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vary in a bounded way. If the quasiminimizing constants converge to one, then the
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1. Introduction

Let Ω ⊂ Rn be a bounded open set and 1 < p < ∞. A function u ∈ W 1,p
loc (Ω) is a

Q-quasiminimizer, Q ≥ 1, of the p-Dirichlet integral in Ω if for all open Ω′
b Ω
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and all v ∈ W 1,p
loc (Ω) such that u − v ∈ W 1,p

0 (Ω′) we have

∫

Ω′

|∇u|p dx ≤ Q

∫

Ω′

|∇v|p dx.

In the Euclidean case the problem of minimizing the p-Dirichlet integral

∫

Ω

|∇u|p dx

among all functions with given boundary values is equivalent to solving the p-
Laplace equation

div(|∇u|p−2∇u) = 0.

Hence 1-quasiminimizers (called minimizers) are weak solutions of the p-Laplace
equation. Being a weak solution is a local property, however, being a quasimin-
imizer is not a local property, see Kinnunen–Martio [19]. Hence, the theory for
quasiminimizers usually differs from the theory for minimizers.

Quasiminimizers have been studied by Giaquinta–Giusti, see [8] and [9]. See
also DiBenedetto–Trudinger [7], Tolksdorf [26] and Ziemer [27]. Several funda-
mental properties of quasiminimizers including local Hölder continuity, higher
integrability of the gradient and boundary continuity have been studied. Some
of these results have been extended to metric spaces, see [1], [2], [4], [5], [19],[20].

Quasiminimizers have been used as tools in studying regularity of minimizers
of variational integrals. Indeed, the quasiminimizing condition applies to the
whole class of variational integrals at the same time. For example, if a variational
kernel F (x,∇u) satisfies the standard growth conditions

α|h|p ≤ F (x, h) ≤ β|h|p

for some 0 < α ≤ β < ∞, then the minimizers of
∫

F (x,∇u) dx are quasi-
minimizers of the p-Dirichlet integral. Apart from this quasiminimizers have a
fascinating theory in themselves, see for example [19].

It is known that a sequence of locally bounded p-harmonic functions on a
domain in Rn has a locally uniformly convergent subsequence that converges to
a p-harmonic function on that domain, see Heinonen et al. [11]. The result has
been extended to metric measure spaces by Shanmugalingam in [25].

In this note we prove the Harnack principle for Q-quasiminimizers with vary-
ing Q: an increasing sequence of Qi-quasiminimizers in a domain converge locally
uniformly, provided the limit function is finite at some point in that domain, to
a Q-quasiminimizer with

Q = lim inf
i→∞

Qi,

see Theorem 4.3. Moreover, we show that a sequence (ui) of Qi-quasiminimizers
in a domain, such that the sequence (ui) is locally uniformly bounded below,
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has a locally uniformly convergent subsequence which converges either to ∞ or
a Q-quasiminimizer on that domain, see Corollary 4.5. In the last section we
let (fi) be a uniformly bounded sequence of functions in an appropriate space
such that fi → f as i → ∞, and we consider a sequence of Qi-quasiminimizers
in a bounded domain Ω with boundary values fi. We study the stability of Qi-
quasiminimizers when Qi tends to 1. More precisely, we show that in this case
the quasiminimizers converge locally uniformly in Ω to the unique minimizer of
the p-Dirichlet integral with boundary values f . In the Euclidean case with the
Lebesgue measure we obtain convergence also in the Sobolev norm.

Our results seem to be new even in the Euclidean setting, but we study
the question in complete metric spaces equipped with a doubling measure and
supporting a weak (1, p)-Poincaré inequality. We have chosen this more gen-
eral approach to emphasize the fact that the obtained properties hold in a very
general context. Indeed, our approach covers weighted Euclidean spaces, Rie-
mannian manifolds, Carnot–Carathéodory spaces, including Carnot groups such
as Heisenberg groups, and graphs.

Acknowledgements. The authors are grateful to Ilkka Holopainen for his use-
ful comments on the manuscript. The first author is supported by the Finnish
Academy of Science and Letters, Vilho, Yrjö and Kalle Väisälä Foundation.

2. Notation and preliminaries

Throughout the paper 1 < p < ∞, a domain is an open connected set Ω ⊂ X
and X = (X, d, µ) is a complete metric space endowed with a metric d and a
positive complete Borel regular measure µ such that 0 < µ(B(z, r)) < ∞ for all
balls B(z, r) := {z0 ∈ X : d(z, z0) < r} in X. At the end of the section we further
assume that X supports a weak (1, p)-Poincaré inequality and that µ is doubling,
which are then assumed throughout the rest of the paper.

The measure µ is said to be doubling, if there exists a constant cµ ≥ 1, called
the doubling constant of µ, such that

µ(B(z, 2r)) ≤ cµµ(B(z, r)),

for all z ∈ X and r > 0. A metric space with a doubling measure is proper
(i.e., closed and bounded subsets are compact) if and only if it is complete. In
addition, a complete metric space with a doubling measure is separable.

Definition 2.1. A nonnegative Borel function g on X is an upper gradient of an
extended real valued function u on X if for all rectifiable paths γ joining points
x and y in X we have

|u(x) − u(y)| ≤

∫

γ

g ds. (2.1)
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whenever both u(x) and u(y) are finite, and
∫

γ
g ds = ∞ otherwise. If g is

a nonnegative measurable function on X and if (2.1) holds for p-almost every
path, then g is a p-weak upper gradient of u.

By saying that (2.1) holds for p-almost every path we mean that it fails only
for a path family with zero p-modulus. The p-modulus of a family of paths Γ in
X is the number

inf
ρ

∫

X

ρp dµ,

where the infimum is taken over all nonnegative Borel functions ρ such that for
all rectifiable paths γ which belong to Γ we have

∫

γ

ρ ds ≥ 1.

If u has an upper gradient in Lp(X), then it has a minimal p-weak upper

gradient gu ∈ Lp(X) in the sense that for every p-weak upper gradient g ∈ Lp(X)
of u, gu ≤ g µ-almost everywhere (a.e.), see Corollary 3.7 in Shanmugalingam [24].
The minimal p-weak upper gradient can be obtained by the formula

gu(z) := inf
g

lim sup
r→0+

1

µ(B(z, r))

∫

B(z,r)

g dµ,

where the infimum is taken over all upper gradients g ∈ Lp(X) of u, see Lemma 2.3
in J. Björn [5].

In the following lemma the function g = guχ{u>v} + gvχ{v≥u}, for example,
need not be a Borel function, but it can be replaced with a Borel function g̃ such
that g ≤ g̃ and g = g̃ µ-a.e. We shall use this transition from a µ-measurable
function g to a Borel function g̃ without a change of notation.

Lemma 2.2. Let u and v be functions with upper gradients in Lp(X). Then

guχ{u>v}+gvχ{v≥u} is a minimal p-weak upper gradient of max{u, v}, and gvχ{u>v}+
guχ{v≥u} is a minimal p-weak upper gradient of min{u, v}.

For a proof we refer, for example, to Lemma 3.2 in Björn–Björn [2] or Lemma 3.5
in Marola [22].

We define Sobolev spaces on the metric space X following Shanmugalingam [23].

Definition 2.3. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =

(∫

X

|u|p dµ + inf
g

∫

X

gp dµ

)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The Newtonian

space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0.
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For the properties of Newtonian spaces we refer to [23].

Definition 2.4. The capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖p
N1,p(X),

where the infimum is taken over all u ∈ N 1,p(X) such that u = 1 on E.

The capacity is countably subadditive. For this and other properties as well
as equivalent definitions of the capacity we refer to Kilpeläinen et al. [15] and
Kinnunen–Martio [16, 17].

We say that a property regarding points in X holds quasieverywhere (q.e.) if
the set of points for which the property does not hold has capacity zero. The
capacity is the correct gauge for distinguishing between two Newtonian functions.
If u ∈ N1,p(X), then u ∼ v if and only if u = v q.e. Moreover, Corollary 3.3 in
Shanmugalingam [23] shows that if u, v ∈ N 1,p(X) and u = v µ-a.e., then u ∼ v.

To be able to compare the boundary values of Newtonian functions we need
a Newtonian space with zero boundary values.

Definition 2.5. Let E be a measurable subset of X. The Newtonian space with

zero boundary values is the space

N1,p
0 (E) = {u|E : u ∈ N1,p(X) and u = 0 q.e. on X \ E}.

Note that if Cp(X \ E) = 0, then N 1,p
0 (E) = N1,p(X). The space N 1,p

0 (E)
equipped with the norm inherited from N 1,p(X) is a Banach space, see Theo-
rem 4.4 in Shanmugalingam [24].

We say that u belongs to the local Newtonian space N 1,p
loc (Ω) if u ∈ N1,p(Ω′)

for every open Ω′
b Ω (or equivalently that u ∈ N 1,p(E) for every measurable

E b Ω).

Definition 2.6. We say that X supports a weak (1, p)-Poincaré inequality if
there exist constants c > 0 and λ ≥ 1 such that for all balls B(z, r) ⊂ X, all
measurable functions f on X and for all p-weak upper gradients g of f ,

∫

B(z,r)

|f − fB(z,r)| dµ ≤ cr
( ∫

B(z,λr)

gp dµ
)1/p

, (2.2)

where fB(z,r) :=
∫

B(z,r)
f dµ :=

∫
B(z,r)

f dµ/µ(B(z, r)).

By the Hölder inequality it is easy to see that if X supports a weak (1, p)-
Poincaré inequality, then it supports a weak (1, q)-Poincaré inequality for every
q > p. If X is complete and µ doubling then it is shown in Keith–Zhong [14]
that a weak (1, p)-Poincaré inequality implies a weak (1, q)-Poincaré inequality
for some q < p.
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We shall need a Sobolev type inequality for Newtonian functions with zero
boundary values. Assume that E is bounded and Cp(X \ E) > 0. Then there
exists a constant c = c(p, E) > 0 such that for all u ∈ N 1,p

0 (E),
∫

E

|u|p dµ ≤ c

∫

E

gp
u dµ. (2.3)

For this result we refer to Kinnunen–Shanmugalingam [20].

Throughout the rest of the paper let us assume that X is complete, supports a
weak (1, p)-Poincaré inequality, and µ is doubling. It then follows that Lipschitz
functions are dense in N 1,p(X) and that the functions in N 1,p(X) are quasicon-
tinuous, see Björn et al. [3]. This means that in the Euclidean setting, N 1,p(Rn)
is the refined Sobolev space as defined on p. 96 of Heinonen et al. [11].

We shall use the following compactness result. For a proof see Kilpeläinen et
al. [15]. Let Ω be an open subset of X.

Lemma 2.7. (i) Let (ui) be a uniformly bounded sequence in Lp(X) such that

ui → u µ-a.e. in X. Then u ∈ Lp(X) and ui → u weakly in Lp(X).
(ii) Let (ui) be a uniformly bounded sequence in N 1,p(Ω) such that ui → u µ-a.e.

in Ω. Then u ∈ N1,p(Ω), ui → u and gui
→ g weakly in Lp(Ω), where g is

a p-weak upper gradient of u. Moreover, if ui ∈ N1,p
0 (Ω), then u ∈ N 1,p

0 (Ω).

We close this section by recalling that E b Ω if E is a compact subset of Ω,
and that Lipc(Ω) = {f ∈ Lip(X) : supp f b Ω}.

Unless otherwise stated, the letter c denotes various positive constants whose
values may vary.

3. Quasiminimizers

We start by following Section 3 of Kinnunen–Martio [19]. Let Ω ⊂ X be an open
set.

Definition 3.1. Let Q ≥ 1 and 1 < p < ∞. A function u ∈ N 1,p
loc (Ω) is called a

Q-quasiminimizer in Ω if for all open Ω′
b Ω and all v ∈ N 1,p

loc (Ω) with u − v ∈
N1,p

0 (Ω′) we have ∫

Ω′

gp
u dµ ≤ Q

∫

Ω′

gp
v dµ. (3.1)

Here gu and gv are the minimal p-weak upper gradients of u and v in Ω, respec-
tively.

Let f ∈ N1,p(Ω). We say that u is a Q-quasiminimizer with boundary values

f in Ω, if u is a Q-quasiminimizer in Ω such that u − f ∈ N 1,p
0 (Ω).

In (3.1) Ω′ is sometimes used instead of Ω′, however, these definitions are
equivalent, see Björn [1]. In metric measure spaces Ω′ is, at times, easier to use.
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Proposition 3.2. Let u ∈ N 1,p
loc (Ω). Then the following claims are equivalent:

(i) The function u is a Q-quasiminimizer in Ω;

(ii) For all ϕ ∈ N 1,p
0 (Ω) we have

∫

ϕ6=0

gp
u dµ ≤ Q

∫

ϕ6=0

gp
u+ϕ dµ.

Characterizations of quasiminimizers including this can be found in [1].
A function u ∈ N1,p

loc (Ω) is called a Q-quasisuperminimizer in Ω if (3.1) holds
for all open Ω′

b Ω and all v ∈ N 1,p
loc (Ω) such that v ≥ u µ-a.e. in Ω′ and

u − v ∈ N1,p
0 (Ω′). A function u is a Q-quasiminimizer if and only if both u and

−u are Q-quasisuperminimizers.
If Q = 1, then 1-quasiminimizers and 1-quasisuperminimizers are called min-

imizers and superminimizers, respectively. Observe, that for minimizers and
superminimizers it is enough to test (3.1) with Ω′ = Ω. If Ω is a bounded open
set in X so that Cp(X \Ω) > 0 and f ∈ N 1,p(Ω), then there is a unique minimizer
u ∈ N1,p(Ω) such that u − f ∈ N 1,p

0 (Ω). In other words, the Dirichlet problem
has a unique solution with the given boundary values, see Shanmugalingam [24],
and J. Björn [5], Cheeger [6] and Kinnunen–Martio [18].

The following DeGiorgi type estimate is well known, see for example Kinnunen–
Shanmugalingam [20] or Latvala [21, Lemma 3.3].

Lemma 3.3. Let u be a Q-quasiminimizer in Ω and let 0 < r < R with B(z, R) b

Ω. Then ∫

B(z,r)

gp
u dµ ≤

c

(R − r)p

∫

B(z,R)

|u − k|p dµ

for all k ∈ R and z ∈ Ω. The constant c depends only on p and Q.

It is known that quasiminimizers can be modified on a set of capacity zero
so that they become locally Hölder continuous, and satisfy the strong maximum
principle and that they satisfy the following Harnack’s inequality, see Kinnunen–
Shanmugalingam [20].

Theorem 3.4. Suppose that u is a nonnegative Q-quasiminimizer in Ω. Then

there exists a constant c ≥ 1 so that

sup
B(z,r)

u ≤ c inf
B(z,r)

u

for every ball B(z, r) for which B(z, 20λr) ⊂ Ω. Here the constant c is indepen-

dent of the ball B(z, r) and function u.

Here λ is the dilation constant in the weak Poincaré inequality. The dilation
constant from the weak Poincaré inequality is essential in the condition on the
balls in the Harnack inequality, see Section 10 in Björn–Marola [4].



8 Juha Kinnunen, Niko Marola and Olli Martio

4. Harnack’s principle

In this section we consider a sequence of Q-quasiminimizers with varying Q. We
prove that an increasing sequence (ui) of Qi-quasiminimizers defined in a domain
of X converges locally uniformly to a Q-quasiminimizer with Q = lim inf i→∞ Qi

provided the limit function is finite at some point. This is sometimes referred to
as Harnack’s principle or Harnack’s convergence theorem.

Let Ω be an open set in X. We shall need the following lemma in the proofs
of Theorem 4.3 and Theorem 5.1.

Lemma 4.1. Let (ui) be a sequence of Qi-quasiminimizers in Ω such that ui → u
µ-a.e. in Ω, (ui) is locally uniformly bounded in Lp(Ω) and the sequence (Qi) is

uniformly bounded. Let K ⊂ Ω be a compact set and for t > 0 define

K(t) = {x ∈ Ω : dist(x, K) < t}.

Then u ∈ N1,p
loc (Ω) and for almost every t ∈ (0, t0) we have

lim sup
i→∞

∫

K(t)

gp
ui

dµ ≤ Q

∫

K(t)

gp
u dµ,

where Q = lim supi→∞ Qi and t0 = dist(K, X \ Ω).

Proof. First note that K(t) b Ω for 0 < t < dist(K, X \ Ω) = t0 and K(t) is
open. By Lemma 3.3, for every ball B(z, r) b Ω we have

∫

B(z,r/2)

gp
ui

dµ ≤
c

rp

∫

B(z,r)

|ui|
p dµ < ∞.

Set δ = t0/3. Using the fact that X is a doubling space we can find a finite cover
of K(t) by balls B(zj, δ) with zj ∈ K(t). We obtain

∫

B(zj ,δ)

gp
ui

dµ ≤
c

δp

∫

B(zj ,2δ)

|ui|
p dµ < ∞.

Since the cover is finite, we see that the sequence (gui
) is uniformly bounded in

Lp(K(t)) and consequently (ui) is uniformly bounded in N 1,p(K(t)). Lemma 2.7
implies that u ∈ N1,p(K(t)).

Let 0 < t′ < t < t0 and choose a Lipschitz cutoff function η such that
0 ≤ η ≤ 1, η = 0 in Ω \ K(t) and η = 1 in K(t′). Let

wi = ui + η(u − ui), i = 1, 2, ...

Then ui −wi ∈ N1,p
0 (K(t)) and as in Lemma 2.4 of Kinnunen–Martio [18] we get

gwi
≤ (1 − η)gui

+ ηgu + gη|u − ui|, i = 1, 2, ... ,
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µ-a.e. in K(t). Thus

(∫

K(t)

gp
wi

dµ

)1/p

≤

(∫

K(t)

((1 − η)gui
+ ηgu)

p dµ

)1/p

+

(∫

K(t)

gp
η|u − ui|

p dµ

)1/p

=: αi + βi.

We use the elementary inequality

(αi + βi)
p ≤ αp

i + pβi(αi + βi)
p−1,

from which it follows that
∫

K(t)

gp
wi

dµ ≤

∫

K(t)

(1 − η)gp
ui

dµ +

∫

K(t)

ηgp
u dµ + pβi(αi + βi)

p−1,

where we also used the convexity of the function s 7→ sp.
The quasiminimizing property of ui gives

∫

K(t′)

gp
ui

dµ ≤

∫

K(t)

gp
ui

dµ ≤ Qi

∫

K(t)

gp
wi

dµ

≤ Qi

∫

K(t)

(1 − η)gp
ui

dµ + Qi

∫

K(t)

ηgp
u dµ + Qipβi(αi + βi)

p−1.

Adding the term

Qi

∫

K(t′)

gp
ui

dµ

to the both sides and taking into account that η = 1 in K(t′) we obtain

(1 + Qi)

∫

K(t′)

gp
ui

dµ

≤Qi

∫

K(t)

gp
ui

dµ + Qi

∫

K(t)

gp
u dµ + Qipβi(αi + βi)

p−1.

(4.1)

Set Ψ : (0, t0) → R,

Ψ(t) = lim sup
i→∞

∫

K(t)

gp
ui

dµ.

Now Ψ is a finite valued and increasing function of t. Thus the points of discon-
tinuities of Ψ form a countable set. Let t, 0 < t < t0, be a point of continuity of
Ψ. Inequality (4.1) implies that

∫

K(t′)

gp
ui

dµ

≤ Ci

∫

K(t)

gp
ui

dµ + Ci

∫

K(t)

gp
u dµ + Cipβi(αi + βi)

p−1,

(4.2)
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where Ci = Qi/(Qi + 1). Set C = lim supi→∞ Ci. Now

βp
i =

∫

K(t)

gp
η|u − ui|

p dµ → 0

as i → ∞ by the Lebesgue dominated convergence theorem; in fact, since (ui)
is locally uniformly bounded in Lp(Ω), the quasiminimizing property of ui implies
that the sequence (ui) is bounded in K(t), see e.g. Kinnunen–Shanmugalingam [20,
Theorem 4.3]. Note also that the sequence αi is uniformly bounded.

Letting i → ∞, we obtain from (4.2) the estimate

Ψ(t′) ≤ CΨ(t) + C

∫

K(t)

gp
u dµ. (4.3)

On the other hand, the function s 7→ s/(s + 1) is increasing and hence C =
Q/(Q + 1), where Q = lim supi→∞ Qi. Since t is a point of continuity of Ψ, we
conclude from (4.3) that

Ψ(t) ≤ Q

∫

K(t)

gp
u dµ

as required.

Remark 4.2. The following weaker estimate

lim inf
i→∞

∫

K(t)

gp
ui

dµ ≤ Q

∫

K(t)

gp
u dµ,

where Q = lim inf i→∞ Qi, follows immediately from the previous lemma. We
shall use this in the proof of Theorem 4.3.

Now we are ready to prove Harnack’s principle for Q-quasiminimizers with
varying Q.

Theorem 4.3. Let (ui) be an increasing sequence of Qi-quasiminimizers in a

domain Ω of X and let the sequence (Qi) be uniformly bounded. Then either

ui → ∞ locally uniformly or ui → u locally uniformly in Ω, where u is a Q-qua-

siminimizers in Ω with Q = lim inf i→∞ Qi.

The proof resembles the proof of Theorem 6.1 in Kinnunen–Martio [19]. How-
ever, that proof contains a gap which will be settled here. The authors would
like to thank professor Fumi-Yuki Maeda for pointing out the error in [19].

Proof. Let Ω′
b Ω be a domain. There are two possibilities: Either u(z) = ∞

for some z ∈ Ω′ or u(z) < ∞ for all z ∈ Ω′. Now if ui(z) → ∞ as i → ∞ for
some z ∈ Ω′, it follows from the Harnack inequality (Theorem 3.4) that ui → ∞
uniformly on Ω′ and we conclude that ui → ∞ locally uniformly on Ω.
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Let z ∈ Ω′ be such that u(z) < ∞. The Harnack inequality implies that
the sequence (ui) is uniformly bounded in Ω′. Furthermore, as in the proof of
Lemma 4.1 we conclude that the sequence (gui

) is locally uniformly bounded in
Lp(Ω′). It follows from Lemma 2.7 that u ∈ N 1,p

loc (Ω) and (gui
) converges weakly

to g in Lp(Ω′), where g is a p-weak upper gradient of u.
As in Lemma 4.1, let K ⊂ Ω be a compact set and for t > 0 write

K(t) = {x ∈ Ω : dist(x, K) < t}.

Then K(t) b Ω for 0 < t < dist(K, X \ Ω) = t0 and K(t) is open.
Let v ∈ N1,p(Ω′) such that u − v ∈ N 1,p

0 (Ω′). We need to show that
∫

Ω′

gp
u dµ ≤ Q

∫

Ω′

gp
v dµ. (4.4)

To this end let ε > 0 and choose open sets Ω′′ and Ω0 such that

Ω′
b Ω′′

b Ω0 b Ω

and ∫

Ω0\Ω′

gp
u dµ < ε. (4.5)

Next choose a Lipschitz cutoff function η with the properties that η = 1 in an
open set containing Ω′, 0 ≤ η ≤ 1 and η = 0 on Ω\Ω′′. We choose a subsequence
(ij) such that Qij → Q as j → ∞. We denote, for simplicity, this subsequence
by (Qi). Set

wi = ui + η(v − ui), i = 1, 2, ...

Then ui − wi ∈ N1,p
0 (Ω′′). We have, as in Lemma 2.4 of Kinnunen–Martio [18],

gwi
≤ (1 − η)gui

+ ηgv + gη|v − ui|, i = 1, 2, ... ,

µ-a.e. in Ω′′. As in the proof of Lemma 4.1 we get
∫

Ω′′

gp
wi

dµ ≤

∫

Ω′′

(1 − η)gp
ui

dµ +

∫

Ω′′

ηgp
v dµ + pβi(αi + βi)

p−1, (4.6)

where

αp
i :=

∫

Ω′′

((1 − η)gui
+ ηgv)

p dµ and βp
i :=

∫

Ω′′

gp
η|v − ui|

p dµ.

We estimate the terms on the right hand side separately. Since gη = 0 µ-a.e.
in Ω′ and v = u in Ω′′ \ Ω′, we have

βp
i =

∫

Ω′′

gp
η|v − ui|

p dµ

=

∫

Ω′′\Ω′

gp
η|v − ui|

p dµ +

∫

Ω′

gp
η|v − ui|

p dµ

≤

∫

Ω′′\Ω′

gp
η|u − ui|

p dµ ≤

∫

Ω′′

gp
η|u − ui|

p dµ.

(4.7)



12 Juha Kinnunen, Niko Marola and Olli Martio

The Lebesgue monotone convergence theorem implies that βp
i tends to 0 as i →

∞.
Next, since η = 1 in an open set containing Ω′, there is a compact set K ⊂ Ω′′

such that K ∩ Ω′ = ∅ and
∫

Ω′′

(1 − η)gp
ui

dµ ≤

∫

K

gp
ui

dµ.

We may choose K = Ω′′ \ Ω′(t) for sufficiently small t > 0; observe that K is
independent of i. Next choose t > 0 such that

lim inf
i→∞

∫

K(t)

gp
ui

dµ ≤ Q

∫

K(t)

gp
u dµ,

where Q = lim inf i→∞ Qi, and K(t) ⊂ Ω0 \ Ω′. This is possible by Lemma 4.1
(see also Remark 4.2). We have

lim inf
i→∞

∫

Ω′′

(1 − η)gp
ui

dµ ≤ lim inf
i→∞

∫

K

gp
ui

dµ

≤ lim inf
i→∞

∫

K(t)

gp
ui

dµ ≤ Q

∫

K(t)

gp
u dµ ≤ Qε, (4.8)

where the last inequality follows from (4.5). Since the sequence αi, i = 1, 2, ..., is
bounded as i → ∞, it follows from (4.6), (4.7) and (4.8) that

lim inf
i→∞

∫

Ω′′

gp
wi

dµ ≤ Qε +

∫

Ω′′

gp
v dµ.

Now gui
converges weakly to g in Lp(Ω′′) and gu ≤ g µ-a.e. Thus the quasi-

minimizing property of ui together with the lower semicontinuity of the Lp-norm
give

∫

Ω′

gp
u dµ ≤

∫

Ω′′

gp dµ

≤ lim inf
i→∞

∫

Ω′′

gp
ui

dµ ≤ lim inf
i→∞

Qi

∫

Ω′′

gp
wi

dµ

= Q lim inf
i→∞

∫

Ω′′

gp
wi

dµ ≤ Q2ε + Q

∫

Ω′′

gp
v dµ

≤ Q2ε + Q

∫

Ω′

gp
v dµ + Q

∫

Ω′′\Ω′

gp
v dµ

≤ Q(Q + 1)ε + Q

∫

Ω′

gp
v dµ,

where we used the facts that Qi → Q as i → ∞ and gu = gv µ-a.e. in Ω′′ \ Ω′

together with inequality (4.5). Letting ε → 0 we obtain (4.4), hence, u is a
Q-quasiminimizer in Ω with Q = lim inf i→∞ Qi.
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Now u and ui are continuous for every i. The local Hölder continuity estimate
for quasiminimizers, see Kinnunen–Shanmugalingam [20] (see also the proof of
Theorem 5.1 in Section 5), shows that the family (ui) is equicontinuous. Since
the sequence (ui) is increasing and ui → u µ-a.e. it follows that ui → u locally
uniformly in Ω. Note that this applies to the whole sequence (ui) and not just to
the subsequence emplyed in the proof. The theorem follows.

Remark 4.4. An easy modification of the previous proof shows the following: If
(ui) is an increasing sequence of Qi-quasisuperminimizers in Ω and u = limi→∞ ui

is either locally bounded above in Ω or belongs to N 1,p
loc (Ω), then u is a Q-

quasisuperminimizer with Q = lim inf i→∞ Qi. See also Theorem 6.1 in Kinnunen–
Martio [19].

Corollary 4.5. Let (ui) be a sequence of Qi-quasiminimizers in a domain Ω of X
such that the sequence (ui) is locally uniformly bounded below and the sequence

(Qi) is uniformly bounded. If Q = lim inf i→∞ Qi, then there is a subsequence

(uij) of (ui) such that either uij → ∞ locally uniformly or uij converges locally

uniformly to a Q-quasiminimizer in Ω.

Proof. Choose a subsequence (Qik) of (Qi) such that Q = limk→∞ Qik . Sup-
pose that for some x ∈ Ω there is a subsequence (vj) of (uik) such that (vj(x))
is bounded. The Harnack inequality implies that the sequence (vj) is locally
uniformly bounded, and the same reasoning as in the proof of Theorem 5.1 in
Section 5, shows that (vj) is equicontinuous. Hence the Arzela–Ascoli theorem
implies a subsequence (ṽj) that converges locally uniformly to a continuous func-
tion u in Ω.

Let Ω′
b Ω be open. Then ṽj → u uniformly in Ω′. By passing to a subse-

quence we may assume that

sup
Ω′

|ṽj − u| < j−2, j = 2, 3, ... .

Let

wj = ṽj −
1

j
, j = 2, 3, ...

Then wj ≤ wj+1 in Ω′ and wj → u uniformly in Ω′. By Theorem 4.3 u is a
Q-quasiminimizer in Ω′ and (ṽj) is the required subsequence.

If for some x ∈ Ω there is a subsequence (vj) of (uik) such that vj(x) → ∞ as
j tends to infinity, the Harnack inequality implies that vj → ∞ locally uniformly
in Ω and the proof is complete.
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5. Stability of quasiminimizers

In this section we shall assume that Ω is a bounded domain in X with Cp(X\Ω) >
0. Since there is no uniqueness for the Dirichlet problem when Cp(X \ Ω) = 0,
stability problems with fixed boundary values are not important in this case.

We are interested in the stability properties of Qi-quasiminimizers when the
sequence (Qi) tends to 1.

Theorem 5.1. Let (fi) be a uniformly bounded sequence of functions in N 1,p(Ω)
such that fi → f µ-a.e. Furthermore, let (ui) be a sequence of Qi-quasiminimizers

in Ω with boundary values fi in Ω and let the sequence (Qi) be uniformly bounded.

If Qi → 1, then ui → u locally uniformly in Ω and u is a minimizer in Ω with

boundary values f .

Proof. It follows from Lemma 2.7(ii) that f ∈ N 1,p(X). Since ui − fi ∈ N1,p
0 (Ω),

quasiminimizing property and Proposition 3.2 implies that

∫

Ω

gp
ui

dµ ≤ Qi

∫

Ω

gp
fi

dµ,

and thus the sequence (gui
) is uniformly bounded in Lp(Ω) because the sequences

(Qi) and (‖gfi
‖Lp(Ω)) are uniformly bounded. Passing to a subsequence we may

assume that (gui
) converges weakly in Lp(Ω) to a function g ∈ Lp(Ω). Moreover,

the sequence (ui) is uniformly bounded in Lp(Ω). Indeed, by inequality (2.3) we
get

(∫

Ω

|ui|
p dµ

)1/p

≤

(∫

Ω

|ui − fi|
p dµ

)1/p

+

(∫

Ω

|fi|
p dµ

)1/p

≤ c

(∫

Ω

gp
ui−fi

dµ

)1/p

+

(∫

Ω

|fi|
p dµ

)1/p

≤ c

(∫

Ω

gp
ui

dµ

)1/p

+ c

(∫

Ω

gp
fi

dµ

)1/p

+

(∫

Ω

|fi|
p dµ

)1/p

for every i = 1, 2, .... All the sequences on the right hand side of the above
inequality are bounded, hence, the sequence (ui) is uniformly bounded in N 1,p(Ω).

By Kinnunen–Shanmugalingam [20, Theorems 4.3 and 5.2] there is a constant
0 < c < ∞ and α > 0, where α depends on p, cµ and the constants in the weak
Poincaré inequality but not on i, such that

|ui(x) − ui(y)| ≤ c‖ui‖Lp(Ω′)d(x, y)α,

where x, y ∈ Ω′
b Ω. Hence the sequence (ui) is locally uniformly bounded and

equicontinuous in Ω. The Arzela–Ascoli theorem gives a subsequence, which will
be denoted by (ui), converging locally uniformly to a continuous function u in Ω.
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From Lemma 2.7 it now follows that u ∈ N 1,p(Ω) and that g is a p-weak upper
gradient of u. Moreover, since ui −fi ∈ N1,p

0 (Ω), (ui −fi) is a uniformly bounded
sequence in N1,p(Ω) and ui − fi → u − f µ-a.e. in Ω, it follows from the same
lemma that u − f ∈ N 1,p

0 (Ω).
Let Ω′

b Ω be open. Let K ⊂ Ω be a compact set and for t > 0 write

K(t) = {x ∈ Ω : dist(x, K) < t}.

Then K(t) b Ω for 0 < t < dist(K, X \ Ω) = t0. Lemma 4.1 implies that

lim sup
i→∞

∫

K(t)

gp
ui

dµ ≤

∫

K(t)

gp
u dµ

for almost every t ∈ (0, t0).
Let v ∈ N1,p(Ω′) such that u − v ∈ N 1,p

0 (Ω′). Let ε > 0 and choose open sets
Ω′′ and Ω0 such that

Ω′
b Ω′′

b Ω0 b Ω

and ∫

Ω0\Ω′

gp
u dµ < ε.

Next choose a Lipschitz cutoff function η with the properties η = 1 in a neigh-
bourhood of Ω′, 0 ≤ η ≤ 1 and η = 0 on Ω \ Ω′′. Set

wi = ui + η(v − ui), i = 1, 2, ...

Then wi − ui ∈ N1,p
0 (Ω′′). Exactly as in the proof of Theorem 4.3, we obtain

∫

Ω′′

gp
wi

dµ ≤

∫

Ω′′

(1 − η)gp
ui

dµ +

∫

Ω′′

ηgp
v dµ + pβi(αi + βi)

p−1.

Estimating the terms on the right hand side separately, see the proof of Theo-
rem 4.3, we finally arrive at

lim sup
i→∞

∫

Ω′′

gp
wi

dµ ≤ ε +

∫

Ω′′

gp
v dµ.

Since ui is a quasiminimizer and Qi → 1 as i tends to ∞, it follows that

∫

Ω′

gp
u dµ ≤

∫

Ω′

gp dµ ≤ lim inf
i→∞

∫

Ω′

gp
ui

dµ ≤ lim sup
i→∞

∫

Ω′′

gp
ui

dµ

≤ lim sup
i→∞

Qi

∫

Ω′′

gp
wi

dµ ≤ ε + lim
i→∞

Qi

∫

Ω′′

gp
v dµ

≤ ε +

∫

Ω′

gp
v dµ,
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where we used the fact that gu = gv µ-a.e. in Ω′′ \ Ω′ and that Qi → 1. Letting
ε → 0+ and since Ω′

b Ω was an arbitrary open set, we see that u is a minimizer
in Ω.

The previous proof shows the result can be obtained for every subsequence
(uij) of (ui). This and the uniqueness of minimizers with the given boundary
data f imply the assertion for the sequence (ui).

Corollary 5.2. Let f ∈ N 1,p(Ω) and let (ui) be a sequence of Qi-quasiminimizers

in Ω with boundary values f in Ω and let the sequence (Qi) be uniformly bounded.

If Qi → 1, then ui → u locally uniformly in Ω and u is a minimizer in Ω with

boundary values f .

Remark 5.3. (1) Equation (5.7) in Holopainen et al. [13] shows that if u, ui ∈
N1,q

loc (X) for some q > p then g|u−ui|q/p → 0 in Lp(X).
Moreover, if q ≥ p, (ui) and (gui

) are uniformly bounded in Ω b X, and u is
bounded in X, then there is a constant t ∈ (0, 1) such that for every x ∈ X and
r < 1

3
diam X

sup
B(x,r)

|u − ui|
q ≤ c

( ∫

B(x,2r)

|u − ui|
q dµ

)t

,

where c is independent of x ∈ X. See Lemma 5.2 in [13].
(2) It would be interesting to know whether for X = Rn and µ equals the

Lebesgue measure, the p-Dirichlet regularity of the open set Ω implies that the
convergence in Theorem 5.1 is uniform in Ω for a single continuous boundary
function fi = f for i = 1, 2, ....

The proof of Proposition 5.4 below implies that ‖ui‖N1,p(Ω) → ‖u‖N1,p(Ω). If
N1,p(Ω) is uniformly convex it follows ui → u in N1,p(Ω). Examples of metric
spaces X for which the space N 1,p(X) is uniformly convex include unweighted
and weighted Euclidean spaces, Carnot–Carathéodory spaces and spaces with
Cheeger derivative structure, see Cheeger [6]. However, in the generality of this
paper we do not know that the space N 1,p(X) (or N1,p(Ω)) is uniformly convex.

From now on, suppose X = Rn is equipped with Euclidean distance, the
measure µ is the Lebesgue measure and Ω ⊂ Rn is a bounded domain so that
Cp(R

n \ Ω) > 0.
We recall that if (fi) is a sequence of functions in Lp (Lp-spaces, with 1 < p <

∞, are uniformly convex) and f a function in Lp such that fi → f weakly
and ‖fi‖Lp → ‖f‖Lp, then by the Radon–Riesz theorem, see e.g. Hewitt–
Stromberg [12], we have ‖fi − f‖Lp → 0. Using these observations we are able to
prove a strong convergence of the gradients in the Euclidean case.

Proposition 5.4. Let (ui), (fi), (Qi), u and f be as in Theorem 5.1 in which case

ui → u locally uniformly and u is a minimizer with boundary values f in Ω. Then

ui → u in W 1,p(Ω) .
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Proof. Clearly ui → u in Lp(Ω), see the proof of Theorem 5.1. Observe that the
Sobolev space W 1,p(Ω), 1 < p < ∞, has the property that if wi, w ∈ W 1,p(Ω),
wi → w in Lp(Ω) and (|∇wi|) is a bounded sequence in Lp(Ω), then the sequence
(∇wi) converges weakly to ∇w in Lp(Ω). Thus we obtain that ∇ui → ∇u weakly
in Lp(Ω). Since ui − f, u − f, u − ui ∈ W 1,p

0 (Ω), the quasiminimizing property of
ui and u and Proposition 3.2 imply that

0 ≤ ‖∇ui‖
p
Lp(Ω) − ‖∇u‖p

Lp(Ω)

≤ Qi

∫

Ω

|∇u|p dx −

∫

Ω

|∇u|p dx ≤ (Qi − 1)‖∇f‖p
Lp(Ω).

It follows that ‖∇ui‖Lp(Ω) → ‖∇u‖Lp(Ω) when i → ∞. Since ∇ui → ∇u weakly
in Lp(Ω), the Radon–Riesz theorem implies the claim.
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infinity on Gromov hyperbolic metric measure spaces, Preprint, University
of Helsinki, 2005.

[14] Keith, S. and Zhong, X., The Poincaré inequality is an open ended con-
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