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Abstract. It is well known that one can often construct a star-product by expanding the product

of two Toeplitz operators asymptotically into a series of another Toeplitz operators multiplied by

increasing powers of the Planck constant h. This is the Berezin-Toeplitz quantization. We show that

one can obtain in a similar way in fact any star-product which is equivalent to the Berezin-Toeplitz

star-product, by using instead of Toeplitz operators suitable other assignments from compactly sup-

ported smooth functions to bounded linear operators on the corresponding Hilbert spaces. A crucial

ingredient in the proof is the generalization, due to Colombeau, of the classical theorem of Borel on

the existence of a function with prescribed derivatives of all orders at a point, which reduces the

proof to a construction of a locally convex space enjoying some special properties.

1.Introduction and background

Let Ω be a domain in Cn ∼= R2n equipped with a Poisson bracket {·, ·}, i.e. a first order
bidifferential operator

(1) {f, g}(x) =

2n
∑

j,k=1

Bjk(x)
∂f

∂xj

∂g

∂xk
, x ∈ R2n,

where, for each x ∈ Ω, the matrix Bjk(x) is skew-symmetric and nondegenerate. Denote by
C∞(Ω)[[h]] the ring of formal power series in a variable h with coefficients in C∞(Ω). A star

product on Ω is a C[[h]]-bilinear map ∗ : C∞(Ω)[[h]] × C∞(Ω)[[h]] → C∞(Ω)[[h]] such that

(i) ∗ is associative,
(ii) there exist bidifferential operators Cj : C∞(Ω) × C∞(Ω) → C∞(Ω) such that

(2) f ∗ g =

∞
∑

j=0

hjCj(f, g), ∀f, g ∈ C∞(Ω);

(iii) the operators Cj satisfy

C0(f, g) = fg,

C1(f, g) − C1(g, f) =
i

2π
{f, g},

and
Cj(f,1) = Cj(1, f) = 0, ∀j ≥ 1.
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2 M. ENGLIŠ, J. TASKINEN

Note that the last equality means precisely that 1 is the unit element for ∗.

Remark. Generalization to complex manifolds Ω is straightforward. �

Two star products ∗, ∗′ are called equivalent if there exists a sequence of linear differential
operators M0,M1,M2, . . . on C∞(Ω) with M0 = I (the identity operator) such that we have
the following equality of formal power series

(3) M(f ∗′ g) = Mf ∗ Mg, ∀f, g ∈ C∞(Ω)[[h]],

where

(4) Mf =
∞
∑

j=0

hjMjf.

Star products are the object of study of deformation quantization, and were first introduced in
the seminal paper by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [BF]. Some more
information about them can be found e.g. in the recent surveys by Gutt [Gu] or by S.-T. Ali
and the first author [AE].

Toeplitz star product. One can sometimes construct a star product using Toeplitz operators.
Namely, under suitable hypothesis on Ω and the Poisson structure (the boundary behaviour of
the Bjk in (1)), there exists a family of measures µh on Ω, 0 < h < 1, such that the following
holds. Let L2

hol(µh) be the subspace of holomorphic functions in L2(µh) (weighted Bergman
space), Ph : L2(µh) → L2

hol(µh) the orthogonal projection, and for f a bounded continuous

function on Ω define the Toeplitz operator T
(h)
f on L2

hol(µh) by T
(h)
f φ = Ph(fφ). Then for any

f, g ∈ D(Ω) (:=the functions in C∞(Ω) with compact support), there is an asymptotic expansion

(5) T
(h)
f T (h)

g '

∞
∑

j=0

hjT
(h)
Cj(f,g) as h → 0,

with some bidifferential operators Cj (independent of f, g). Further, these operators Cj define
— via the formula (2) — a star product on Ω.

Here the expansion (5) is understood in the sense of operator norms, i.e. for each N =
0, 1, 2, . . . ,

(6)
∥

∥

∥
T

(h)
f T (h)

g −
N

∑

j=0

hjT
(h)
Cj(f,g)

∥

∥

∥
≤ CN,f,gh

N+1 ∀h ∈ (0, 1).

Remark. Formally, we can write (5) as

T
(h)
f T (h)

g = T
(h)
f∗g . �

Example. [Cob] If Ω = C and dµh(z) = (πh)−1e−|z|2/hdz (where dz stands for the two-dimen-
sional Lebesgue measure), then (5) holds with

Cj(f, g) =
1

j!

∂jf

∂zj

∂jg

∂zj
.
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Similarly, (5) holds for Ω = D, the unit disc, with the standard weighted Bergman spaces
dµh(z) = h+1

πh
(1 − |z|2)1/hdz [KL].

Other situations when the Berezin-Toeplitz quantization can be carried out include bounded
symmetric domains [BLU] (see also [E3] for an extension from functions in D to functions
not necessarily having compact support), strictly pseudoconvex domains with Poisson brackets
having a reasonable boundary behaviour [E1], or, provided one considers the manifold case and
allows also spaces L2

hol of sections of lines bundles (instead of just functions), all compact Kähler
manifolds [BMS], [Sch].

The Berezin-Toeplitz quantization prompts the following definition.

Definition. We say that a star product (2) is induced by operators if there exists a family of

Hilbert spaces Hh, 0 < h < 1, a “large” subspace Z ⊂ C∞(Ω), and linear maps f 7→ Q
(h)
f from

Z into bounded linear operators on Hh such that

(7) Q
(h)
f Q(h)

g '
∞
∑

j=0

hjQ
(h)
Cj(f,g) as h → 0, ∀f, g ∈ Z,

in the sense of operator norms.

Here being “large” can be interpreted, for instance, as follows:

(8)

for each finite set of multiindices α1, . . . , αk, complex numbers w1, . . . , wk,
and point z ∈ Ω, there exists f ∈ Z such that

Dαj f(z) = wj , ∀j = 1, . . . , k,

where Dα denotes the operator of differentiation. The merit of (8) is that it ensures that the
knowledge of Cj(f, g) for all f, g ∈ Z already determines these Cj uniquely.

Conjecture. Every star product is induced by operators.

At the moment, we have no ideas how to attack this conjecture. But we are able to prove at
least a weaker result:

Main Theorem. Every star product equivalent to the Toeplitz star product is induced by

operators.

For the case of bounded symmetric domains and star-products which are invariant with re-
spect to holomorphic automorphisms, this theorem was proved by one of the authors in [E2],
using heavily the special machinery of Lie groups available in that setup (above all, the Helgason-
Fourier transform and the related theory of invariant differential operators on symmetric spaces).
No such thing is available in the general case treated here, and thus we use another ap-
proach building on an extension of the classical theorem of Borel to Frechet spaces, due to
Colombeau [Col].

The paper is organized as follows. In Section 2, we show how the proof of the theorem can
be reduced to the problem of existence of a locally convex space of functions on Ω possessing
certain properties. This space is then constructed in Section 3 as an inductive limit of a sequence
of Banach spaces. The necessary prerequisites on locally convex spaces can be found e.g. in the
books of Jarchow [Ja], Koethe [Koe], Meise and Vogt [MV], or Bonet and Perez Carreras [BnC].
In the final Section 4, we briefly mention also a non-linear variant of the above quantization
procedure, for which a much simpler proof can be given.
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2. Plan of proof of Main Theorem

Let ∗ denote the Toeplitz star product, and let ∗′ be a star product equivalent to ∗. Let
M0 = I, M1,M2, . . . be the differential operators furnishing the equivalence, and let M denote
the linear operator on C∞(Ω)[[h]] given by (4). Writing (5) and (7) formally as

TfTg = Tf∗g , QfQg = Qf∗g,

and comparing this with (3), we see that if we could take

Q
(h)
f := T

(h)
Mf

then we would be done. The problem is that Mf is just a formal power series, which may
diverge if one assigns to h some value. So we need to approximate, in some sense, the formal
power series M by genuine operators.

Denote by Cj the coefficients (2) of the Toeplitz star product, by C ′
j the coefficients of ∗′.

Expanding (3) and comparing the expressions at like powers of h on both sides, we see that Cj

and C ′
j are related by

(9)
∑

j+k=N

MjC
′
k(f, g) =

∑

j+k+l=N

Cj(Mkf,Mlg), ∀f, g ∈ C∞(Ω),

for each N = 0, 1, 2, . . . .
Assume that we can construct a vector space Z contained in C∞(Ω) such that

(a) D ∩ Z is “large”, in the sense of (8);
(b) MjZ ⊂ L∞ ∀j;
(c) Cl(MjZ,MkZ) ⊂ L∞ ∀j, k, l;
(d) C ′

k(Z,Z) ⊂ Z ∀k; and, finally,

(e) there exists a family of linear operators M (h), 0 < h < 1, from Z into L∞, such that for
each N = 0, 1, 2, . . . and f ∈ Z,

∥

∥

(

M (h) −

N
∑

j=0

hjMj

)

f‖∞ ≤ Cf,NhN+1

with some finite constant Cf,N , for all 0 < h < 1.

(Note that, as M0 = I, (b) implies in particular that Z ⊂ L∞.)
Granted this, let us set, for f ∈ Z,

Q
(h)
f := T (h)[M (h)f ],

where, for typographical reasons, we started writing T (h)[f ] instead of T
(h)
f . Since the norm of

a Toeplitz operator always satisfies

‖T
(h)
f ‖ ≤ ‖f‖∞,

we see from (e) that, for each N = 0, 1, 2, . . . ,

(10) ‖T (h)[M (h)f ] −

N
∑

j=0

hjT (h)[Mjf ]‖ = O(hN+1).
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(Note that M (h)f,Mjf ∈ L∞ in view of (e) and (b).)
If g is another function from Z, it follows that

(11) ‖Q
(h)
f Q(h)

g − (

N
∑

j=0

hjT (h)[Mjf ])(

N
∑

j=0

hjT (h)[Mjg])‖ = O(hN+1).

Finally, if f and g (and, hence, also Mjf,Mkg) belong in addition to D, then (6) applies to

T (h)[Mjf ]T (h)[Mkg], for each j and k; thus for any f, g ∈ D ∩ Z

(12)

Q
(h)
f Q(h)

g =
N

∑

j,k=0

hj+kT (h)[Mjf ]T (h)[Mkg] + O(hN+1)

=

N
∑

j,k,l=0

hj+k+lT (h)[Cl(Mjf,Mkg)] + O(hN+1) by (6)

=
∑

j+k+l≤N

hj+k+lT (h)[Cl(Mjf,Mkg)] + O(hN+1) by (c)

=
∑

j+k≤N

hj+kT (h)[MjC
′
k(f, g)] + O(hN+1) by (9)

=

N
∑

j,k=0

hj+kT (h)[MjC
′
k(f, g)] + O(hN+1) by (d) and (b)

=

N
∑

j=0

hjT (h)
[

Mj

N
∑

k=0

hkC ′
k(f, g)

]

+ O(hN+1)

= T (h)
[

M (h)
N

∑

k=0

hkC ′
k(f, g)

]

+ O(hN+1) by (d) and (10) again

= Q(h)
[

N
∑

k=0

hkC ′
k(f, g)

]

+ O(hN+1).

(All the O-terms relate to errors in operator norm.) Thus (7) holds (with C ′
j in the place of Cj),

and the proof is complete.
It thus only remains to construct the space Z with the above properties.

3. Construction of the space Z

Recall that the classical theorem of Borel asserts that for any sequence fn of complex numbers,
there exists a function f ∈ D(R) such that

f (j)(0) = j!fj , ∀j = 0, 1, 2, . . . .

In particular, by Taylor’s formula, it follows that

|f(h) −

N
∑

j=0

hjfj | ≤ Cf,NhN+1, ∀h ∈ R.
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Comparing this with the condition (e), we see that (e) is tantamount to having a Borel theorem
for functions on R with values in the space of operators from Z into L∞ equipped with the
strong operator topology (the topology of uniform convergence in norm on finite subsets of Z).
Unfortunately, it turns out that in this generality, i.e. for functions with values in a locally
convex space, Borel’s theorem may fail in general (see [Col]).

However, it is a notable result of Colombeau [Col] that Borel’s theorem is valid for functions
on R with values in a Frechet space. Furthermore, it is known that if Z an (LB)-space, that is,
a countable inductive limit of Banach spaces, then the space Lb(Z, L∞(Ω)) of continuous linear
operators, endowed with its natural locally convex topology of uniform convergence on bounded
sets, automatically becomes a Frechet space. Consequently, if our Z will be an (LB)-space, then
Colombeau’s result applies, and we get our requirement (e) granted.

Our purpose will therefore be to construct an (LB)-space Z ⊂ C∞(Ω) which satisfies the
conditions (a)–(d).

Let cjα ∈ C∞(Ω) be the coefficients of the differential operators Mj , i.e.

Mjf(x) :=
∑

α multiindex

cjα(x)Dαf(x);

and similarly denote

Cj(Mkf,Mlg) =
∑

α,β

cjklαβDαf · Dβg,

C ′
k(f, g) =

∑

α,β

c′kαβDαf · Dβg.

Let us enumerate the countable set {cjα}j,α ∪ {cjklαβ}j,k,l,α,β ∪ {c′kαβ}k,α,β of all the above

coefficients as vj , j ∈ N. (Here and in the sequel N := {0, 1, 2, . . . }.)

Lemma 1. There exists a C∞ weight function w : Ω → R+ such that w ≥ 1, w(x) → +∞ if x
tends to the boundary or to infinity, and

γα,j := sup
x∈Ω

|Dαvj(x)|

w(x)
< ∞

for all j ∈ N and all multiindices α.

Proof. Enumerate the (countable) set of all the functions Dαvj , j ∈ N, α ∈ Nn, as fk, k =
1, 2, . . . . Further, pick a sequence φj of functions in D(Ω) such that 0 ≤ φj ≤ 1, the union of
the supports of φj is all of Ω, and φj+1 = 1 on the support of φj . Denote Kj := suppφj , and
set f0(x) :=

∑

j(1 − φj). Thus Kj is an increasing sequence of compact subsets such that the

union of their interiors is Ω, and f0 is in C∞(Ω), f0 ≥ 0 and f0(x) → +∞ as x tends to the
boundary of Ω or to infinity. Now choose constants Cm such that

sup
x∈Km,j≤m,|α|≤m

|Dαfj(x)| ≤ Cm.

Set

w(x) := 1 +

∞
∑

j=0

fj(x)

2jCj
.
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The sum converges uniformly on compact subsets, together with all its partial derivatives, thus
w ∈ C∞(Ω). Clearly w ≥ 1, and w(x) → +∞ as x tends to the boundary or to infinity since
w ≥ C−1

0 f0. Finally, fk/w ≤ 2kCk. Thus w does the job we need. �

We fix a function w as in the last lemma from now on, and also set

W (x) := ew(x).

Denote, for j ∈ N,

κj := sup
x∈Ω

w(x)j

W (x)
.

From the fact that w → +∞ as x tends to the boundary or to infinity it follows that each κj is
finite.

Finally, we fix from now on a sequence φk of functions in D such that the union of their
supports is Ω, and φk+1 = 1 on the support of φk.

Lemma 2. There exists a sequence {εj}j∈N such that 0 < εj ≤ 1 for all j and

sup
x∈Ω

W (x)
∑

α

ε|α||D
α(xγφk(x))| < ∞

for any k ∈ N and any multiindex γ. Here the summation extends over all multiindices α ∈ Nn,

and |α| := α1 + · · · + αn.

Proof. Choose again constants C ′
m < ∞ such that

sup
x∈Ω,|γ|≤m,k≤m,|α|≤m

W (x)|Dα(xγφk(x))| ≤ C ′
m.

Set εm := 2−m/C ′
m. Then for any k, γ and x,

∑

|α|≥max(k,|γ|)

W (x)|Dα(xγφk(x))|ε|α| ≤
∑

α

2−|α| = 2n < ∞,

and the claim follows. �

Lemma 3. There exist positive constants Ak, k ∈ N, such that Ak ≥ γ0,k and

(13) AkA|ι| ≥ 2|ι|
(

ι

µ

)

γι−µ,k

(

µ

π

)

for any multiindices ι, µ, π such that π ⊂ µ ⊂ ι.

Here we are using the usual multiindex notation

(

ι

µ

)

:=

(

ι1
µ1

)

. . .

(

ιn
µn

)

,

and π ⊂ µ means that πj ≤ µj for all j.

Proof. The right-hand side of (13) can be bounded by a constant A(k, ι) depending on k and ι
only. Take

Am := max
k,|ι|≤m

A(k, ι) + 1.
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It is easy to see that (13) follows. �

We now define, inductively, a sequence of small positive numbers am,i, m, i ∈ N. Assume
that m and i are given and that ak,j has already been defined for all (k, j) with k < m, or k = m
and j < i. We choose am,i > 0 so small that the following requirements are satisfied:

am,i ≤ εi ≤ 1,(14)

am,i ≤ am−1,i if m ≥ 1,(15)

am,i ≤ am−1,i+1 if m ≥ 1,(16)

and

am,i ≤
am,pam,q

Ai
for all p, q < i.(17)

Lemma 4. For all k,m ∈ N and µ, π ∈ Nn with π ⊂ µ,

∑

ι⊃µ

am,|ι|

(

ι

µ

)

γι−µ,k

(

µ

π

)

≤ (2n + 1)Ak

am,|µ−π|am,|π|

am,0
,

where Ak is as in (13).

Proof. As a combination of (13) and (17) we obtain

∑

ι)µ

am,|ι|

(

ι

µ

)

γι−µ,k

(

µ

π

)

≤ Ak

∑

ι)µ

am,|ι|A|ι|2
−|ι|

≤ Akam,|µ−π|am,|π|

∑

ι)µ

2−|ι|

≤ 2nAkam,|µ−π|am,|π| ≤ 2nAk

am,|µ−π|am,|π|

am,0
,

since am,0 ≤ 1 by construction. The remaining term ι = µ reduces to am,|µ|γ0,k

(

µ
π

)

. For 0 < |π| <

|µ| we can again use (13) and (17) to bound this by Akam,|µ−π|am,|π|2
−|µ| ≤ Akam,|µ−π|am,|π|.

For π = 0 or π = µ, the term becomes just am,|µ|γ0,k, which is again bounded by
am,|µ|am,0

am,0
Ak

since Ak ≥ γ0,k by Lemma 3. �

We proceed to define the space Z := indk→∞ Zk. The step spaces Zk are defined to consist
of C∞ functions f on Ω such that

‖f‖k := sup
x∈Ω

W (x)w(x)−k
∑

α

ak,|α||D
αf(x)| < ∞.

We have Zk ⊂ Zk+1 continuously, for all k. In fact, ‖f‖k+1 ≤ ‖f‖k by (15) and the fact that
w ≥ 1.

To recall the basic properties of the inductive limit, we have Z := ∪kZk, and denoting
Uk := {f ∈ C∞(Ω) : ‖f‖k ≤ 1}, a basis of neighbourhoods of zero is given by the sets

(18) U := Γ

∞
⋃

k=1

bkUk :=
{

∑

k

λkgk :
∑

k

|λk| ≤ 1, gk ∈ bkUk

}
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for bj > 0. Here the sum in the definition of U is allowed to have only a finite number of terms.
We are now going to prove that the space Z satisfies the conditions (a)–(e) from the preceding

section. This will finish the proof of our Main Theorem.

Proof of (a). By Lemma 2 and (14), all functions of the form pφk, where k ∈ N and p is an
arbitrary polynomial, belong to Z. Since these functions obviously also belong to D and the
germ of pφk at any point of suppφk−1 coincides with the germ of p at that point, it is obvious
that D ∩ Z is “large” in the sense of (8). �

Proof of (b). It is enough to show that for each l and α, the operator vlD
α maps Z into L∞.

However, if f ∈ Zk, then

|vl(x)Dαf(x)| ≤ |vl(x)|
‖f‖kw(x)k

ak,|α|W (x)

≤ γ0,l
‖f‖k

ak,|α|

w(x)k+1

W (x)

≤ γ0,l
‖f‖k

ak,|α|
κk+1 < ∞

for any x ∈ Ω. �

Proof of (c). Again, it is enough to prove that vl(D
αf)(Dβg) ∈ L∞ for any l ∈ N, α, β ∈ Nn

and f, g ∈ Z. However, for f ∈ Zk and g ∈ Zm, by a similar argument as above,

|vl(D
αf)(Dβg)| ≤ γ0,lw

‖f‖kwk

ak,|α|W

‖g‖mwm

am,|β|W
≤ γ0,l

‖f‖k‖g‖m

ak,|α|am,|β|
κk+1κm < ∞. �

Proof of (d). Once more, we need only to prove that vk(Dαf)(Dβg) belongs to Z whenever
k ∈ N, α, β are multiindices and f, g ∈ Z.

Assume that a neighbourhood of 0 as in (18) is given. So we are given a positive sequence
{bj}j∈N.

We pick numbers b̃j > 0, j ∈ N, such that for all j we have

(19) b̃j ≤ min
m≤2j+|α|+|β|

( bmam,0

κm+1(2n + 1)Ak
, 1

)

.

We claim that f ∈ Γ ∪∞
j=1 b̃jUj and g ∈ Γ ∪∞

j=1 b̃jUj imply

vk(Dαf)(Dβg) ∈ Γ

∞
⋃

j=1

bjUj .

By the assumptions on f and g, we can find finite sets of complex numbers λj and µj and

functions fj ∈ b̃jUj and gj ∈ b̃jUj such that

∑

j

|λj | ≤ 1,
∑

j

|µj | ≤ 1, f =
∑

j

λjfj and g =
∑

j

µjgj .

We have
vk(Dαf)(Dβg) =

∑

j,l

λj µl vk (Dαfj)(D
βgl),
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and here
∑

j,l |λjµl| ≤ 1, so it is enough to prove that for all j and l there exists m such that

vk(Dαfj)(D
βgl) ∈ bmUm.

We claim that this happens for m := j + l+ |α|+ |β|. Recall that |Dιvk| ≤ γι,kw by Lemma 1.
We have

(20) ‖vk(Dαfj)(D
βgl)‖m = sup

x∈Ω
W (x)w(x)−m

∑

ι

am,|ι||D
ι(vk(Dαfj)(D

βgl))|.

By the Leibniz rule,

∑

ι

am,|ι||D
ι(vk(Dαfj)(D

βgl))| ≤
∑

ι

am,|ι|

∑

µ⊂ι

(

ι

µ

)

|(Dι−µvk)Dµ((Dαfj)(D
βgl))|

≤
∑

ι

am,|ι|

∑

µ⊂ι

(

ι

µ

)

γι−µ,kw
∑

π⊂µ

(

µ

π

)

|(Dα+µ−πfj)(D
β+πgl)|

= w
∑

π

∑

µ⊃π

∑

ι⊃µ

am,|ι|

(

ι

µ

)

γι−µ,k

(

µ

π

)

|(Dα+µ−πfj)(D
β+πgl)|.

By Lemma 4 this is bounded by

(2n + 1)Ak

am,0
w

∑

π

∑

µ⊃π

am,|µ−π|am,|π||(D
α+µ−πfj)(D

β+πgl)|.

Hence, (20) can be bounded by

(2n + 1)Ak

am,0
sup
x∈Ω

W (x)w(x)−m+1
∑

π

∑

µ⊃π

am,|µ−π|am,|π||(D
α+µ−πfj)(D

β+πgl)|

≤
(2n + 1)Ak

am,0

(

sup
Ω

Ww−m
∑

µ

am,|µ||D
α+µfj |

)

·
(

sup
Ω

Ww−m
∑

µ

am,|µ||D
β+µgl|

)

·
(

sup
Ω

wm+1

W

)

≤ κm+1
(2n + 1)Ak

am,0

(

sup
Ω

Ww−m+|α|
∑

µ

am−|α|,|µ+α||D
α+µfj|

)

·
(

sup
Ω

Ww−m+|β|
∑

µ

am−|β|,|µ+β||D
β+µgl|

)

by (16) and w ≥ 1

≤ κm+1
(2n + 1)Ak

am,0

(

sup
Ω

Ww−m+|α|
∑

γ

am−|α|,|γ||D
γfj |

)

·
(

sup
Ω

Ww−m+|β|
∑

γ

am−|β|,|γ||D
γgl|

)

≤ (2n + 1)Ak
κm+1

am,0
b̃j b̃l ≤ bm.

Here in the penultimate inequality we have used the fact that

sup
Ω

Ww−m+|α|
∑

γ

am−|α|,|γ||D
γfj | = ‖fj‖m−|α| ≤ ‖fj‖j ≤ b̃j ,
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since m − |α| = j + l + |β| ≥ j (and similarly for gl); while the very last inequality follows
from (19). �

Proof of (e). Let us first of all remark that Lb(Z, L∞(Ω)) is indeed a Frechet space. Indeed, since
every (LB)-space is a (DF )-space (cf. [Koe], part I, §29.5.(5)), and Lb(E,F ) is complete if E is
(DF ) and F is any complete locally convex space (see [Koe], part II, §39.6(6)), the completeness
of Lb(Z, L∞(Ω)) follows. As for metrizability, Z has a fundamental sequence (Bn)∞n=1 of bounded
sets (by construction, or by the fact that it is (DF ), see [Koe], part I, beginning of section 29.3).
Hence every bounded set of Z is contained in some multiple cBn, and from the definition of the
topology of uniform convergence on bounded sets we see that the countably many sets

Un := {T ∈ Lb(Z, L∞) : ‖Tf‖∞ ≤ 1 for all f ∈ Bn}

form a basis of neighbourhoods of 0 in Lb(Z, L∞). Thus Lb(Z, L∞) is Frechet.
Let us now show in detail how the norm estimate (e) follows from Colombeau’s result. For the

various facts from the differential calculus in Banach spaces, we refer to [Cha].
Recall that a continuous mapping P : Y → X, where Y and X are Banach spaces, is

called a (continuous) j-homogeneous polynomial if there exists a continuous symmetric j-linear

mapping P̃ : Y j → X such that P (x) = P̃ (x, . . . , x). The definition for locally convex spaces is

the same. Given a P as above, the mapping P̃ is unique and can be constructed from P using
the polarization formula ([Cha], Theorems 4.6 and 4.7).

For all j ∈ N let us denote by Nj the j-homogeneous polynomial

Nj(h) := hjMj

from R into Lb(Z, L∞(Ω)) =: X. Let Ñj be the corresponding symmetric j-linear mapping.

Clearly, both Nj and Ñj are continuous.
By the main theorem of [Col] we find a C∞-mapping M : R → X such that the n-th

derivative of M coincides with Ñj . By the explanation after the main theorem in [Col], the j-th
derivative of M is even a continuous j-linear mapping from R to XB, where XB ⊂ X denotes
the linear span of some bounded convex balanced subset B ⊂ X. Also, XB is a Banach space
when endowed with the norm ‖x‖B := 1/ sup{r > 0 : rx ∈ B}, and the canonical injection
XB → X is continuous.

Hence, also Ñj : Rj → XB is continuous. By the Taylor formula for Banach spaces ([Cha],

Theorem 8.9), we obtain the error estimate (M (h) = M(h))

(21)
∥

∥

∥
M (h) −

N
∑

j=0

hjMj

∥

∥

∥

B
≤ CNhN+1.

Now every bounded set B ⊂ X is contained in the set

(22) U◦ := {T ∈ X : ‖Tf‖∞ ≤ 1 for all f ∈ U}

for some neighbourhood of zero U of Z. Hence,

(23)
∥

∥

∥
M (h) −

N
∑

j=0

hjMj

∥

∥

∥

B
≥ sup

f∈U

∥

∥

∥

(

M (h) −

N
∑

j=0

hjMj

)

f
∥

∥

∥

∞
.
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Let now f ∈ Z be given. Since U is a neighbourhood of 0, it absorbs f , i.e. there exists a c > 0
such that f ∈ cU . The desired norm estimate (e) (for some f -dependent constant) follows from
this, (21) and (23). �

This completes the proof of the Main Theorem.

Remark. Note that in the above proofs we have actually established assertions slightly stronger
than the properties (b)–(d), namely that the inclusions given there are in fact continuous: that is,
for each j, k and l, Mj maps Z continuously into L∞, Cl(Mj · ,Mk · ) maps Z ×Z continuously
into L∞, and C ′

l even maps Z × Z continuously into Z. (Well, for (b) and (c), we have only
shown that the operators map bounded sets into balls, but this implies continuity by a simple
argument: one forms a small enough neighbourhood U of 0 in Z using just the definition of
the inductive limit topology — that is, U is chosen as the balanced convex hull of the union of
countably many bounded sets (the unit balls of the step spaces) multiplied by small constants;
if the constants are small enough, U is still mapped into the unit ball of L∞.) However, this
extra piece of information seems to have no implications for the applications to quantization.

4. A nonlinear variant

Note that the argument (12) still works even if the operators M (h) and Q(h) are not assumed
to be linear, i.e. if we just require that for each fixed f ∈ Z there be some functions M (h)f ∈ L∞,
0 < h < 1, such that (e) holds. In that case, the sought operators M (h) can be constructed for
Z = D directly along the lines of the usual proof of Borel’s theorem. Let us include a proof of
this assertion for completeness.

Take Z = D(Ω), the subspace of functions in C∞(Ω) with compact support. Then clearly
(a)–(d) hold; let us settle (e) (allowing M (h) to be nonlinear). So let f ∈ D, and denote for
brevity mj = Mjf ∈ D.

Fix a function φ ∈ C∞(R) such that 0 ≤ φ ≤ 1 and φ(x) = 1 for |x| ≤ 1
2
, φ(x) = 0 for

|x| ≥ 1. Let νn,α := ‖Dαmn‖∞ and set qj := max|α|,n≤j να,n + 1, so that νn,α ≤ qnq|α|. Let
now cn := max(2, n!qn) and define

un(x, h) = φ(cnh)mn(x)hn.

Clearly each un is a bounded smooth function on Ω ×R. Observe that un is nonzero only if

(24) |h| ≤
1

cn
≤ 1

2 ,

owing to the fact that cn ≥ 2. Using the Leibniz rule, we have for any integer k ≥ 0 and
multiindex α,

Dk
hDα

x un(x, h) = Dαmn(x) ·

k
∑

j=0

(

k

j

)

Dk−jhn · cj
nφ(j)(cnh),

where the subscripts at D indicated the differentiated variable. The last factor on the right-hand
side is bounded by |h|−jsj where sj := supx∈R |xjφ(j)(x)| < ∞. The second factor from the

right is equal to n!
(n−k+j)!h

n−k+j , which is bounded by n!|h|n−k+j (and vanishes for j < k − n).

Thus

|Dk
hDα

x un(x, h)| ≤ ‖Dαmn‖∞

k
∑

j=0

(

k

j

)

n!|h|n−ksj

≤ qnq|α|n!|h|n−kWk,
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where Wk :=
∑k

j=0

(

k
j

)

sj < ∞. Since cn ≥ n!qn, it follows that

∞
∑

n=k+1

|Dk
hDα

x un(x, h)| ≤ q|α|Wk

∞
∑

n=k+1

qnn!|h|n−k

≤ q|α|Wk

∞
∑

n=k+1

qnn!

cn
|h|n−k−1 by (24)

≤ 2q|α|Wk < ∞.

As α and k can be arbitrary, we see that the series

(25) u(x, h) :=
∞
∑

n=0

un(x, h)

converges in the C∞ topology to a function u ∈ C∞(Ω × R). Further, as each un is, in view
of (24), supported in suppmn × [− 1

2
, 1

2
] ⊂ suppf × [− 1

2
, 1

2
], we even have u ∈ D(Ω × (−1, 1)).

Since

Dj
hun(x, 0) =

{

0 if j 6= n,

j!mj(x) if j = n,

the C∞ convergence of (25) implies that Dj
hu(x, 0) = j!mj(x). By the Taylor remainder formula,

we therefore have for any integer N ≥ 0

u(x, h) −
N

∑

j=0

mj(x)hj =
hN+1

(N + 1)!
DN+1

h u(x, θ(x, h)h)

for some 0 ≤ θ(x, h) ≤ 1; consequently,

h−N−1
∣

∣

∣
u(x, h) −

N
∑

j=0

mj(x)hj
∣

∣

∣
≤

1

(N + 1)!
‖DN+1

h u‖∞ < ∞, ∀x, h,

since u is compactly supported. Thus the choice

M (h)f(x) := u(x, h)

will do the job we need. �

Remark. In effect, the above argument proves Borel’s theorem for functions from R into D, for
the case that the prescribed derivatives mj have supports in a fixed compact set. Perhaps there
is some hope that Borel’s theorem might hold even for functions from R into more general locally
convex spaces provided some additional hypothesis is placed on the sequence of the prescribed
derivatives — for instance, if the target space is a space of operators, when Mj are “tame”
in the sense that there exists a shrinking collection Uk of neighbourhoods of zero such that each
Mj maps Uk+1 into Uk, for all k. Note that having larger and larger supports is also the idea
behind Colombeau’s counterexample [Col] showing that Borel’s theorem fails for functions from
R into D. �

It should be remarked that from the point of view of physics, the nonlinear quantization
treated in this section is probably a rather doubtful business.
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pp. 101–108.

[Col] J.F. Colombeau, Infinite dimensional C∞ mappings with a given sequence of derivatives at a given point,

J. Math. Anal. Appl. 71 (1979), 95–104.
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