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Abstract

We study the effects of random measurement errors in the predictor selection of
the linear regression model using a measurement framework. The variances of the
measurement errors are estimated instead of the usual procedures where they are
assumed to be known. By specifying a measurement model, we solve the problem of
measurement in a reduced true score space, and then create various measurement
scales to be used as predictors in the regression model. We examine the stability of
the predictor selection and the predicted validity and reliability of the prediction
scales by extensive Monte Carlo simulations. Varying the magnitude of the mea-
surement error variance we compare four sets of predictors: all variables, a stepwise
selection, factor sums, and factor scores. The results indicate that the factor scores
offer a stable method for predictor selection, whereas the other alternatives tend to
give biased results leading more or less to capitalizing on chance.
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1 Introduction

The predictor selection of the linear regression model is affected, not only by
the sampling variation, but also by the measurement errors. Let us assume that
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a predictor, say, x is measured with error. We can express this as x* = 7 + ¢,
where 7 is the true value of the predictor and ¢ is the random measurement
error. It is reasonable to assume that € is uncorrelated with 7, and hence
we can write the variance of = as var(z) = var(r) + var(e), where var(7)
represents the sampling variation and var(e) represents the measurement error
variation. Either of these may dominate in a given study. If the measurements
are unreliable, we can not improve the situation by increasing the sample size.
Instead, we should have more accurate measurements. In many applications
it would be preferable to reduce the effects of the measurement errors in the
predictor selection, and hence make the models more stable. However, the
measurement errors are often neglected in the statistical models, including
perhaps the most widely applied one, the linear regression model.

A classic treatment of measurement errors in regression models is provided
by the errors-in-variables regression models [1]. The fundamental assumption
of those models is that each observed variable has its own true value, dis-
turbed by a random measurement error. This assumption may lead to prob-
lems in the model identification, since there are simply too many parameters
to be estimated. The usual procedure is to assume that the measurement er-
ror variances—or the reliabilities of the observed variables—are known (see,
e.g., [2,3,1]). This may be a reasonable assumption in the physical sciences
and engineering (see, e.g., [3, pp. 698-699]). However, in areas such as the
social sciences or the behavioral sciences, it is usually unrealistic to assume
that the reliabilities would be so well established that they could be treated as
known. Taking independent replicate experiments to establish the magnitude
of the measurement error (see, e.g., [3, pp. 698-699] or [1, p. 106]) does not
either provide a satisfactory solution to the problem of measurement in the
above-mentioned fields.

In the most general form, the errors-in-variables regression models combine the
regression model with the factor analysis model [1, Sec. 4.3]. Another method
combining these two models has been called factor analysis regression [4-6]. Tt
allows any one of the variables in the factor model to be the dependent variable
and uses the regression method to solve a set of simultaneous equations. A
more general approach for combining factor models and regression models
is provided by the structural equation modeling [7,8], which allows specifying
and testing complicated models and relations that include measurement errors.
The focus of these models is mainly on the structural relations, the connections
between the latent variables.

Our approach for regression modeling with measurement errors is based on the
measurement framework [9-11], where the fundamental assumption, and thus
the main difference compared with the errors-in-variables regression models, is
that the observed variables are measuring a latent structure, whose dimension
is considerably smaller than the number of the variables. Instead of focusing on



the single true values of each observed variable, the problem of measurement
is solved in a reduced true score space. This approach allows the estimation
of the measurement error variances without a need to make assumptions that
might be unrealistic. In certain respects, our approach comes close to the struc-
tural equation modeling, since it also employs the factor model, but instead of
the connections between the latent variables we stress the connections estab-
lished by the measurement scales, i.e., the linear combinations of the observed
variables.

In this paper we take advantage of the measurement framework to study how
the measurement errors affect the predictor selection of the linear regression
model. We make Monte Carlo simulations based on a certain measurement
structure using four different sets of predictors, which are measurement scales
created within the measurement framework. Section 2 reviews the basic con-
cepts of the measurement framework and establishes the connection with the
linear regression model. Section 3 describes the settings of the simulation stud-
ies. Section 4 presents the results and Section 5 concludes.

2 Measurement framework

Our approach for regression modeling with measurement errors is based on the
measurement framework [9-11]. In this section we review the basic concepts
of the framework and establish the connection between the framework and the
linear regression model.

The measurement framework is illustrated in Fig. 1 (the details are explained
in the text). The general aim of the framework is 1) to specify the structure of
the measurement with a measurement model, 2) to estimate the parameters
of the measurement model, including the measurement error variances, and
3) to create measurement scales for further use, e.g., for regression modeling.
The dimension reduction facilitates estimating the parameters of interest and
assessing the validity and reliability of the measurement scales without extra
assumptions.

2.1 Measurement model

Let p variables @ = (z1,...,2,) measure k (< p) unobservable true scores
T = (71, ...,7)" with unobservable measurement errors € = (¢y,...,¢,)’, and
assume that E(e) = 0 and cov(7,e€) = 0. The structure of the measurement
is specified by the measurement model

x=p+ BT +¢, (2.1)
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Fig. 1. Elements of the measurement framework.

where o = (p1,...,1,)" is defined as the expectation of x, and the matrix
B € RP** gpecifies the relationship between & and 7 [9, p. 176]. In Fig. 1,
the measurement model is represented by the first frame on the left. The true
scores appear as circles and the observed variables as squares. The arrows
between them indicate their relationship, corresponding to the elements of
the matrix B. There is a random measurement error ¢; related to each x;.

It is often practical to assume that cov(7) = I}, an identity matrix of order
k, and cov(e) = Wy = diag(y7, ..., 17). (We note that throughout this paper
we may use the subscript d to indicate a diagonal matrix.) With the above
assumptions the measurement model (2.1) conforms with the orthogonal factor

analysis model [9, p. 177] and it follows that
cov(z) = X = BB +W,, (2.2)

where the true score variation is separated from the measurement error varia-
tion. We assume that B has full column rank, and that X' is positive definite.

2.2 Measurement scale

The variables @ are used in further analyses by creating multivariate measure-
ment scales u = A'x, where A € RPX™ is a matrix of the weights, e.g., factor
score coefficients or predetermined values according to a theory [9, pp. 177
178]. In Fig. 1, the measurement scale is represented by the second frame from
the left. The distinct scales appear as diamonds, the arrows pointing from



the observed variables to the scales symbolizing the weights of the scales. The
observed variables are surrounded in Fig. 1 by two frames, as their task is to
connect the measurement model and the measurement scale.

The conceptions regarding the measurement errors in the measurement scales
are based on the measurement model (2.1) and its assumptions. According to
Eq. (2.2) we have

cov(u) = A/ XA =ABB A+ AW,A, (2.3)

which gives the separate contributions to the variances and covariances of the
scales by the true scores and the measurement errors. The assumptions made
about the measurement model imply that the variances of the scales can be
estimated without any extra assumptions.

The measurement scale u, being a linear combination of the observed variables,
may be called a first order scale. Similarly, z = W'u where W € R™* is a
weight matrix, can be called a second order scale 9, p. 178]. It is represented
in Fig.1 by the second frame from the right, the distinct scales appearing as
double diamonds. By (2.3) we have similarly

cov(z) = WA SAW = W A'BB' AW + W AW ,AW. (2.4)

The reliabilities of the scales are obtained as ratios of the variances, i.e., the
diagonal elements of the matrices in (2.3) and (2.4). Vehkalahti et al. [12] have
suggested this general estimator of reliability to be called Tarkkonen’s rho. In
the case of the measurement scales u and z, Tarkkonen’s rho is a diagonal
matrix which can be written in the forms [9, pp. 179-180]

po = {In+ (AW,A), x [(ABB'A) "}, (2.5)

and
p,={I,+ WAV ,AW), x (W ABB'AW), '}, (2.6)

respectively.

2.3 Linear regression model with measurement framework

Our aim here is to take advantage of the measurement framework by creating
different measurement scales to be used as predictors in the linear regression
model. In general, we have m scales u = (uy,...,u,) which are obtained
basically by

u=Az=An+ ABt + Ale, (2.7)
but we recall that 7 and € are unobservable. However, by Eq. (2.3) we can
assess their contributions to the scales as soon as we have the estimates of the



measurement model parameters, that is, the elements of B and the diagonal
elements of ¥,;. The weight matrix A will vary depending on the measure-
ment scale to be applied. In the simulation experiments, we will consider four
different sets of predictors, and hence four different weight matrices.

We can now write the linear regression model in the form
y =0+ Bu+9, (2.8)

where y is the response variable, 3y is the intercept, 3 = (1, ..., (,) is the
vector of the regression coefficients, u is the vector of the predictors, and ¢ is a
model error, an unobservable random error in the assumed linear relationship
between y and wu.

2.4 Prediction scale and predictive validity

In view of the measurement framework, the prediction scale z = B'u is a
second order measurement scale, the variance of which is var(z) = 8’ cov(u)B.
Thus the reliability of z can be estimated by

B BAW,AB \
pzz—<1 m) ) (2.9)

which is a special case of the Eq. (2.6), when W = 3 and s = 1.

The response variable y represents an external criterion for the predictive
validity of z. The predictive validity of a measurement scale is assessed by
the correlation between the scale and the criterion, and it is denoted by p.,
9, p. 182]. In the case of the regression model, p,, is equal to the multiple
correlation coefficient. In Fig. 1, predictive validity is indicated by the arrows
between the second order scales and the validity criteria.

In this study, we will not consider the measurement errors in y, since our
focus is on the predictors. In practice, however, y could also be a measure-
ment scale—perhaps based on a different measurement model. We could also
have several distinct criteria for different prediction purposes. In the most
general case, we would simultaneously have a multidimensional criterion y =
(y1,-..,y,) and multiple (second order) scales z = (21, ..., 2,)’, which would
lead, e.g., to the canonical correlations of y and z. However, this study is re-
stricted to the case of the linear regression model, i.e., using a single criterion
y and one-dimensional prediction scales z.

The measurement errors in the predictors cause a reduction in all correlations,
including p,,,. If we could eliminate the measurement errors from z = 3'u, we



could calculate the true value of z, denoted by (, simply by
(=pu-pAe=p3A(p+ Br),

but it is not possible, since we will not have the estimates of 7 or €. However,
we will obtain an estimate of the correlation between ( and y by applying the
correction for attenuation (see [9, p. 182]) in the form

Pzy
by = L2 (2.10)
Cy Do

where the estimate of the reliability of z obtained by Eq. (2.9) is essential.
In psychometrics, the square root of the reliability in Eq. (2.10) is sometimes
called the reliability index.

3 Simulation studies

We conduct simulation studies, because the complexity of the procedures in-
troduced in the previous section makes it impossible to study the effects of the
measurement errors analytically. The simulation studies are based on specify-
ing the design of a “true” measurement structure, which is repeatedly used to
generate random samples and estimate the parameters of interest. We study
four different sets of predictors with a varying magnitude of artificial measure-
ment error variance.

3.1 Design of the measurement structure

Without losing generality, we assume that the observed variables are stan-
dardized, that is, E(x) = 0 and cov(x) = cor(x) = X. Then it is obvious that
Y is known as soon as B is known. Hence we can specify the design of the
“true” measurement structure by choosing the elements of the matrix B so
that B has full column rank and X is positive definite.

The chosen measurement structure consists of k& = 3 true scores and p =
13 variables. Table 1 presents the matrix B together with the rowwise and
columnwise sums of squares of its elements. The variables z1,...,x9 are the
primary contributors to the true scores 71, 75, and 73. That part of the matrix
B has a pure simple structure (see, e.g., [13, p. 573]). Without the rest of the
variables, which act as a sort of confounders, the structure would be overly
simple. In practice, the variables x1q, . .., x13 could represent some background
information affecting the traits measured by the other variables.



Table 1
Matrix B with the sums of squares of the elements (zeros omitted).

True score
Variable 7 i) T3 Sumsqr
1 0.9 0.81
T2 0.8 0.64
x3 0.7 0.49
x4 0.6 0.36
x5 0.8 0.64
x6 0.7 0.49
x7 0.6 0.36
s 0.7 0.49
X9 0.6 0.36
Z10 05 05 05 0.75
11 0.6 —0.6 0.72
12 0.6 —0.6 0.72
13 —0.6 0.6 0.72

Sumsqr 3.27 2.46 1.82

The true scores appear in the order of the columnwise sums of squares of the
elements. Without the confounders 75 would be quite weak, with xg and zg as
its only indicators. The rowwise sums of the squares (communalities in factor
analysis) vary from 0.36 to 0.81. According to the measurement model, they
indicate the variance generated by the true scores for each variable. Similarly,
the rest of the variance is generated by the measurement errors. The variables
x4, 7, and xg are the weakest ones, that is, most of their variance is due to
the measurement errors. The confounders are among the best ones in this
respect. To conclude, the design of the chosen measurement structure should
be general enough to form a reasonable basis for the simulation studies.

3.2 Random samples

The random samples are repeatedly generated by creating p independent,
normally distributed, standardized variables n = (11, ...,n,)" and computing
x = Cn, where C is obtained from the spectral decomposition X = CC".
Because n ~ N(0,1,), it follows that & ~ N(0,X). We recall that X is
known. The sample variation is established by using each time different seeds



for a combined Tausworthe pseudo random number generator [14]. In order
to estimate the pk elements of B and the p diagonal elements of ¥ , that
is, the required 13 - 3 + 13 = 52 parameters of the measurement model, it is
reasonable to use at least n = 100 observations. To control for the sample size,
the simulations are conducted with n = 100, 300, 500, 1000.

The response variable y is computed as a plain sum y = 1'x+4, where 1 is the
vector of ones. The model error 6 ~ N (0, 0?), where o2 brings some additional
sampling variation in g, in order to make the relationship between y and the
predictors a bit more complicated. We recall that in this study we ignore the
measurement errors in y, including those implied by the design (see below),
and interpret all the variation in y to be caused by sampling. To control for
the sampling variation, the simulations are conducted with 0% = 4 and 02 = 9.

The design of the measurement structure implies that the basic magnitude of
the measurement error variance in the @ variables is given by ¥, = ¥ — BB'.
After the response variable y has been computed, artificial measurement error
€ is added in x assuming that € ~ N(0,6%I,), where 6 is given fixed values.
The total variance of the measurement error to be estimated is therefore given
by cov(e) = ¥, = ¥} +6°I,. When 6 = 0, we have simply ¥, = ¥}. To study
the effect of the measurement errors, the simulations are conducted increasing
6 from 0 up to 2 in increments of 0.5.

3.8  Parameter estimation

For each sample we have to estimate the parameters of the measurement
model (2.1) and the parameters of the regression model (2.8) using different
sets of predictors. We will denote the sample correlation matrix by ¥, and the
estimated factor matrix by By. The latter will be transformed according to
the design, and then denoted by B. The estimates of the measurement error
variances will be denoted by v,

3.3.1 Parameters of the measurement model

Due to the assumptions we have made earlier, the parameters of the mea-
surement model (2.1) can be estimated from 3 by the maximum likelihood
factor analysis. Because of this connection, we prefer the term “factor” to
“true score” from now on. According to the design, the number of factors to
be extracted is fixed at k = 3. By each choice of n, the sample size is sufficient
to ensure that the parameter estimates are consistently found. However, it is
possible that an element of W, becomes negative (so called Heywood case, see,
e.g., [15, p. 217]). These cases are excluded from the analyses.



Because of the usual rotational indeterminacy of the factor model, By is not
unique. In particular, it will not necessarily correspond to B, despite the
same number of the factors. Instead of using typical factor rotation methods,
we have to find the particular transformation that gives the “best match”
between BO and B.

We need the following result, related to Procrustes rotation [16], but also to
transformation analysis [17], where more emphasis is given on the deviations
(or residuals) after finding the “best match”. The optimal method of solution
for orthogonal factors was found independently by several authors in 1966
[18-20]. Our formulation of the problem is adapted from Proposition 15.5 in
[21, p. 162], and our proof is based on [22, pp. 95-98] and [15, pp. 253-255].

Lemma 1 Let By and By be given p X k matrices (k < p) and let Oxy. be
the set of orthogonal k x k matrices. Then

Il’llIlk||B1Z—B2||2 = HBlL—BgHz, (31)

ZeOy«

where L = UV’ is obtained from the singular value decomposition BBy =
UDV’.

PROOF. To prove (3.1), we first write

HB1Z - B2||2 = tr[(BlZ - Bg)(Blz - Bg)/]
= tr(B,B)) + tr(ByB)) — 2t1[Z(B,B>)],  (3.2)

and observe that minimizing (3.2) is equivalent to maximizing tr[Z (B} B>)'].

Using the the singular value decomposition B]By = UDV', where U,V €
Ox1, We obtain

tr[Z(B1B>)'] = tr[Z(UDV')] = tr(U'ZV D) = tr(RD), (3.3)
where R = U'ZV € 0),yy, being the product of orthogonal matrices. Since
the elements of R can not exceed 1, we have

k k
tI‘(RD) = Tjjdj S Z dj = tI‘(D),
j=1 j=1

and the maximum of (3.3) and hence the minimum of (3.2) is clearly attained
when R = I. Our claim (3.1) follows by selecting Z = L = UV’ as then
R=UUV'V =1, O

We note that the orthogonality of L implies a symmetric solution, i.e., the
roles of B; and B, can be interchanged and thus the results do not depend
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on the direction of the comparison. Therefore this form of the method has
been called symmetric transformation analysis [20].

In our study, B, and B, are given by By and B, respectively. Using Lemma 1
the required transformation matrix is hence obtained from the singular value
decomposition B B = UDYV’ in the form L = UV’, and the “best match”
with B, denoted by B, is provided by the transformation B = B, L.

3.3.2  Parameters of the regression model

We now turn to the parameter estimation of the regression model (2.8). Our
focus is on the predictors, and how they are affected by the measurement
errors. We consider four different sets of predictors, denoted by P, P, P, and
P,. According to Eq.(2.7), the predictor sets are measurement scales u = A'x
created with different weight matrices A. They are summarized in Table 2
and defined as follows:

e P is a trivial set in which each observed variable forms its own scale. This
is formally denoted by P; : u = ® = I,x, that is, P, gives the predictors of
the full regression model.

e P, involves a subset of r (< p) variables selected by a stepwise regression

algorithm. Let h; = 1, if variable x; is selected, and h; = 0 otherwise.
The complete set of p variables is denoted by P : w = h = H x, where
H ;= diag(h, ..., h,). However, the regression models are estimated using

a reduced set P; : w = h* = I,x*, where * includes only those variables
with h; = 1.

e Psis aset of k (< p) sums of the variables, with the weights either 0 or
1, depending on the elements of the true factor matrix B = (b;;) given
in Table 1. Let G = (g;;) € RP**, where g;; = 1, if b;; > 0 and g;; = 0
otherwise. This set we are calling the factor sums is denoted by P3 : u =
g=G'zx.

e Pisaset of k (< p) factor scores by regression method (see, e.g., [9, p. 178]).

A A —

The set of the factor scores is denoted by P, :u=s=B XY .

The parameters of the regression model (2.8) are estimated from the simulated
samples for each predictor set. The models include the constant term [y,
although it is not of any special interest in this study. Because of the p — r
variables omitted by the selection algorithm, the dimension of the predictor
set Py is incompatible with the measurement model (unless r = p, i.e., all the
p variables are selected). Hence we must expand the vector of the estlmated
regression coefficients Bh* = (6hT7 .. ﬂh*) with p — r zeroes to obtain ﬁh =

By - - - /@hp)’ for subsequent analyses.
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Table 2
Predictor sets and prediction scales.

Set Dim. Weights Predictors Regression coefficients  Prediction scale
P D I, T Bz = Bers---0s,) 21:,3;33

Py r I, h* = x* Bre = Buzs--sBrz) —

Py P H, h = H g,z — 2 = Brh

P k G g=G'z By = Borr--rBs) 3 =Byg

P kK 5B s=B3S'z B.=B.....0,)  wu=P0.s

The vectors @w, @h, ég, and BS determine the prediction scales zi, 29, 23, and
24, respectively (see Table 2). The reliability of the prediction scales can be
estimated with Eq.(2.9) by using the corresponding estimates of the matrices.
Hence we have

~/ —1 ~/ ~ ~ -1
R BB, . B, H ¥ .H ;3
Priz1 = (1 + A/w,si,sm 1y Pzoze = I+ = h ~ - il )

ﬁ/thBB/Hdﬁh

Al Al a—1 -1

. ﬁ G'I/dGﬁ . ﬁ B'S w3 Bﬁ
Pzszs = [ L+ ; and Pz = | 14 :
B G'BB Gﬁ ﬁ B'S'BB'S Bﬁ

These estimates are needed for correcting the predictive validity for attenua-
tion. Following Eq. (2.10), we obtain

Py =~ i=1,2,3,4, (3.4)

where y is the response and (; is the true value of the prediction scale z;.

3.4 Details of implementation

The simulations are conducted 1000 times for each parameter configuration
(five choices of 6, four choices of n, and two choices of o) making a total
of 5-4-2-1000 = 40 000 simulations. In each one, a new random sample
is generated and the following operations executed: a) maximum likelihood
factor analysis, b) symmetric transformation analysis, ¢) stepwise selection of
predictors Pj, d) regression analyses with the predictor sets Py, Py, P3, and
Py, and e) computations of reliability and validity.

The simulations have been implemented in SURVO MM [23,24] using its ma-
trix interpreter, statistical operations and sucros (“Survo macros”). The step-
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wise algorithm giving the set Py (option STEP4 in the ready-made sucro
STEPREG) uses a combination of a forward selection and a backward elim-
ination. The former includes variables in the model if |t| > 2 separately for
each predictor against the response, and the latter deletes them in order of
the ¢-values until [¢t| > 2 for all predictors.

To speed up the simulations, a SURVO MM program module and a sucro
have been programmed by the first author. The program module takes care of
the regression analyses and computations of reliability and validity, while the
sucro implements the general flow of the simulations and saving of the results
in SURVO MM data files. (For general information on programming in Survo
environment, see [24, pp. 399-443| or [25].) This paper has been composed
and written using SURVO MM, its PostScript graphics and PRINT operation
with ITEX frontend, thus completing and documenting [26] the various tasks
of the research process within the same environment.

4 Results

Results show that the highest predictive validity in the regression model is
obtained by using the factor scores as predictors and applying the correction
for attenuation. The factor scores also appear to be the most stable choice for
the predictor selection, while the other alternatives tend to give biased results.
In the following, we provide more detailed arguments to support our findings.

4.1  Predicted validity

Table 3 gives the minimum, mean, and maximum values of the estimates re-
lated to the predicted validity of the prediction scales z;, i = 1, 2, 3, 4, namely,
the predicted validity p,,, and the square root of the reliability p.,.,. Those
estimates are needed in Eq. (3.4) to obtain the predicted validity corrected for
attenuation, denoted by pe,,. The figures in Table 3 are based on 20 000 simu-
lations of each value of the sample variation parameter o2, hence aggregating
all the results for the values of 8 and n.

As expected, the predicted validity of all scales is on average higher with
0% = 4 when compared to 02 = 9. The reliabilities, which do not depend on
o2, are clearly lower for the prediction scales z;, 22, and 23, which implies that
the correction for attenuation gives dubious results for those scales, especially
with 02 = 4. Indeed, the rightmost column of Table 3 gives the percentage
of the cases where p,,, > 1. With the scale z4 this may happen by chance,
but for the other scales it is systematic, and the results could be anything, as
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Table 3
Overall statistics of the estimates related to predicted validity.

ﬁziy \V ﬁzizi ﬁ(iy

02 Scale min mean max min mean max min mean max >1

4 z1 0418 0.793 0.971 0.096 0.765 0.937 0.709 1.041 6.897 80.4%
zo  0.246 0.780 0.964 0.070 0.765 0.996 0.247 1.025 6.828 72.6%
zg 0.292 0.764 0.958 0.123 0.772 0.953 0.575 0.991 4.778 40.6%
z4 0.077 0.741 0.947 0.557 0.822 1.000 0.102 0.899 1.086 1.7%

9 z1 0376 0.742 0.937 0.105 0.762 0.947 0.627 0.980 5.364 21.5%
zo  0.000 0.727 0.930 0.073 0.759 0.997 0.208 0.964 7.755 14.8%
zz3 0285 0.711 0.923 0.181 0.772 0.955 0.492 0.923 3.104 5.8%
z4 0.093 0.690 0.912 0.529 0.822 1.000 0.116 0.838 1.022 < 0.1%

the maximum values of p,, display. The factor scores is the only predictor set
that utilizes the information from the measurement model, and therefore the
correction for attenuation works for the corresponding prediction scale zj.

Table 4 presents the predictive validity of the prediction scales z;, i = 1,2, 3, 4.
The figures are now based on 1000 simulations of each parameter configuration
where o2 represents the sample variation,  represents the magnitude of the
artificial measurement error, and n is the sample size. To save space, the results
for 6 = 0.5, 0 = 1.5, and n = 500 are omitted. The values of the scale z4 have
been corrected for attenuation using Eq. (3.4).

From Table 4 we can infer that the highest predictive validity is obtained by
using the factor scores as predictors and applying the correction for attenu-
ation. The only exceptions are the cases where § = 2 and n = 100, i.e., the
worst models. With larger n, the factor scores give consistent results for all
values of 6, whereas the results of the other scales systematically decrease
when @ is increased.

4.2 Stability

We consider the stability in the predictor selection as a sort of steadiness: the
selection should occur systematically, not by chance. The stability is partially
reflected by the results of the predictive validity, but we also find it useful to
examine the estimated regression coefficients of each predictor set.
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Table 4
Predictive validity of the scales z;, the values of z4 corrected for attenuation.

o2 =4 02=9
0 Scale n=100 n=300 n=1000 n =100 n =300 n = 1000
0 =z 0.942 0.937 0.936 0.885 0.874 0.870
29 0.925 0.931 0.935 0.860 0.867 0.870
23 0.923 0.922 0.923 0.859 0.858 0.857
24 0.942 0.947 0.948 0.878 0.880 0.881
1 =z 0.822 0.802 0.797 0.775 0.749 0.742
22 0.790 0.798 0.796 0.735 0.743 0.741
23 0.780 0.776 0.776 0.727 0.722 0.722

Z4 0.891 0.946 0.962 0.830 0.881 0.896
2 0.658 0.616 0.604 0.627 0.580 0.563
29 0.580 0.601 0.602 0.544 0.561 0.561

23 0.577 0.571 0.571 0.542 0.534 0.532
24 0.586 0.762 0.917 0.556 0.714 0.854

Figure 2 consists of four sub-figures A, B, C, and D, corresponding to the
predictor sets Py, P», P3, and Py, respectively. The sub-figures demonstrate
how the regression coefficient of the first predictor of each set varies with
different parameter configurations. Here, 0> = 9, and for each value of 6
from 0 up to 2 in increments of 0.5 we have n = 100, 300, 500, 1000 from left
to right. Hence, each sub-figure includes 20 000 data points of the estimated
regression coefficients drawn against the observation number in the simulation
data which have been sorted hierarchically by 6 and n. The gray dots indicate
that the predictor is statistically significant (on 0.05 level) whereas the black
dots indicate non-significance. In Figure 2 B the significant predictors are those
selected by the stepwise procedure, and the non-significant ones which have
been deleted, are drawn as zeros and jittered vertically for a better visibility.

The overall result in Figure 2 is that the factor scores are stable predictors:
although le has a quite large variance, its average stays on the same level
when 6 and n are varied (see Figure 2 D). The only exception is the case where
0 = 2 and n = 100. The other scales introduce a bias in their results, as the
values of ﬁxl, éh’f? and Bgl decrease systematically along the values of 6.

When ¢ = 0, the variance of B,, (see Figure 2 D) is about the same as the
variance of 3,, (see Figure 2 A). When ¢ is increased, the variance of 3, also
increases, unlike the variance of (3,,, which tends to decrease. Furthermore,
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Fig. 2. Variation of the regression coefficient of the first predictor of each set.

le is always significant when 6 < 1, whereas this applies to Bxl only when
n = 1000. The stepwise selection (see Figure 2 B) appears to behave quite
similarly compared to Figure 2 A, except that in the non-significant cases, the
variable is deleted altogether. Not surprisingly, Bgl has the smallest variance
of all the coefficients (see Figure 2 C), because the weights used in creating
the predictors of this set are always fixed at 0 or 1.

Table 5 presents statistics supporting Figure 2, namely the means and stan-
dard errors of the same regression coefficients as well as the percentage of the
cases where they are significant. To save space, the results for § = 0.5, 6 = 1.5,
and n = 500 are again omitted.

The bias mentioned above is easily detected from Table 5 as well. It is also
evident that the factor scores is the only scale that works logically when 6
is increased. All the other scales lead more or less to capitalizing on chance,
because they can not separate the artificial measurement error variance from
the true variance. This is clearly reflected in their regression coefficients.

5 Conclusions

Our results based on simulation studies suggest that if the linear regression
model is applied within the measurement framework approach, then the factor
scores should be the predictors of choice. Several findings justify this. Firstly,
the factor scores take advantage of the information from the measurement
model, which separates the true variance from the measurement error vari-
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Table 5
Statistics of the regression coefficient of the first predictor of each set.

/Blj ggl
6 Statistic n =100 n =300 n=1000 n =100 n =300 n = 1000

0 mean 1.573 1.086 0.990 0.782 0.784 0.783
stderr 0.325 0.269 0.176 0.076 0.041 0.023
sig 40.6%  87.8% 100% 100% 100% 100%

1 mean 1.027 0.764 0.748 0.589 0.589 0.589
stderr 0.238 0.184 0.108 0.085 0.050 0.027
sig 50.4%  96.2% 100% 100% 100% 100%

2 mean 0.673 0.478 0.450 0.347 0.344 0.343
stderr 0.151 0.115 0.075 0.077 0.046 0.025
sig 43.0%  91.3% 100%  98.8% 100% 100%

Bh; B,

0 Statistic n =100 n =300 n=1000 n =100 n =300 n = 1000

0 mean 1.707 1.106 0.986 3.804 3.823 3.825
stderr 0.453 0.309 0.185 0.488 0.279 0.153
sig 52.9%  81.9% 100% 100% 100% 100%

1 mean 1.081 0.774 0.742 3.680 3.832 3.893
stderr 0.284 0.187 0.109 0.602 0.338 0.179
sig 61.2%  96.8% 100% 100% 100% 100%

2 mean 0.697 0.490 0.455 2.808 3.376 3.810
stderr 0.164 0.118 0.075 0.822 0.589 0.270
sig 49.6%  92.5% 100%  89.9%  99.9% 100%

sig = % of cases (in 1000 replicates) where the coefficient was statistically significant

ance. Hence the factor scores is the scale of the highest reliability. Secondly,
the prediction scale of the factor scores gives the highest predictive validity
corrected for attenuation. The attenuation correction does not work for the
other scales, because they can not separate the different sources of variation.
Lastly, using the factor scores leads to stable regression coefficients, that is, on
average the estimated coefficients stay on the same level, independently of the
magnitude of the measurement error variance and the sample size. In addition,
the coefficients of the factor score predictors are nearly always significant.
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Reliability, validity and stability are quite important properties for predic-
tors. If they are unacceptable, the coefficients and their interpretations will be
easily affected by fluctuations of random measurement errors. Indeed, all the
predictor sets in this study except the factor scores seem to lead to capitaliz-
ing on chance. Whether we use all the variables, a stepwise selection, or factor
sums (i.e., variables weighted with 0 or 1 according to a factor structure), the
results of the regression model become more or less unstable. To put it briefly,
it is desirable to use the factor scores as predictors of the linear regression
model, as in general, it leads to more reliable, more valid, and more stable
results.
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