
WEIGHTED COMPOSITION OPERATORS ON BMOA

JUSSI LAITILA

Abstract. Let ψ and ϕ be analytic functions on the unit disk D such
that ϕ(D) ⊂ D. We characterize boundedness and compactness of the
weighted composition operators f 7→ ψ · (f ◦ ϕ) on BMOA, the space
of analytic functions on the unit disk that have bounded mean oscilla-
tion on the unit circle, and its subspace VMOA. We also estimate the
essential norm of a weighted composition operator on VMOA.

1. Introduction

Let D be the open unit disk in the complex plane and let ψ : D → C and
ϕ : D → D be analytic functions. The weighted composition operator Wψ,ϕ is
the linear operator defined on H(D), the linear space of all analytic functions
on D, by

(Wψ,ϕf)(z) = ψ(z)f(ϕ(z)), z ∈ D,

for all f ∈ H(D). This operator can be viewed as a simultaneous general-
ization of both the pointwise multiplier Mψ : f 7→ ψ · f and the composition
operator Cϕ : f 7→ f ◦ ϕ. Weighted composition operators appear in various
settings in the literature. For example, it is known that isometries of many
analytic function spaces are weighted composition operators (see [FJ, §4], for
instance). Recently boundedness and compactness of weighted composition
operators have been studied on various classical Banach spaces of analytic
functions on D, such as Hardy, Bergman, and Bloch spaces, see e.g. [CH],
[CH2], [WL], [C̆Z], [C̆Z2], [OZ] and [MZ].

The purpose of this paper is to consider the weighted composition opera-
tors Wψ,ϕ on the space BMOA, which consists of the analytic functions on
D that have bounded mean oscillation on the unit circle T. Our main goal
is to characterize boundedness and compactness of the operators Wψ,ϕ on
BMOA in terms of function theoretic properties of the symbols ψ and ϕ.
We also characterize boundedness and compactness of Wψ,ϕ on VMOA, the
closed subspace of BMOA consisting of the analytic functions of vanishing
mean oscillation. Moreover, we estimate the essential norm (that is, the
distance to all compact operators) of a weighted composition operator Wψ,ϕ

on VMOA. Our estimates appear to be new also in the special cases of the
operators Mψ and Cϕ.
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Boundedness and compactness of the operators Mψ and Cϕ are quite well
understood in the context of BMOA. Boundedness of Mψ on BMOA was
first characterized by Stegenga [St]. In fact, Mψ is bounded if and only if ψ is
bounded and has logarithmic mean oscillation. It is not difficult to see that
Mψ can be compact on BMOA only if ψ ≡ 0. The classical Littlewood sub-
ordination principle implies that every composition operator Cϕ is bounded
on the Hardy space H2. It follows from this result that every composition
operator is bounded also on BMOA (see e.g. [Ste], [AFP]). Compactness of
composition operators on BMOA and VMOA has been studied (and char-
acterized) by several authors, see e.g. [T], [BCM], [Sm] and [MT]. We refer
to the monographs [S2] and [CoM] for the basic results about composition
operators Cϕ on classical spaces of analytic functions on D.

This paper is organized as follows. In Sections 3 and 4 we character-
ize boundedness and compactness of the operators Wψ,ϕ on BMOA. These
results are based on a weighted version of the Littlewood subordination prin-
ciple which will also be established in Section 3. In Section 5 we study bound-
edness, compactness and the essential norm of Wψ,ϕ on VMOA. In Section 6
we exhibit some concrete examples of bounded and compact weighted com-
position operators on BMOA and VMOA. In the final Section 7 we compare
the boundedness and compactness results on BMOA and the Bloch space B
(due to Ohno and Zhao [OZ]). In particular, we show that the bounded (re-
spectively compact) weighted composition operators on BMOA are bounded
(respectively compact) on B.

2. Preliminaries

Let D = {z ∈ C : |z| < 1} be the open unit disk in C and let T = ∂D

be the unit circle. Recall that a function f ∈ H(D) belongs to the space
BMOA if and only if it is a Poisson extension of some function on T that
has bounded mean oscillation. There are many ways to define a complete
norm on BMOA. We will view BMOA as a Möbius invariant version of the
Hardy space H2 as follows. For 1 ≤ p <∞, let Hp denote the usual Hardy
space of functions g ∈ H(D) with the norm

‖g‖Hp =

(
∫

T

|g(ζ)|pdm(ζ)

)1/p

,

where g(ζ) = limr→1 g(rζ) is the almost everywhere on T existing radial
limit and m is the Lebesgue measure on T normalized so that m(T) = 1.
Then f ∈ BMOA if and only if f ∈ H(D) and

‖f‖∗ = sup
a∈D

‖f ◦ σa − f(a)‖H2 <∞,

where the automorphisms σa : D → D are given by σa(z) = (a− z)/(1 − az)
for a, z ∈ D (see [B]). The quantity ‖f‖∗ is a seminorm and ‖f‖BMOA =
|f(0)| + ‖f‖∗ defines a complete norm on BMOA.

We recall next some basic properties of BMOA functions which will be
needed later. Note first that ‖f‖H2 ≤ ‖f‖BMOA for all f ∈ BMOA and
‖f‖BMOA ≤ 3‖f‖∞ for f ∈ H∞, where ‖f‖∞ = supz∈D |f(z)|. By the
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Hölder inequality, we have that

‖f‖∗ ≤ sup
a∈D

‖f ◦ σa − f(a)‖Hp ,

for 2 ≤ p < ∞. We will need the remarkable fact that for each 2 ≤ p < ∞
this inequality can be reversed. In fact, it follows from the John-Nirenberg
theorem (see [B, Corollary 3], [G, §VI.2]) that given 2 ≤ p < ∞, there is a
constant Kp such that

sup
a∈D

‖f ◦ σa − f(a)‖Hp ≤ Kp‖f‖∗,(2.1)

for every f ∈ BMOA. (In fact, for each 0 < p < ∞, the quantity on the
left-hand side of (2.1) defines an equivalent seminorm on BMOA, see [B].)

We establish next some known pointwise estimates for BMOA functions.
One verifies from the Cauchy integral formula for the derivative that |f ′(0)| ≤
‖f‖H2 for all f ∈ H2. Therefore

(1 − |a|2)|f ′(a)| = |(f ◦ σa − f(a))′(0)| ≤ ‖f‖∗,
for f ∈ BMOA. Hence BMOA ⊂ B, where B is the Bloch space which con-
sists of all f ∈ H(D) such that ‖f‖B = |f(0)| + supz∈D(1 − |z|2)|f ′(z)| <∞.
From a well-known pointwise estimate for the Bloch functions [Z, Theorem
5.1.6] one gets that

|f(z) − f(0)| ≤ 1

2
‖f‖∗ log

1 + |z|
1 − |z| ,

for f ∈ BMOA, z ∈ D. Consequently,

|f(z)| ≤ 1

log 2

(

log
2

1 − |z|2
)

‖f‖BMOA,(2.2)

for f ∈ BMOA, z ∈ D. We refer to [G] and [Z] for further properties of
BMOA functions.

3. Boundedness of Wψ,ϕ on BMOA

In this section we characterize boundedness of the weighted composition
operators Wψ,ϕ : f 7→ ψ · (f ◦ϕ) on BMOA. It is convenient to introduce the
following abbreviations which will be used throughout the paper. Let

α(ψ,ϕ, a) = |ψ(a)| · ‖σϕ(a) ◦ ϕ ◦ σa‖H2

and

β(ψ,ϕ, a) =

(

log
2

1 − |ϕ(a)|2
)

‖ψ ◦ σa − ψ(a)‖H2 ,

for a ∈ D and analytic functions ϕ : D → D, ψ : D → C. Moreover, given
any Banach space E, we denote by BE = {x ∈ E : ‖x‖E ≤ 1} the closed
unit ball in E. We write A ∼ B whenever the two quantities A and B are
comparable, i.e., there is a positive constant C such that C−1B ≤ A ≤ CB.

Theorem 3.1. Let ϕ : D → D and ψ : D → C be analytic. Then Wψ,ϕ is
bounded on BMOA if and only if

sup
a∈D

α(ψ,ϕ, a) <∞ and sup
a∈D

β(ψ,ϕ, a) <∞.(3.1)



4 JUSSI LAITILA

Moreover,

sup
f∈BBMOA

‖Wψ,ϕf‖∗ ∼ sup
a∈D

α(ψ,ϕ, a) + sup
a∈D

β(ψ,ϕ, a).

We need some auxiliary results before the proof of Theorem 3.1. Recall
first that if λ : D → D is an analytic map with λ(0) = 0 then the Littlewood
subordination principle (see [CoM, p. 30]) states that

‖g ◦ λ‖H2 ≤ ‖g‖H2 ,(3.2)

for all g ∈ H2. The well-known fact that every composition operator
Cϕ : f 7→ f ◦ϕ is bounded BMOA (see e.g. [Ste, Theorem 3], [AFP, Theorem
12]) can be deduced from (3.2). Indeed, if we set ga = f ◦σϕ(a)−f(ϕ(a)) and
λa = σϕ(a) ◦ ϕ ◦ σa, where f ∈ BMOA and ϕ : D → D are analytic, a ∈ D,
then

‖f ◦ ϕ‖∗ = sup
a∈D

‖ga ◦ λa‖H2 ≤ sup
a∈D

‖ga‖H2 ≤ ‖f‖∗,(3.3)

by (3.2) and the fact that (σϕ(a) ◦ σϕ(a))(z) = z. Hence Cϕ is bounded on
BMOA. The following result, which provides a weighted counterpart of (3.3)
will be crucial in the proof of Theorem 3.1.

Proposition 3.2. There is a constant C > 0 such that

‖g ◦ λ‖H2 ≤ C‖λ‖H2‖g‖H2 ,(3.4)

for all analytic functions g ∈ H2 and λ : D → D such that g(0) = λ(0) = 0.
In particular,

|ψ(a)| · ‖f ◦ ϕ ◦ σa − f(ϕ(a))‖H2 ≤ Cα(ψ,ϕ, a)‖f‖∗,(3.5)

for all a ∈ D and analytic functions f ∈ BMOA, ψ ∈ H(D) and ϕ : D → D.

The proof of Proposition 3.2 will be based on properties of the Nevanlinna
counting function N(ϕ, ·). Recall that for an analytic map ϕ : D → D, the
Nevanlinna counting function is given by N(ϕ,w) =

∑

z∈ϕ−1(w) log(1/|z|)
for w ∈ D \ {ϕ(0)}, where each point in the preimage ϕ−1(w) is counted ac-
cording to its multiplicity. If ϕ(0) = 0, then the Littlewood inequality states
that N(ϕ,w) ≤ log(1/|w|) for w ∈ D \ {0} (see [CoM, p. 33]). The following
result due to W. Smith provides a weighted version of this inequality.

Lemma 3.3 ([Sm, Lemma 2.1]). Let λ : D → D be an analytic map with
λ(0) = 0 and let γ(λ) = sup{|w|2N(λ,w) : w ∈ D \ {0}}. Then

N(λ, z) ≤ 4

log 2
γ(λ) log

1

|z| ,

for all z ∈ D such that 1
2 ≤ |z| < 1.

The relevance of the Nevanlinna counting function is seen from the change
of variable formula

∫

D

|(f ◦ ϕ)′(w)|2 log
1

|w|
dA(w)

π
=

∫

D

|f ′(z)|2N(ϕ, z)
dA(z)

π
,(3.6)
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which holds for all f ∈ H2 and analytic mappings ϕ : D → D (see [CoM,
p. 35]). Here A is the Lebesgue area measure on D. Combined with the
Littlewood-Paley identity (see [CoM, p. 34] or [G, p. 236])

‖f − f(0)‖2
H2 = 2

∫

D

|f ′(w)|2 log
1

|w|
dA(w)

π
,(3.7)

formula (3.6) yields the fundamental identity

‖f ◦ ϕ− f(ϕ(0))‖2
H2 = 2

∫

D

|f ′(z)|2N(ϕ, z)
dA(z)

π
,(3.8)

for all f ∈ H2 and analytic mappings ϕ : D → D.
We next prove Proposition 3.2.

Proof of Proposition 3.2. We first establish the estimate

N(λ, z) ≤ 8

log 2
‖λ‖2

H2 log
1

|z| ,(3.9)

for z ∈ D \ 1
2D and analytic functions λ : D → D such that λ(0) = 0. A

simple calculation shows that

‖σw ◦ λ− σw(λ(0))‖2
H2 =

∫

T

(1 − |w|2)2|λ(ζ)|2
|1 −wλ(ζ)|2 dm(ζ) ≤ 4‖λ‖2

H2 ,

for w ∈ D. Since (σw ◦ λ)(0) = w /∈ t|w|D for w ∈ D \ {0} and t ∈ (0, 1), we
get from the sub-mean value property of the Nevanlinna counting function
(see [CoM, p. 137]) and (3.8) that

t2|w|2N(σw ◦ λ, 0) ≤
∫

t|w|D
N(σw ◦ λ, z)dA(z)

π
≤ 2‖λ‖2

H2 ,(3.10)

for all t ∈ (0, 1). It is easy to verify that N(λ,w) = N(σw ◦ λ, 0). Hence, by
letting t → 1 and taking the supremum over w ∈ D \ {0} in (3.10), we get
that

sup
w∈D\{0}

|w|2N(λ,w) ≤ 2‖λ‖2
H2 .(3.11)

The estimate (3.9) follows now from Lemma 3.3.
Assume next that g ∈ H2 satisfies g(0) = 0. Then g(λ(0)) = 0 so that

‖g ◦ λ‖2
H2 = 2

∫

D

|g′(z)|2N(λ, z)
dA(z)

π
,(3.12)

by (3.8). By applying (3.9) and (3.7) we get that
∫

D\ 1

2
D

|g′(z)|2N(λ, z)
dA(z)

π
≤ 8

log 2
‖λ‖2

H2

∫

D\ 1

2
D

|g′(z)|2 log
1

|z|
dA(z)

π

≤ (4/ log 2)‖g‖2
H2‖λ‖2

H2 .

On the other hand, since |g′(z)| ≤ (1−|z|)−2‖g‖H2 for z ∈ D, by the Cauchy
integral formula and the Hölder inequality, we get that
∫

1

2
D

|g′(z)|2N(λ, z)
dA(z)

π
≤ 16‖g‖2

H2

∫

1

2
D

N(λ, z)
dA(z)

π
≤ 8‖g‖2

H2‖λ‖2
H2 .

By combining these estimates with (3.12), one obtains that ‖g ◦ λ‖2
H2 ≤

(8/ log 2 + 16)‖g‖2
H2‖λ‖2

H2 . This proves (3.4).
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Let finally f ∈ BMOA, ψ ∈ H(D) and ϕ : D → D be arbitrary analytic
functions and put ga = f ◦σϕ(a) − f(ϕ(a)) and λa = σϕ(a) ◦ϕ ◦ σa for a ∈ D.
Clearly λa(D) ⊂ D and ga(0) = λa(0) = 0. Since ‖ga‖H2 ≤ ‖f‖∗, we get
from (3.4) that ‖f ◦ϕ ◦σa− f(ϕ(a))‖H2 = ‖ga ◦λa‖H2 ≤ C‖λa‖H2‖f‖∗. We
obtain (3.5) by multiplying both sides of this inequality by |ψ(a)|. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose first that Wψ,ϕ is bounded on BMOA, so
that T := sup{‖Wψ,ϕf‖∗ : f ∈ BBMOA} < ∞. Since ψ = Wψ,ϕ(1), we have
that ψ ∈ BMOA with ‖ψ‖∗ ≤ T . Put

fa(z) = σϕ(a)(z) − ϕ(a) =
(|ϕ(a)|2 − 1)z

1 − ϕ(a)z
,(3.13)

for a, z ∈ D. Then fa(0) = 0, fa(ϕ(a)) = −ϕ(a) and ‖fa‖∞ ≤ 2. Moreover,
‖fa‖BMOA = ‖σϕ(a)‖∗ ≤ 1 and σϕ(a) ◦ ϕ ◦ σa = fa ◦ ϕ ◦ σa − fa(ϕ(a)). By
adding and subtracting the term (ψ◦σa) ·fa◦ϕ◦σa and applying the triangle
inequality, we get that

α(ψ,ϕ, a) = ‖ψ(a)(fa ◦ ϕ ◦ σa − fa(ϕ(a)))‖H2

≤ ‖(ψ(a) − ψ ◦ σa) · fa ◦ ϕ ◦ σa‖H2

+ ‖(ψ ◦ σa) · fa ◦ ϕ ◦ σa − ψ(a)fa(ϕ(a))‖H2

≤ ‖ψ ◦ σa − ψ(a)‖H2‖fa‖∞ + ‖Wψ,ϕfa‖∗ ≤ 3T.

(3.14)

Consider next the analytic functions

ga(z) = log

(

2

1 − ϕ(a)z

)

,(3.15)

for a, z ∈ D. Recall that ga ∈ BMOA with M := supa∈D ‖ga‖∗ < ∞. By
adding and subtracting the term (ψ ◦σa) · (ga ◦ϕ ◦σa)−ψ(a) · (ga ◦ϕ ◦σa)+
ψ(a)ga(ϕ(a)) and applying the triangle inequality again, we get that

β(ψ,ϕ, a) = ‖(ψ ◦ σa − ψ(a))ga(ϕ(a))‖H2

≤ ‖(ψ ◦ σa − ψ(a)) · (ga(ϕ(a)) − ga ◦ ϕ ◦ σa)‖H2

+ ‖(ψ ◦ σa) · ga ◦ ϕ ◦ σa − ψ(a)ga(ϕ(a))‖H2

+ ‖ψ(a)(ga(ϕ(a)) − ga ◦ ϕ ◦ σa)‖H2 .

(3.16)

The Hölder inequality, reverse Hölder inequality (2.1), and (3.3) give that

‖(ψ ◦ σa − ψ(a)) · (ga(ϕ(a)) − ga ◦ ϕ ◦ σa)‖H2

≤ ‖ψ ◦ σa − ψ(a)‖H4‖ga ◦ ϕ ◦ σa − ga(ϕ(a))‖H4

≤ K2
4‖ψ‖∗‖ga ◦ ϕ‖∗ ≤ K2

4TM.

Hence we get from (3.5) and (3.14) that

β(ψ,ϕ, a) ≤ K2
4TM + ‖Wψ,ϕga‖∗ + Cα(ψ,ϕ, a)‖ga‖∗

≤M(K2
4 + 1 + 3C)T.

(3.17)
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By combining (3.14) and (3.17), and taking the supremum over a ∈ D, we
get the desired estimate

C1(sup
a∈D

α(ψ,ϕ, a) + sup
a∈D

β(ψ,ϕ, a)) ≤ sup
f∈BBMOA

‖Wψ,ϕf‖∗,

for a suitable constant C1 > 0.
Suppose next that (3.1) holds. Since log 2 ≤ log(2/(1− |ϕ(a)|2)), we have

that

‖ψ ◦ σa − ψ(a)‖H2 ≤ (log 2)−1β(ψ,ϕ, a),(3.18)

so that ψ ∈ BMOA. Let f ∈ BBMOA be arbitrary. Then ‖Wψ,ϕf‖BMOA =
|ψ(0)f(ϕ(0))| + supa∈D ‖(ψ ◦ σa) · f ◦ ϕ ◦ σa − ψ(a)f(ϕ(a))‖H2 , where the
term |ψ(0)f(ϕ(0))| is bounded, by (2.2). By applying the triangle inequality
we get that

‖(ψ ◦ σa) · f ◦ ϕ ◦ σa − ψ(a)f(ϕ(a))‖H2

≤ ‖(ψ ◦ σa − ψ(a)) · (f ◦ ϕ ◦ σa − f(ϕ(a)))‖H2

+ ‖ψ(a) · (f ◦ ϕ ◦ σa − f(ϕ(a)))‖H2

+ ‖(ψ ◦ σa − ψ(a)) · f(ϕ(a))‖H2 .

(3.19)

Hence we get from (2.1), (3.5) and (2.2) that

‖Wψ,ϕf‖∗ ≤ K2
4‖ψ‖∗‖f ◦ ϕ‖∗ + sup

a∈D

(

Cα(ψ,ϕ, a) + (log 2)−1β(ψ,ϕ, a)
)

,

where

‖ψ‖∗‖f ◦ ϕ‖∗ ≤ (log 2)−1 sup
a∈D

β(ψ,ϕ, a),

by (3.18) and (3.3). Hence Wψ,ϕ is bounded on BMOA and

sup
f∈BBMOA

‖Wψ,ϕf‖∗ ≤ C2(sup
a∈D

α(ψ,ϕ, a) + sup
a∈D

β(ψ,ϕ, a)),

for some constant C2 > 0. This completes the proof of Theorem 3.1. �

Theorem 3.1 contains as a special case the well-known LMOA condition
which characterizes boundedness of pointwise multipliers Mψ on BMOA (see
[St, Theorem 1.2] or [OF, Theorem A]). There are several equivalent formu-
lations of LMOA. We say that a function ψ ∈ H(D) has logarithmic mean
oscillation (denoted by ψ ∈ LMOA) if

‖ψ‖∗,log := sup
a∈D

(

log
2

1 − |a|2
)

‖ψ ◦ σa − ψ(a)‖H2 <∞.

By letting ϕ(z) = z for all z ∈ D, we have Mψ = Wψ,ϕ. In this case
supa∈D β(ψ,ϕ, a) = ‖ψ‖∗,log and supa∈D α(ψ,ϕ, a) = ‖ψ‖∞, since (σϕ(a) ◦ϕ◦
σa)(z) = z for all a, z ∈ D. Since supf∈BBMOA

|(Mψf)(0)| = |ψ(0)| ≤ ‖ψ‖∞,
Theorem 3.1 yields the following result.

Corollary 3.4. The pointwise multiplier Mψ is bounded on BMOA if and
only if ψ ∈ H∞ ∩ LMOA. Moreover, ‖Mψ‖ ∼ ‖ψ‖∞ + ‖ψ‖∗,log.
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4. Compactness of Wψ,ϕ on BMOA

We next characterize compactness of the weighted composition operators
Wψ,ϕ on BMOA. Recall that a linear operator T on a Banach space E is
compact if T (BE) is a relatively compact subset of E, where BE is the closed
unit ball of E.

Theorem 4.1. Let ϕ : D → D and ψ : D → C be analytic functions such that
Wψ,ϕ is bounded on BMOA. Then Wψ,ϕ is compact on BMOA if and only
if

lim
r→1

sup
{a∈D : |ϕ(a)|>r}

α(ψ,ϕ, a) = 0,(4.1)

lim
r→1

sup
{a∈D : |ϕ(a)|>r}

β(ψ,ϕ, a) = 0,(4.2)

and, for all R ∈ (0, 1),

lim
t→1

sup
{a∈D : |ϕ(a)|≤R}

∫

E(ϕ,a,t)
|(ψ ◦ σa)(ζ)|2dm(ζ) = 0,(4.3)

where E(ϕ, a, t) = {ζ ∈ T : |(σϕ(a) ◦ ϕ ◦ σa)(ζ)| > t}.
The following technical lemma will be needed in the proof of Theorem 4.1.

Lemma 4.2. Let ψ ∈ BMOA and ϕ : D → D be analytic. Then there is a
constant c > 0 such that

‖(ψ ◦ σa − ψ(a)) · (f ◦ ϕ ◦ σa − f(ϕ(a)))‖2
H2 ≤ c‖ψ‖∗‖ψ ◦ σa − ψ(a)‖H2 ,

for all f ∈ BBMOA and a ∈ D.

Proof. By abbreviating Ψ = ψ ◦σa−ψ(a) and F = f ◦ϕ ◦σa− f(ϕ(a)), and
applying both the Hölder and reverse Hölder inequalities, we get that

‖ΨF‖2
H2 = ‖Ψ(ΨF 2)‖H1 ≤ ‖Ψ‖H2‖ΨF 2‖H2 ≤ ‖Ψ‖H2‖Ψ‖H4‖F‖2

H8

≤ ‖ψ ◦ σa − ψ(a)‖H2K4‖ψ‖∗(K8‖f ◦ ϕ‖∗)2,
where the constants K4 and K8 are from (2.1). Since ‖f ◦ ϕ‖∗ ≤ ‖f‖∗ ≤ 1
by (3.3), we can take c =

√
K4K8. �

Proof of Theorem 4.1. We divide the proof into two steps. The proof is
partly based on an argument due to W. Smith (see the proof of [Sm, Theorem
1.1]). We will also use some ideas from [OZ] and [MZ].

Step 1. If Wψ,ϕ is compact on BMOA, then (4.1), (4.2) and (4.3) hold.

Proof. Assume that Wψ,ϕ is compact (and bounded) on BMOA. If (4.1)
does not hold, then there are δ > 0 and a sequence of points an ∈ D such
that |ϕ(an)| → 1 as n→ ∞ and

α(ψ,ϕ, an) ≥ δ > 0.(4.4)

for all n ∈ N. Define the functions fn ∈ BBMOA by setting fn(z) =
σϕ(an)(z) − ϕ(an) for z ∈ D and n ∈ N. Then the estimate (3.14) gives
that

α(ψ,ϕ, an) ≤ 2‖ψ ◦ σan − ψ(an)‖H2 + ‖Wψ,ϕfn‖BMOA.(4.5)
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Since supa∈D β(ψ,ϕ, a) <∞ by Theorem 3.1, we have that

‖ψ ◦ σan − ψ(an)‖H2 ≤
(

log
2

1 − |ϕ(an)|2
)−1

sup
a∈D

β(ψ,ϕ, a) → 0,(4.6)

as n→ ∞. Moreover, since fn → 0 uniformly on compact subsets of D and
Wψ,ϕ is compact, we have that limn→∞ ‖Wψ,ϕfn‖BMOA = 0. Combining
these facts with (4.5) gives that limn→∞ α(ψ,ϕ, an) = 0. This contradicts
(4.4), so that (4.1) is necessary for the compactness of Wψ,ϕ on BMOA.

Suppose next that (4.2) does not hold. Then there exist δ > 0 and a
sequence of points an ∈ D such that |ϕ(an)| → 1 as n→ ∞ and

β(ψ,ϕ, an) ≥ δ > 0.(4.7)

for all n ∈ N. Put hn(z) = log(2/(1 − ϕ(an)z)) and

gn(z) =
hn(z)

2

hn(ϕ(an))
=

(

log
2

1 − |ϕ(an)|2
)−1

(

log
2

1 − ϕ(an)z

)2

,

for z ∈ D and n ∈ N. Then M := supn∈N ‖hn‖∗ <∞. By (3.8) we get that

‖gn ◦ σa − gn(a)‖H2 =

(

2

∫

D

|g′n(z)|2N(σa, z)
dA(z)

π

)1/2

=

(

4

hn(ϕ(an))2

∫

D

|hn(z)|2|h′n(z)|2N(σa, z)
dA(z)

π

)1/2

≤ 2M

hn(ϕ(an))
sup
z∈D

|hn(z)|.

(4.8)

Since |hn(z)| ≤ log(2/(1 − |ϕ(an)|)) = hn(ϕ(an)) + log(1 + |ϕ(an)|) and
hn(ϕ(an)) → ∞ as n→ ∞, we get from (4.8) that lim supn→∞ ‖gn‖BMOA ≤
2M . Since log(2/(1 − |ϕ(an)|2)) = gn(ϕ(an)), we may apply the triangle
inequality (see (3.16)), Lemma 4.2 and (3.5), to get that

β(ψ,ϕ, an) = ‖(ψ ◦ σan − ψ(an))gn(ϕ(an))‖H2

≤ ‖(ψ ◦ σan − ψ(an)) · (gn ◦ ϕ ◦ σan − gn(ϕ(an)))‖H2

+ ‖(ψ ◦ σan) · gn ◦ ϕ ◦ σan − ψ(an)gn(ϕ(an))‖H2

+ ‖ψ(an)(gn ◦ ϕ ◦ σan − gn(ϕ(an)))‖H2

≤ ‖gn‖BMOA(c‖ψ‖∗‖ψ ◦ σan − ψ(an)‖H2)1/2

+ ‖Wψ,ϕgn‖∗ + Cα(ψ,ϕ, an)‖gn‖∗.
From (4.6) and (4.1) we get that ‖ψ◦σan−ψ(an)‖H2 → 0 and α(ψ,ϕ, an) → 0
as n → ∞. Moreover, since gn → 0 uniformly on compact subsets of D,
we have that limn→∞ ‖Wψ,ϕgn‖BMOA = 0. Hence limn→∞ β(ψ,ϕ, an) = 0,
which contradicts (4.7), so that (4.2) is necessary for the compactness of
Wψ,ϕ on BMOA.

Suppose finally that (4.3) does not hold. Then there exist R ∈ (0, 1),
δ > 0, an ∈ D and tn ∈ (0, 1), for n ∈ N, such that |ϕ(an)| ≤ R, tn → 1 as
n→ ∞, and

∫

E(ϕ,an,tn)
|(ψ ◦ σan)(ζ)|2dm(ζ) ≥ δ > 0,
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for all n ∈ N. By passing to a subsequence if necessary, we may assume that
tnn → 1 as n → ∞. Let fn(z) = σϕ(an)(z)

n for z ∈ D. Then ‖fn‖BMOA ≤
3‖fn‖∞ ≤ 3 and

‖Wψ,ϕfn‖2
BMOA ≥ ‖(ψ ◦ σan) · fn ◦ ϕ ◦ σan‖2

H2

=

∫

T

|(ψ ◦ σan)(ζ)|2|(σϕ(a) ◦ ϕ ◦ σa)(ζ)n|2dm(ζ)

≥
∫

E(ϕ,an,tn)
|(ψ ◦ σan)(ζ)|2t2nn dm(ζ) ≥ t2nn δ,

(4.9)

for all n ∈ N. Since |ϕ(an)| ≤ R < 1, the sequence (fn) converges to 0
uniformly on compact subsets of D as n→ ∞. Hence ‖Wψ,ϕfn‖BMOA → 0 as
n→ ∞. This contradicts (4.9), so that (4.3) is necessary for the compactness
of Wψ,ϕ on BMOA. This completes the proof of Step 1.

Step 2. If (4.1), (4.2) and (4.3) hold, then Wψ,ϕ is compact on BMOA.

Proof. Let (fn) ⊂ BBMOA be a sequence of functions such that fn → 0
uniformly on compact subsets of D. Since (fn) is a normal family, it suffices
to show that ‖Wψ,ϕfn‖BMOA → 0 as n → ∞ (see e.g. the argument in the
proof of [CoM, Proposition 3.11]). For this aim, let 0 < ε ≤ 1. Then, by
(4.1) and (4.2), there exists r ∈ (0, 1) such that

sup
|ϕ(a)|>r

max

{

α(ψ,ϕ, a) + β(ψ,ϕ, a),

(

log
2

1 − |ϕ(a)|2
)−1/2

}

< ε,(4.10)

and by (4.3), there exists t ∈ [ 1
2 , 1) such that

sup
|ϕ(a)|≤r

∫

E(ϕ,a,t)
|(ψ ◦ σa)(ζ)|2dm(ζ) < ε4.(4.11)

Moreover, there is n0 ∈ N such that

sup
w∈Q

|fn(w)| < ε ≤ 1,(4.12)

for all n ≥ n0, where Q := rD ∪ {σb(z) ∈ D : b ∈ rD, z ∈ tD} ∪ {ϕ(0)} is a
compact subset of D.

For any n ≥ n0, we have that

‖Wψ,ϕfn‖BMOA ≤ |(Wψ,ϕfn)(0)|
+ sup

|ϕ(a)|>r
‖(Wψ,ϕfn) ◦ σa − (Wψ,ϕfn)(a)‖H2

+ sup
|ϕ(a)|≤r

‖(Wψ,ϕfn) ◦ σa − (Wψ,ϕfn)(a)‖H2

=: A1 +A2 +A3,

(4.13)

where A1 = |ψ(0)| · |fn(ϕ(0))| ≤ ε‖ψ‖BMOA by (2.2) and (4.12). By the
estimate (3.19) (which holds for all functions in BBMOA), (3.5) and (2.2),
there is a constant C > 0 such that

A2 ≤ sup
|ϕ(a)|>r

‖(ψ ◦ σa − ψ(a)) · (fn ◦ ϕ ◦ σa − fn(ϕ(a)))‖H2

+ C sup
|ϕ(a)|>r

(α(ψ,ϕ, a) + β(ψ,ϕ, a)).
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Moreover, by Lemma 4.2 we have that

‖(ψ ◦ σa − ψ(a)) · (fn ◦ ϕ ◦ σa − fn(ϕ(a)))‖H2

≤
(

c‖ψ‖∗
(

log
2

1 − |ϕ(a)|2
)−1

β(ψ,ϕ, a)

)1/2

.

Since supa∈D β(ψ,ϕ, a) <∞ by Theorem 3.1, we get from (4.10) that A2 ≤
C1ε for some constant C1 > 0.

We estimate next the term A3. Let us abbreviate Fn,a = fn ◦ ϕ ◦ σa −
fn(ϕ(a)) for a ∈ D and n ≥ n0. Then

A3 ≤ sup
|ϕ(a)|≤r

‖(ψ ◦ σa − ψ(a)) · fn(ϕ(a))‖H2

+ sup
|ϕ(a)|≤r

‖(ψ ◦ σa) · (fn ◦ ϕ ◦ σa − fn(ϕ(a)))‖H2

≤ ‖ψ‖∗ · sup
|w|≤r

|fn(w)| + (A4 +A5)
1/2,

(4.14)

where sup|w|≤r |fn(w)| < ε by (4.12),

A4 = sup
|ϕ(a)|≤r

∫

T\E(ϕ,a,t)
|(ψ ◦ σa)(ζ)Fn,a(ζ)|2dm(ζ)

and

A5 = sup
|ϕ(a)|≤r

∫

E(ϕ,a,t)
|(ψ ◦ σa)(ζ)Fn,a(ζ)|2dm(ζ).

In order to estimate A4, note that for any g ∈ H(D) with g(0) = 0, it holds
that

|g(z)| ≤ 2|z| sup
|w|≤t

|g(w)|,(4.15)

for all z ∈ tD. Indeed, if g is non-zero, then we can define a function
g̃ ∈ BH∞ by setting g̃(z) = g(tz)/(sup|w|≤t |g(w)|). Since g̃(0) = 0, the

Schwarz lemma implies for z ∈ tD that |g(z)| = |g̃(z/t)|(sup|w|≤t |g(w)|) ≤
(|z|/t)(sup|w|≤t |g(w)|). This gives (4.15) since t ≥ 1

2 and g is continuous in

tD.
Put next Gn,a = fn ◦ σϕ(a) − fn(ϕ(a)) and λa = σϕ(a) ◦ ϕ ◦ σa for a ∈ D

and n ≥ n0. Then Gn,a(0) = 0 and Fn,a = Gn,a ◦ λa. By applying (4.15) to
the functions Gn,a we get that

|Fn,a(ζ)| = |Gn,a(λa(ζ))| ≤ 2|λa(ζ)| sup
|w|≤t

|Gn,a(w)|,

for all ζ ∈ T such that |λa(ζ)| ≤ t, i.e., for all ζ ∈ T \ E(ϕ, a, t). Hence
∫

T\E(ϕ,a,t)
|(ψ ◦ σa)(ζ)Fn,a(ζ)|2dm(ζ)

≤ 4( sup
|w|≤t

|Gn,a(w)|)2
∫

T

|(ψ ◦ σa)(ζ)λa(ζ)|2dm(ζ).

Since

sup
|w|≤t

|Gn,a(w)| ≤ sup
|w|≤t

|fn(σϕ(a)(w))| + |fn(ϕ(a))| ≤ 2 sup
w∈Q

|fn(w)| ≤ 2ε,
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for all a ∈ D with |ϕ(a)| ≤ r by (4.12), we get that A4 ≤ 16ε2 sup{‖(ψ ◦σa) ·
λa‖2

H2 : a ∈ D, |ϕ(a)| ≤ r}. Moreover, since

‖(ψ ◦ σa) · λa‖H2 ≤ ‖(ψ ◦ σa − ψ(a)) · λa‖H2 + ‖ψ(a) · λa‖H2

≤ ‖ψ‖∗‖λa‖∞ + sup
a∈D

α(ψ,ϕ, a) <∞,

we get that A4 ≤ C2ε
2 for some constant C2 > 0.

We finally consider the term A5. By the Hölder inequality and (4.11) we
have that

A5 ≤ ε2 sup
|ϕ(a)|≤r

(

∫

E(ϕ,a,t)
|(ψ ◦ σa)(ζ)|2|Fn,a(ζ)|4dm(ζ)

)1/2

≤ ε2 sup
|ϕ(a)|≤r

‖(ψ ◦ σa) · Fn,a‖H4‖Fn,a‖H4 .

From (2.1) and (3.3) we get that ‖Fn,a‖H4 ≤ K4‖fn ◦ ϕ‖∗ ≤ K4. Moreover,
by (2.1) and (4.12) we have that

sup
|ϕ(a)|≤r

‖(ψ ◦ σa) · Fn,a‖H4

≤ sup
|ϕ(a)|≤r

‖(ψ ◦ σa) · fn ◦ ϕ ◦ σa − ψ(a)fn(ϕ(a)))‖H4

+ sup
|ϕ(a)|≤r

‖(ψ ◦ σa − ψ(a))fn(ϕ(a)))‖H4

≤ K4‖Wψ,ϕ‖ +K4‖ψ‖∗ <∞.

Hence A5 ≤ C3ε
2 for some constant C3 > 0. By combining the above

estimates ofA4 and A5 with (4.14) we get that A3 ≤ ‖ψ‖∗ε+(C2ε
2+C3ε

2)1/2.
Hence, by (4.13), there is a uniform constant K > 0 such that

sup
n≥n0

‖Wψ,ϕfn‖BMOA ≤ A1 +A2 +A3 ≤ Kε.

This completes Step 2 and the proof of Theorem 4.1. �

It is not difficult to verify that Theorem 4.1 contains as special cases the
following characterizations of compactness of multipliers Mψ and composi-
tion operators Cϕ on BMOA.

Corollary 4.3. (i) The pointwise multiplier Mψ is compact on BMOA if
and only if ψ(z) = 0 on D.

(ii) The composition operator Cϕ is compact on BMOA if and only if

lim
r→1

sup
|ϕ(a)|>r

‖σϕ(a) ◦ ϕ ◦ σa‖H2 = 0,(4.16)

and, for all R ∈ (0, 1),

lim
t→1

sup
|ϕ(a)|≤R

m({ζ ∈ T : |(σϕ(a) ◦ ϕ ◦ σa)(ζ)| > t}) = 0.(4.17)

Remark 4.4. Corollary 4.3(ii) is related to the following result due to W.
Smith [Sm, Theorem 1.1]. The operator Cϕ is compact on BMOA if and
only if

lim
r→1

sup
|ϕ(a)|>r

γ(σϕ(a) ◦ ϕ ◦ σa) = 0,(4.18)
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where γ is defined as in Lemma 3.3, and, for all R ∈ (0, 1),

lim
t→1

sup
|ϕ(a)|≤R

m({ζ ∈ T : |(ϕ ◦ σa)(ζ)| > t}) = 0.(4.19)

We sketch for completeness a more direct argument which shows that these
two characterizations are equivalent. The equivalence of conditions (4.17)
and (4.19) can be verified by using the fact that

1 −R

1 +R
≤

1 − |(σϕ(a) ◦ ϕ ◦ σa)(ζ)|2
1 − |(ϕ ◦ σa)(ζ)|2

≤ 1 +R

1 −R
,

for all ζ ∈ T and a ∈ D such that |(ϕ ◦ σa)(ζ)| < 1 and |ϕ(a)| ≤ R. These
estimates follow easily e.g. from the well-known formula (1 − |σw(z)|2)/(1 −
|z|2) = |σ′w(z)| for w, z ∈ D (see [G, p. 3]). The fact that (4.16) implies
(4.18) follows from the inequality γ(λ) ≤ 2‖λ‖H2 which holds for all analytic
functions λ : D → D with λ(0) = 0 (see (3.11)). To see that (4.18) implies
(4.16) we apply an argument of Smith [Sm] as follows. Assume that γ(λ) <
1/16. Then the Littlewood inequality [CoM, p. 33] gives that N(λ,w) ≤
log(1/|w|) if 0 < |w| < γ(λ)1/4, and N(λ,w) ≤ γ(λ)1/2 if γ(λ)1/4 ≤ |w| < 1

2 ,
by definition. From these estimates, (3.8) and Lemma 3.3 we get that

‖λ‖2
H2 ≤ 4

∫ γ(λ)1/4

0
log

1

r
rdr +

2A(1
2D)

π
γ(λ)1/2 +

4

log 2
γ(λ),

which yields that ‖λ‖2
H2 ≤ Cγ(λ)1/4 for a suitable constant C > 0.

We leave the remaining details to the interested reader.

5. Weighted composition operators on VMOA

In this section we consider boundedness and compactness of the operators
Wψ,ϕ on VMOA, the closed subspace of BMOA consisting of the analytic
functions f ∈ BMOA such that

lim
|a|→1

‖f ◦ σa − f(a)‖H2 = 0.

Recall that the space VMOA is in fact the closure of the analytic polynomials
in BMOA (see e.g. [Z, §8.4]).

Proposition 5.1. Let ψ : D → C and ϕ : D → D be analytic. Then Wψ,ϕ is
bounded on VMOA if and only if Wψ,ϕ is bounded on BMOA, ψ ∈ VMOA
and

lim
|a|→1

|ψ(a)| · ‖ϕ ◦ σa − ϕ(a)‖H2 = 0.(5.1)

Proof. Assume first that Wψ,ϕ is bounded on VMOA. Note that for each
a ∈ D the functions defined in (3.13) and (3.15) belong to VMOA. Thus the
argument in the proof Theorem 3.1 shows that

C1(sup
a∈D

α(ψ,ϕ, a) + sup
a∈D

β(ψ,ϕ, a)) ≤ ‖Wψ,ϕ : VMOA → VMOA‖ <∞,
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for some constant C1 > 0. Hence Wψ,ϕ is bounded on BMOA. Moreover,
we have that Wψ,ϕ(1) = ψ ∈ VMOA and Wψ,ϕ(z) = ψϕ ∈ VMOA. Thus

|ψ(a)| · ‖ϕ ◦ σa − ϕ(a)‖H2 ≤ ‖(ψ ◦ σa) · ϕ ◦ σa − ψ(a)ϕ(a)‖H2

+ ‖(ψ ◦ σa − ψ(a)) · ϕ ◦ σa‖H2

≤ ‖(ψϕ) ◦ σa − (ψϕ)(a)‖H2

+ ‖ψ ◦ σa − ψ(a)‖H2‖ϕ‖H∞ → 0,

as |a| → 1, so that (5.1) holds.
Assume next that Wψ,ϕ is bounded on BMOA, ψ ∈ VMOA and (5.1)

holds. We will show that Wψ,ϕ is bounded on VMOA. By the closed graph
theorem it suffices to show that Wψ,ϕf ∈ VMOA where f ∈ VMOA is
arbitrary. Since VMOA is the closure of analytic polynomials in BMOA and
Wψ,ϕ is bounded on BMOA, we may assume that f is in fact a polynomial.

That is, f(z) =
∑N

n=0 cnz
n for z ∈ D for some N ∈ N and c0, . . . , cN ∈ C. In

particular, M := ‖f‖∞ <∞. Let ε > 0. By using the assumptions (5.1) and
ψ ∈ VMOA, we may choose a number r ∈ (0, 1) such that ‖ψ◦σa−ψ(a)‖H2 <
ε/M and |ψ(a)| · ‖ϕ ◦ σa − ϕ(a)‖H2 < ε/(MN 2) for all a ∈ D with |a| ≥ r.
Thus

‖(Wψ,ϕf) ◦ σa − (Wψ,ϕf)(a)‖H2 ≤ ‖(ψ ◦ σa − ψ(a)) · f ◦ ϕ ◦ σa‖H2

+ ‖ψ(a)(f ◦ ϕ ◦ σa − f(ϕ(a)))‖H2 ,

where ‖(ψ ◦ σa −ψ(a)) · f ◦ ϕ ◦ σa‖H2 ≤M‖ψ ◦ σa −ψ(a)‖H2 < ε, for a ∈ D

with |a| ≥ r. Since |cn| = |
∫ 2π
0 f(eiθ)e−inθ dθ2π | ≤M , we get that

‖ψ(a)(f ◦ ϕ ◦ σa − f(ϕ(a)))‖H2 ≤M |ψ(a)|
N
∑

n=1

‖(ϕ ◦ σa)n − ϕ(a)n‖H2 .

From the identity un − vn = (u− v)
∑n−1

k=0 u
kvn−k−1 we obtain the estimate

|(ϕ ◦ σa)n(z) − ϕ(a)n| ≤ n|(ϕ ◦ σa)(z) − ϕ(a)| for z ∈ D. In particular, we
get that

‖ψ(a)(f ◦ ϕ ◦ σa − f(ϕ(a)))‖H2 ≤M |ψ(a)|N 2‖ϕ ◦ σa − ϕ(a)‖H2 < ε,

for |a| ≥ r. By combining the above estimates, we get that Wψ,ϕf ∈ BMOA
and ‖(Wψ,ϕf) ◦ σa − (Wψ,ϕf)(a)‖H2 < 2ε for all a ∈ D such that |a| ≥ r.
Consequently Wψ,ϕf ∈ VMOA. �

It is not difficult to verify that Proposition 5.1 contains as special cases the
following known characterizations of boundedness of operators Mψ and Cϕ
on VMOA. The case of composition opearators is originally due to Arazy,
Fisher and Peetre [AFP, Theorem 12].

Corollary 5.2. (i) The pointwise multiplier Mψ is bounded on VMOA if
and only if ψ ∈ H∞ ∩ LMOA.

(ii) The composition operator Cϕ is bounded on VMOA if and only if
ϕ ∈ VMOA.

We consider next compactness of Wψ,ϕ on VMOA. Observe that if Wψ,ϕ

is bounded on VMOA, then Wψ,ϕ is compact on VMOA if and only if Wψ,ϕ

is compact on BMOA. This results from the facts that VMOA∗∗ = BMOA
(see e.g. [Z, §8]) and Wψ,ϕ on BMOA is the second adjoint of Wψ,ϕ on VMOA
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(here the argument in [CM, p. 939] for composition operators can also be
applied for Wψ,ϕ).

We next study compactness of Wψ,ϕ on VMOA more carefully. Our main
goal here is to estimate the essential norm

‖Wψ,ϕ‖e = inf
T∈K(VMOA)

‖Wψ,ϕ − T‖

of an arbitrary weighted composition operator Wψ,ϕ : VMOA → VMOA.
Here K(VMOA) is the set of all compact linear operators on VMOA. Note
in particular that Wψ,ϕ is compact on VMOA if and only if ‖Wψ,ϕ‖e = 0.

Estimates and formulas for the essential norm of a (weighted) composi-
tion operator are known in various settings, see e.g. [S], [M], [MZ], [C̆Z] and

[C̆Z2]. However, it seems that such estimates have not appeared in the lit-
erature before for (weighted) composition operators on VMOA (or BMOA).
Therefore the following result appears to be new also in the special cases of
the operators Mψ and Cϕ.

Theorem 5.3. Assume that Wψ,ϕ is bounded on VMOA. Then

‖Wψ,ϕ‖e ∼ lim sup
|a|→1

(α(ψ,ϕ, a) + β(ψ,ϕ, a)).

In particular, Wψ,ϕ is compact on VMOA if and only if

lim
|a|→1

α(ψ,ϕ, a) = 0 and lim
|a|→1

β(ψ,ϕ, a) = 0.

We need an auxiliary result before the proof of Theorem 5.3. The proof
of the following lemma is based on Carleson measure techniques. Similar
techniques were used in [T, Theorem 3.11] for characterizing compactness of
composition operators on VMOA.

Lemma 5.4. There is a constant C > 0 such that

‖f‖BMOA ≤ C

(

(1 − r)−5/2 sup
|z|≤r

|f(z)| + sup
{a∈D : |a|≥r}

‖f ◦ σa − f(a)‖H2

)

,

for all r ∈ [ 12 , 1) and f ∈ BMOA.

Proof. We will use the classical fact that a function f ∈ H(D) belongs to
BMOA if and only if the measure µf on D given by dµf (z) = |f ′(z)|2(1 −
|z|2)dA(z)/π is a Carleson measure (see e.g. [G, §VI.3], [Z, §8]). In fact,
there is a constant C > 0 such that

C−1‖f‖2
∗ ≤ sup

h∈(0,1]
sup

θ∈[0,2π)

µf (R(h, θ))

h
≤ C‖f‖2

∗,(5.2)

for all f ∈ BMOA, where R(h, θ) is the Carleson box R(h, θ) = {seit ∈
D : 1 − h ≤ s < 1, |θ − t| ≤ h} for h ∈ (0, 1] and θ ∈ [0, 2π).

We establish next the following slightly stronger version of the upper es-
timate in (5.2). Given r ∈ [ 12 , 1), put hr = 2(1 − r) ∈ (0, 1] and

Lr = sup
{a∈D : |a|≥r}

‖f ◦ σa − f(a)‖2
H2 .
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Then

sup
h∈(0,hr ]

sup
θ∈[0,2π)

µf (R(h, θ))

h
≤ CLr,(5.3)

for all f ∈ BMOA where C > 0 is a constant. Indeed, one checks that if
h ∈ (0, hr], θ ∈ [0, 2π) and a = (1 − h

2 )eiθ, then there is a constant c > 0

such that |σ′a(z)| = (1 − |a|2)|1 − az|−2 ≥ (ch)−1, for all z ∈ R(h, θ). Since
|a| = 1 − h

2 ≥ r, we get that

sup
h∈(0,hr]

sup
θ∈[0,2π)

µf (R(h, θ))

h
≤ c sup

{a∈D : |a|≥r}

∫

D

|σ′a(z)|dµf (z).

The estimate (5.3) follows now from the calculation (1 − |z|2)|σ′a(z)| = 1 −
|σa(z)|2 ≤ −2 log |σa(z)| = 2N(σa, z) and (3.8).

For r = 1
2 , the proof of the lemma follows from (5.3) and (5.2). Assume

next that r ∈ ( 1
2 , 1). Let h ∈ (hr, 1] and θ ∈ [0, 2π) be arbitrary. Then

it is easy to verify that there are θ1, . . . θN ∈ [0, 2π) such that R(h, θ) ⊂
(

⋃N
j=1R(hr, θj)

)

∪ (1 − hr)D, where N ≤ h/hr + 1. By applying (5.3), we

get that

µf (R(h, θ))

h
≤

N
∑

j=1

µf (R(hr, θj))

h
+
µf ((1 − hr)D)

h

≤ 16N
hr
h
Lr +

1

hr
sup

z∈(1−hr)D
|f ′(z)|2,

where Nhr/h ≤ 2. Since 1 − hr = 2r − 1 < r, an application of the Cauchy
integral formula for the derivative gives that |f ′(z)| ≤ (1−r)−2 sup|z|≤r |f(z)|
for z ∈ (1 − hr)D. Hence

sup
h∈(hr ,1]

sup
θ∈[0,2π)

µf (R(h, θ))

h
≤ 32Lr +

1

(1 − r)5
sup
|z|≤r

|f(z)|2.

Together with (5.3) and (5.2) this proves the lemma. �

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. We prove first that

C1(lim sup
|a|→1

(α(ψ,ϕ, a) + β(ψ,ϕ, a))) ≤ ‖Wψ,ϕ‖e,(5.4)

for some constant C1 > 0. For this aim, observe that

lim sup
|a|→1

sup
f∈BVMOA

‖(Tf) ◦ σa − (Tf)(a)‖H2 = 0,(5.5)

for an arbitrary operator T ∈ K(VMOA). In the case T = Cϕ the proof of
(5.5) is contained in [T, Theorem 3.11]. We verify the general case here for
completeness. Indeed, if T is compact then T (BVMOA) is a relatively compact
subset of VMOA. Let ε > 0. Then there exist functions f1, . . . , fn ∈ BVMOA

such that for every f ∈ BVMOA we have ‖Tf − Tfj‖BMOA < ε for some
1 ≤ j ≤ n. Consequently, we get that

sup
a∈D

‖(Tf) ◦ σa − (Tf)(a)‖H2 ≤ sup
a∈D

‖(Tfj) ◦ σa − (Tfj)(a)‖H2 + ε,(5.6)
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for some 1 ≤ j ≤ n. For each 1 ≤ j ≤ n, there is rj ∈ (0, 1) such that ‖(Tfj)◦
σa − (Tfj)(a)‖H2 < ε whenever rj ≤ |a| < 1. Setting r = max{r1, . . . , rn}
gives that max1≤j≤n ‖(Tfj) ◦ σa − (Tfj)(a)‖H2 < ε whenever r ≤ |a| < 1.
Combining this estimate with (5.6) gives (5.5).

Let T ∈ K(VMOA) be arbitrary. Then we get from (5.5) that

‖Wψ,ϕ − T‖ ≥ sup
f∈BVMOA

‖Wψ,ϕf − Tf‖∗

≥ lim sup
|a|→1

sup
f∈BVMOA

‖((Wψ,ϕ − T )f) ◦ σa − ((Wψ,ϕ − T )f)(a)‖H2

≥ lim sup
|a|→1

sup
f∈BVMOA

‖(Wψ,ϕf) ◦ σa − (Wψ,ϕf)(a)‖H2 ,

so that

lim sup
|a|→1

sup
f∈BVMOA

‖(Wψ,ϕf) ◦ σa − (Wψ,ϕf)(a)‖H2 ≤ ‖Wψ,ϕ‖e.(5.7)

Recall that the functions fa(z) = σϕ(a)(z) − ϕ(a) and ga(z) = log(2/(1 −
ϕ(a)z)) defined in (3.13) and (3.15) satisfy supa∈D ‖fa‖BMOA ≤ 1 and M :=
supa∈D ‖ga‖∗ <∞. Moreover, by (3.14) we get that

α(ψ,ϕ, a) ≤ 2‖ψ ◦ σa − ψ(a)‖H2 + ‖(Wψ,ϕfa) ◦ σa − (Wψ,ϕfa)(a)‖H2 ,

and by (3.16), Lemma 4.2 and (3.5), we get that

β(ψ,ϕ, a) ≤M(c‖ψ‖∗‖ψ ◦ σa − ψ(a)‖H2)1/2

+ ‖(Wψ,ϕga) ◦ σa − (Wψ,ϕga)(a)‖H2 + CMα(ψ,ϕ, a).

Note that for each a ∈ D in fact fa, ga ∈ VMOA. Moreover, since Wψ,ϕ

is bounded on VMOA, also ψ ∈ VMOA. Hence we get from the above
estimates and (5.7) that

lim sup
|a|→1

(α(ψ,ϕ, a) + β(ψ,ϕ, a)) ≤ (1 +M +MC)‖Wψ,ϕ‖e.

This proves (5.4).
We establish next the upper estimate

‖Wψ,ϕ‖e ≤ C2 lim sup
|a|→1

(α(ψ,ϕ, a) + β(ψ,ϕ, a)),(5.8)

for some constant C2 > 0. To this end, define the linear operators Kn on
VMOA by (Knf)(z) = f(rnz) for n ∈ N where rn = (n − 1)/n. Then Kn

is the composition operator induced by the mapping ϕ(z) = rnz, so that
‖Kn‖ ≤ 1 and Kn is compact (see (3.3) and [MT, Lemma 5.1]). Hence

‖Wψ,ϕ‖e ≤ ‖Wψ,ϕ −Wψ,ϕKn‖ = sup
f∈BVMOA

‖Wψ,ϕ(I −Kn)f‖BMOA.

Fix r ∈ [ 12 , 1) and put Sn = I −Kn for n ∈ N. Then Lemma 5.4 gives that

‖Wψ,ϕ‖e ≤ C(1 − r)−5/2 sup
f∈BVMOA

sup
|z|≤r

|(Wψ,ϕSnf)(z)|

+ C sup
f∈BVMOA

sup
|a|≥r

‖(Wψ,ϕSnf) ◦ σa − (Wψ,ϕSnf)(a)‖H2 ,
(5.9)

for all n ∈ N.



18 JUSSI LAITILA

Note next that

sup
f∈BBMOA

sup
|z|≤r

|(Wψ,ϕSnf)(z)| → 0,(5.10)

as n→ ∞. Indeed, if ρ = sup|z|≤r |ϕ(z)| and R = (1 + ρ)/2, then ρ < R < 1

so that the Cauchy integral formula and (2.2) give that

|ψ(z)(Snf)(ϕ(z))| = |ψ(z)|
∣

∣

∣

∣

∣

1

2πi

∫

{|ζ|=R}
f(ζ)

(

1

ζ − ϕ(z)
− 1

ζ − rnϕ(z)

)

dζ

∣

∣

∣

∣

∣

≤ 4

log 2

(

log
2

1 − r2

)

1 − rn
(1 − ρ)2

‖ψ‖BMOA‖f‖H1 ,

for z ∈ rD. Since ‖f‖H1 ≤ ‖f‖BMOA, this gives (5.10).
Since ‖Sn‖ ≤ 2, we get from (5.9) and (5.10) that

‖Wψ,ϕ‖e ≤ C(1 − r)−5/2 lim sup
n→∞

sup
f∈BVMOA

sup
|z|≤r

|(Wψ,ϕSnf)(z)|

+ C sup
n∈N

sup
f∈BVMOA

sup
|a|≥r

‖(Wψ,ϕSnf) ◦ σa − (Wψ,ϕSnf)(a)‖H2

≤ 2C sup
g∈BVMOA

sup
|a|≥r

‖(Wψ,ϕg) ◦ σa − (Wψ,ϕg)(a)‖H2 ,

where r ∈ [ 12 , 1) is arbitrary. By letting r → 1, we get that

‖Wψ,ϕ‖e ≤ 2C lim sup
|a|→1

sup
g∈BVMOA

‖(Wψ,ϕg) ◦ σa − (Wψ,ϕg)(a)‖H2 .(5.11)

By the estimate (3.19) (which holds for all g ∈ BBMOA), (3.5) and (2.2),
there is a constant C ′ > 0 such that

sup
g∈BVMOA

‖(Wψ,ϕg) ◦ σa − (Wψ,ϕg)(a)‖H2

≤ sup
g∈BVMOA

‖(ψ ◦ σa − ψ(a)) · (g ◦ ϕ ◦ σa − g(ϕ(a)))‖H2

+ C ′(α(ψ,ϕ, a) + β(ψ,ϕ, a)),

where

sup
g∈BVMOA

‖(ψ ◦ σa − ψ(a)) · (g ◦ ϕ ◦ σa − g(ϕ(a)))‖H2

≤ (c‖ψ‖∗‖ψ ◦ σa − ψ(a)‖H2)1/2,

by Lemma 4.2. Since ψ = Wψ,ϕ(1) ∈ VMOA, the above estimates and (5.11)
give that

‖Wψ,ϕ‖e ≤ C2 lim sup
|a|→1

(α(ψ,ϕ, a) + β(ψ,ϕ, a)),

for a suitable constant C2 > 0. This yields (5.8) and completes the proof of
Theorem 5.3. �

Corollary 5.5. Assume that ψ ∈ H∞ ∩ LMOA and ϕ : D → D belongs to
VMOA. Then

‖Mψ‖e ∼ ‖ψ‖∞ + lim sup
|a|→1

(

log
2

1 − |a|2
)

‖ψ ◦ σa − ψ(a)‖H2 ,



WEIGHTED COMPOSITION OPERATORS ON BMOA 19

and

‖Cϕ‖e ∼ lim sup
|a|→1

‖σϕ(a) ◦ ϕ ◦ σa‖H2 .

Remark 5.6. Corollary 5.5 implies in particular that Cϕ is compact on
VMOA if and only if ϕ ∈ VMOA and

lim
|a|→1

‖σϕ(a) ◦ ϕ ◦ σa‖H2 = 0.(5.12)

Note that by (3.5) (for ψ ≡ 1), the condition (5.12) is equivalent to

lim
|a|→1

sup
f∈BVMOA

‖f ◦ ϕ ◦ σa − f(ϕ(a))‖H2 = 0.(5.13)

Hence Cϕ is compact on VMOA if and only if (5.13) holds. This result is
originally due to Tjani [T, Theorem 3.11] (see also [MT, Theorem 4.2], and
[BCM, Theorem 3.5] for a similar result).

The compactness of the composition operator Cϕ on VMOA can be char-
acterized in terms of the Nevanlinna counting function. Indeed, if Cϕ is
bounded on VMOA, then the argument in Remark 4.4 implies that (5.12) is
equivalent to

lim
|a|→1

sup
w∈D\{0}

|w|2N(σϕ(a) ◦ ϕ ◦ σa, w) = 0.(5.14)

Hence Cϕ is compact on VMOA if and only if ϕ ∈ VMOA and (5.14) holds.

6. Examples

We consider next some examples of bounded and compact weighted com-
position operators on BMOA and VMOA. Assume that ψ : D → C and
ϕ : D → D are analytic. Clearly, if both of the operators Mψ and Cϕ are
bounded on BMOA, then Wψ,ϕ is bounded on BMOA. If, in addition, either
of Mψ or Cϕ is compact, then Wψ,ϕ is compact.

However, it is easy to find analytic mappings ϕ and ψ such that the corre-
sponding weighted composition operator Wψ,ϕ is bounded, but the operator
Mψ is not bounded on BMOA. Moreover, there are mappings ϕ and ψ such
that Wψ,ϕ is compact, but the operators Mψ and Cϕ are not compact on
BMOA.

Example 6.1. Assume that ψ ∈ BMOA and ‖ϕ‖∞ < 1. Then Wψ,ϕ is
bounded on BMOA.

Proof. Since Wψ,ϕf = ψ · (f ◦ ϕ) = Mf◦ϕ(ψ) and ψ ∈ BMOA, it suffices to
show, by Corollary 3.4, that ‖f ◦ϕ‖∞ and ‖f ◦ϕ‖∗,log are bounded uniformly
in f ∈ BBMOA. The fact that ‖f ◦ ϕ‖∞ ≤ C‖f‖BMOA for some constant
C > 0 follows easily from (2.2), since ‖ϕ‖∞ < 1. Moreover, by applying the
Cauchy integral formula for the derivative, one finds a constant C ′ > 0 such
that |(f ◦ ϕ)′(z)| ≤ C ′‖f‖BMOA. Hence it follows from (3.8) that

‖f ◦ ϕ ◦ σa − f(ϕ(a))‖H2 =

(

2

∫

D

|(f ◦ ϕ)′(z)|2N(σa, z)
dA(z)

π

)1/2

≤ C ′‖f‖BMOA‖σa − a‖H2 ,

where ‖σa − a‖H2 =
√

1 − |a|2, so that ‖f ◦ ϕ‖∗,log ≤ C ′‖f‖BMOA. �
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Example 6.2. Let ψ(z) = 1 − z and ϕ(z) = (z + 1)/2. Then neither Mψ nor
Cϕ is compact on BMOA, but Wψ,ϕ is compact on VMOA.

Proof. The operators Mψ and Cϕ are not compact on BMOA since ψ is non-
zero and Cϕ is not compact even on H2 [BCM, Theorem 4.1]. A calculation
shows that (σϕ(a) ◦ ϕ ◦ σa)(z) = (2(1 − |a|2)z)/(4 − |a+ 1|2 + (1 − a)2z), so
that

‖σϕ(a) ◦ ϕ ◦ σa‖2
H2 =

4(1 − |a|2)2
(4 − |1 + a|2)2 − |1 − a|4 =

1 − |a|2
2(1 − Re a)

,

for all a ∈ D. Since |1 − a|2 = 1 − 2Re a+ |a|2 < 2(1 − Re a), we get that

α(ψ,ϕ, a) ≤
√

1 − |a|2.
Moreover, since 4(1 − |ϕ(a)|2) = 1 − |a|2 + 2Re(1 − a) ≥ 2(1 − |a|2) and

‖ψ ◦ σa − ψ(a)‖H2 = ‖σa − a‖H2 =
√

1 − |a|2, we have that

β(ψ,ϕ, a) ≤
(

log
4

1 − |a|2
)

√

1 − |a|2.

Hence Wψ,ϕ is bounded on BMOA, by Theorem 3.1. Clearly ψ ∈ VMOA.
Moreover, since ϕ ∈ VMOA, we have that

lim
|a|→1

|ψ(a)| · ‖ϕ ◦ σa − ϕ(a)‖H2 = 0,

so that Wψ,ϕ is bounded on VMOA, by Proposition 5.1. Since α(ψ,ϕ, a) → 0
and β(ψ,ϕ, a) → 0 as |a| → 1, Theorem 5.3 implies that Wψ,ϕ is compact
on VMOA. �

7. Comparison results: BMOA and the Bloch space

In this final section we consider the relationship of boundedness and com-
pactness of weighted composition operators on BMOA and the Bloch space
B. It turns out that the boundedness (respectively compactness) conditions
on BMOA and B are quite similar. This quickly leads to a comparison re-
sult between weighted composition operators on these spaces. Recall that a
function f ∈ H(D) belongs to the Bloch space B, if

‖f‖B = |f(0)| + sup
z∈D

|f ′(z)|(1 − |z|2) <∞,

and that B0 is the closed subspace of B consisting of f ∈ B such that

lim
|z|→1

|f ′(z)|(1 − |z|2) = 0.

Moreover, we have the continuous inclusions BMOA ⊂ B and VMOA ⊂ B0.
For w ∈ D and analytic maps ψ ∈ B and ϕ : D → D, consider the quantities

α̃(ψ,ϕ,w) = |ψ(w)||ϕ′(w)| 1 − |w|2
1 − |ϕ(w)|2

and

β̃(ψ,ϕ,w) =

(

log
2

1 − |ϕ(w)|2
)

|ψ′(w)|(1 − |w|2).

The following result is due to Ohno and Zhao.
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Theorem 7.1 ([OZ, Theorems 1–4]). (i) The operator Wψ,ϕ is bounded on
B if and only if

sup
w∈D

α̃(ψ,ϕ,w) <∞ and sup
w∈D

β̃(ψ,ϕ,w) <∞.

(ii) Wψ,ϕ is compact on B if and only if

lim
r→1

sup
|ϕ(w)|≥r

α̃(ψ,ϕ,w) = 0 and lim
r→1

sup
|ϕ(w)|≥r

β̃(ψ,ϕ,w) = 0.

(iii) Wψ,ϕ is bounded on B0 if and only if Wψ,ϕ is bounded on B, ψ ∈ B0

and

lim
|w|→1

|ψ(w)||ϕ′(w)|(1 − |w|2) = 0.

(iv) Wψ,ϕ is compact on B0 if and only if

lim
|w|→1

α̃(ψ,ϕ,w) = 0 and lim
|w|→1

β̃(ψ,ϕ,w) = 0.

If the composition operator Cϕ is compact on BMOA, then by a result of
M. Tjani [T, Proposition 3.2], it is compact on B (however, due to a result
of W. Smith, the converse of this result does not hold, see [Sm, p. 2722]).
Since VMOA ⊂ B0, the corresponding result holds also for VMOA and B0

in place of BMOA and B (see also [BCM, Proposition 6.1]). We give next
a simple argument which extends these results for the weighted composition
operators Wψ,ϕ.

Corollary 7.2. (i) If Wψ,ϕ is bounded on BMOA, then Wψ,ϕ is bounded on
B.

(ii) If Wψ,ϕ is compact on BMOA, then Wψ,ϕ is compact on B.
(iii) If Wψ,ϕ is bounded on VMOA, then Wψ,ϕ is bounded on B0.
(iv) If Wψ,ϕ is compact on VMOA, then it is compact on B0.

Proof. The Cauchy integral formula gives that |f ′(0)| ≤ ‖f‖H2 for every f ∈
H2. Moreover, |(f◦σa−f(a))′(0)| = |f ′(a)|(1−|a|2) and |(σϕ(a)◦ϕ◦σa)′(0)| =

|ϕ′(a)|(1 − |a|2)/(1 − |ϕ(a)|2) for a ∈ D. Hence α̃(ψ,ϕ, a) ≤ α(ψ,ϕ, a),

β̃(ψ,ϕ, a) ≤ β(ψ,ϕ, a) and |ψ(a)||ϕ′(a)|(1−|a|2) ≤ |ψ(a)| ·‖ϕ◦σa−ϕ(a)‖H2 .
The proof follows now from Theorems 3.1, 4.1, 5.3 and 7.1, and Proposition
5.1. �
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