{i} \operatorname{cap}_{n, \infty}\left(B\left(x_{i}, r_{i}\right), B\left(x_{i}, \frac{\delta}{2}\right)\right) \\
& =\sum_{i} \operatorname{cap}_{n, \infty}\left(B\left(0, r_{i}\right), B\left(0, \frac{\delta}{2}\right)\right) \leq C(n) \sum_{i}\left(\ln \frac{1}{r_{i}}\right)^{-n}
\end{aligned}
$$

where in the last step we also used formula (21) for the n, ∞-capacity of spherical condensers together with our choice of ε. Taking the infimum over all such coverings, we conclude

$$
\operatorname{cap}_{n, \infty}(E, \Omega) \leq C(n) \Lambda_{h_{n, \infty}}(E)=0
$$

Remark 4.5. It is known that if $\operatorname{cap}_{n}(E)=0$, then $\Lambda_{h}(E)=0$ whenever E is a compact set in \mathbf{R}^{n} and h is an increasing function on $[0, \infty)$ such that $h(0)=0$, and

$$
\int_{0}^{1} h(r)^{1 /(n-1)} \frac{d r}{r}<\infty
$$

(See [AH96, p. 20 and Theorem 5.1.13] and [HKM93, Corollary 2.40].) This corresponds to the case $q=n$. It is not known if we have similar results for $q \neq n$. A possible result would be the following:
Conjecture 4.6. Let E be a compact set in \mathbf{R}^{n} and let $1<q \leq \infty$ be such that $q \neq n$. Then, if there exists a bounded open neighborhood Ω of E such that $\operatorname{cap}_{n, q}(E, \Omega)=0$, we have $\Lambda_{h}(E)=0$ whenever h is an increasing function on $[0, \infty)$ such that $h(0)=0$, and

$$
\int_{0}^{1} h(r)^{\frac{q^{\prime}}{n}} \frac{d r}{r}<\infty
$$

References

[AH96] D.R. Adams and L.I. Hedberg. Function Spaces and Potential Theory. Springer-Verlag, 1996.
[AX04] D.R. Adams and J. Xiao. Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J., 53(6):1631-1666, 2004.
[BS88] C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, 1988.
[Fed69] H. Federer. Geometric Measure Theory. Springer-Verlag, 1969.
[Gia83] M. Giaquinta. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, 1983.
[GT83] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, 2nd edition, 1983.
[Hei01] J. Heinonen. Lectures on Analysis on Metric Spaces. Springer-Verlag, 2001.
[HKM93] J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, 1993.
[KKM99] J. Kauhanen, P. Koskela, and J. Malý. On functions with derivatives in a Lorentz space. Manuscripta Math., 100(1):87-101, 1999.
[KM96] J. Kinnunen and O. Martio. The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn, 21:367-382, 1996.
[KM00] J. Kinnunen and O. Martio. Choquet property for the Sobolev capacity in metric spaces. In Proceedings of the conference on Analysis and Geometry held in Novosibirsk, pages 285-290, 2000.
[Mar79] O. Martio. Capacity and measure densities. Ann. Acad. Sci. Fenn. Ser. A I Math., 4(1):109-118, 1979.
[Maz85] V. Maz'ja. Sobolev Spaces. Springer-Verlag, 1985.
[MSZ05] J. Malý, D. Swanson, and W. P. Ziemer. Fine behavior of functions whose gradients are in an Orlicz space. Preprint, 2005.
[Res69] Yu. Reshetnyak. The concept of capacity in the theory of functions with generalized derivatives. Siberian Math. J., 10:818-842, 1969.
[SW75] E. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1975.
[Yos80] K. Yosida. Functional Analysis. Springer-Verlag, 1980.
[Zie89] W.P. Ziemer. Weakly Differentiable Functions. Springer-Verlag, 1989.
S. Costea: Serban.Costea@helsinki.fi, Department of Mathematics and Statistics, P.O. Box 68 (Gustaf Hällströmin katu 2b), University of Helsinki, Fi-00014, Helsinki, Finland

