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Abstract

In this paper we give a logical characterization of the counting
hierarchy. The counting hierarchy is the analogue of the polynomial
hierarchy, the building block being Probabilistic polynomial time PP
instead of NP. We show that the extension of first-order logic by
second-order majority quantifiers of all arities describes exactly the
problems in the counting hierarchy. We also consider extending the
characterization to general proportional quantifiers QF interpreted as
“more than an r-fraction of k-ary relations”. We show that the result
holds for rational numbers of the form s/2™ but for any other 0 < r < 1
the corresponding logic satisfies the 0-1 law.

1 Introduction

The main goal of descriptive complexity theory is to give logical character-
izations of central complexity classes. The seminal result in this field was
Fagin’s [7] characterization of NP in terms of problems describable in exis-
tential second-order logic (3 SO). Since then, most of the central complexity
classes have been given such logical characterization. In [23] Stockmeyer
defined the polynomial hierarchy (PH) and observed that full second-order
logic describes exactly the problems in the polynomial hierarchy. This result
is a corollary of Fagin’s characterization of NP and the fact that the levels
¥; of the polynomial hierarchy can be characterized in terms of polynomial
bounded existential and universal quantifiers. In other words, a language
L € ¥, if and only if there is a polynomial time predicate R and a polyno-
mial p such that
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where the quantifiers range over words of length at most p(|z|), and @ =
vP(2)) if k is even and Q = () otherwise.

The counting hierarchy (CH) was defined by Wagner in [28]. The counting
hierarchy is the analogue of the polynomial hierarchy, the building block
being Probabilistic polynomial time (PP):

L C()P = P,
e Cy 1 P =PPC%",
e CH = UkEN CkP

The definition above in terms of oracles is due to Toran [25|. Probabilis-
tic polynomial time was defined by Gill [9] in terms of probabilistic Turing
machines, and independently by Simon [22] in the context of threshold lan-
guages. The class PP can be also defined using ordinary nondeterministic
Turing machines by altering the way a machine accepts its input. The class
PP consists of languages L for which there is a polynomial time-bounded
nondeterministic Turing machine N such that, for all inputs z, z € L iff
more than half of the computations of N on input z end up accepting. The
class PP has been studied extensively. Since Gill’s paper it was known that
NP C PP and that PP is closed under complement. In [20] Russo showed
that PP is closed under symmetric difference. In [24] Toda showed that sur-
prisingly PH C PP, It remained open for many years whether PP is closed
under intersection until Beigel, Reinhold, and Spielman proved it in [3].

Counting hierarchy was originally defined in terms of the polynomial
counting quantifier C. Let K be a class of languages. Define CK to be the
class of languages L for which there is some polynomial p and some L' € K
such that x € L iff

{y : |y| =p(|z|) and (z,y) € L'} > 2721,
The counting hierarchy can be now defined using the quantifier C as follows:
e ()P =P,
o Cy 1 P=CCyP.

Toran [25] showed that the definition in terms of oracles is equivalent to the
definition above, i.e., he showed that

CCx P = PPCF

for all £ € N. The original definition in [28] actually used a more general
definition of the quantifier C but the definition given is equivalent to the



original one. The properties of the counting hierarchy are discussed in detail
in [25] and [1].

Generalized quantifiers have been studied extensively in the context of
finite model theory. Mostowski [18] was the first to consider quantifiers other
than the familiar existential and universal ones. Lindstrém [16] defined the
concept of a first-order generalized quantifier in its most general form. We
refer to [26] and [6] for surveys of generalized quantifiers in finite model
theory.

Second-order generalized quantifiers is a relatively new and unexplored
area in finite model theory. It seems that second-order generalized quantifiers
first appeared in the realm of finite model theory in the context of Leaf
languages (cf. [4], [27]). In this context acceptance of a word given as an
input to a nondeterministic machine depends only on the values printed at the
leaves of the computation tree. In other words, having fixed a leaf language
B, an input is accepted if the values printed at the leaves of the computation
tree, ordered by the natural order of the paths of the machine, constitute a
word in B. Certain complexity classes have been characterized in this context
on ordered structures in terms of logics Q% FO, i.e., sets of formulas of the
form “second-order quantifier followed by a first-order formula”. A crucial
assumption, for these characterizations to hold, is that the leaf language B
has a neutral element. In the logical side, having a neutral element gives
a certain relativization property for the corresponding quantifier QL. It is
worth noting that the leaf language

{w € {0,1}* | w has more ”1”s than 707 s},

corresponding to PP does not have a neutral element. In fact, we show by a
definability argument that, for £ > 1, the relativization of the k-ary majority
quantifier Most* is expressible in the logic FO(Most).

Andersson [2] has also studied second-order generalized quantifiers. In
[2] Andersson showed that on finite structures with at most binary relations
almost any countable logic is equivalent to a uniformly obtained sublogic of
FO(Q), where Q is some second-order generalized quantifier of type ((1)),
and that the result extends to all finite structures if @ is allowed to be of
type ((2)).

In [14] and [15] Kontinen has studied definability questions of second-
order generalized quantifiers. Definability questions of first-order generalized
quantifiers have been studied extensively in finite model theory. In the first-
order case, definability of a quantifier () in a logic £ just means that the class
of structures, used to interpret (), is axiomatizable in £. In the second-order
case, things are not as direct, but a similar concept can be formulated.



The main result of this paper is based on certain definability results.
Our proof is based on the observation that the k-ary second-order existential
quantifier 32 can be defined in terms of the quantifier Most* and first-order
logic. By using both the quantifier Most® and 32, we show that, for k > 1,
also the relativization of the quantifier Most* (see example 2.4) is expressible
in the logic FO(Most").

Many of the logical characterizations of complexity classes hold only on
ordered structures. Ordering is needed in describing the computations of
Turing machines using formulas. However, this assumption is not so crucial
in the case of second-order logic, since an ordering can be created using
second-order quantification. Therefore, the characterizations of NP and PH
in terms of 4S50 and SO, respectively, hold also on unordered structures. For
the same reason, the characterization of CH given in this paper holds also
on unordered structures.

2 Preliminaries

Vocabularies 7 are finite sets consisting of relation symbols and constant
symbols. All structures are assumed to be finite. The universe of a structure
M is denoted by M. The class of all 7-structures is denoted by Str(7). For
a logic £, the set of 7-formulas of £ is denoted by L[7]. If ¢ is a 7-sentence,
then the class of 7-models of ¢ is denoted by Mod(y). The set of natural
numbers is denoted by N and N* denotes the set N\ {0}.

In this paper we consider polynomial time-bounded nondeterministic Tur-
ing machines N over input alphabet ¥ = {1,0}. Every machine N is assumed
to have two halting states: accepting and rejecting, and every computation
path of N must end in one of these states. In particular, as in [3|, we do not
insist that all computation paths have the same length. We assume that the
reader is familiar with the basic notions of complexity theory. For a language
A, the class PP/ consists of languages L for which there is a polynomial time-
bounded nondeterministic oracle Turing machine N with oracle A such that,
for all inputs x, x € L iff more than half of the computations of NV on input
z end up accepting. For a set of languages K, PPX = [ J{PP* | A € K}.

Structures, considered as inputs to Turing machines, are assumed to be
ordered. Structures can be then encoded to binary strings by concatenating
the bit strings coding the relations and constants in the following way. Let
T ={<,Ry,...,Rs,c1,...,cn} be a vocabulary and let M be a 7T-structure.
We may assume that M = {0,...,n — 1} for some n € N. Now the interpre-
tation RM of each relation symbol R; is encoded as a binary string bin™(R;)
of length n", where r; is the arity of R;, such that ”1” in a given position



indicates that the corresponding tuple in the lexicographic ordering of M* is
in RM. Similarly, the interpretation of a constant c; is encoded by the string
bin™(¢;) corresponding to number ¢ in binary. The binary encoding bin(M)
of a structure M is defined as the concatenation of the bit strings coding its
relations and constants:

bin(M) = bin™(R;) - - - bin™(R,) bin™(c,) - - - bin™ (c,,).

On the other hand, any binary string can be viewed as a word structure
over vocabulary 7 = {<, P}, where < is a binary predicate, interpreted as an
ordering, and P is unary. Given a binary word z, we sometimes denote the
corresponding word structure by W,. The encoding of structures to binary
word structures can be defined in a first-order way assuming all structures
are equipped with an ordering and some numeric predicates such as + and
x (cf. [12]). The predicates + and x are defined as

+(i,5,k) & i+j=k,
x(i,5,k) & ixj=k.

Note that we do not include < or any numeric predicates to bin(M) since
they can be easily recomputed.
Given a class of ordered structures K, we write

Ly = {bin(M) | M € K}

for the language corresponding to K. We abbreviate Lyioq(y) to Ly. Given a
class K of m-structures, the class K. of ordered representations of structures
in K is defined as

K.={M,<) |[ M€ K, < an ordering of M}.

Now that we have encoded classes of structures to languages over alphabet
{0,1}, we define what it means for a logic to strongly capture a complexity
class. We say that a logic £ strongly captures a complexity class C if for all
vocabularies 7 and all classes K of 7-structures,

Lk_ € Ciff K = Mod(y) for some ¢ € L][7].

The prime example of a logic strongly capturing a complexity class is
34S0. On the other hand, for example the characterizations of P and PSPACE
in terms of fixed point logics LFP and PFP break down since parity cannot
be expressed on unordered structures.



2.1 Generalized quantifiers

First-order logic cannot express, e.g., that a formula holds for an even number
of elements. To acquire an extension of FO with this feature, we can extend
it by a new quantifier QQeven With interpretation given by

M ): Qevenxﬁp(-f) = |Q0M‘ is even,

where o™ = {a € M | M | ¢(a)}. Let P be a unary predicate symbol. In
general, the interpretation of a Lindstrém quantifier @) of type (1) is given
by

M = Qz () & (M, ¢") € K,
where M denotes the universe of M and K is a class of { P}-structures which
is closed under isomorphisms. In fact, any class of relational structures gives
rise to a quantifier.

Definition 2.1. Let s = (I1,...,l.) be a tuple of positive integers. A Lind-
strom quantifier of type s is a class ) of structures of vocabulary 7, =
{P,..., P} such that P; is l;-ary for 1 < i < r, and @ is closed under
isomorphisms.

The extension FO(Q) of first-order logic by a quantifier ) is defined as
follows:

e The formula formation rules of FO are extended by the rule:

if for 1 <4 < r, ¢;(T;) is a formula and Z; is an [;-tuple of pairwise
distinct variables then Q7 1, ..., %, (v1(T1),-- -, ©r(T;)) is a formula.

e The satisfaction relation of FO is extended by the rule:

M ): lea .. :ET (QDI(TI): te aQOT(jT)) iff (Ma (pli/ﬂa ety %M) € Q:
where oM = {@a € M | M = ¢;(a)}.
Example 2.2. Let us look at some examples of Lindstrom quantifiers.

Vo=
3= {
Qeven:{
R = {

P)|PCM and P= M}
MP)|PCMandP7é(Z)}
M,P) | PC M and |P|is even}
M, P,

(M
(
(
(M,P,S) | P,SC M and |P| > |S|}



The first example is the familiar first-order universal quantifier. The
quantifier Qeven says that a formula holds for an even number of elements.
The last example R is the so-called Recher quantifier. It allows us to compare
the size of two definable sets.

We say that a quantifier () is definable in a logic £ if the class @ is
axiomatizable in £. If £ has the substitution property and is closed under
FO-operations, then definability of @ in £ implies that FO(Q) < L. So,
among such logics, FO(Q) is the minimal logic in which @ is axiomatizable.

Let us then turn to second-order generalized quantifiers. Assume ¢t =
(S1,---,5w), where 5; = (I%,...,1. ) is a tuple of positive integers for 1 <i <
w. A second-order structure of type ¢ is a structure of the form (M, Py, ..., P,),
where P, C P(M%) x --- x P(M™).

Definition 2.3. A second-order generalized quantifier Q of type ¢ is a class
of structures of type ¢ such that Q is closed under isomorphisms.

Example 2.4.
% = {(M,P)|PCP(M") and P # 0}
Most* = {(M,P)| P C P(M") and |P| > 2M"-1}
Most? = {(M,P,S)| P,S C P(M*)and |[PNS|>1/2|P|}
RF = {(M,P,S)| P,SCP(M") and |P| > |S|}

The first example is the familiar k-ary second-order existential quanti-
fier. The quantifier Most! is the relativization of the quantifier Most*. The
quantifier R¥ is the k-ary second-order version of the Recher quantifier.

The extension FO(Q) of FO by a quantifier Q is defined as follows:

e The formula formation rules of FO are extended by the rule:

if for 1 < i < w, ¢;i(X;) is a formula and X; = (Xy4,...,X,.;) is a
tuple of pairwise distinct predicate variables such that the arity of X
is 1% for 1 < j < r;, then

QYD .. :Yw ((pl(yl)’ ey QOUJ(YIU))
is a formula.

e Satisfaction relation of FO is extended by the rule:

M’Zgyla---,Xw(gola“'a@w) lﬁ‘(Magollwaagoy)e Q’

where oM = {R € P(M4) x --- x P(M"%) | M = ¢;(R)}.



A notion of definability can also be formulated for second-order gener-
alized quantifiers. Since second-order generalized quantifiers are interpreted
using classes of second-order structures, there is no direct connection between
quantifiers and classes of structures determined by sentences. Definability of
a quantifier Q in a logic £ can be formalized by considering axiomatizability
in an extension of £ by suitable second-order predicates (see [14] or [15]).
For the purposes of this paper, it suffices to note that the definability results
proved in the following section give us a uniform way to express the definable
quantifier in our logic.

Example 2.5. The quantifier Most® can be defined using the quantifier
Most* as follows:

= Most* X ¢ < Most? X, X (X = X, ).
The quantifier Most? in turn can be defined in terms of the quantifier R¥:

= Most? X, Y (¢,6) © RF X, Y (¥ A ¢, 00 A —9).

3 The logic FO(Most)

In this section we show that the k-ary second-order existential quantifier is
definable in the logic FO(Most*). Using this result, we also show that the
quantifier R* can be defined in FO(Most").

Theorem 3.1. The quantifier 32 is definable in the logic FO(Most).

Proof. Suppose ¥(Y) is a formula with a free k-ary predicate variable Y.
The idea is to construct a formula which is satisfied by more than half of the
relations if and only if 1(Y") is satisfiable. We claim that

ERY YY) S ¢V b,
where ¢, = (Y (Z)/T), i.e., the formula ¢, is defined by substituting Y (7)
by some formula satisfied by all k-tuples in every model, and

¢y = 3z1 ... Tz (Most® Y (Y (Z) V 4(Y))).

Suppose that M is a model and M E FY (V). We have two cases to
consider. Assume first that M = o (MF), i.e., ¢(Y) is satisfied by the relation
consisting of all k-tuples over M. Since the formula ¢; expresses exactly this,
it holds that M = ¢;. Suppose then that M = 1(A) for some A C M*. Let
@ € M* be such that @ ¢ A. Now

M (Y(z) v y(Y))(B,a)



holds for more than half of the relations B C M*, where Y and Z are inter-
preted as B and @, since @ € B for exactly half of the relations B C M*.
Therefore,

M = ¢,.
On the other hand, it is obvious that if Ml = ¢; Vo, then M = LY (V). O

Remark 3.2. The proof of Theorem 3.1 is the logical analogue of the proof
of the inclusion NP C PP.

Remark 3.3. It is worth noting that the quantifier 32 can be trivially defined
using the relativized quantifier Mostf :

= RY 9(Y) & Most V, Y (9(Y), (V).

We shall next show that the quantifier R can be expressed in terms of
the quantifier Most* 1.

Proposition 3.4. Let k > 2. Then the quantifier R¥™! is definable in the
logic FO(MostF).

Proof. Given formulas ¢, (X) and ¢, (Z) with free (k — 1)-ary predicate vari-
ables X and Z, we claim that there is a uniform way to express

Rk_l X’Z(wl(X)’¢2(Z)) (1)

Let M be a model satisfying |[M| > 2. For A C M*! and b € M, set
Ay = {(b,a) € M* | @ € A}. As in the proof of Theorem 3.1, we first define
a collection C containing exactly half of the k-ary relations using a k-tuple
a=(ay,...,a;) € M*:

C={AC M| ae A.

Let G; = {A C M*' | M = ;(A)} for 1 < i < 2. The condition |G| > |Go|
is clearly equivalent with the condition

(CUGH\ GH| > 2MF=L,

where G7 = {A, | A € G1} and G5 = {{a} U A, | A € G5} for some b € M
such that b # a;.
Formally, (1) can be expressed by the formula

dzy ... ka(ml SA To N Qo)a



where ¢ = Most* Y ((Y(Z) A =x2) V x1), and

xi(Y) = VZ(Y(2) = (21 = 22)) A1 (X () /Y (22,7)),
x2(Y) = VZ(Y(Z) = (21 = 22V Nizi = 7)) Aba(Z(9) /Y (22, 7))-

We assume that the variable z, does not appear in the formulas 1; and
Pa. 0

The defining formulas above show that only one application of the quan-
tifier Most® is needed to express the quantifier R*~!. We need a bit more
complicated argument to prove that the quantifier R* can be defined in terms
of the quantifier Most®. The idea of the proof is adapted from [17]. Note
that we use more than one nested applications of the quantifier Most® in
expressing R¥ in the proof of Theorem 3.5.

Theorem 3.5. Let k > 2. Then the quantifier R* is definable in the logic
FO(Most).

Proof. Suppose M is a model. We first existentially quantify a k-ary rela-
tion encoding an ordering < over M, e.g., a relation A C M* such that
{(a,b) | VZ € M*=2(a,b,z) € A} is an ordering of M. Let ¢(Z,y) be a for-
mula defining the lexicographic order over M*. Tt is now easy to construct a
formula x(X,Y) such that for A, A’ C M* we have M |= x(A, A") iff A < A’
in the lexicographic ordering induced by (7, 7).

Now that we have a linear order of k-ary relations at our disposal, it is
fairly straightforward to express

R XY (¢1(X), %a(Y)).

Let G; = {A C M* | M | ¢;(A)} for 1 < i < 2. We may assume that
Gy, NGy = 0. Now, since only one of the sets G; can satisfy |G;| > 2M*~1,
the cases where either |G| > 2M*~1 or |G| > 2MI*~1 can be directly taken
care of using the quantifier Most*. Hence, we may assume that |G/, |Gs| <
2MI*-1 " Tn order to express |Gy| > |G,| using the quantifier Most®, we
consider collections C;(B) of relations of the form

GiU{ACM"*| A< Band A¢ G, UG,}.
It is easy to construct a formula p;(X,Y) such that
Ci(B) ={AC M" | M = ui(4, B)}.

The condition |G| > |G2| can be now expressed by saying that there exists
a relation B such that |Cy(B)| > 2M"~1 but |Cy(B)| < 2M*~1. By The-
orem 3.1, this can be easily expressed using the formulas p;(X,Y) and the
quantifier Most*. O



4 The characterization of CH in terms of ma-
jority quantifiers

In this section we show that the extension of FO by the quantifiers Most”, for
k € N*, strongly captures the counting hierarchy. We abbreviate {Most* | & €
N*} = Most.

The following lemmas will be used in the proof. To be precise we spec-
ify the pairing function used. We let (z,y) denote the string acquired by
doubling the bits of z followed by the string 01y. We shall next show that
decoding the pair (z,y) can be done in a first-order way assuming we have
+ and x available.

Lemma 4.1. Let 7 = {<,+, X, P}, where P is unary, and let R be a r-ary
predicate. Then there is a FO-interpretation I of width r+1 mapping TU{ R}
structures to T-structures such that for all (M, A)

I((M, A)) = Wiz,
where y4 is the binary word corresponding to A and x = bin(M).

Proof. The interpretation I is defined by first-order 7U{ R}-formulas @ gom (Z),
op(T), ¢<(T1,T2), ¢+(T1,T2,T3), and @« (T1, T2, T3), where all the tuples
T,...,x3 are of length 7+ 1, such that for all 7-structures M and all A C M"
we have

A (MA A) (MA)  (MA)Y ~
(@Eg%n)a@% )590(<M, )aQDS» ),QD(X )) = W(w,yA)

We assume that the domain of M is {0,...,n — 1} for some n € N. The
domain of the structure on the left is defined as a set of » + 1-tuples over
{0,...,n — 1}. We use the fact that the (r + 1)-tuple versions of + and
x are first-order definable over M [21]. Let <,;; be the formula defining
the lexicographic ordering over {0,...,n — 1}"*1. We write a to denote a
sequence a . ..a, length of which is clear from the context. We let ©gom(T)
be the formula

(xla s 7$T+1) <r+1 (]-a Oa 2a 2)
Set op(T) = 11 V 1y V 1b3, where
= (P A@=(0,y) x(0,2)vT = (0,y) x (0,2) + (0,1))),
= 7=1(0,2,1),
) = R(@-(0,2,2).
Note that we have used definable constants in the formulas for readability.

The other formulas can be simply defined by restricting the formulas over
{0,...,n— 1} to tuples satisfying pgom (T). O



The following proposition states the basic observation about interpreta-
tions.

Proposition 4.2. Let 7 and R be as in Lemma 4.1. Then for any ¢ €
FO(Most)[r] there is ¢*(R) € FO(Most)[r], R is treated as a free second-
order variable, such that for all M and A C M,

M= ¢*(A) & Wiaa) = ¢.

Proof. The formula ¢*(R) is defined from ¢ by replacing first-order variables
by 7 + 1-tuples and k-ary second-order variables by k(r + 1)-ary variables,
replacing the relation symbols of ¢ by the corresponding formulas, and re-
stricting first-order quantifiers to @gom (). A formula of the form Most* X 1
is translated simply as

Most* 1) X ¢*.

Note that we do not need the relativized quantifier Most*" ™ in the transla-

tion, since the formula 9* is already relativized t0 @gom(Z). In other words,
the induction assumption is such that for all B C M*k(r+1).

(M, A) = v*(B) & (M, 4)) £ (BN (95 )F),
where B is interpreted as a k-ary relation on r 4+ 1-tuples on the right. [

Before going to the main result, we need to recall some concepts and
properties of CH used in the proof. We say that a language L, is reducible
to a language L, via a polynomial time disjunctive truth-table reduction if
there exists a polynomial time computable function f mapping an input x
to a polynomial number of inputs yi,...,y; such that x € L, iff y; € L, for
some 1 <17 < j.

Lemma 4.3. Let k € N. Then the following holds:
1. The class Cy P is closed under complement.
2. The class C,P 1s closed under intersection.

3. The class Cy P is closed under polynomial time disjunctive truth-table
reductions.

Proof. Claim 1 is proved in [25] and Claim 2 in [11]. Since, for all oracles A,
PP“ is closed under polynomial time disjunctive truth-table reductions 3],
Claim 3 follows. O

Theorem 4.4. The logic FO(Most) strongly captures CH.



Proof. We first show that FO(Most) C CH, i.e., we show that for all 7 and
for all ¢ € FO(Most)|[7], the language Laioq(p)c = Ly, corresponding to the
class Mod(¢)<, is contained in CH. We prove the claim using induction on ¢.
We treat formulas with free variables as sentences in an enlarged vocabulary.
If ¢ is atomic, then L, € P = CyP. Also, if ¢ = =) or ¢ = ¢ A ¢, then
the claim holds since Cy P is closed under complement and intersection by
Lemma 4.3. Assume then that ¢ = Jz1 and that Ly) € CyP. It is easy to
see that L, is reducible to Ly via a polynomial time disjunctive truth-table
reduction. Therefore, by Lemma 4.3, we have that L, € CyP. Let us then
assume that
¢ = Most* R(R).

By the induction hypothesis, Lyr)y € CpP for some k£ € N. We show that
L, € Cyy1 P = PPY". In particular, the machine we shall describe uses
Lyr) as an oracle. Let M be a structure. The machine N,, started with
bin(M), guesses a word of length n*, intended as the code of the interpretation
A of R, and then consults the oracle whether bin((M, A)) € Lyg), i.e.,
whether M = ¢)(A) holds. Then the machine halts and accepts iff the oracle
answered “yes”. Now, by the definition of PP, the string bin(M) is accepted
by N, iff more than half of the computations accept, i.e., iff for more than half
of the relations A the oracle answered positively. This is clearly equivalent
with
M = Most* Re(R).

Let us then show that CH C FO(Most). It suffices to prove the claim for
binary word structures. We also expand our language by the numeric predi-
cates + and x. Note that the predicates + and X can be finally existentially
quantified out, cf. Proposition 4.7. Let 7 = {<, +, X, P}. We show that for
all L C {1,0}*\ {A}: L € CH iff L = L, for some ¢ € FO(Most)[7].

We prove using induction on k that Cx,P C FO(Most). The case k =
1 (CiP = PP) is analogous to Fagin’s Theorem on 3SO and NP. The
computation of a nondeterministic machine N, using time n* for inputs of
length n, can be coded using first-order formulas. In particular, let ¢(X) say
that “Relation X codes a n* time-bounded run of N” and let 1(Y) say that
“Relation Y codes a n* time-bounded run which accepts”, where the arity of
X and Y is [. Then it is immediate that

M = Mostl. X, Y (¢(X),(Y)) < N accepts bin(M).

By Theorem 3.5 and Example 2.5, the formula above can be expressed in
FO(Most).



Assume then that L € Cy;1P = CCyP. Then there is some language
L' € CyP and a polynomial p such that z € L iff

{y : |yl =p(|z|) and (z,y) € L'}| > 27(=D-1,

By a simple padding argument, we may assume that p(z) = z" for some
r € N. By the induction hypothesis, there is ¢ € FO(Most)[r] such that
L, = L'. By Proposition 4.2, there is a formula ¢*(R) € FO(Most)[7],
having a free r-ary predicate variable R, such that for all 7-structures M and
A C M" we have

M ): ¢* (A) = W(x,yA) ): ¢7

where £ = bin(M) and y, is the word corresponding to A. It then follows
that L = L,, where x = Most” R ¢*(R). O

We denote by gr(y) the maximal nesting depth of the quantifiers Most”
in a formula ¢ € FO(Most). In particular, we are not taking account of
first-order quantifiers. The proof of Theorem 4.4 shows that the level C} P
of a language L, in CH is determined entirely by the value gr(y). The first
part of the proof shows that if ¢r(¢) < k, then L, € CyP. On the other
hand, by Proposition 3.4, the quantifier Most” can be expressed using just
one application of Most**.

Proposition 4.5. Let k > 1 and 7 = {<,+, X, P}. Then
1. PP ={L, | ¢ € FO(Most)[7], ¢r(y) <1},
2. CpP ={L, | ¢ € FO(Most)[7], qr(¢) < k},
3. PH C{L, | ¢ € FO(Most)[7], ¢r(e) < 2}.

Proof. Case 1 follows directly from Proposition 3.4 and the proof of Theorem
4.4. Claim 2 follows by induction on k: given ¢ defining the language L' €
Cy P, the formula ¢*(R) satisfies ¢qr(¢) = ¢r(¢*) by Proposition 4.2, and
hence the formula y defining L satisfies gr(x) = ¢qr(¢) + 1. Case 3 follows by
Toda’s Theorem [24]. O

Remark 4.6. By 3 of Proposition 4.5, every sentence ¢ € SO[7] is equivalent
to some ¢ € FO(Most)[7] having ¢r(y) < 2.

Proposition 4.5 holds also for arbitrary vocabularies 7 assuming {<, +, X} C
7. Without ordering or the numeric predicates the following holds.

Proposition 4.7. Let k > 1 and 7 a vocabulary. Then

CyP C{L, | ¢ € FO(Most)[r], qr(¢) < k+ 3}.



Proof. Suppose that K is class of 7-structures such that Lg_ € CyP. Then,
by Proposition 4.5, there is ¢ over vocabulary {<, +, x, P} having ¢r(¢) < k
such that L, = Lk _. Let M be a 7-structure. We can now first existentially
quantify relations <, 4+, and x over M and then, using an FO-interpretation
of Whinamy in M, write a formula ¢ which evaluates ¢ in Whinawy. It is now
easy to verify that the sentence

x=3<3I+IxY,

satisfies Mod(x) = K and that ¢r(x) = k+3, since 32 can be expressed using
one application of Most* and ¢ can be constructed so that ¢r(v) = ¢r(p). O

5 General proportional quantifiers
On the complexity-theoretic side it holds that, for any rational 0 < r < 1,
PP, = PP,

where PP, is defined by changing the input acceptance condition to “more
than an r-fraction of accepting computations” (cf. [19]). It turns out that in
the logical side this is not the case.

Definition 5.1. Let 0 < r < 1 be a real number. The k-ary proportional
quantifier QF is defined by the class

QF = {(M,P): PCPM") and |P| > r2M"}.
Denote by FO(Q,) the extension of FO by the quantifiers QF for k € N*.
We shall show the following:
Theorem 5.2. Let 0 < r < 1 be a real number. Then the following holds:

1. Ifr = s/2™ for some s,m € N*, then the logic FO(Q,) strongly captures
the counting hierarchy.

2. If r is not of the form s/2™, then the logic FO(Q,) satisfies the 0-1
law.

Note that 2 implies that for example the quantifier QQeyen, Which is com-
putable in P = Cy P, cannot be defined in the logic FO(Q,). It also shows
that definability results analogous to Theorem 3.1 and Proposition 3.4 do
not hold in this case.



5.1 Claim 1 of Theorem 5.2

In this section we show that Theorem 4.4 remains valid if the majority quan-
tifiers are replaced by proportional quantifiers with threshold r of the form
s/2™.

Theorem 3.1 and Proposition 3.4 are based on the observation that we
can easily define a set of relations containing exactly one half of the k-ary
relations over any M. By fixing @1, ..., &, € M¥, instead of just one tuple,
we can divide P(M*) into 2™ many disjoint sets S all having cardinality
o|M|*=m  These sets can be indexed by binary words of length m, “1” in
position j indicating that @; € A for all A € S. The following is now easily
obtained.

Lemma 5.3. Let k,s,m € N* and s < 2™. Then

1. The quantifier 32 is definable in the logic FO(Q’;/Q,”).

2. The quantifier R® is definable in the logic FO(QFF1.).

s/2m

Proof. The proof of Claim 1 is analogous to the proof of Theorem 3.1. The
formula ¢; in the proof of Theorem 3.1 is replaced by a formula with meaning
Ja; ... Jaup(M*\ {@y,...,@n,}). The proof of Claim 2 is also a straightfor-
ward generalization of the proof of Proposition 3.4. O

We are now ready to prove Claim 1 of Theorem 5.2:

Claim 1 of Theorem 5.2. Let s, m € N* and s < 2™. Then FO(Most) =
FO(QS/2m).

Proof. By 2 of Lemma 5.3 and Example 2.5, the quantifiers Most® can be
expressed in the logic FO(Q,/om). Therefore, we have that FO(Q,/om) >
FO(Most). On the other hand, since PP = PP, /,m, the same argument as in
the case of FO(Most) shows that FO(Q,/om) C CH. O

5.2 Claim 2 of Theorem 5.2

In this section we show that the logic FO(Q,) satisfies the 0-1 law if r is not
of the form s/2™. Glebskil et al. [10] and Fagin [8] independently showed
that first-order logic satisfies the 0-1 law. Since then, many extensions of
FO have been shown to satisfy the 0-1 law. Our argument is based on a
“almost sure” quantifier elimination result in the lines of [13] and [5]. In [13]
the 0-1 law is shown to holds for a certain fragment of the extension of FO
by first-order proportional quantifiers. In [5] the 0-1 law is established for
the extension of first-order logic by the quantifier expressing rigidity.



We begin with some definitions and notation. In this section we restrict
attention to relational vocabularies.
For a class K of t-structures, we write u,(K) for the fraction of 7-
structures in K with universe {1,...,n}. Define
p(K) = Tim g,(K),
if this limit exists. If u(K) = a, we say that K has asymptotic probability a.
In the case K = Mod(¢p) for some sentence ¢, we abbreviate u(K) to u(y).

We say that a logic £ satisfies the 0-1 law if for every relational 7 and every
sentence ¢ € L[7] we have that p(p) exists and

plp) € {0,1}.

Since we also consider formulas with free variables, we say that ¢(Z) and
0(7) are almost everywhere equivalent if

p(vz(p(T) ¢ 0(7))) = 1.
In this section we treat free second-order variables as predicate symbols.

Example 5.4. Let 0 < r < 1, and suppose that 7 = { R}, where R is k-ary,
and ¢ € FO[7] is a sentence. Then the formula QFR ¢ is equivalent to a
FO-sentence, since, by the 0-1 law of first-order logic, there is n € N such
that (@) > 7 or p,(p) < r for m > n. Therefore, in models of cardinality
greater than n, the sentence Q¥R ¢ is equivalent with T if u(¢) = 1 and L

if p(p) = 0.
The following lemma is essential for the result of this section.

Lemma 5.5 ([10]). For every formula ¢ (T) of first-order logic, there is a
quantifier-free formula 0(T) such that the sentence

Vz()(T) < 0())
has asymptotic probability 1.

Definition 5.6. An atomic type in variables z1,...,x; over 7 is a maxi-
mal consistent set of atomic and negated atomic 7-formulas in the variables
x1,...,Tr. We denote atomic types by t, s, or (%) to display the variables.

We do not distinguish between an atomic type and the conjunction over
all formulas in it.



Lemma 5.7 (|5]). Every quantifier-free formula is equivalent to a formula
of the form
\/ Si (j)a

where s;(T) is an atomic type in the variables 1, ..., xy.

Definition 5.8. Let 7 be a vocabulary, R ¢ 7 k-ary, ¢(Z) a 7 U{R}-formula,
M a 7-model over {1,...,n}, and @ € M. Denote by F(M,a, ¢(R)) the
fraction

_ nk
{AC M| (M, A) = p@}/2".
If ¢ does not have free first-order variables, we write F'(M, p(R)).

The argument in Example 5.4 fails if 7 is not of the form {R}. However,
the following lemma can be used to show that in the general case u(Q*R ¢) =
a if u(p) = a, where a € {0,1}.

Lemma 5.9. Let 7 be a vocabulary, R ¢ T k-ary, and let ¢ be a 7 U {R}-
sentence such that u(p) =1 (u(e) = 0). Then for every € > 0 there is n
such that, for n > n, the fraction of T-models M over domain {1,...,n}
satisfying

F(M, p(R)) >1—¢€(<¢€) (2)

18 greater than 1 — €.

Proof. Suppose that there is 0 < € < 1 for which there is no such n.. Let n’
be such that p,,(¢) > 1 — € for m > n'. By the assumption, the fraction of
models M of size m for which (2) fails is at least e. Therefore, we must have
tm(p) < 1 — €2, which is a contradiction. O

The following lemma gives us the inductive step for the quantifier elimi-
nation.

Lemma 5.10. Let 0 < r < 1 be a real number not of the form s/2™ and let
7 and R be as above. Suppose ¢(T) is a FO(Q,)[r U {R}]-formula which is
almost everywhere equivalent to a quantifier-free formula. Then the formula
QFR ¢ is almost everywhere equivalent to a quantifier-free formula.

Proof. Suppose first that ¢ is a sentence, i.e., it does not have free first-order
variables. Then, we have that u(yp) € {0,1}. Without loss of generality, we
may assume that p(¢) = 1. Let M be a 7-model. Now

M E Q¥Ry iff F(M, ¢(R)) > r.



Therefore, assuming 1 — € > r, Lemma 5.9 implies that
Nm(QfRSD) >1—k¢

for m > n., and thus p(QfRy) = 1. Note that the above holds for every
0<r<l.

Assume then that ¢(Z) has free variables zy,...,z,,. Now, by Lemma
5.7, we can find a disjunction of atomic types

\/ 5:(T) (3)

1<i<w

which is equivalent to ¢ almost everywhere. We assume that s; # s; for
i # j. Let t;(Z) denote the reduct of s;(T) to a type in T over 7. The idea of
the proof goes as follows. We shall first show that the formula

OFR \/ 5:(T)

1<i<w

is equivalent to the disjunction v of those types t;(Z) for which

FMa, \/ si(R)>r,

1<i<w

where M and @ satisfy M = ¢;(@), but are otherwise arbitrary. Then, us-
ing the assumption that ¢ and the formula in (3) are almost everywhere
equivalent, it follows that QF R ¢ is almost everywhere equivalent with 1.
Let [; < m denote the number of variables such that s;(Z) forces their
interpretations to be distinct, i.e., [; is the cardinality of a maximal set

{yla"':yli} g {xla"'axm}

such that s; = yx # y; for 1 < k < j < [;. Since already t;(T) determines
the identity formulas of s;(Z), we have that [; = [; if ¢; = ¢;. Since either
R(y) € si(T) or =R(y) € s;(T) for every (y1,...,yr) € {T1,...,Tm}", all
interpretations of R satisfying s; agree with respect to [¥ many tuples. On
the other hand, the interpretation of R can be chosen arbitrarily outside the
set of parameters, hence,

{AC M* | (M, 4) | si(@)}] =277,

assuming M = ¢;(@) and n is the cardinality of M. Over any 7-model M and
a € M, the set

{Ac M| MA) E \/ si@)

1<i<w



can be written as

UiAac M* | (M 4)  si(@)}, (4)

ti=t

where t is the atomic type of @ in M. Let [ denote the number of distinct
parameters in @. The sets of relations in (4) are pairwise disjoint and each
of them has cardinality 2" ~%*. Therefore,

FMa, \/ si(R)=z/2",

1<i<w

where z is the number of types s; such that t; = t.
Consequently, the formula

Q'R \/ si(T)

1<i<w

is logically equivalent to the disjunction of those types t;(Z) for which z; /2™ >
r, where m; = [¥, and z; is the number of extensions of ¢; among s1,. .., 5.
We let t;,(T),...,t;, (T) enumerate these types without repetitions. We shall
now show that QF R ¢ is almost everywhere equivalent with

\V @)

1<j<v

Let € > 0 be such that e < r and € < |2;/2™ — r| for 1 < i < w. By Lemma
5.9, there is n such that the fraction of models M over {1, ..., m} satisfying

FMVZ(p + \/ si)(R) >1—¢ (5)

1<i<w

is greater than 1 — € for m > n.. Suppose M is a 7-model satisfying (5) and
a € M. Since, by (5),

‘F(M,E,QO(R)) - F(M’a’ \/ SZ(R))| <,

1<i<w

and
FMa, \/ si(R) €{0,2/2™,..., 2,/2™},

1<i<w

we have, by the choice of ¢,

ME (QiR¢ <+ QIR \/ s)(a).

1<i<w



Since the right hand side is equivalent with \/,,, i, (Z) and @ was arbitrary,
we get

M EVE(QIRe + \/ t;,(T)). (6)

1<j<v

We have shown that for m > n,

pm(VE(QERp + \/ ;@) >1-e.

1<j<v
U

By a repeated application of Lemma 5.10, we obtain the proof of Claim
2 of Theorem 5.2:

Claim 2 of Theorem 5.2. Let 0 < r < 1 not of the form s/2™. Then every
formula of the logic FO(Q,) is almost everywhere equivalent to a quantifier-
free formula. In particular, the logic FO(Q,) satisfies the 0-1 law.

Proof. We prove the claim using induction on ¢. If ¢ is atomic, then the
claim holds trivially. Also, assuming that the claim holds for ¥ and ¥, it
follows easily for —¢, ¥ A x, and for dzv¢) by Lemma 5.5. Suppose then
that ¢ = QFY ). Now, the claim follows by Lemma 5.10 and the induction
assumption. ]

Lemma 5.10 also implies that there is no normal form for the logic
FO(Most), in which every second-order quantifier precedes all first-order
quantifiers.

Corollary 5.11. FEvery sentence of the form
Most*! X; Most*? X, ... Most*i X; o,

where ¢ is a first-order formula, has asymptotic probability 0 or 1.

6 On FO(Most')

In this section we study the monadic fragment of the logic FO(Most). We

show that monadic second-order logic (MSO) is strictly contained in FO(Most').
Theorem 3.1 implies that MSO < FO(Most'). Theorem 3.5 does not

apply to FO(Most'), since there is no obvious way to create an ordering over

a model. On the other hand, the idea of the proof of Proposition 3.4 can be

used to show the following.



Proposition 6.1. The first-order Recher quantifier R is definable in the logic
FO(Most!).

Proof. We show that there is a sentence ¢y € FO(Most') over vocabulary
{P;, P,}, P; unary, such that for all (M, P;, P,)

(M,Pl,PQ) ):¢<:>|P1| > |P2|

We abbreviate the formulas Py (z) A—P(x) and Py(x) A—P;(z) by Q1 (z) and
Q2(x), respectively. We define 1) as follows:

Y =x1Vxe,
where x; = JxQ1(z) A —=FxQ2(x), and
Xo = 311322(Q1(21) A Qa(w2) AMost" Y (Y (21) A —x3) V xa)),

xs = Vy(Y(y) = =21V (y # 22N Q2(¥)))),
xa = Vy(Y(y) = (y # 21 A Q1(y)))-

O

Proposition 6.1 can be easily generalized to quantifiers Q}, where 7 is of
the form s/2™.

It is well known that MSO collapses to FO over vocabularies consisting
of unary predicates only and that the quantifier R is not definable in FO.

Corollary 6.2. MSO < FO(Most').
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