COMPACT DIFFERENCES OF COMPOSITION OPERATORS
ON BLOCH AND LIPSCHITZ SPACES

PEKKA J. NIEMINEN

ABSTRACT. We consider the difference T' = Cy, — Cy of two analytic composition
operators in the unit disc. We characterize the compactness and weak compact-
ness of T on the standard Bloch space, improving an earlier result by Hosokawa
and Ohno. We also characterize the compactness and weak compactness of T
on analytic Lipschitz spaces. These characterizations are derived from a general
result dealing with differences of weighted composition operators on weighted Ba-
nach spaces of analytic functions. We also make complementary remarks on the
compactness properties of a single composition operator on the Lipschitz spaces.

1. INTRODUCTION

Let D be the unit disc of the complex plane and assume that ¢ : D — D is an
analytic map. Then the composition operator Cy taking f to fo¢ is a linear operator
on H(D), the space of all analytic functions on D. During the past few decades much
effort has been devoted to the research of such operators on a variety of Banach spaces
of analytic functions. The general idea has been to explain the operator-theoretic
behaviour of Uy, such as compactness and spectra, in terms of the function-theoretic
properties of the symbol ¢. We refer to the book by Cowen and MacCluer [2] for a
rather comprehensive overview of the field as of the early 1990s.

Several authors have also studied the mapping properties of the difference of two
composition operators, i.e. an operator of the form

T=C,—Cy

where ¢ and 1 are two analytic self-maps of ID. The primary motivation for this has
been the desire to understand the topological structure of the whole set of composition
operators acting on a given function space. Most papers in this area have focused on
(weighted) Bergman and Dirichlet spaces and especially the Hardy space H?; see e.g.
[10], [23], [21], [17], [9] and [18]. However, some classical non-reflexive spaces have
also been considered lately. In [11] MacCluer, Ohno and Zhao described compact
differences and connected components of composition operators on H*°. Their work
was extended to the setting of weighted composition operators by Hosokawa, Izuchi
and Ohno [7]. Lastly, Hosokawa and Ohno [8] studied the same questions on the Bloch
and little Bloch spaces of the disc.

The present paper continues this line of research. We will study the compactness
and weak compactness of T primarily on the Bloch-type spaces B® consisting of all
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analytic functions f on D which satisfy the condition
sup (1 — |2*)*|f'(2)| < oc.
z€D

It is well known that B® is a Banach space under the norm
[flla = 1£0)] + Sup (L= [z f (2)]-

(See the expository article [25] by Zhu for more information on these spaces.) Here «
could be any positive index, but we will be mainly interested in the range 0 < o < 1.
Note that B = B! is just the standard Bloch space. For 0 < o < 1 it was proved by
Hardy and Littlewood that a function f belongs to B* if and only if it is analytic in
D and satisfies a Lipschitz condition of order 1 — «, that is,

£ (2) = f(w)|

z,sztlg]D) |z — w|l~ =
(see [4, Theorem 5.1|). In fact, the two suprema above are comparable to each other.
Moreover, one should note that every Lipschitz function in D is boundary-regular in
the sense that it extends continuously to the closed unit disc.
Before explaining our main results we need to fix some notation. For z,w € D, the
pseudo-hyperbolic distance is defined by p(z,w) = |z — w|/|1 — wz|. The hyperbolic
distance between z and w is then

~

= 5 log 9
S 1=[2 2 71— p(z,w)
where the infimum is taken over all rectifiable paths joining z and w in . When ¢ is
an analytic self-map of D, we will use the short-hand notation
1z )a
DYp(z) = < ' (2).
@ =\ipeer) 7%
In the Bloch case a = 1 we just write D¢ for D'¢. It should be noted that D¢ is the
hyperbolic derivative of ¢ in the sense that

Dé(2)] = lim 2O W)

w—z p(z, w)

More generally one can regard D¢ as a derivative relative to a metric induced by the
arc length element (1 — [¢]?)~%|d(]| (see [25, §4]).

The importance of D%-derivatives to the study of composition operators on B¢
stems from the identity

(1.1) (1= [2P)*UCof ) (2)] = [D*b(2)| - (1 = [6(2)[*)°[f (6(2))],

which basically shows that the condition ||[D“¢|« < oo is sufficient for Cy to be
bounded on B®. For a = 1 this is always true: the classical Schwarz—Pick inequality
actually says that ||D¢||oc < 1. For 0 < o < 1 this is not the case, and Madigan [13]
observed that the condition is also necessary for the boundedness of Cy on B (see
also [2, Theorem 4.9]).

We are now ready to state our main results. Here we consider two analytic maps
¢, : D — D and welet T = Cy — Cy. We also agree to write p(z) = p(¢(2),v(z)) for
the pseudo-hyperbolic distance between ¢(z) and 1 (z). Our first theorem deals with

the standard Bloch case, characterizing the compactness and weak compactness of 7.
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Theorem 1.1. T is (weakly) compact on B if and only if
(B1) Do(z)p(z) = 0 as[¢(z)] — 1,
(B2) Dip(z)p(z) = 0 as [P(z)] — 1.

Recently Hosokawa and Ohno [8] characterized the compactness of T on B by
requiring (B1) and (B2) plus an additional condition which essentially says that

Do(z) ~ D) — 0 as |6(=)] A |(2)] — L.

(We use A to refer to the minimum of two real numbers, and V to the maximum.)
Our contribution is to show that this third condition is actually implied by (B1) and
(B2), so it can be dispensed with.

As an immediate corollary to Theorem 1.1 we obtain a very simple sufficient con-
dition for the compactness of T'.

Corollary 1.2. If p(z) — 0 as |¢(z)| V [(2)| — 1, then T is compact on B.

To understand the conditions of Theorem 1.1 and Corollary 1.2, one should recall
that Madigan and Matheson [14] showed that a single composition operator Cy is
(weakly) compact on B if and only if D¢(z) — 0 as |¢(z)| — 1. This is just a natural
“little-oh” variant of the Schwarz—Pick inequality. On the other hand, the condition
of Corollary 1.2 is known to guarantee the compactness of 17" on various spaces, such
as (weighted) Bergman and Diriclet spaces and Hardy spaces (see [16], [9]). In fact,
it was shown by MacCluer, Ohno and Zhao [11] to characterize the compactness of T'
on the space H* of bounded analytic functions.

Our second theorem is concerned with the Lipschitz case 0 < o < 1. As mentioned
above, we have to assume that the D“-derivatives of the symbols are bounded so as
to guarantee the boundedness of the induced operators.

Theorem 1.3. Let 0 < a < 1 and assume that | D¢l < 00 and ||D*]|e < 0.
Then T is (weakly) compact on B if and only if

(L1) D()p(z) = 0 as [6(2)] — L,
(L2) D(2)p(z) = 0 as [(z)] — L,
(L3) Dg(z) — D*(z) — 0 as |6(=)] A [(2)| — 1.

Conditions (L1) and (L2) are obvious analogues of those in Theorem 1.1. In the
present case, however, one has to impose the additional condition (L3) to guarantee
the (weak) compactness of T. In fact, we will later construct symbols ¢ and v, both
satisfying Madigan’s boundedness condition, such that p(z) — 0 as |¢(2)| V| (2)| — 1
but (L3) fails and consequently 7" is non-compact on B%.

We will approach Theorems 1.1 and 1.3 in a unified way. In fact, in Section 2
we will consider a very general setup where we have the difference of two weighted
composition operators acting between two weighted H°-type spaces. The proof of
Theorem 1.1 occupies Section 3. In Section 4 we will consider Theorem 1.3, especially
addressing the necessity of condition (L3).

In Section 5, which is largely independent of the previous sections, we briefly revisit
the theory of a single composition operator on the Lipschitz spaces. We will answer
a question of Cowen and MacCluer on the boundedness of such an operator. In addi-
tion, we will explore the function-theoretic relationship between various compactness
criteria given in the literature.
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2. DIFFERENCES OF WEIGHTED COMPOSITION OPERATORS
ON WEIGHTED SPACES

In this section we will examine the following general setup. Given analytic functions
¢: D — D and u: D — C we define the weighted composition operator

Wou: HD) = HD), [ u(fog)

We also define the weighted function spaces
1 = { € HD) :sup (1= |2P)°1(2)] < o0}
z€D

for 0 < a < co. These are Banach spaces under the norm determined by the above
supremum, which we will denote by || f||ze. Montes-Rodriguez [15] and Contreras
and Hernandez-Diaz [1| have studied Wy, as an operator acting between this type
of weighted spaces (with even more general weights). In particular, they have shown
that Wy, is a bounded operator from HZ° to Hg® if and only if the pair (¢, u) satisfies
2
(2.1) sup (L~ |=P)°lu(2)] < 00.
zed (1 —o(2)[?)«

They also characterized the (weak) compactness of Wy, by the corresponding “little-
oh” condition as |¢(z)| — 1.

One should note that the differentiation map f +— f’ is a linear isometry from B¢
onto HZ°, provided that in B* we identify functions differing by a constant. Hence
the unweighted composition operator Uy acting between Bloch-type spaces modulo
constants is similar to the weighted composition operator Wy 4 acting between the
corresponding weighted H®°-spaces. Since the identification of functions differing by
a constant does not affect the boundedness or compactness properties of the oper-
ator (see e.g. [1, §6]), the above-mentioned general results yield conditions for the
boundedness and (weak) compactness of C; as an operator from B to B”. These
conditions have also been derived in [24]. In particular, if 0 < a = 8 < 1, Madigan’s
boundedness condition ||D%¢||« < oo is obtained.

In the present section our goal is to investigate the compactness of the difference
of two weighted composition operators on weighted spaces of the above type. To this
end we introduce analytic maps ¢, : D — D and uw,v : D — C and look at the
operator

T = W¢7u - Wi/),'l}'

Our general result is the following. Recall that we use p(z) to denote the pseudo-
hyperbolic distance between ¢(z) and ¥(z).

Theorem 2.1. Let o and (3 be positive real numbers, and assume that the pairs (¢, u)
and (,v) both satisfy (2.1). Then the operator T is (weakly) compact from HZ® to
HE® if and only if

(2.2) %)“(z)p(z) —0 asl|o(z)| — 1,

(1 —1o(2)?)
(2.3) mp(z) —0 as|yY(z) —1,
— |21%)Pu(z — 122)Pv(z
(2.4) (1= [z u(z) (A=) as [6(2)| A [b(2)] — 1.

T =le(z)P)> (1 =[p(z)*)e
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To prepare for the proof of this theorem we have to recall some notions related to
weak compactness. A Banach space X is said to have the Dunford—Pettis property
if 27 (z,) — 0 whenever x,, — 0 weakly in X and z} — 0 weakly in the dual space
X*. Equivalently, this means that every weakly compact linear operator from X into
some Banach space is completely continuous, i.e. maps weakly null sequences into
norm-null sequences. A well-known example of a space with this property is ¢y, the
space of null sequences of scalars endowed with the supremum norm. For a survey of
the Dunford—Pettis property we refer to [3].

The auxiliary functions provided by the next lemma will be used to construct ap-
propriate weakly convergent test function sequences. Instead of this quite elementary
lemma, one could utilize more refined results on interpolating functions here (see e.g.

[5, VIL2)).

Lemma 2.2. Let (ay,) be a sequence in D such that a, — 1. Then there exist numbers
0<eée, <1land0<6, <0, <m and functions Qn € H™ such that e, — 0, 5, — 0,
1Qnlloo <1, |Qnlan)] > 1/2 and |Qn(e®)| < €, when |t| < 6, or &), < |t| < .

Proof. The functions @,, can be realized as outer functions satisfying

o08Qu(a) = 5 [ L ogana
0 2)| = — — 1o
g n 27_[_ . ’elt _ Z|2 an 9

where ¢, (t) = 1 for §, < [t| < 0, and ¢,(t) = €, otherwise. We leave it to the
reader to check that the numbers €,, d, and ¢/, can be chosen in such a way that the
requirements of the lemma are fulfilled. O

One more lemma will be needed. It is certainly known to specialists but we sketch
the proof for completeness. Here and throughout the paper we will use the abbreviated
notation A < B to mean A < CB for some inessential constant C' > 0 depending
possibly on o, and A ~ B if A < B < A.

Lemma 2.3. For f € HX and z,w € D,
(L= [ f(2) = (L = Jw)* f(w)| S 1 fllrgeplz, w)-

Proof. Assume || f||gge < 1. Then [f(¢)| < (1 —[¢[*)~* and [f(¢)] < (1 —[¢[*)"
for ¢ € D (see e.g. [4, Theorem 5.5]). Write h(¢) = (1 — [¢[*)*f(C). Tt is straightfor-
ward to check that |V(1 — [¢|*)?] < (1 — [¢|*)*~!. Therefore, by the product rule of
differentiation,

IVAOI S (1= ¢ A = ¢ ™ + (1= ¢ — ¢~

(1= I
Since (1 — |¢|*)71|d(| is the element of arc length in the hyperbolic metric, we have

established the assertion of the lemma with the hyperbolic distance in place of the
pseudo-hyperbolic one; that is,

IZANRZAN

) h(w)| S log 142

To finish the proof, we consider two cases. If p(z,w) < 1/2, routine estimates show
that the logarithm here is less than 3p(z,w). If p(z,w) > 1/2, we just observe that
since |h| is bounded by 1, we trivially have |h(z) — h(w)| < 2 < 4p(z,w). O
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Proof of Theorem 2.1. Necessity. Assume that T is weakly compact. We first prove
condition (2.2). Let (z,) be a sequence of points in D such that |¢(z,)] — 1. By
passing to a subsequence and applying a rotation argument we may assume that
d(zn) — 1. Let (Qn) be the sequence of functions provided by Lemma 2.2 with
respect to the points (¢(z,)). By passing to a further subsequence we may assume
that the quantities of the lemma satisfy €, < 27" and ¢, ; < d,, for all n.
Now define
ful) = el 2= V)
(1= ¢(2n)2)* 1 —1(zn)z
Then |f,(2)| < |Qn(2)|/(1 —|2|)®. Since the sets {e : |Qn(e)| > €,} are pairwise
disjoint and ), €, < 1, it is easy to see that the mapping (&,) — > &, fn takes
the sequence space ¢y continuously into HS°. Therefore f,, — 0 weakly in HS°, and
since T" was assumed weakly compact, the Dunford—Pettis property of ¢ yields that
HTanHgo — 0. However, by the definition of f,, and the fact that |Q,(¢(z,))] > 1/2

we have

1 (1= |2nf*)%lulzn)|
2 (1—¢(zn) )"

so the right-hand side here must also converge to zero. This proves (2.2), and (2.3) is
analogous.

For the proof of (2.4) we begin with any sequence (z,) for which |¢(z,)| — 1 and
|¥(2zn)] — 1. Again we may assume ¢(z,) — 1 and in view of (2.2) and (2.3) also that
p(zn) — 0. We then proceed as above, choosing functions @),, corresponding to the
sequence (¢(zy,)) by Lemma 2.2, passing to a subsequence, and defining test functions

2) = Qn(z)
) = g

As previously, we deduce that || Tg,|| Hg — 0. Now we have the estimate

||Tfn”H§° > (1- ’Zn|2)ﬂ|Tfn(Zn)’ > p(zn),

ITgallmz 2 (1= l2)°|Tgn(z0)
_ ’ (1= |20 ulz0)Qu(@(z0)) _ (1 = 2nf?) 0(z) Qu (4 (20) ‘

(1= é(zn)?)" (1 = (zn) ¥ (20))"

On the other hand, we have

’ (L= 12a?)0(20)Qn(d(20)) (1 = |2n]*) 0(20) Qn(¥(20)) ‘

(1 = lp(zn)?)" (1= d(zn)(2n))*
(1~ |2nl*)7[0(2n)] 2 2
— 1— a —(1— a
where the first factor stays bounded because W, , is a bounded operator and the
second factor converges to zero by Lemma 2.3. Putting these observations together
we conclude that the difference in (2.4) tends to zero along the sequence (z,). This
completes the proof of the necessity part.
Sufficiency. We assume conditions (2.2)-(2.4) and prove that 7' is compact. As

usual, let (f,) be a sequence in HZ® such that || f,,||ge < 1 and f,, — 0 uniformly on
compact subsets of D. We have to show that ||T"f,]| g — 0.




COMPACT DIFFERENCES OF COMPOSITION OPERATORS 7

To prepare, we let € > 0 and use (2.2)—(2.4) to find r € (0,1) large enough such
that

(1 - P lu(e)

(25) R < when jo(a) >
(1= [21)P[o(2)]

(2.6) T BIEE p(z) <€ when |[¢(z)] >,

(1= [z ulz) (1= [21*)(2)
(2.7) - <e when |p(2)] >, |0(2)] > 7.
A=lo))*  A=[=)?)
We divide the argument into a few cases. First of all, it is clear that for points z with
|6(2)] < r and |¢(z)| < r, the quantity

(1= 1P)ITfa(2)] = (1 = [z fuld(2))ul2) = fu((2))0(2)]

converges to zero uniformly. Then suppose |1(z)| > r. We write (1 — |2|2)?|T f.(2)| =
|Ap(2) + Brn(2)|, where
(L= [2») ulz) _ (1= |2 u(2)

= - - z 2y« n z)),
aate) = |G GBI oy, ot

(1 — 2% u(2) 2 2
= (1 = |p(2)|") fru(@(2)) — (1 = [9(2)]*)* fu(¥(2))].
A= [W(R)e (1= 1)) fu(d(2)) — (1 = [ (2)[*)* fn (10(2))]
Here |B,(2)| < € by Lemma 2.3 and inequality (2.6). As regards Ay(z), we observe
that in the set where |¢(2)| < r clearly A, (z) — 0 uniformly. On the other hand, if
|¢(2)| > r, then (2.7) implies |A,(2)| < e. Hence

limsup sup{(1 — |2*)°|Tfu(2)| : ()] > 7} S e

n—0o0

B,(z) =

Finally note that by symmetry considerations the same result also holds in the set
where |¢(z)| > r. Since € was arbitary, we conclude that (1 — |2|2)3|Tf,(2)| — 0
uniformly for z € D, and the proof of the sufficiency part is complete. O

3. THE BLOCH CASE

In this section we consider the difference operator T' = Cy — Cy, as acting on the
classical Bloch space B. Note that ¢ and ¢ can be any analytic self-maps of D because
it follows from the Schwarz—Pick lemma that every composition operator is bounded
on B.

The following result is a corollary to Theorem 2.1 and the similarity argument
explained before the statement of the theorem in Section 2. It was obtained earlier
by Hosokawa and Ohno [8] (in a slightly different formulation).

Theorem 3.1 (Hosokawa—Ohno). T is (weakly) compact on B if and only if

(B1) Do(2)p(z) =0 as [¢(z)] — 1,
(B2) Dib()p(z) = 0 as [(2)] — 1,
(B3) Dé(z) ~ D) = 0 as ()] A b(z)] — 1.

It turns out, however, that condition (B3) is implied by (B1) and (B2). Thus it
can be dispensed with and we obtain Theorem 1.1, which we restate here.

Theorem 3.2. T is (weakly) compact on B if and only if (B1) and (B2) hold.
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The proof of our result is based on a pair of rather elementary lemmas concerning
continuity properties of hyperbolic derivatives. The first lemma is a special case of
Theorem 6 in [6] (see also Remark 4.7 at the end of Section 4).

Lemma 3.3. Let ¢ : D — D be an analytic map. Then |Dp(z) — Dop(w)| < p(z,w)
for all z,w € D.

Lemma 3.4. Let ¢, : D — D be analytic maps. Then

1
[D(2) = D(2)| S —sup{p(w) : p(z,w) <}
forall0 <r <1 and z € D.

Proof. Let o,(z) = (w — 2)/(1 — wz), so that oy, is the conformal automorphism of
D that interchanges 0 and w. We begin by establishing the general inequality

(3.1) low(2) = ow (Z)] S plz,2") + p(w, w'),

which holds for all points z,z’,w,w’ € D uniformly. To verify this, first note that
low(2) — ow(Z')| < p(z,2") by the conformal invariance of the pseudo-hyperbolic dis-
tance. In addition, since Oy, (2) = 1/(1 —wz) and Ogoy(z) = ow(2) - 2/(1 —wz) are
both less than 1/(1 — |w|) in modulus, we may argue as in the proof of Lemma 2.3 to
get |ow(2) — 0w (2)] S p(w,w’). These observations, along with an application of the
triangle inequality, yield (3.1).

To proceed to the actual proof, we note that for z € D the derivative of o4(.)o¢poo, at
the origin equals D¢(z). Therefore, if 0 < r < 1 is given, the Cauchy integral formula
for derivatives yields the representation
1 (04(z) © ¢ 0 02)(C)

D¢(Z) = 277” Cl=r CQ

dc.

An analogous formula holds for D (z). Now we can apply (3.1) to get the estimate

[(0g(z) © ¢ 002)(C) = () © ¥ 0 0:2) ()] S p(0=(C)) + p(2)-

As ( traverses the set || = 7, the point w = ¢,(() runs through the pseudo-hyperbolic
circle p(z,w) = r. Thus, denoting the supremum in the statement of the lemma by
S, we arrive at the estimate

1 S S
Do) DY S g [ =T,

and the proof is complete. O

Proof of Theorem 3.2. We assume that conditions (B1) and (B2) of Theorem 3.1 hold,

and we will prove that then (B3) is necessarily satisfied. Suppose (z,) is a sequence in

D for which |¢(zy)| — 1 and |¢(2,)| — 1. We wish to show that D¢(z,) —D(z,) — 0.
Let € > 0. By Lemma 3.3 there exists r € (0, 1) such that

D (2n) — Dip(2n)| < [Do(w) — Dip(w)] + €

whenever p(z,,w) < r. On the other hand, by Lemma 3.4 we can extract points
wy, € D with p(zp, wy) < 7 such that |[Dp(z,) — DY(z,)| S p(wy). On multiplying
these two inequalities together we obtain

(3.2) D (2n) — D () > S DS (wn) — De(wy) |p(wn) + e



COMPACT DIFFERENCES OF COMPOSITION OPERATORS 9

for all n. Since p(P(zn), d(wn)) < p(zn,wy) < r, we necessarily have |p(wy)| — 1.
Similarly |¢)(wy,)| — 1. Hence conditions (B1) and (B2) imply that the first term on
the right-hand side of (3.2) tends to zero. Therefore
limsup [Dé(z,) — DY(zn)|* < .
n—oo

Since € was arbitrary, the limit superior here must be zero. O

4. THE LIPSCHITZ CASE

When applied to differences of composition operators on the Lipschitz spaces B¢,
where 0 < a < 1, Theorem 2.1 yields Theorem 1.3, which we restate here.

Theorem 4.1. Let 0 < a < 1 and assume that ¢, : D — D are analytic maps with
IDY¢||oc < 00 and [|[D*Y|loo < 00. Then T = Cy — Cy, is (weakly) compact on B if
and only if

(L1) D()p(z) = 0 as [6(2)] — L,
(L2) DY(2)p(z) = 0 as [0(z)] — L,
(L3) Dg(z) — D*(z) — 0 as |6(=)] A [(z)| — 1.

We first point out some implications of the theorem. Let us recall here that all
functions in B, hence ¢ and 1, extend continuously to the closed disc D. Assume
for the moment that ¢ € D is a point for which |¢(¢)| = 1. Then it is known that ¢
has a finite angular derivative at (, say ¢'(¢) = 0, and therefore D¥¢(z) — 0/|5|* as
z — ( non-tangentially. (For these facts, see Section 5.) So, if (L1) holds, we actually
have p(z) — 0 as z — ( non-tangentially. In particular, then ¥ (¢) = ¢(¢), and with
the aid of (L3) we further obtain ¢'(¢) = ¢'(¢). Thus a necessary condition for the
(weak) compactness of 7" on B® is that the symbols ¢ and ) have the same unimodular
boundary values and that their angular derivatives at those boundary points coincide.
This condition is known to be necessary for the compactness of T" on many other
spaces as well, including the Hardy space H? (see [10] or [2, Theorem 9.16]).

The above reasoning leads to an interesting question, which we have been unable
to answer.

Question 4.2. Let 0 < a < 1 and suppose || D¢/« < 00 and || D]l < 00. If T'is
compact on B, does it follow that p(z) — 0 as |¢(2)| V [¢(z)| — 17

We observed above that a non-tangential version of this holds true. If the answer
to the general question were positive, then the (weak) compactness of 7" would be
characterized by the stated condition together with condition (L3), so Theorem 4.1
could be simplified considerably. Let us recall here that the answer is positive in the
larger space H* of bounded analytic functions [11].

We proceed to give a simple family of examples to illustrate the application of
Theorem 4.1. It will be convenient to employ ¢(z) = (14 z)/2 as a kind of reference
map from which we are to build other maps with various properties. We will make
repeated use of the identity

0= 1P+

(1) - o) = 5 7/

which can be verified by a direct calculation.

1P,

Example 4.3. Let ¢ be as above and put
Yp=¢+ N, where A(2)=c,(z—1)", p>2.
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Here ¢, > 0 is chosen small enough in order that (D) C DU {1}. For instance, if
cp = 27772 then |A\(2)| < |z —1]?/16 and hence 1 — || > 1 — [¢| — |A| > (1 — |¢])/2.
Also note that since ¢’ and X are bounded in D, both ¢ and 1 induce bounded
composition operators on B%.

Case p > 2. We can estimate

A =1 e
p(Z) S 1— |¢(Z)‘ 5 |Z* 1|2 - |Z 1|p ’

so obviously p(z) — 0 as z — 1. Thus (L1) and (L2) are satisfied. To address (L3)
we observe that, by (4.1) and the definition of A, the ratio of 1 —|¢(2)| and 1 — |¢(2)]
tends to 1 as z — 1. Since N (z) = p(z — 1)P~1 — 0, it follows rather easily that (L3)
is satisfied too. So T' = Cy — Cy is compact in this case.

Case p = 2. Now it is easily seen that |1 — ¢(2)¥(2)| ~ 1 —|z|> + |z — 1|> and hence

( ) |Z*]'|2 1_’_17|Z|2 -
z) ~ = _ .
P 1= 22+ |z — 1] 2 — 12

On the other hand,

. A O
%60~ e~ ()

As a consequence we see that the limiting behaviour of p(z) and |[D“¢(z)| as z tends to
1 depends strongly on the path of approach taken via the expression (1—z|?)/|z—1/%.
Indeed, if (1 — |2|?)/|z — 1]? tends to zero or infinity (e.g. if z — 1 non-tangentially),
then one of these quantities converges to zero and the other is ~ 1, so D*¢(z)p(z) — 0
in this case. But if (1 — |2]?)/|z — 1|2 tends to a positive constant (e.g. if 2 — 1 along
a circle that touches 9D at 1), then |D%®(2)|p(z) ~ 1. Therefore (L1) fails and T is
non-compact.

The preceding examples leave open the natural question whether condition (L3)
could be dispensed with in Theorem 4.1, as it was possible to do in the Bloch case
in Section 3. We conclude the present section by giving a negative answer to this
question. We will again start from the map ¢(z) = (1 + 2)/2, but the procedure
used to construct the other map v will be somewhat complicated and requires careful
analysis of the growth properties of D*-derivatives.

Theorem 4.4. Let ¢ be as above and 0 < a < 1. There is a map ¢, analytic on D,
with the following properties: (i) (D) C DU{1} and ¥(1) =1, (i) | D¢l < 00,
(i1i) p(z) = 0 as z — 1, and (iv) D*¢(z) — DY(z) /0 as z — 1.

In particular, conditions (L1) and (L2) of Theorem 4.1 are satisfied but (L3) fails.

We will make use of auxiliary functions k, and A, defined on D by

ka(2) = 1~ lal

1—az’
Aa2) = (= — 1Pa(2),

and depending on a parameter a € D. Note that |#4(2)| < 1 and so [A\,(2)] < |z — 13
for all z € D. In addition,
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The intuitive idea behind our construction can be described as follows. We will
employ the functions A, as elementary perturbations to the map ¢. Adding A, to
¢ does not essentially alter the behaviour of the map near 1 in the hyperbolic scale.
However, by a judicious choice of a we can influence the D*-derivative of the resulting
map just in the right way (Lemma 4.5). We will also observe (Lemma 4.6) that each
perturbation A, is “local” in the sense that when a is close to the boundary of D, the
support of A, in the disc is essentially concentrated around the radius through point
a. Thus it makes sense to define ¢ = ¢ 4+ ¢ ), A\q, Where ¢ > 0 is a small constant
and (a) is a certain sequence of points in I converging to 1.

Lemma 4.5. There are constants c1,co > 0 and q € (%, 1) depending only on « such
that if ¢ < |a| <1 and

3-2a
(4.2) 1—la] =|a—1] o,
then, for all z € D,

(13) () el <a

1—[¢(2)?
and
— lal? a
(e o
Proof. Let us write
_ 1_|Z’2 az_ 31%/2
1) = (1o ) (= 1K)
= 71—|z]2 Oéz— ka2
B = (1= i) (2 DPralo),

so that the expression on the left-hand side of (4.3) equals |A4(z) + 3B, (2)|.

We first prove (4.3) by showing that both A, and B, are uniformly bounded by a
constant independent of a. Since 1 — |¢(2)|? = |z — 1|2 and |k, (2)| < 1/|]1 — @z, we
get

(L= [z =1 _ |2 — 12
|z — 1221 —az| ~ |1 —az|'-

If |z — 1] < 2|a — 1|, this is < |a — 1>729/(1 — |a|)!~®, which is a constant by (4.2).
If |z — 1] > 2|a — 1|, then |1 —a@z| > |z — 1| — |a — 1| 2 |z — 1], so clearly A,(2) is
uniformly bounded also in this case. With regard to B,, we use the simple estimates
1—|6(2)2 21— |2]? and |ka(2)] < 1 to get |B,(2)] < |z — 1|2 £ 1. This completes
the proof of the upper estimate (4.3).
To establish the lower estimate (4.4) we first observe that (4.1) and (4.2) imply

1 —|¢(a)]* < la— 1] In addition, |k, (a)] = 1/(1 — |a]). Hence

1—la))%a -1/ a— 1372

IAa(a)IZ( \2!)! ®_ | \1_ _1

la—1P¢(1 —Ja]) (1 —a[)t=
again by (4.2). Since |By(a)| < |a — 1|2, which tends to zero as a — 1 (equivalently
la| — 1), we conclude that (4.4) holds when |a| is sufficiently close to 1. O

(4.5) [Aa(2)] S

Lemma 4.6. Assume that a € D satisfies (4.2). For every € > 0, there exists 6 > 0
such that if = arga € (0,9), then |kq(2)| < € and |k (2)] < € whenever z € D such

that arg z € [0, 2] \ (30, 30).
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Proof. Write z = re' so that t = arg z. In view of the expressions given for k, and
k!, after the statement of Theorem 4.4, it suffices to show that the quotient

3—2a
I—la|  |a—1]T-=

|1 —areit|2 |1 —aret|?

(4.6)

can be made arbitrarily small for # and z = re® as specified in the lemma. In the

sequel we may actually assume 7 > 1/2; otherwise we would have |1 — are®|? > 1/4

for all a and t, yielding the claim immediately as § — 0+ (or equivalently a — 1).
Let us first consider the denominator (4.6). We have

11 —are’)?> = 1+ |a]*r? — 2|a|r cos(t — ).

Here cos(t — ) is at its maximum when |t — 6| is the smallest possible, i.e. equals 6/2.
Moreover, we have the elementary estimate cos(/2) < 1 — cf? for some ¢ > 0. Thus

11 —are | > (1 — |a|r)? + 2|alrch? > (1 — |a])? + c|a|6?.

The numerator of (4.6) can be estimated in the same way. Since cos@ > 1 —602/2, we
have

la — 112 =1+ |a]* = 2|al cos§ < (1 — |a|)? + |a|6?.
These estimates combine to show that |a — 1|2 < |1 — @re|?. Since the exponent
(3—2a)/(1 — «) in the numerator of (4.6) is greater than 2, it follows that the whole
quotient converges to zero as § — 0+ (or a — 1), the convergence being uniform in r
and t. This completes the proof. O

Proof of Theorem 4.4. To begin with, we employ Lemma 4.6 inductively to find a
sequence (ag) in D, approaching point 1 along the curve (4.2), such that if 6, = arg ay,
then 0 < 6y41 < 6i/3 for every k and

47 e <27h K () <27 ifargz e [0,27]\ (304 26).

Since the intervals (36, 36;,) are disjoint, inequalities (4.7) are certainly satisfied at
every point z of D for all indices k with the possible exception of one k (depending
on z). For this exceptional k£ we nevertheless have the trivial bound |k, (2)| < 1.

We may clearly assume that |a1|, and hence each |ag|, is greater than the number
q of Lemma 4.5. Let

1 o z—1)3 &
A0 = g3 () = g Do)

By the remarks above we see that A is a well-defined analytic function in D (with
continuous extension to D) and

1

— |z -1

T

Put 1 = ¢ + A. Since 1 — |¢(2)] > |z — 1|?/8, we have 1 — [(2)| > (1 — |¢(2)])/2,
so v is an analytic function satisfying requirement (i) of the theorem. Moreover, we
may estimate

1
M) < ole = 1P <

IA(2)] z—13/32 1

S e B PGS T P TR T

from which (iii) obtains.
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It remains to verify (ii) and (iv). The preceding observations imply that 1 — |¢(z)]
is comparable to 1 — |¢(z)| and their ratio tends to one as z — 1. Therefore it is
enough to show that the expression

(15 ) e

stays bounded in D and does not converge to zero as z — 1. To accomplish this
we observe that by the definition of A, and inequalities (4.7) we have |\, (2)] <
27%.5|2—1|2 for all z € D and all except at most one k. The first claim follows from this
and the first part of Lemma 4.5 (applied to the exceptional \,, ). To verify the second
claim we apply the second part of Lemma 4.5 to conclude that the above expression
does not converge to zero as we approach point 1 along the sequence (ay). O

Remark 4.7. The argument presented in Section 3 to get rid of condition (B3) in
Theorem 3.1 fails in the context of Lipschitz spaces because there is no counterpart of
Lemma 3.4 for D“-derivatives in general. Lemma 3.3, in turn, could be carried over
to the Lipschitz case; namely, for any « one has

[D0(2) = D*d(w)] S ID*¢llcop(z, w).

This can be deduced from the generalized Schwarz—Pick estimates obtained in [12].
In fact, Theorem 3 (and its proof) in [12] shows that

(1 — |Z|2)a+1 1

g l? ()] S P60,

(1 —lo(2)])
and by applying the product rule of differentiation (cf. the proof of Lemma 2.3) we
get |[VDY(2)| < |D%¢|oo/(1 — |2|?), which yields the desired estimate.

5. A SINGLE COMPOSITION OPERATOR REVISITED

In this last section we briefly revisit the boundedness and compactness problems
for a single composition operator on the Lipschitz spaces. We assume throughout this
section that ¢ is an analytic self-map of the unit disc and 0 < o < 1.

An early contribution to the study of composition operators on analytic Lipschitz
spaces was due to Roan [19]|, who sought after conditions for the boundedness and
compactness of such operators. In his Corollary 1 the following result on boundedness
is given:

e Cy is bounded on B¢ if and only if ¢ € B and there exist M < oo and r <1
such that |¢/(2)| < M whenever |¢(z)| > r.

Unfortunately, as noticed by Cowen and MacCluer [2, page 196], there appears to be
an error in Roan’s proof for the necessity of his condition. Thus Cowen and MacCluer
mention it as an open question whether the result still holds. As a by-product of
the work done in Section 4 we can give a negative answer to their question: There
are functions that fail Roan’s condition but nonetheless induce a bounded composition
operator on B*.

Example 5.1. Let ¢ = ¢ + ¢>_, Ag, be the function constructed in the proof of
Theorem 4.4. Then a; — 1 and ¢ (ax) — 1 as k — 1. Consider the derivative of i at
ay. By the second part of Lemma 4.5 plus equations (4.1) and (4.2) we have

) o (lae=1P\" 0 aa-a
|/\ak(ak)’ ~\1Z ’ak’2 ~ ’ak 1‘ )
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s0 | Ay, (ar)| — 0o as k — oo. Arguing as at the end of the proof of Theorem 4.4 we
now see that [ (ag)| — oo.

We conclude by making a few remarks on compactness. Let us make here the stand-
ing assumption that ||[D“¢||- < 00, so Cy is always bounded on B*. In the existing
literature there are (at least) three different characterizations for the compactness of
Cy. First of all, in the work cited above, Roan stated the following:

o Cy is compact on B if and only if for every e > 0 there exists r < 1 such that
|¢'(2)| < e whenever |¢(2)| > 7.

Later Shapiro [22] investigated the compactness problem in a general setting of
boundary-regular “small” function spaces with conformal invariance. By a spectral-
theoretic argument he obtained the surprising result that a necessary condition for the
compactness of Cy on such spaces is ||¢]|oc < 1. In the Lipschitz case it follows almost
trivially that his condition is also sufficient, thus yielding a complete characterization
of compactness as follows:

o Uy is compact on B if and only if ||¢]|o < 1.

Finally, it is certainly possible to characterize the compactness of Cy by an appro-
priate “little-oh” version of Madigan’s [13| boundedness condition. That is:

o (Cy is (weakly) compact on B* if and only if D*¢(z) — 0 as |¢(z)| — 1.

This result, although not explicitly stated by Madigan, follows by fairly standard
arguments from the identity (1.1) and lends itself to many generalizations (see [1],
[15], [24]). Of course, it could also be deduced from our Theorem 1.3 by taking ¢ = 0.

A natural question now arises: can one demonstrate the equivalence of these three
compactness conditions by function-theoretic arguments, without invoking operator
theory? Obviously, if Shapiro’s condition holds, then the other two become trivial.
Also, assuming the finiteness of | D%¢|o (or only that ¢ € B%), a simple reasoning
shows that Roan’s condition implies the D%-condition. However, there appears to be
no function-theoretic argument to infer Shapiro’s condition from the D%-condition.

Our aim is to give such an argument. The key to it is the notion of angular
derivatives and the following proposition. It should be noted that the proposition is
already known (see [2, Corollary 4.10]), but the existing proof depends on the above-
mentioned result of Shapiro. In what follows we will give a simple function-theoretic
proof.

Proposition 5.2. Let 0 < o < 1 and suppose Cy is a bounded operator on B*, that is,
ID®||00 < 00. Then ¢ has a finite angular derivative at every ¢ € 9D with |¢({)] = 1.

Let us recall that an analytic map ¢ : D — D is said to have a finite angular
derivative at ¢ € OD if there exists a point w € 0D such that the difference quotient
(¢(2) —w)/(z — ¢) tends to a finite limit as z — ¢ non-tangentially. The limit is
denoted by ¢'(¢) and called the angular derivative of ¢ at ¢. Clearly then ¢(¢) = w
as a non-tangential limit.

The main result about angular derivatives is the following classical theorem. See,
for example, [2, Theorem 2.44].

Theorem 5.3 (Julia—Carathéodory). For ¢ € D the following are equivalent:

(1) ¢ has a finite angular derivative at (.
(2) ¢ has a non-tangential limit of modulus 1 at ¢, and ¢ has a finite non-
tangential limit at C.

(3) The quantity d(¢) = liminf, (1 — |p(2)])/(1 — |2|) is finite.
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Furthermore, under these conditions the non-tangential limit of ¢ at ¢, the angular
deriwative ¢'(¢) and the number d({)¢(¢)C all agree and the limit inferior in (3) is a
non-tangential ltmat.

Proof of Proposition 5.2. Assume ¢(1) = 1. We then claim that ¢ has a finite angular
derivative at 1. Let us define, for 0 < r < 1,

_ (= N\ uir) — L0
b= (1ogig) 00 at =,

The hypothesis of the proposition implies that A is a bounded function, and in view
of the Julia-Carathéodory theorem the claim will follow if we show that u is also
bounded.
Note that ¢/(r) = —(1 — r)u/(r) + u(r) and so
h(r) = u(r) =1 = )/ (r) + u(r)] = —=(1 — r)u(r) "% (r) + u(r) =
If we write v(r) = u(r)1 =%, then this is equivalent to

! (1 =)' (r) +v(r) = h(r).

1-a

The general solution of this differential equation is
e " h(s) C
=— ds+ ————.
)=~ ), e
Since h is bounded, the first term here is a bounded function of . Moreover, the

definition of v implies that v(r) is of the order o(1/(1 —7)!=%) as r — 1—, so we must
have C' = 0. Hence v and u are bounded. O

As a corollary we obtain the desired result that the “little-oh” condition for the
D*-derivative actually trivializes to Shapiro’s compactness condition.

Corollary 5.4. Let 0 < a < 1 and suppose ¢ € B* such that D*¢(z) — 0 as
[¢(2)| = 1. Then [|¢]|oc <1.

Proof. Assume to the contrary that |¢(¢)| = 1 for some ¢ € dD. By Proposition 5.2
¢ has a finite angular derivative, say d, at (. But by the Julia—Carathéodory theorem
(1—1]9(2)])/(1—]|z]) — |6| and ¢'(z) — 0 as z — ¢ non-tangentially. Hence |D%¢(z)| —
|6/'~, which is a contradiction. O
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