A remark on quasiconformal dimension distortion on the line

István Prause

Abstract

The general dimension distortion result says that a one dimensional set goes to a set of dimension at least $1-k$ under a k-quasiconformal mapping. An improved version for rectifiable sets appears in recent work of Astala, Clop, Mateu, Orobitg and Uriarte-Tuero in connection with quasiregular removability problems. We give an alternative proof of their result establishing a bound of the form $1-c k^{2}$, provided that either the initial or the target set lies on a line. The bound $1-k^{2}$ holds under the additional assumption that the line stays fixed.

1 Introduction

A homeomorphism $f: \Omega \rightarrow \Omega^{\prime}$ between planar domains is called k-quasiconformal if it lies in the Sobolev class $W_{\text {loc }}^{1,2}(\Omega)$ and satisfies the Beltrami equation

$$
\bar{\partial} f(z)=\mu(z) \partial f(z) \quad \text { a.e. } z \in \Omega,
$$

with a measurable coefficient $\|\mu\|_{\infty} \leq k<1$. In the usual sense it is said to be K quasiconformal, with $K=\frac{1+k}{1-k}$. We shall use the dilatations $0 \leq k<1$ and $K \geq 1$ simultaneously. The term dimension always refers to Hausdorff dimension.

Astala [A1] gave a complete description of dimension distortion of general sets under planar quasiconformal mappings.
1.1 Theorem ([A1]). Let $f: \Omega \rightarrow \Omega^{\prime}$ be K-quasiconformal and suppose $E \subset \Omega$ is compact. Then

$$
\begin{equation*}
\frac{1}{K}\left(\frac{1}{\operatorname{dim}(E)}-\frac{1}{2}\right) \leq \frac{1}{\operatorname{dim}(f(E))}-\frac{1}{2} \leq K\left(\frac{1}{\operatorname{dim}(E)}-\frac{1}{2}\right) . \tag{1.2}
\end{equation*}
$$

This inequality is best possible.

[^0]It is expected that, say, for subsets of the real line somewhat better dimension distortion should be valid. In fact, this is the case for quasicircles, these are quasiconformal images of the unit circle (or a line).
1.3 Theorem ([BP]). For every K-quasicircle Γ for K close to 1 ,

$$
\operatorname{dim} \Gamma \leq 1+37\left(\frac{K-1}{K+1}\right)^{2}
$$

1.4 Remark. Note that (1.2) would give the bound $1+k$, where $k=(K-1) /(K+1)$. The result above provides a bound of the form $1+c k^{2}$, an improvement for small values of k. We could choose $c=60$ to obtain a valid bound for all values of k. In fact, $\operatorname{dim} \Gamma \leq 1+k^{2}$ due to Smirnov's unpublished result. This is conjectured to be sharp. That the order k^{2} is sharp was proven in [BP].

The fact, that for the line we have $\left(1+c k^{2}\right)$-type estimate reflects back to the dimension distortion of subsets of the line, as well. Allowing us to improve the general estimate (1.2) in the case of the jump to dimension one. Throughout these notes $c \geq 1$ will denote a fixed positive absolute constant, such that $\operatorname{dim} \Gamma \leq 1+c k^{2}$ holds, for every k-quasicircle Γ, i.e. we can choose $c=60$ or even $c=1$ in view of Smirnov's result.

The following type of result (and in particular Corollary 1.8) is a crucial step in [ACMOU] for their improved version of Painlevé removability for bounded K-quasiregular mappings ($K>1$): sets of σ-finite Hausdorff measure at the critical dimension are always removable.
1.5 Theorem. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a k-quasiconformal map with $0<k<1 / \sqrt{8 c}$ and $E \subset \mathbb{R}$. Then $\operatorname{dim} f E<1$ provided that $\operatorname{dim} E \leq 1-8 c k^{2}$. Conversely, if $\operatorname{dim} E=1$ then $\operatorname{dim} f E>1-8 c k^{2}$.

Discussing their results with the authors of [ACMOU] I found a more direct proof to this kind of improved quasiconformal dimension distortion. The purpose of this paper is to present this alternative proof of Theorem 1.5 which has its own interest. Our approach relies on the original dimension distortion proof of Astala, we shall follow the presentation in [A1].
1.6 Remark. We wish to emphasize that our setting is not symmetric with respect to the inverse map, the two cases, distorting the dimension upwards and downwards are different, a priori. The borderline dimension for the jump to one dimension is $2 /(K+1)=1-k$ in the general case. Thus Theorem 1.5 is really an improvement for small values of k and then it is easy to establish some improvement for every k in the second case (see Corollary 1.8). However, we were not able to obtain an improvement for arbitrary values of k in the first case.

An immediate application of the classical Painleve's theorem (in conjunction with Stoilow factorization) gives the following.
1.7 Corollary. Let $E \subset \mathbb{R}$ be a compact set. For every $1<K<K_{0}$ there exists a positive number $\varepsilon(K)$, such that if

$$
\operatorname{dim} E \leq \frac{2}{K+1}+\varepsilon(K)
$$

then E is removable for bounded K-quasiregular mappings.
1.8 Corollary. Let $E \subset \mathbb{R}$ of dimension 1 and $K>1$. Then for any K-quasiconformal $\operatorname{map} f: \mathbb{C} \rightarrow \mathbb{C}$,

$$
\operatorname{dim} f E>\frac{2}{K+1}
$$

Section 2 is devoted to the proof of Theorem 1.5, while in Section 3 we discuss related results concerning quasisymmetric maps of the line.

Acknowledgement. I would like to thank Professor Kari Astala, Albert Clop and Ignacio Uriarte-Tuero for useful discussions on the topic. In particular, I am grateful to Kari Astala for drawing my attention to the result of Smirnov. I thank Professor Stanislav Smirnov for his kind permission to include Theorem 3.1 in this note.

2 Improved distortion

The key idea in [A1] was to look at quasiconformal mappings as holomorphic motions. Recall that a function $\Phi: \mathbb{D} \times E \rightarrow \overline{\mathbb{C}}$ is a holomorphic motion of a set $E \subset \overline{\mathbb{C}}$ if

- for any fixed $z \in E$, the map $\lambda \mapsto \Phi(\lambda, z)$ is holomorphic in \mathbb{D} (the open unit disk),
- for any fixed $\lambda \in \mathbb{D}$, the map $z \mapsto \Phi_{\lambda}(z)=\Phi(\lambda, z)$ is an injection, and
- the mapping Φ_{0} is the identity on E.

A fundamental result about holomorphic motions is the extended version of the λ lemma by Slodkowski $[\mathrm{S}]$, which says that every holomorphic motion extends to a global motion $\Phi: \mathbb{D} \times \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ and $\Phi_{\lambda}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a $|\lambda|$-quasiconformal mapping.

In the following theorem we establish the improved dimension distortion estimate under conformality assumption on finite union of disks. Recall that $c>0$ is an absolute constant.
2.1 Theorem. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a k-quasiconformal homeomorphism of $\mathbb{C}\left(k<k_{0}=\right.$ $1 / \sqrt{4 c})$, conformal outside \mathbb{D}, normalized by $f(z)=z+o(1)(z \rightarrow \infty)$. Assume that f is conformal on some finite union of disjoint disks $E=\cup_{i=1}^{n} B\left(z_{i}, r_{i}\right) \subset \mathbb{D}$, where $z_{i} \in \mathbb{R}$. Then for any $0<t<2$,

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\left|f^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{t(k)} \leq C\left(\sum_{i=1}^{n} r_{i}^{t}\right)^{\frac{1}{3} \frac{t(k)}{t}} \tag{2.2}
\end{equation*}
$$

where C is a positive constant (may be chosen to be 64). The exponent $0<t(k)<2$ is determined by formula (2.7). In particular, it is continuous and strictly increasing in t and k. For the value $t=1-8 c k^{2}, t(k)<1$, provided that k is nonzero.

In the other direction, we have

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i}^{t(k)} \leq C\left(\sum_{i=1}^{n}\left(\left|f^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{t}\right)^{\frac{1}{3} \frac{t(k)}{t}} \tag{2.3}
\end{equation*}
$$

Proof. Embed the map f into a holomorphic motion in a standard way. Denote by μ the complex dilatation of f and define $\mu_{\lambda}=\frac{\lambda \mu}{k}$ for every $\lambda \in \mathbb{D}$. This Beltrami coefficient satisfies $\left\|\mu_{\lambda}\right\|_{\infty} \leq|\lambda|<1$ and thus have a principal solution f_{λ} by the measurable Riemann mapping theorem. Principal solution refers to the unique homeomorphic solution with asymptotics at infinity $f_{\lambda}(z)=z+o(1)$. By uniqueness, for $\lambda=k$, we get back our original map, $f_{k}=f$ and $f_{0}=$ id. Since μ and hence μ_{λ} vanish on E, the complex derivatives $f_{\lambda}^{\prime}\left(z_{i}\right)$ exist and nonzero. We shall use the important fact: (2.4) the function $\lambda \mapsto f_{\lambda}^{\prime}\left(z_{i}\right)$ is holomorphic [AB, Theorem 3].

By Koebe's 1/4-theorem

$$
D_{i}(\lambda)=B\left(f_{\lambda}\left(z_{i}\right), 1 / 4\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right) \subset f_{\lambda}\left(B\left(z_{i}, r_{i}\right)\right)
$$

and $f_{\lambda}(\mathbb{D}) \subset B\left(f_{\lambda}(0), 4\right)$. Here $D_{i}(\lambda)-f_{\lambda}(0)=\psi_{i, \lambda} D_{i}(0)$, where

$$
\psi_{i, \lambda}(z)=f_{\lambda}^{\prime}\left(z_{i}\right)\left(z-z_{i}\right)+\left(f_{\lambda}\left(z_{i}\right)-f_{\lambda}(0)\right)
$$

The coefficients of the similarities $\psi_{i, \lambda}$ vary holomorphically in λ, thus $\left\{D_{i}(\lambda)-f_{\lambda}(0)\right\}_{1}^{n}$ is a holomorphic family of disjoint disks contained in $B(0,4)$. Choosing additional similarities $\phi_{i}: B(0,4) \rightarrow D_{i}(0), \phi_{i}(z)=\frac{1}{16} r_{i} z+z_{i}$, set $\gamma_{i, \lambda}=\psi_{i, \lambda} \circ \phi_{i}$. These contractions generate a holomorphic family of Cantor sets $C_{\lambda} \subset B(0,4)$ as described in [A1]. There is a natural identification of the points of C_{λ} with sequences of $\{1, \ldots, n\}^{\mathbb{N}}$. This correspondence gives a bijective map $\Phi_{\lambda}: C_{0} \rightarrow C_{\lambda}$. Here $\Phi_{0}=\mathrm{id}$ and $\Phi_{\lambda}(z)$ depends holomorphically on λ and thus $\Phi_{\lambda}(z)$ is a holomorphic motion. By the extended λ-lemma of $[\mathrm{S}]$, it extends to a global $\Phi_{\lambda}: \mathbb{C} \rightarrow \mathbb{C}|\lambda|$-quasiconformal mapping. Observe that $C_{0} \subset \mathbb{R}$ since $D_{i}(0)=B\left(z_{i}, 1 / 4 r_{i}\right)$'s are centered on the real line. This shows that C_{λ} is contained in a $|\lambda|$-quasicircle and thus has dimension at most $1+c|\lambda|^{2}$ according to Theorem 1.3. On the other hand the dimension s of the self-similar Cantor set C_{λ} is determined by the formula $[\mathrm{H}]$

$$
\sum_{i=1}^{n}\left(\frac{1}{16}\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{s}=1
$$

We certainly have

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{1}{16}\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{1+c|\lambda|^{2}} \leq 1 \tag{2.5}
\end{equation*}
$$

We are going to use this fact to obtain some improvement on the dimension distortion.
For a probability distribution $\left\{p_{i}\right\}_{i=1}^{n}$ define the function

$$
u(\lambda)=2 \sum p_{i} \log \left(a\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right)-\sum p_{i} \log p_{i}
$$

where we write a for $1 / 16$ for simplicity. This is a harmonic function by (2.4) and we have the estimate

$$
\begin{array}{r}
u(\lambda)=\frac{2}{1+c|\lambda|^{2}}\left[\left(1+c|\lambda|^{2}\right) \sum p_{i} \log \left(a\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right)-\sum p_{i} \log p_{i}\right]+\frac{1-c|\lambda|^{2}}{1+c|\lambda|^{2}} \sum p_{i} \log p_{i} \\
\leq \frac{2}{1+c|\lambda|^{2}} \log \left(\sum\left(a\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{1+c|\lambda|^{2}}\right)+\frac{1-c|\lambda|^{2}}{1+c|\lambda|^{2}} \sum p_{i} \log p_{i} \leq \frac{1-c|\lambda|^{2}}{1+c|\lambda|^{2}} \sum p_{i} \log p_{i}
\end{array}
$$

in terms of Jensen's inequality for the concave logarithm function and (2.5).
In order to make use this estimate for the growth of u, apply Harnack's inequality in the disk $\{|\lambda|<2 k\}(k<1 / 2)$,

$$
\begin{equation*}
u(k) \leq \frac{1}{3} u(0)+\frac{2}{3} \frac{1-4 c k^{2}}{1+4 c k^{2}} \sum p_{i} \log p_{i} . \tag{2.6}
\end{equation*}
$$

For dimension estimate, write

$$
\begin{aligned}
& \sum p_{i} \log \left(a\left|f^{\prime}\left(z_{i}\right)\right| r_{i}\right)-\frac{1}{t(k)} \sum p_{i} \log p_{i}=\frac{1}{2} u(k)+\left(\frac{1}{2}-\frac{1}{t(k)}\right) \sum p_{i} \log p_{i} \\
& (2.6) \\
& \leq \frac{1}{3} \sum p_{i} \log \left(a r_{i}\right)+\left[\frac{1}{3} \frac{1-4 c k^{2}}{1+4 c k^{2}}-\frac{1}{6}+\frac{1}{2}-\frac{1}{t(k)}\right] \sum p_{i} \log p_{i} \\
& =\frac{1}{3}\left(\sum p_{i} \log \left(a r_{i}\right)-\frac{1}{t} \sum p_{i} \log p_{i}\right) \\
& +\left[\frac{1}{3}\left(\frac{1}{t}-\frac{1}{2}+\frac{1-4 c k^{2}}{1+4 c k^{2}}\right)+\frac{1}{2}-\frac{1}{t(k)}\right] \sum p_{i} \log p_{i}(J) \frac{1}{3 t} \log \left(\sum\left(a r_{i}\right)^{t}\right) .
\end{aligned}
$$

In the last step we choose $t(k)$, so that the expression in the square brackets will be zero, that is, by formula (2.7) and (J) refers to another application of Jensen's inequality. With a proper choice of the weights p_{i} we actually have equality in Jensen's inequality, namely put $p_{i}=\left(\left|f^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{t(k)} / \sum\left(\left|f^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{t(k)}$ to arrive at the following form of (2.2)

$$
\frac{1}{t(k)} \log \left(\sum\left(a\left|f^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{t(k)}\right) \leq \frac{1}{3 t} \log \left(\sum\left(a r_{i}\right)^{t}\right) .
$$

The defining formula for $t(k)$ reads as

$$
\begin{equation*}
\frac{1}{t(k)}-\frac{1}{2}=\frac{1}{3}\left[\left(\frac{1}{t}-\frac{1}{2}\right)+\frac{1-4 c k^{2}}{1+4 c k^{2}}\right] . \tag{2.7}
\end{equation*}
$$

Assuming that $k \leq 1 / \sqrt{4 c}$, we see that $0<t(k)<2$ as $0<t<2$ and that $t(k)$ is continuous and strictly increasing in both t and k. Observe that, in case of $t(k)=1, t$ reads as

$$
t=\frac{1+4 c k^{2}}{1+12 c k^{2}}>1-8 c k^{2} \quad(k \neq 0)
$$

Our setting is not symmetric with respect to the inverse mapping, however, invoking Harnack's inequality the other way around one obtains (2.3) in an analogous way.

Our estimates are only interesting as $k \rightarrow 0$. In particular, we often will make the assumption $k<k_{0}$ with $k_{0}=1 / \sqrt{4 c}$, this is the range where $t(k)$ is defined at all. We will need the following standard deformation lemma from [A2, Lemma 4.2]. For the sake of completeness we sketch here a short proof based on holomorphic motions.
2.8 Lemma. Let f be a K-quasiconformal mapping on $\overline{\mathbb{C}}$ fixing 0 , 1 and ∞. Then for each $\varepsilon>0$ there is a number $\varrho=\varrho(K, \varepsilon) \in(0,1)$ and a $(K+\varepsilon)$-quasiconformal mapping φ on \mathbb{C} such that

$$
\begin{array}{lll}
\text { (a) } & \varphi(z)=f(z) & \text { if } 1 \leq|z| \\
\text { (b) } & \varphi(z)=z & \text { if }|z| \leq \varrho .
\end{array}
$$

Proof. We consider the associated holomorphic motion $\left\{f_{\lambda}(z)\right\}$ as in Theorem 2.1 with the exception that the homeomorphic solution f_{λ} is now normalized by the condition that it fixes 0,1 and ∞. Consider the following modified motion of the set $\{|z| \leq \varrho\} \cup\{|z| \geq 1\}$ for some $0<\varrho<1$,

$$
\Phi_{\lambda}(z)= \begin{cases}f_{\lambda}(z) & \text { if }|z| \geq 1 \\ z & \text { if }|z| \leq \varrho\end{cases}
$$

Classical distortion properties of quasiconformal mappings assure that the image of the unit circle $f_{\lambda}\left(S^{1}\right)$ will remain disjoint from the disk $\{|z| \leq \rho\}$ as long as $|\lambda|<\lambda_{0}=\lambda_{0}(\varrho)<1$, where $\lambda_{0}(\varrho) \rightarrow 1$ as $\varrho \rightarrow 0$. In other words, $\Phi_{\lambda}(z)$ is a holomorphic motion parametrized by the disk $\left\{|\lambda|<\lambda_{0}\right\}$. The extension of Φ_{k} provided by the extended λ-lemma gives a (k / λ_{0})-quasiconformal deformation of f described in the statement of the lemma.
2.9 Lemma. Assume that $f: \mathbb{C} \rightarrow \mathbb{C}$ is a k-quasiconformal mapping $\left(k<k_{0}\right)$ fixing 0,1 and ∞. Let $B_{i}=B\left(z_{i}, r_{i}\right)\left(z_{i} \in \mathbb{R}\right)$ disjoint disks in \mathbb{D}. Then for every sufficiently small $\varepsilon>0$ we have

$$
\sum\left(\operatorname{diam} f B_{i}\right)^{t\left(k_{\varepsilon}\right)} \leq C(k, \varepsilon)\left(\sum r_{i}^{t}\right)^{\frac{1}{3} \frac{t\left(k_{\varepsilon}\right)}{t}}
$$

with $k_{\varepsilon} \rightarrow k$ as $\varepsilon \rightarrow 0$. Similarly, in the other direction

$$
\sum r_{i}^{t\left(k_{\varepsilon}\right)} \leq C(k, \varepsilon)\left(\sum\left(\operatorname{diam} f B_{i}\right)^{t}\right)^{\frac{1}{3} \frac{t\left(k_{\varepsilon}\right)}{t}} .
$$

Proof. Apply Lemma 2.8 to deform f in disks B_{i} and outside \mathbb{D}. We obtain a $k_{\varepsilon^{-}}$ quasiconformal map $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ which agrees with f in $\mathbb{D} \backslash \cup B_{i}$, identity outside $B(0,1 / \varrho)$
and a τ_{i} similarity inside $B\left(z_{i}, \varrho r_{i}\right)$. Here τ_{i} is determined by $\tau_{i}\left(z_{i}\right)=f\left(z_{i}\right)$ and $\tau_{i}\left(z_{i}+r_{i}\right)=$ $f\left(z_{i}+r_{i}\right)$. Moreover we have a good control on the diameters of the corresponding sets,

$$
\begin{equation*}
\left|\varphi^{\prime}\left(z_{i}\right)\right| r_{i}=\left|\tau_{i}^{\prime}\right| r_{i}=\left|f\left(z_{i}+r_{i}\right)-f\left(z_{i}\right)\right| \leq \operatorname{diam} f B_{i} \lesssim\left|f\left(z_{i}+r_{i}\right)-f\left(z_{i}\right)\right|=\left|\varphi^{\prime}\left(z_{i}\right)\right| r_{i} \tag{2.10}
\end{equation*}
$$

up to a constant depending only on k, as quasiconformal maps distort circles in a uniform manner.

Conjugating with an additional similarity $u(z)=(1 / \varrho) z,\left(u^{-1} \circ \varphi \circ u\right)$ is identical outside \mathbb{D} and similarity in disks $B\left(\varrho z_{i}, \varrho^{2} r_{i}\right)$. We may apply Theorem 2.1 to find

$$
\begin{aligned}
& \sum\left(\left|\left(u^{-1} \circ \varphi \circ u\right)^{\prime}\left(\varrho z_{i}\right)\right| \varrho^{2} r_{i}\right)^{t\left(k_{\varepsilon}\right)} \leq C\left(\sum\left(\varrho^{2} r_{i}\right)^{t}\right)^{\frac{1}{3} \frac{t\left(k_{\varepsilon}\right)}{t}}, \\
& \sum\left(\varrho^{2} r_{i}\right)^{t\left(k_{\varepsilon}\right)} \leq C\left(\sum\left(\left|\left(u^{-1} \circ \varphi \circ u\right)^{\prime}\left(\varrho z_{i}\right)\right| \varrho^{2} r_{i}\right)^{t}\right)^{\frac{1}{3} \frac{t\left(k_{\varepsilon}\right)}{t}} .
\end{aligned}
$$

Combining with (2.10), the desired estimates follow.
Proof of Theorem 1.5. We shall prove the following claim
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a k-quasiconformal map with $k<k_{0}$ and $E \subset \mathbb{R}$. Then

$$
\begin{aligned}
& \operatorname{dim} E \leq t \Rightarrow \operatorname{dim} f E \leq t(k), \\
& \operatorname{dim} f E \leq t \Rightarrow \operatorname{dim} E \leq t(k) .
\end{aligned}
$$

Theorem 1.5 follows now from the fact that for $t=1-8 c k^{2}, t(k)<1$. The claim follows from Lemma 2.9 by a standard covering argument. We sketch the proof in the second case, distorting the dimension downwards. The first case is similar.

First of all, we may clearly assume that $E \subset[-1 / 2,1 / 2]$ and f fixes 0,1 and ∞. Suppose that $\operatorname{dim} f E=t$, what we need to prove is that $\operatorname{dim} E \leq t(k)$. Choose an exponent $t^{\prime}>t$. Making use of a basic covering theorem we can find a countable family of disjoint disks $D_{i}=B\left(w_{i}, \varrho_{i}\right)$ such that $f E \subset \cup 5 D_{i}$, and $\sum \varrho_{i}^{t^{\prime}}$ is arbitrary small. Furthermore, we may assume that $w_{i} \in f E$. Set $z_{i}=f^{-1}\left(w_{i}\right) \in E$ and $r_{i}=\operatorname{dist}\left(z_{i}, \partial f^{-1}\left(D_{i}\right)\right)$. In this way $B_{i}=B\left(z_{i}, r_{i}\right) \subset f^{-1}\left(D_{i}\right)$, so the disks B_{i} are disjoint, centered on the real line and $\cup B_{i} \subset \mathbb{D}$ may be assumed, as well.

Now the uniform bound of Lemma 2.9 (with a fixed $\varepsilon>0$) holds for this possibly infinite family of disks, too

$$
\begin{equation*}
\sum r_{i}^{t^{\prime}\left(k_{\varepsilon}\right)} \leq C(k, \varepsilon)\left(\sum\left(\operatorname{diam} f B_{i}\right)^{t^{\prime}}\right)^{\frac{1}{3} \frac{t^{\prime}\left(k_{\varepsilon}\right)}{t^{\prime}}} \tag{2.11}
\end{equation*}
$$

Observe that $\left\{f^{-1}\left(5 D_{i}\right)\right\}$ gives a cover of E with sets of size

$$
\operatorname{diam} f^{-1}\left(5 D_{i}\right) \lesssim r_{i}
$$

up to a constant depending only on k by distortion properties of quasiconformal maps. While the right-hand side of (2.11) can be made arbitrary small with a proper choice of the family $\left\{D_{i}\right\}$, since $\operatorname{diam} f B_{i} \leq 2 \varrho_{i}$. We conclude that $\operatorname{dim} E \leq t^{\prime}\left(k_{\varepsilon}\right)$, letting $\varepsilon \rightarrow 0$ and $t^{\prime} \rightarrow t, \operatorname{dim} E \leq t(k)$ follows.

Proof of Corollary 1.8. Decompose $f=f_{1} \circ f_{2}$, where $f_{1} K_{1}$-quasiconformal and $f_{2} K_{2^{-}}$ quasiconformal homeomorphism of the plane with $K=K_{1} K_{2}$ and K_{2} close enough to 1. We use the general dimension distortion estimate (1.2) for f_{1} and the improvement provided by Theorem 1.5 for f_{2}. Such decomposition always exists for planar quasiconformal maps [L, Theorem 4.7, p. 29].

3 Distortion of quasisymmetric functions

In this section we make the assumption that our map fixes the real line. In other words, we consider quasisymmetric maps of \mathbb{R}, where the quasisymmetricity is measured by the dilatation of (the best) quasiconformal extension. This assumption allows us to sharpen our estimates and obtain the aesthetically appealing (and possibly sharp) bound $1-k^{2}$ for distortion of 1-dimensional sets. This is a dual result to Smirnov's $\left(1+k^{2}\right)$-bound on the dimension of quasicircles, apparently known to him. In fact, we rely on some of the ideas of him developed for the quasicircle estimate. We are grateful to him for allowing us to include this result here.
3.1 Theorem. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a k-quasiconformal map for which $f(\mathbb{R})=\mathbb{R}$. Then for a 1-dimensional set $E \subset \mathbb{R}$,

$$
\operatorname{dim} f E \geq 1-k^{2}
$$

Standard covering arguments reduces the theorem to the following statement. We sketch the details after the proof of Lemma 3.2.
3.2 Lemma. Given a sequence of finite families of disjoint disks $\left\{B_{i, j}=B\left(z_{i, j}, r_{i, j}\right)\right\}_{i=1}^{n_{j}}$ $(j=1,2, \ldots)$ in the unit disk \mathbb{D}, such that in every collection $z_{i} \in \mathbb{R}$, for any $t<1$ $\sum_{i} r_{i}^{t} \rightarrow \infty, r_{i} \leq \delta_{j}$ and $\underline{\delta_{j} \rightarrow 0}$ as $j \rightarrow \infty$. Consider a sequence of k-quasiconformal maps $f_{j}: \mathbb{C} \rightarrow \mathbb{C}, f_{j}(\bar{z})=\overline{f_{j}(z)}$, f_{j} conformal outside \mathbb{D}, normalized by $f_{j}(z)=z+o(1)$ $(z \rightarrow \infty)$. Assume that f_{j} is conformal on the disks $B_{i, j}$ belonging to the level j. Then

$$
\sum_{i=1}^{n_{j}}\left(\frac{1}{16}\left|f_{j}^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{1-k^{2}-\eta_{j}} \geq 1
$$

Here $\eta_{j} \rightarrow 0$ as $j \rightarrow \infty$ for some subsequence.
Proof. For every j embed the map $f=f_{j}$ into the standard holomorphic motion $f_{\lambda}(z)$ as in Theorem 2.1. In this way $f_{0}=\mathrm{id}, f_{k}=f_{(j)}$. Since the level j is fixed for a while we will not explicitly write the dependence on j. As μ the complex dilatation of f is
symmetric with respect to the real axis, we have $\mu_{\lambda}(\bar{z})=\overline{\mu_{\bar{\lambda}}(z)}$. This inherits to the solutions, $f_{\lambda}(\bar{z})=\bar{f}_{\bar{\lambda}}(z)$. In particular, for purely imaginary λ

$$
\begin{equation*}
\left|f_{-\lambda}^{\prime}\left(z_{i}\right)\right|=\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right|, \tag{3.3}
\end{equation*}
$$

while for real values of λ the map f_{λ} is symmetric with respect to the real axis.
Recall from the proof of Theorem 2.1 that the disks $D_{i}(\lambda)=B\left(f_{\lambda}\left(z_{i}\right), 1 / 4\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right)$ are disjoint and included in a disk of radius 4 . Hence comparing their area gives (with $a=1 / 16$)

$$
\sum\left(a\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right)^{2} \leq 1 .
$$

Moreover if λ is real then all the disks $D_{i}(\lambda)$ are centered on the real line as f_{λ} preserves the real axis. In this case, we have

$$
\sum\left(a\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right) \leq 1 .
$$

As before, consider the harmonic function for a given probability distribution $\left\{p_{i}\right\}_{i=1}^{n}$,

$$
u(\lambda)=u_{j}(\lambda)=2 \sum p_{i} \log \left(a\left|f_{\lambda}^{\prime}\left(z_{i}\right)\right| r_{i}\right)-\sum p_{i} \log p_{i} .
$$

Jensen's inequality and the estimates above tell us that u is negative for every $\lambda \in \mathbb{D}$ and $u(\lambda) \leq \sum p_{i} \log p_{i}$ for real valued λ. Due to (3.3) u is even on the imaginary axis, $u(-\lambda)=u(\lambda)$ for $\lambda \in i \mathbb{R}$.

Choose a sequence $t_{l} \rightarrow 1-$ as $l \rightarrow \infty$. For a fixed $l, \sum_{i} r_{i, j}^{t_{l}} \rightarrow \infty$ as $j \rightarrow \infty$ by assumption. So there exits a subsequence j_{l} such that $\sum_{i}\left(a r_{i, j_{l}}\right)^{t_{l}} \geq 1$ for every l. For a level $j=j_{l}$, set the weights

$$
p_{i, j}=p_{i}=\frac{r_{i}^{t_{l}}}{\sum r_{i}^{t_{i}}}
$$

Then

$$
\begin{align*}
& u_{j_{l}}(0)=2 \sum p_{i} \log \left(a r_{i}\right)-\sum p_{i} \log p_{i} \\
& =\frac{2}{t_{l}}\left(\sum p_{i} \log \left(a r_{i}\right)^{t_{l}}-\sum p_{i} \log p_{i}\right)+\left(\frac{2}{t_{l}}-1\right) \sum p_{i} \log p_{i} \tag{3.4}\\
& =\frac{2}{t_{l}} \log \left(\sum\left(a r_{i}\right)^{t_{l}}\right)+\left(\frac{2}{t_{l}}-1\right) \sum p_{i} \log p_{i} \geq\left(\frac{2}{t_{l}}-1\right) \sum p_{i} \log p_{i} .
\end{align*}
$$

The family $-\frac{u_{j_{l}}(\lambda)}{u_{j_{l}}(0)}$ form a normal family of harmonic functions, there exists a harmonic function u_{0} such that $u_{j_{l}} \rightarrow u_{0}$ locally uniformly as $j_{l} \rightarrow \infty$ through a subsequence. For this limit function we have

- $u_{0}(\lambda) \leq 0(\lambda \in \mathbb{D})$
- $u_{0}(-\lambda)=u_{0}(\lambda)$ for $\lambda \in i \mathbb{R}$
- $u_{0}(\lambda) \leq-1$ for $\lambda \in \mathbb{R}$ and $u_{0}(0)=-1$

The last one follows from (3.4) and the fact that $u_{j}(\lambda) \leq \sum p_{i} \log p_{i}$ if $\lambda \in \mathbb{R}$.
Now the second item tells us that $\frac{\partial}{\partial y} u_{0}(0)=0$ and the third one says $\frac{\partial}{\partial x} u_{0}(0)=0$. In this case we have a squared-type Harnack inequality (see Lemma 3.6) of the form

$$
u_{0}(\lambda) \geq \frac{1+|\lambda|^{2}}{1-|\lambda|^{2}} u_{0}(0)
$$

Put $\lambda=k$, then

$$
\begin{equation*}
u_{j}(k) \geq\left(\frac{1+k^{2}}{1-k^{2}}+\varepsilon_{j}\right) u_{j}(0) \tag{3.5}
\end{equation*}
$$

with $\varepsilon_{j} \rightarrow 0(j \rightarrow \infty)$ for a subsequence.
The usual manipulation with Jensen's inequality provides the desired estimate (here $j=j_{l}$ and $j(k)$ denotes an exponent depending on k and j to be chosen later).

$$
\begin{aligned}
& \frac{1}{j(k)} \log \left(\sum\left(a \mid f_{j}^{\prime}\left(z_{i}\right) r_{i}\right)^{j(k)}\right) \geq \sum p_{i} \log \left(a\left|f_{j}^{\prime}\left(z_{i}\right)\right| r_{i}\right)-\frac{1}{j(k)} \sum p_{i} \log p_{i} \\
& =\frac{1}{2} u_{j}(k)+\left(\frac{1}{2}-\frac{1}{j(k)}\right) \sum p_{i} \log p_{i} \stackrel{(3.5)}{\geq} \frac{1}{2}\left(\frac{1+k^{2}}{1-k^{2}}+\varepsilon_{j}\right) u_{j}(0)+\left(\frac{1}{2}-\frac{1}{j(k)}\right) \sum p_{i} \log p_{i} \\
& \stackrel{(3.4)}{\geq}\left[\frac{1}{2}\left(\frac{1+k^{2}}{1-k^{2}}+\varepsilon_{j}\right)\left(\frac{2}{t_{l}}-1\right)+\left(\frac{1}{2}-\frac{1}{j(k)}\right)\right] \sum p_{i} \log p_{i}=0 .
\end{aligned}
$$

We define $j(k)$ by the expression in the square brackets, so that it will be zero. Since $\varepsilon_{j} \rightarrow 0$ and $t_{l} \rightarrow 1$ as $j_{l} \rightarrow \infty$ (for a subsequence) we see that $j(k)=1-k^{2}-\eta_{j}$ where $\eta_{j} \rightarrow 0$ for some subsequence.

Proof of Theorem 3.1. Let $E \subset[-1 / 2,1 / 2]$ with $\operatorname{dim} E=1$. Assume to the contrary that $\operatorname{dim} f E<1-k^{2}$ for some k-quasiconformal map which is, as we may assume, symmetric with respect to the real axis. We can find a sequence of finite families of disjoint disks $\left\{B_{i}^{j}=B\left(z_{i}, r_{i}\right)\right\}$ such that $z_{i} \in \mathbb{R}, \sup r_{i} \rightarrow 0$, for any $t<1, \sum r_{i}^{t} \rightarrow \infty(j \rightarrow \infty)$ and $\sum\left(\operatorname{diam} f B_{i}\right)^{d} \rightarrow 0(j \rightarrow \infty)$, with a fixed exponent $d<1-k^{2}$. Choose $\varepsilon_{0}>$ 0 so that also $d<1-k_{\varepsilon_{0}}^{2}$. Now deform f according to the family on the level j to obtain a $k_{\varepsilon_{0}}$-quasiconformal map φ_{j} which is identical outside the unit disk and similarity in $B\left(\varrho z_{i}, \varrho^{2} r_{i}\right)$, here $\varrho=\varrho\left(\varepsilon_{0}, k\right)$. Moreover, $\operatorname{diam} f B_{i} \asymp\left|\varphi_{j}^{\prime}\left(\varrho z_{i}\right)\right| r_{i}$. Note that the deformation can be made so to preserve the symmetry with respect to the real line. This follows from examining the proof of [A2, Lemma 4.2]. Apply Lemma 3.2 to the sequence φ_{j}, we have a contradiction as $j \rightarrow \infty$.
3.6 Lemma (Squared-type Harnack's inequality). Suppose that the function $u \leq 0$ is harmonic in \mathbb{D} and $\nabla u(0)=0$. Then we have an improved Harnack's inequality of the form

$$
\frac{1+|z|^{2}}{1-|z|^{2}} u(0) \leq u(z) \leq \frac{1-|z|^{2}}{1+|z|^{2}} u(0) .
$$

Proof. The proof is a slight modification of the complex analytic proof of the standard Harnack's inequality. There is a holomorphic function $f: \mathbb{D} \rightarrow\{w: \Re w<0\}$ such that $f=u+i v$, where v is real-valued harmonic function. We may assume, that $f(0)=-1$, that is $u(0)=-1$ and $v(0)=0$. In virtue of the Cauchy-Riemann equations $f^{\prime}(0)=0$, since $(\nabla u)(0)=0$. Map the left half-plane onto the unit disk by the linear fractional transformation $\frac{w+1}{w-1}$, this takes -1 to 0 . The composed function maps the unit disk into the unit disk and vanishes at the origin with double multiplicity. We have a squared-type Schwarz lemma in this situation,

$$
\left|\frac{f z+1}{f z-1}\right| \leq|z|^{2}
$$

Observe the following geometric fact for $u=\Re w$,

$$
\frac{u+1}{u-1} \leq\left|\frac{w+1}{w-1}\right| .
$$

Combining the two estimates leads us to

$$
u(z) \geq-\frac{1+|z|^{2}}{1-|z|^{2}}
$$

Noting that $u(0)=-1$, this is the left hand side of the inequality in (3.6). The argument for the right hand side follows similar lines, one just needs to replace the linear fractional transformation $\frac{w+1}{w-1}$ by its negative.
3.7 Remark. The order k^{2} in Theorem 1.5 and Theorem 3.1 is sharp. Answering a question of Hayman and Hinkkanen, Tukia [T] constructed a k-quasisymmetric map of the unit interval which does not preserve one-dimensional sets. It is actually even more singular, mapping a set of less-than-one dimensional complement to a less-than-one dimensional set. Moreover, the quasisymmetricity k can be arbitrary close to 0 . An analysis of the example shows that the dimension distortion is of the type $1-C k^{2}$ as $k \rightarrow 0$.

References

[AB] Ahlfors, L. and Bers, L., Riemann's mapping theorem for variable metrics, Ann. of Math., (2) 72 (1960), 385-404
[A1] Astala, K., Area distortion of quasiconformal mappings, Acta Math., 173 (1994), no. 1, 37-60
[A2] Astala, K., Calderón's problem for Lipschitz classes and the dimension of quasicircles, Rev. Mat. Iberoamericana, 4 (1988), no. 3-4, 469-486
[ACMOU] Astala, K., Clop, A., Mateu, J., Orobitg, J, and Uriarte-Tuero, I., Distortion of Hausdorff measures and improved Painlevé removability for bounded quasiregular mappings, preprint
[BP] Becker, J. and Pommerenke, Ch., On the Hausdorff dimension of quasicircles, Ann. Acad. Sci. Fenn. Ser. A I Math., 12 (1987), no. 2, 329-333
[H] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), no. 5., 713-747
[L] Lehto, O., Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics 109, Springer-Verlag, New York, 1987
[S] Slodkowski, Z., Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc., 111 (1991), no. 2, 347-355
[T] TukiA, P., Hausdorff dimension and quasisymmetric mappings, Math. Scand., 65 (1989), 152-160

Department of Mathematics and Statistics
P.O. Box 68

FIN-00014 University of Helsinki
Finland
E-mAIL: istvan.prause@helsinki.fi

[^0]: 2000 Mathematics Subject Classification. 30C62.
 The author was supported by the Academy of Finland, project 211485 and the foundation Vilho, Yrjö ja Kalle Väisälän rahasto.

