COMPOSITION OPERATORS AND VECTOR-VALUED BMOA

JUSSI LAITILA

Abstract

Analytic composition operators $C_{\varphi}: f \mapsto f \circ \varphi$ are studied on certain X-valued versions of BMOA, the space of analytic functions on the unit disk that have bounded mean oscillation on the unit circle, where X is a complex Banach space. It is shown that if X is reflexive and C_{φ} is compact on the usual scalar-valued BMOA space, then C_{φ} is weakly compact on the X-valued space $\mathrm{BMOA}_{\mathcal{C}}(X)$ defined in terms of Carleson measures. A related function theoretic characterization is given of the compact composition operators on BMOA.

1. Introduction

Let φ be an analytic self-map of the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Compactness properties of the composition operators

$$
C_{\varphi}: f \mapsto f \circ \varphi
$$

have been intensively studied on various Banach spaces of analytic functions on \mathbb{D} (see $[\mathrm{CoM}]$ for the basic results related e.g. to the classical Hardy spaces). Recently the question of which composition operators are weakly compact has been studied also in the vector-valued setting where the functions f take values in some complex Banach space X, see e.g. [LST], [BDL], [L], [LT]. In this setting C_{φ} is usually never compact if X is infinitedimensional. The purpose of this paper is to continue the study from [L] and [BDL] by considering the weak compactness of C_{φ} on certain vectorvalued BMOA spaces, which are X-valued generalizations of the classical space BMOA of analytic functions on \mathbb{D} that have bounded mean oscillation on the unit circle \mathbb{T}.

Compactness and weak compactness of C_{φ} on the scalar-valued BMOA space have been studied in several recent papers, see e.g. [BCM], [Sm], [MT], [CM], [WX]. In [L] some of these results were extended to the setting of the space $\operatorname{BMOA}(X)$, which is defined as a Möbius invariant version of the vector-valued Hardy space $H^{1}(X)$. There are also other interesting possibilities of approaching BMOA in the vector-valued setting (see e.g. [Bl], [Bl2], $[\mathrm{BP}])$. One alternative arises by considering the weak vector-valued BMOA space $w \operatorname{BMOA}(X)$, which consists of the analytic functions $f: \mathbb{D} \rightarrow X$ such

[^0]that $x^{*} \circ f \in$ BMOA for all $x^{*} \in X^{*}$. Some properties of composition operators on a wide class of such weak spaces, including $w \operatorname{BMOA}(X)$, follow from general results of Bonet, Domański and Lindström [BDL].

In this paper we study the weak compactness of composition operators on $\operatorname{BMOA}_{\mathcal{C}}(X)$, a vector-valued version of BMOA defined in terms of Carleson measures, which was considered earlier by Blasco [Bl 2] in connection with vector-valued multipliers, see also [BP]. We are partly motivated by the fact that the spaces $\operatorname{BMOA}(X), w \operatorname{BMOA}(X)$ and $\mathrm{BMOA}_{\mathcal{C}}(X)$ are usually differerent. In fact, it was shown by Blasco $[\mathrm{Bl} 2]$ that $\mathrm{BMOA}(X)$ and $\mathrm{BMOA}_{\mathcal{C}}(X)$ coincide (and the respective norms are equivalent) only if X is isomorphic to a Hilbert space. We will show that the spaces $\mathrm{BMOA}_{\mathcal{C}}(X)$ and $w \operatorname{BMOA}(X)$ never coincide if X is infinite-dimensional.

Our main result states that if φ induces a compact composition operator on BMOA and X is reflexive, then C_{φ} is weakly compact on $\mathrm{BMOA}_{\mathcal{C}}(X)$. This result complements the earlier ones from [L] and [BDL]. The proof will be based on a function theoretic condition which characterizes the compact composition operators on the scalar-valued BMOA. The necessity part of this characterization will be established in Section 2. In Section 3 we provide some basic properties of the space $\mathrm{BMOA}_{\mathcal{C}}(X)$ and composition operators. Our main result will be proved in Section 4. As a consequence, we characterize the weakly compact composition operators on $\mathrm{BMOA}_{\mathcal{C}}(X)$ under some restrictions on φ for reflexive Banach spaces X.

2. Compactness of composition operators on BMOA

The space BMOA consists of the analytic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ which are Poisson integrals of functions that have bounded mean oscillation on \mathbb{T}. We recall the following equivalent reformulation of BMOA as a Möbius invariant version of the Hardy space H^{2} (see $[\mathrm{B}]$). An analytic function $f: \mathbb{D} \rightarrow \mathbb{C}$ belongs to BMOA if and only if

$$
\|f\|_{*}=\sup _{a \in \mathbb{D}}\left\|f \circ \sigma_{a}-f(a)\right\|_{H^{2}}<\infty,
$$

where $\sigma_{a}(z)=(a-z) /(1-\bar{a} z)$ for $a, z \in \mathbb{D}$, and $\|\cdot\|_{H^{p}}$ denotes the usual norm on the Hardy space $H^{p}(1 \leq p<\infty)$ given by $\|f\|_{H^{p}}^{p}=$ $\sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}$. The map $f \mapsto\|f\|_{*}$ is a seminorm. We equip BMOA with the complete norm $\|f\|_{\text {BMOA }}=|f(0)|+\|f\|_{*}$. Recall that according to the John-Nirenberg theorem [B, p. 15] the map $f \mapsto \sup _{a \in \mathbb{D}} \| f \circ$ $\sigma_{a}-f(a) \|_{H^{p}}$ defines an equivalent seminorm on BMOA for any $1 \leq p<\infty$. We refer to [G, Chapter VI] for further properties of BMOA.

It is well-known known that for every analytic $\operatorname{map} \varphi: \mathbb{D} \rightarrow \mathbb{D}$ the operator $C_{\varphi}: f \mapsto f \circ \varphi$ is bounded on BMOA, see [St, Theorem 3], [AFP, Theorem 12]. There also are several (equivalent) characterizations of the compact composition operators on BMOA, see [BCM], [Sm], [WX]. Recall that the Nevanlinna counting function $N(\varphi, \cdot)$ of an analytic map $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is defined by $N(\varphi, z)=\sum_{w \in \varphi^{-1}(z)} \log (1 /|w|)$ for $z \in \mathbb{D} \backslash\{\varphi(0)\}$, where each point in the preimage $\varphi^{-1}(z)$ is counted according to its multiplicity. The following result is due to Smith [Sm , Theorem 1.1]. The operator C_{φ} is compact on

BMOA if and only if

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{\{a \in \mathbb{D}:|\varphi(a)|>r\}} \sup _{0<|w|<1}|w|^{2} N\left(\sigma_{\varphi(a)} \circ \varphi \circ \sigma_{a}, w\right)=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 1} \sup _{\{a \in \mathbb{D}:|\varphi(a)| \leq R\}} m\left(\left\{\zeta \in \mathbb{T}:\left|\left(\varphi \circ \sigma_{a}\right)(\zeta)\right|>t\right\}\right)=0, \tag{2.2}
\end{equation*}
$$

for every $R \in(0,1)$, where m is the Lebesgue measure on \mathbb{T}.
We will provide yet another characterization of the compact composition operators on BMOA by replacing (2.2) by a condition which involves the Nevanlinna counting function. This result will be useful in our study of C_{φ} in the vector-valued setting. The following result, which is the main result of this section, gives the necessity of this condition for the compactness of C_{φ} on BMOA.
Theorem 2.1. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be analytic. If C_{φ} is compact on BMOA , then

$$
\begin{equation*}
\lim _{|w| \rightarrow 1} \sup _{\{a \in \mathbb{D}:|\varphi(a)| \leq R\}} \frac{N\left(\varphi \circ \sigma_{a}, w\right)}{\log (1 /|w|)}=0, \tag{2.3}
\end{equation*}
$$

for every $R \in(0,1)$, where $\sigma_{a}(z)=(a-z) /(1-\bar{a} z)$ for $a, z \in \mathbb{D}$.
We will observe below that conditions (2.1) and (2.3) together are also sufficient for the compactness of C_{φ} on BMOA (see Corollary 4.5).

The main idea for the proof of Theorem 2.3 comes from the work of Bourdon, Cima and Matheson [BCM, Theorem 4.1], where it was shown that the compactness of C_{φ} on BMOA implies its compactness on H^{2}. The proof in [BCM] is based on an integral criterion [BCM, Theorem 3.1] which in our argument will be replaced by an equivalent criterion due to Wirths and Xiao [WX]. The counting function will be controlled using certain methods from the proof due to Shapiro [S, Theorem 2.3] of the fact that C_{φ} is compact on the Hardy space H^{2} if and only if

$$
\begin{equation*}
\lim _{|w| \rightarrow 1} \frac{N(\varphi, w)}{\log (1 /|w|)}=0 \tag{2.4}
\end{equation*}
$$

Note that condition (2.3) clearly implies (2.4).
We recall next some auxiliary results. We will use frequently the following easy identities concerning the automorphisms $\sigma_{a}: z \mapsto(a-z) /(1-\bar{a} z)$: It holds that $\left(\sigma_{a} \circ \sigma_{a}\right)(z)=z$ and $1-\left|\sigma_{a}(z)\right|^{2}=\left(1-|z|^{2}\right)\left|\sigma_{a}^{\prime}(z)\right|$ for all $a, z \in \mathbb{D}$ (see [G, I.1] for example). The relevance of the Nevanlinna counting function is seen from the change of variables formula

$$
\begin{equation*}
\int_{\mathbb{D}}(\lambda \circ \varphi)(z)\left|\varphi^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d A(z)=\int_{\mathbb{D}} \lambda(z) N(\varphi, z) d A(z), \tag{2.5}
\end{equation*}
$$

for positive measurable functions $\lambda: \mathbb{D} \rightarrow \mathbb{R}$, where A denotes the Lebesgue measure on \mathbb{D} (see $[S, 4.3]$). Combined with the Littlewood-Paley identity (see [G, Lemma VI.3.1] or [CoM, Theorem 2.30])

$$
\begin{equation*}
\|f-f(0)\|_{H^{2}}^{2}=2 \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} \log \frac{1}{|z|} \frac{d A(z)}{\pi}, \tag{2.6}
\end{equation*}
$$

formula (2.5) yields the identity

$$
\|f \circ \varphi-f(\varphi(0))\|_{H^{2}}^{2}=2 \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} N(\varphi, z) \frac{d A(z)}{\pi},
$$

for analytic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ and $\varphi: \mathbb{D} \rightarrow \mathbb{D}$. We will also need the following estimate for the integral in (2.6): There is a constant c such that

$$
\begin{equation*}
\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d A(z) \leq c \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z) \tag{2.7}
\end{equation*}
$$

for all analytic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ (see e.g. [G, Lemma VI.3.2]). On the other hand, it is easy to check that $\left(1-|z|^{2}\right) \leq 2 \log (1 /|z|)$ for all $z \in \mathbb{D}$. Finally, we need the "only if"-part of the following result from [WX].
Theorem 2.2 ([WX, Theorem 5.1]). Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be analytic. The composition operator C_{φ} is compact on BMOA if and only if

$$
\lim _{r \rightarrow 1} \sup _{\|f\|_{\text {BMOA }} \leq 1} \sup _{a \in \mathbb{D}} \int_{\{z \in \mathbb{D}:|\varphi(z)|>r\}}\left|(f \circ \varphi)^{\prime}(z)\right|^{2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right) d A(z)=0 .
$$

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1. Assume that C_{φ} is compact on BMOA. Let $0<R<$ 1 and $\varepsilon>0$. Recall that $\sup _{w \in \mathbb{D}}\left\|f_{w}\right\|_{\text {BMOA }}<\infty$, where the functions $f_{w} \in$ BMOA are given by $f_{w}(z)=\log (1-\bar{w} z)$ for $w, z \in \mathbb{D}$. By Theorem 2.2 , there is a number $t_{0} \in(0,1)$ such that

$$
\sup _{a, b, w \in \mathbb{D}} \int_{\left\{z \in \mathbb{D}:|\varphi(z)|>t_{0}\right\}}\left|\left(f_{w} \circ \varphi\right)^{\prime}(u)\right|^{2}\left(1-\left|\left(\sigma_{a} \circ \sigma_{b}\right)(u)\right|^{2}\right) d A(u)<\varepsilon,
$$

since $\left|\left(\sigma_{a} \circ \sigma_{b}\right)(u)\right|=\left|\sigma_{c}(u)\right|$ for some $c \in \mathbb{D}$. Let us abbreviate $\Omega(b)=\{z \in$ $\left.\mathbb{D}:\left|\left(\varphi \circ \sigma_{b}\right)(z)\right|>t_{0}\right\}$ for $b \in \mathbb{D}$. By using the change of variable $u=\sigma_{b}(z)$ and the identities $\left(\sigma_{b} \circ \sigma_{b}\right)(z)=z$ and $1-\left|\sigma_{a}(z)\right|^{2}=\left(1-|z|^{2}\right)\left|\sigma_{a}^{\prime}(z)\right|$, we get that

$$
\begin{aligned}
\varepsilon & >\left.\sup _{a, b, w \in \mathbb{D}} \int_{\Omega(b)}\left|\left(f_{w} \circ \varphi\right)^{\prime}\left(\sigma_{b}(z)\right)\right|^{2}\left|\left(1-\left|\sigma_{a}(z)\right|^{2}\right)\right| \sigma_{b}^{\prime}(z)\right|^{2} d A(z) \\
& =\sup _{b, w \in \mathbb{D}} \sup _{a \in \mathbb{D}} \int_{\Omega(b)}\left|\left(f_{w} \circ \varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)\left|\sigma_{a}^{\prime}(z)\right| d A(z) .
\end{aligned}
$$

Hence the measures $\mu_{b, w}$ given by

$$
d \mu_{b, w}(z)=1_{\Omega(b)} \frac{|w|^{2}\left|\left(\varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2}}{\left|1-\bar{w}\left(\varphi \circ \sigma_{b}\right)(z)\right|^{2}}\left(1-|z|^{2}\right) d A(z),
$$

are Carleson measures for $b, w \in \mathbb{D}$. In particular, by Carleson's theorem (see [G, Lemma VI.3.3] or [CoM, Theorem 2.33]), there is a constant C so that

$$
\begin{equation*}
\sup _{b, w \in \mathbb{D}} \int_{\mathbb{D}}|g|^{2} d \mu_{b, w} \leq C \varepsilon\|g\|_{H^{2}}^{2} \tag{2.8}
\end{equation*}
$$

for all $g \in H^{2}$.
Consider next $b \in \mathbb{D}$ such that $|\varphi(b)| \leq R$. Let k_{w} denote the analytic function given by $k_{w}(z)=\frac{\sqrt{1-|w|^{2}}}{1-\bar{w} z}$ for $w, z \in \mathbb{D}$, so that $\left\|k_{w}\right\|_{H^{2}}=1$. Recall that $\left\|C_{\psi}: H^{2} \rightarrow H^{2}\right\|^{2} \leq 2 /\left(1-|\psi(0)|^{2}\right)$ for all analytic maps $\psi: \mathbb{D} \rightarrow \mathbb{D}$ (see $\left[\mathrm{CoM}\right.$, Corollary 3.7], for instance). Consequently, $\left\|k_{w} \circ \varphi \circ \sigma_{b}\right\|_{H^{2}}^{2} \leq$
$2 /\left(1-R^{2}\right)$ for all $w \in \mathbb{D}$. By choosing $g=k_{w} \circ \varphi \circ \sigma_{b}$ in (2.8) and abbreviating $d \nu(z)=\left(1-|z|^{2}\right) d A(z)$ for $z \in \mathbb{D}$, we get that

$$
\begin{aligned}
\int_{\Omega(b)}\left|\left(k_{w} \circ \varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2} d \nu(z) & =\int_{\Omega(b)} \frac{|w|^{2}\left(1-|w|^{2}\right)\left|\left(\varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2}}{\left|1-\bar{w}\left(\varphi \circ \sigma_{b}\right)(z)\right|^{4}} d \nu(z) \\
& =\int_{\mathbb{D}}\left|\left(k_{w} \circ \varphi \circ \sigma_{b}\right)(z)\right|^{2} d \mu_{b, w}(z) \\
& \leq C \varepsilon\left\|k_{w} \circ \varphi \circ \sigma_{b}\right\|_{H^{2}}^{2} \leq 2 C \varepsilon /\left(1-R^{2}\right)
\end{aligned}
$$

for $b, w \in \mathbb{D}$ such that $|\varphi(b)| \leq R$. Choose next a number $r_{0} \in(0,1)$ so that $\frac{|w|^{2}\left(1-|w|^{2}\right)}{\left(1-|w| t_{0}\right)^{4}}<\varepsilon$ for all $w \in \mathbb{D}$ with $|w|>r_{0}$. Then $\left|\left(k_{w} \circ \varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2} \leq$ $\varepsilon\left|\left(\varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2}$ for such w and $z \in \mathbb{D} \backslash \Omega(b)=\left\{z \in \mathbb{D}:\left|\left(\varphi \circ \sigma_{b}\right)(z)\right| \leq t_{0}\right\}$. Since $\left\|\varphi \circ \sigma_{b}-\varphi(b)\right\|_{H^{2}}^{2} \leq 4$, we get from (2.6) that

$$
\int_{\mathbb{D} \backslash \Omega(b)}\left|\left(k_{w} \circ \varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2} d \nu(z) \leq 2 \varepsilon \int_{\mathbb{D}}\left|\left(\varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d A(z) \leq 4 \pi \varepsilon,
$$

for all $w \in \mathbb{D}$ such that $|w|>r_{0}$. By applying (2.5) to the function $\lambda(z)=$ $\left|k_{w}^{\prime}(z)\right|^{2}$, using (2.7), and combining the above estimates we get that

$$
\begin{array}{r}
\int_{\mathbb{D}}\left|k_{w}^{\prime}(z)\right|^{2} N\left(\varphi \circ \sigma_{b}, z\right) d A(z)=\int_{\mathbb{D}}\left|\left(k_{w} \circ \varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d A(z) \\
\leq c \int_{\mathbb{D}}\left|\left(k_{w} \circ \varphi \circ \sigma_{b}\right)^{\prime}(z)\right|^{2} d \nu(z) \leq c\left(\frac{2 C}{1-R^{2}}+4 \pi\right) \varepsilon,
\end{array}
$$

for all $b, w \in \mathbb{D}$ such that $|\varphi(b)| \leq R$ and $|w|>r_{0}$. Hence we conclude that

$$
\begin{equation*}
\lim _{|w| \rightarrow 1} \sup _{\{b:|\varphi(b)| \leq R\}} \int_{\mathbb{D}}\left|k_{w}^{\prime}(z)\right|^{2} N\left(\varphi \circ \sigma_{b}, z\right) d A(z) \rightarrow 0, \tag{2.9}
\end{equation*}
$$

as $|w| \rightarrow 1$.
We recall finally how condition (2.3) can be obtained from (2.9) by applying some methods from $[\mathrm{S}, 5.4]$ (see also $[\mathrm{CoM}, \mathrm{p} .138]$). Put $s=$ $\max \left\{\frac{1}{2}, \frac{R+1}{2}\right\} \in(0,1)$ and $h=\frac{1-R}{4} \in(0,1)$. Since $\sigma_{w}^{-1}=\sigma_{w}$, we get that

$$
\begin{equation*}
\left|\sigma_{w}^{-1}\left(\left(\varphi \circ \sigma_{b}\right)(0)\right)\right|=\left|\frac{w-\varphi(b)}{1-\bar{w} \varphi(b)}\right| \geq \frac{1}{2}(|w|-|\varphi(b)|)>h, \tag{2.10}
\end{equation*}
$$

for all $w, b \in \mathbb{D}$ such that $|w|>s$ and $|\varphi(b)| \leq R$. Fix next $w \in \mathbb{D}$ such that $|w|>s$. By using the identity $\left(1-|w|^{2}\right)\left|k_{w}^{\prime}(z)\right|^{2}=|w|^{2}\left|\sigma_{w}^{\prime}(z)\right|^{2}$ and the change of variable $u=\sigma_{w}(z)$, we get that

$$
\begin{aligned}
\int_{\mathbb{D}}\left|k_{w}^{\prime}(z)\right|^{2} N\left(\varphi \circ \sigma_{b}, z\right) \frac{d A(z)}{\pi} & =\frac{|w|^{2}}{1-|w|^{2}} \int_{\mathbb{D}} N\left(\varphi \circ \sigma_{b}, z\right)\left|\sigma_{w}^{\prime}(z)\right|^{2} \frac{d A(z)}{\pi} \\
& =\frac{|w|^{2}}{1-|w|^{2}} \int_{\mathbb{D}} N\left(\varphi \circ \sigma_{b}, \sigma_{w}(u)\right) \frac{d A(u)}{\pi}
\end{aligned}
$$

Moreover, (2.10) and the sub-mean value property of $N(\varphi, \cdot)$ (see [S, 4.6] or [CoM, p. 137]) give that

$$
\int_{h \mathbb{D}} N\left(\varphi \circ \sigma_{b}, \sigma_{w}(u)\right) \frac{d A(u)}{\pi} \geq h^{2} N\left(\varphi \circ \sigma_{b}, w\right) .
$$

Thus

$$
\int_{\mathbb{D}}\left|k_{w}^{\prime}(z)\right|^{2} N\left(\varphi \circ \sigma_{b}, z\right) \frac{d A(z)}{\pi} \geq \frac{|w|^{2} h^{2} N\left(\varphi \circ \sigma_{b}, w\right)}{\left(1-|w|^{2}\right)} \geq \frac{h^{2}}{8} \frac{N\left(\varphi \circ \sigma_{b}, w\right)}{\log (1 /|w|)},
$$

for all $w \in \mathbb{D}$ such that $|w|>s$ and $|\varphi(b)| \leq R$. Condition (2.3) follows now from (2.9).

3. Vector-valued BMOA and composition operators

In the sequel $X=\left(X,\|\cdot\|_{X}\right)$ will always be a complex Banach space. We will consider the following versions of X-valued BMOA (see [Bl], [Bl2], [L]).

Definition 3.1. (1) The space $\operatorname{BMOA}(X)$ consists of the analytic functions $f: \mathbb{D} \rightarrow X$ such that $\|f\|_{*, X}=\sup _{a \in \mathbb{D}}\left\|f \circ \sigma_{a}-f(a)\right\|_{H^{1}(X)}<\infty$, where $\|\cdot\|_{H^{1}(X)}$ denotes the norm on the X-valued Hardy space $H^{1}(X)$ given by $\|f\|_{H^{1}(X)}=\sup _{0<r<1} \int_{0}^{2 \pi}\left\|f\left(r e^{i \theta}\right)\right\|_{X} \frac{d \theta}{2 \pi}$. We equip $\operatorname{BMOA}(X)$ with the complete norm

$$
\|f\|_{\operatorname{BMOA}(X)}=\|f(0)\|+\|f\|_{*, X} .
$$

(2) The space $w \operatorname{BMOA}(X)$, a weak vector-valued version of BMOA, consists of the analytic functions $f: \mathbb{D} \rightarrow X$ such that $x^{*} \circ f \in$ BMOA for every functional $x^{*} \in X^{*}$. The complete norm on $w \operatorname{BMOA}(X)$ is given by

$$
\|f\|_{w \operatorname{BMOA}(X)}=\sup _{\left\|x^{*}\right\| \leq 1}\left\|x^{*} \circ f\right\|_{\mathrm{BMOA}} .
$$

(3) The space $\mathrm{BMOA}_{\mathcal{C}}(X)$ consists of the analytic functions $f: \mathbb{D} \rightarrow X$ such that

$$
\|f\|_{\mathcal{C}, X}^{2}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left\|f^{\prime}(z)\right\|_{X}^{2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right) \frac{d A(z)}{\pi}<\infty .
$$

We equip $\operatorname{BMOA}_{\mathcal{C}}(X)$ with the complete norm $\|f\|_{\operatorname{BMOA}_{\mathcal{C}}(X)}=\|f(0)\|+$ $\|f\|_{\mathcal{C}, X}$.

Note that the space $\mathrm{BMOA}_{\mathcal{C}}(X)$ can be characterized in terms of certain Carleson measures. In fact, by using the identity $1-\left|\sigma_{a}(z)\right|^{2}=(1-$ $\left.|z|^{2}\right)\left|\sigma_{a}^{\prime}(z)\right|$ and a theorem of Carleson (see [G, Lemma VI.3.3] or [CoM, Theorem 2.33]) we get that $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$ if and only if the measure $d \mu_{f}(z)=\left\|f^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) d A(z)$ is a Carleson measure.

It is known that the seminorms $\|\cdot\|_{*, \mathbb{C}}$ and $\|\cdot\|_{\mathcal{C}, \mathbb{C}}$ are comparable in the special case where $X=\mathbb{C}$ (one checks this fact from (2.6) and (2.7) using a change of variables). In fact, $\mathrm{BMOA}=\mathrm{BMOA}(\mathbb{C})=w \mathrm{BMOA}(\mathbb{C})=$ $\mathrm{BMOA}_{\mathcal{C}}(\mathbb{C})$ with equivalent norms. In the general case, however, these spaces are usually different. By [Bl2, Corollary 1.1] the spaces BMOA (X) and $\mathrm{BMOA}_{\mathcal{C}}(X)$ coincide, and the respective norms are equivalent, if and only if X is isomorphic to a Hilbert space. It is also known that $\operatorname{BMOA}(X)=$ $w \operatorname{BMOA}(X)$, and the respective norms are equivalent, if and only if X is finite-dimensional (see e.g. [L, Example 15]). The following result complements these facts.

Proposition 3.2. The spaces $\mathrm{BMOA}_{\mathcal{C}}(X)$ and $w \operatorname{BMOA}(X)$ coincide, and the respective norms are equivalent, if and only if X is finite-dimensional.

Proof. Let X be any complex Banach space. We get from (2.6), (2.7) and the change of variables $w=\sigma_{a}(z)$ that

$$
\begin{aligned}
& \left\|x^{*} \circ f \circ \sigma_{a}-x^{*}(f(a))\right\|_{H^{2}}^{2} \leq 2 c \int_{\mathbb{D}}\left|\left(x^{*} \circ f \circ \sigma_{a}\right)^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z) \\
& \quad=2 c \int_{\mathbb{D}}\left|\left(x^{*} \circ f\right)^{\prime}(w)\right|^{2}\left(1-\left|\sigma_{a}(w)\right|^{2}\right) d A(w) \leq 2 c\left\|x^{*}\right\|_{X^{*}}^{2}\|f\|_{\mathcal{C}, X}^{2},
\end{aligned}
$$

for $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$ and $x^{*} \in X^{*}$, where we also used the identity (σ_{a} 。 $\left.\sigma_{a}\right)(w)=w$. Thus $\|f\|_{w \operatorname{BMOA}(X)} \leq \sqrt{2 c}\|f\|_{\mathrm{BMOA}_{\mathcal{C}}(X)}$ for $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$. Moreover, if $\operatorname{dim}(X)=n<\infty$, then it is not difficult to find a constant C (depending on n) such that $\|f\|_{\mathrm{BMOA}_{\mathcal{C}}(X)} \leq C\|f\|_{w \operatorname{BMOA}(X)}$ for all $f \in$ $w \operatorname{BMOA}(X)$.

Assume next that X is infinite-dimensional. Let $n \in \mathbb{N}$. By Dvoretzky's theorem (see e.g. [DJT, Theorem 19.1]) there exists an n-dimensional subspace $E_{n} \subset X$ and a linear isomorphism $T_{n}: \ell_{2}^{n} \rightarrow E_{n}$ so that $\left\|T_{n}\right\| \leq 2$ and $\left\|T_{n}^{-1}\right\|=1$. Define the analytic function $f_{n}: \mathbb{D} \rightarrow X$ by

$$
f_{n}(z)=\sum_{k=1}^{n} \frac{\left(T_{n} e_{k}\right) z^{k}}{\sqrt{k}}
$$

for $z \in \mathbb{D}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis of ℓ_{2}^{n}. Then the argument in [L, p. 744] shows that $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{w \operatorname{BMOA}(X)}<\infty$. On the other hand, since

$$
\left\|f_{n}^{\prime}(z)\right\|_{X}^{2}=\left\|\sum_{k=1}^{n} \sqrt{k}\left(T_{n} e_{k}\right) z^{k-1}\right\|_{X}^{2} \geq\left\|\sum_{k=1}^{n} \sqrt{k} e_{k} z^{k-1}\right\|_{\ell_{2}^{n}}^{2}=\sum_{k=1}^{n} k|z|^{2(k-1)},
$$

we get that

$$
\left\|f_{n}\right\|_{\mathcal{C}, X}^{2} \geq 2 \sum_{k=1}^{n} k \int_{0}^{1} r^{2(k-1)}\left(1-r^{2}\right) r d r=\sum_{k=1}^{n} \frac{1}{k+1} \geq \frac{\log n}{2} .
$$

Thus $\left\|f_{n}\right\|_{\mathrm{BMOA}_{\mathcal{C}}(X)} \rightarrow \infty$ as $n \rightarrow \infty$, which shows that the norms are not equivalent. Moreover, by using the open mapping theorem we get that $\operatorname{BMOA}_{\mathcal{C}}(X) \subsetneq w \operatorname{BMOA}(X)$.

We consider next the composition operators $C_{\varphi}: f \mapsto f \circ \varphi$ on the space $\operatorname{BMOA}_{\mathcal{C}}(X)$. It is known that for every analytic map $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ the operator C_{φ} is bounded on $\operatorname{BMOA}(X)$ and $w \operatorname{BMOA}(X)$ (see [L, Proposition 3] and e.g. [LT, Theorem 5.2]). We sketch here for completeness a proof that C_{φ} is bounded on $\mathrm{BMOA}_{\mathcal{C}}(X)$ for any complex Banach space X. We need first a vector-valued version of (2.7): It holds that

$$
\begin{equation*}
\int_{\mathbb{D}}\left\|f^{\prime}(z)\right\|_{X}^{2} \log \frac{1}{|z|} d A(z) \leq c \int_{\mathbb{D}}\left\|f^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) d A(z) \tag{3.1}
\end{equation*}
$$

for any complex Banach space X and analytic function $f: \mathbb{D} \rightarrow X$. In fact, the proof of (3.1) in [G, Lemma VI.3.2] remains valid also in the vectorvalued setting, since the map $z \mapsto\left\|f^{\prime}(z)\right\|_{X}^{2}$ is subharmonic. Moreover, by the change of variable $w=\sigma_{a}(z)$ and the identity $\left(\sigma_{a} \circ \sigma_{a}\right)(z)=z$ we get that

$$
\begin{equation*}
\int_{\mathbb{D}}\left\|f^{\prime}(w)\right\|_{X}^{2}\left(1-\left|\sigma_{a}(w)\right|^{2}\right) d A(w)=\int_{\mathbb{D}}\left\|\left(f \circ \sigma_{a}\right)^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) d A(z), \tag{3.2}
\end{equation*}
$$

for all analytic functions $f: \mathbb{D} \rightarrow X$. By using the estimate $\left(1-|z|^{2}\right) \leq$ $2 \log (1 /|z|)$, we get from (3.1) and (3.2) that

$$
\begin{equation*}
\|f\|_{\mathcal{C}, X}^{2} \leq 2 \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left\|\left(f \circ \sigma_{a}\right)^{\prime}(z)\right\|_{X}^{2} \log \frac{1}{|z|} \frac{d A(z)}{\pi} \leq 2 c\|f\|_{\mathcal{C}, X}^{2} . \tag{3.3}
\end{equation*}
$$

Recall also that by an inequality due to Littlewood it holds that $N(\varphi \circ$ $\left.\sigma_{a}, z\right) \leq N\left(\sigma_{\varphi(a)}, z\right)$ for all $z \in \mathbb{D} \backslash\{\varphi(a)\}$ and $a \in \mathbb{D}$ (see [S, p. 380] or [CoM, p. 33]). The fact that C_{φ} is bounded on $\mathrm{BMOA}_{\mathcal{C}}(X)$ can then be seen from (3.3) and the formula (2.5) applied to the function $\lambda(z)=\left\|f^{\prime}(z)\right\|_{X}^{2}$. Indeed, we have that

$$
\begin{aligned}
\|f \circ \varphi\|_{\mathcal{C}, X}^{2} & \leq 2 \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left\|\left(f \circ \varphi \circ \sigma_{a}\right)^{\prime}(z)\right\|_{X}^{2} \log \frac{1}{|z|} \frac{d A(z)}{\pi} \\
& =2 \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left\|f^{\prime}(z)\right\|_{X}^{2} N\left(\varphi \circ \sigma_{a}, z\right) \frac{d A(z)}{\pi} \\
& \leq 2 \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left\|f^{\prime}(z)\right\|_{X}^{2} N\left(\sigma_{\varphi(a)}, z\right) \frac{d A(z)}{\pi} \\
& =2 \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left\|\left(f \circ \sigma_{\varphi(a)}\right)^{\prime}(z)\right\|_{X}^{2} \log \frac{1}{|z|} \frac{d A(z)}{\pi} \leq 2 c\|f\|_{\mathcal{C}, X}^{2}
\end{aligned}
$$

for all $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$. The upper bound

$$
\begin{equation*}
\left\|C_{\varphi}: \operatorname{BMOA}_{\mathcal{C}}(X) \rightarrow \operatorname{BMOA}_{\mathcal{C}}(X)\right\| \leq \sqrt{2 c}+\frac{1}{\sqrt{2}} \log \frac{1+|\varphi(0)|}{1-|\varphi(0)|} \tag{3.4}
\end{equation*}
$$

can be calculated from the above estimate and the following lemma, which will be useful in the sequel.
Lemma 3.3. Let $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$ and $R \in(0,1)$ be arbitrary. Then

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{0}^{2 \pi}\left\|\left(f \circ \sigma_{a}\right)^{\prime}\left(R e^{i \theta}\right)\right\|_{X}^{2} \frac{d \theta}{2 \pi} \leq \frac{2\|f\|_{\mathcal{C}, X}^{2}}{\left(1-R^{2}\right)^{2}} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f(z)\|_{X} \leq\|f(0)\|_{X}+\frac{1}{\sqrt{2}}\|f\|_{\mathcal{C}, X} \log \frac{1+|z|}{1-|z|} \tag{3.6}
\end{equation*}
$$

for every $z \in \mathbb{D}$.
Proof. Let $R \in(0,1), a \in \mathbb{D}$ and $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$. Recall that since the function $z \mapsto\left\|\left(f \circ \sigma_{a}\right)^{\prime}(z)\right\|_{X}^{2}$ is subharmonic on \mathbb{D}, the integral $\int_{0}^{2 \pi} \|(f \circ$ $\left.\sigma_{a}\right)^{\prime}\left(\rho e^{i \theta}\right) \|_{X}^{2} d \theta$ increases with $\rho \in(0,1)$. By using (3.2) we get that

$$
\begin{aligned}
\|f\|_{\mathcal{C}, X}^{2} & \geq \int_{\mathbb{D}}\left\|\left(f \circ \sigma_{a}\right)^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) \frac{d A(z)}{\pi} \\
& \geq \frac{1}{\pi} \int_{R}^{1} \int_{0}^{2 \pi}\left\|\left(f \circ \sigma_{a}\right)^{\prime}\left(r e^{i \theta}\right)\right\|_{X}^{2} d \theta\left(1-r^{2}\right) r d r \\
& \geq \frac{1}{\pi} \int_{0}^{2 \pi}\left\|\left(f \circ \sigma_{a}\right)^{\prime}\left(R e^{i \theta}\right)\right\|_{X}^{2} d \theta \int_{R}^{1}\left(1-r^{2}\right) r d r \\
& =\frac{\left(1-R^{2}\right)^{2}}{4 \pi} \int_{0}^{2 \pi}\left\|\left(f \circ \sigma_{a}\right)^{\prime}\left(R e^{i \theta}\right)\right\|_{X}^{2} d \theta
\end{aligned}
$$

This proves (3.5). From the Hölder inequality we get that

$$
\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|_{X}=\left\|\left(f \circ \sigma_{z}\right)^{\prime}(0)\right\|_{X} \leq\left(\int_{0}^{2 \pi}\left\|\left(f \circ \sigma_{z}\right)^{\prime}\left(R e^{i \theta}\right)\right\|_{X}^{2} \frac{d \theta}{2 \pi}\right)^{1 / 2}
$$

for every $z \in \mathbb{D}$ and $R \in(0,1)$. Thus (3.5) gives that

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|_{X} \leq \sqrt{2}\|f\|_{\mathcal{C}, X}, \tag{3.7}
\end{equation*}
$$

for every $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$. Since $f(z)-f(0)=e^{i \theta} \int_{0}^{|z|} f^{\prime}\left(t e^{i \theta}\right) d t$ for every $z=|z| e^{i \theta} \in \mathbb{D}$, this yields that

$$
\|f(z)-f(0)\|_{X} \leq \sqrt{2}\|f\|_{\mathcal{C}, X} \int_{0}^{|z|} \frac{1}{1-t^{2}} d t=\frac{1}{\sqrt{2}}\|f\|_{\mathcal{C}, X} \log \frac{1+|z|}{1-|z|}
$$

which proves (3.6).

4. Weakly compact composition operators on $\mathrm{BMOA}_{\mathcal{C}}(X)$

Recall that a bounded linear map T on a Banach space E is weakly compact if $\overline{T B_{E}}$ is a weakly compact set, where B_{E} is the closed unit ball of E. We note that if the composition operator $C_{\varphi}: f \mapsto f \circ \varphi$ is weakly compact on $\mathrm{BMOA}_{\mathcal{C}}(X)$, then X is reflexive and C_{φ} is weakly compact also on BMOA. In fact, since $C_{\varphi}\left(f_{x}\right)=f_{x}$ for the constant functions $f_{x} \equiv x$ (where $x \in X$), the weak compactness of C_{φ} on $\operatorname{BMOA}_{\mathcal{C}}(X)$ yields that $\overline{B_{X}}$ is weakly compact so that X is reflexive. Moreover, given some nonzero $x_{0} \in X$, we get that C_{φ} is weakly compact on the closed subspace $x_{0} \mathrm{BMOA}_{\mathcal{C}}(\mathbb{C})=\left\{x_{0} f: f \in \mathrm{BMOA}_{\mathcal{C}}(\mathbb{C})\right\}$ of $\mathrm{BMOA}_{\mathcal{C}}(X)$. Since BMOA is obviously isomorphic to $x_{0} \mathrm{BMOA}_{\mathcal{C}}(\mathbb{C})$, we deduce that C_{φ} is weakly compact on BMOA. Note also that if X is infinite-dimensional, then composition operators C_{φ} are never compact on $\mathrm{BMOA}_{\mathcal{C}}(X)$.

Our main result provides a sufficient condition for the weak compactness of composition operators on $\mathrm{BMOA}_{\mathcal{C}}(X)$.

Theorem 4.1. Let X be a reflexive Banach space and suppose that $\varphi: \mathbb{D} \rightarrow$ \mathbb{D} is an analytic map such that $C_{\varphi}: \mathrm{BMOA} \rightarrow \mathrm{BMOA}$ is compact. Then $C_{\varphi}: \mathrm{BMOA}_{\mathcal{C}}(X) \rightarrow \mathrm{BMOA}_{\mathcal{C}}(X)$ is weakly compact.

Theorem 4.1 complements [L, Theorem 7] and [BDL, Proposition 11] where it is shown that if X is reflexive and C_{φ} is compact on BMOA, then C_{φ} is weakly compact on both $\operatorname{BMOA}(X)$ and $w \operatorname{BMOA}(X)$. In the case of $w \operatorname{BMOA}(X)$ this result follows from a general theorem for composition operators on a large class of vector-valued spaces of weak type. In the case of $\operatorname{BMOA}(X)$ the proof is essentially a vector-valued modification of Smith's characterization of the compact composition operators on BMOA (see conditions (2.1) and (2.2)). We start the proof of Theorem 4.1 by combining (2.1) and Theorem 2.1: If C_{φ} is compact on BMOA, then

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{\{a \in \mathbb{D}:|\varphi(a)|>r\}} \sup _{0<|w|<1}|w|^{2} N\left(\sigma_{\varphi(a)} \circ \varphi \circ \sigma_{a}, w\right)=0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|w| \rightarrow 1} \sup _{\{a \in \mathbb{D}:|\varphi(a)| \leq R\}} \frac{N\left(\varphi \circ \sigma_{a}, w\right)}{\log (1 /|w|)}=0, \tag{4.2}
\end{equation*}
$$

for every $R \in(0,1)$. The remaining parts of the argument are essentially contained in the following two lemmas which will be proved below. Here C_{r} denotes the linear operator given by $\left(C_{r} f\right)(z)=f(r z)$ for analytic functions $f: \mathbb{D} \rightarrow X$ and $r \in(0,1)$.

Lemma 4.2. The operators $C_{r}: \operatorname{BMOA}_{\mathcal{C}}(X) \rightarrow \operatorname{BMOA}_{\mathcal{C}}(X)$ satisfy the following properties for $r \in(0,1)$.
(1) $\sup _{0<r<1}\left\|C_{r}\right\|<\infty$.
(2) For every $0<R<1$, one has
$\sup \sup _{\max }\left\{\left\|\left(f-C_{r} f\right)^{\prime}(z)\right\|_{X},\left\|\left(f-C_{r} f\right)(z)\right\|_{X}\right\} \rightarrow 0$,
$\|f\|_{\text {BMOA }_{\mathcal{C}}(X)} \leq 1|z| \leq R$

$$
\text { as } r \rightarrow 1 \text {. }
$$

(3) If X is reflexive, then C_{r} is weakly compact on $\operatorname{BMOA}_{\mathcal{C}}(X)$.

Lemma 4.3. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic map such that conditions (4.1) and (4.2) hold. Then

$$
\left\|C_{\varphi}-C_{\varphi} C_{r}: \operatorname{BMOA}_{\mathcal{C}}(X) \rightarrow \operatorname{BMOA}_{\mathcal{C}}(X)\right\| \rightarrow 0
$$

as $r \rightarrow 1$.
We note that the proof of Theorem 4.1 is easy to complete by using Lemmas 4.2 and 4.3. Indeed, assume that X is reflexive and C_{φ} is compact on BMOA so that (4.1) and (4.2) hold. Let $r_{n}=\frac{n}{n+1}$ and consider the linear operators $T_{n}=C_{\varphi} C_{r_{n}}$ for $n \in \mathbb{N}$. By parts (1) and (3) of Lemma 4.2 the operators T_{n} are bounded and weakly compact on $\mathrm{BMOA}_{\mathcal{C}}(X)$. Since $\left\|C_{\varphi}-T_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ by Lemma 4.3, the operator C_{φ} is weakly compact on $\mathrm{BMOA}_{\mathcal{C}}(X)$. This proves Theorem 4.1.

We prove next Lemmas 4.2 and 4.3.
Proof of Lemma 4.2. The assertion (1) follows from the fact that C_{r} is the composition operator induced by the mapping $z \mapsto r z$. In fact, from (3.4) we get that $\left\|C_{r}\right\| \leq \sqrt{2 c}$ for every $r \in(0,1)$ (where c is the constant from (2.7)).

We prove next (2). Let $0<r, R<1$. Consider an analytic function $f: \mathbb{D} \rightarrow X$ and a point $z \in \mathbb{D}$. Put $\rho=(|z|+1) / 2$ so that $|r z|<|z|<\rho<1$. Using the Cauchy integral formula we obtain that

$$
\begin{aligned}
& \left\|f^{\prime}(z)-r f^{\prime}(r z)\right\|_{X}=\left\|\int_{0}^{2 \pi}\left(\frac{\rho f^{\prime}\left(\rho e^{i \theta}\right)}{\rho-z e^{-i \theta}}-\frac{\rho r f^{\prime}\left(\rho e^{i \theta}\right)}{\rho-r z e^{-i \theta}}\right) \frac{d \theta}{2 \pi}\right\|_{X} \\
\leq & \int_{0}^{2 \pi} \frac{(1-r)\left\|f^{\prime}\left(\rho e^{i \theta}\right)\right\|_{X}}{\left|\rho-z e^{-i \theta}\right|\left|\rho-r z e^{-i \theta}\right|} \frac{d \theta}{2 \pi} \leq \frac{4(1-r)}{(1-|z|)^{2}} \int_{0}^{2 \pi}\left\|f^{\prime}\left(\rho e^{i \theta}\right)\right\|_{X} \frac{d \theta}{2 \pi} .
\end{aligned}
$$

From the Hölder inequality and Lemma 3.3 we get that

$$
\begin{equation*}
\left\|\left(f-C_{r} f\right)^{\prime}(z)\right\|_{X} \leq \frac{4 \sqrt{2}(1-r)}{(1-|z|)^{2}\left(1-\rho^{2}\right)}\|f\|_{\mathcal{C}, X} \leq \frac{16(1-r)}{(1-|z|)^{3}}\|f\|_{\mathcal{C}, X} . \tag{4.3}
\end{equation*}
$$

Moreover, since $\left(f-C_{r} f\right)(z)=e^{i \theta} \int_{0}^{|z|}\left(f-C_{r} f\right)^{\prime}\left(t e^{i \theta}\right) d t$ where $z=|z| e^{i \theta}$, we have that

$$
\begin{equation*}
\left\|\left(f-C_{r} f\right)(z)\right\|_{X} \leq 16(1-r)\|f\|_{\mathcal{C}, X} \int_{0}^{|z|} \frac{d t}{(1-t)^{3}} \leq \frac{8(1-r)}{(1-|z|)^{2}}\|f\|_{\mathcal{C}, X} \tag{4.4}
\end{equation*}
$$

We obtain (2) by taking the supremum over all $z \in \mathbb{D}$ and f satisfying $|z| \leq R$ and $\|f\|_{\operatorname{BMOA}_{\mathcal{C}}(X)} \leq 1$ in (4.3) and (4.4), and letting $r \rightarrow 1$.

Finally we prove (3). We will approximate C_{r} using the truncation operators P_{n}, where $\left(P_{n} f\right)(z)=\sum_{k=0}^{n} x_{k} z^{k}$ for $f(z)=\sum_{k=0}^{\infty} x_{k} z^{k}$ in $\operatorname{BMOA}_{\mathcal{C}}(X)$ and $n \geq 0$. We note first that the operators P_{n} are bounded on $\mathrm{BMOA}_{\mathcal{C}}(X)$. Indeed, for any analytic function $f: \mathbb{D} \rightarrow X$ with $f(z)=\sum_{k=0}^{\infty} x_{k} z^{k}$ we have that $\left\|x_{0}\right\|_{X}=\|f(0)\|_{X} \leq\|f\|_{\operatorname{BMOA}_{\mathcal{C}}(X)}$. Moreover, there is a constant K such that $\sup _{k \geq 1}\left\|x_{k}\right\|_{X} \leq K \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|_{X}$ for all $f \in$ $\operatorname{BMOA}_{\mathcal{C}}(X)$. Here one may apply the familiar scalar-valued argument (see [Bl3, p. 101], for example). By applying (3.7) we get that $\sup _{k \geq 1}\left\|x_{k}\right\|_{X} \leq$ $\sqrt{2} K\|f\|_{\mathrm{BMOA}_{\mathcal{C}}(X)}$. Since $\left\|z^{n}\right\|_{\mathrm{BMOA}_{\mathcal{C}}(\mathbb{C})} \leq 1$ for $n \geq 1$, we obtain that $\left\|P_{n}\right\| \leq \sqrt{2} K(n+1)$.

Let next $\varepsilon>0$ and fix n_{0} so that $\sum_{k=n_{0}+1}^{\infty} k r^{k}<\varepsilon$. For any $z \in \mathbb{D}$ and $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$ with $f(z)=\sum_{k=0}^{\infty} x_{k} z^{k}$ we get that

$$
\left\|\left(\left(C_{r}-P_{n_{0}} C_{r}\right) f\right)^{\prime}(z)\right\|_{X} \leq \sum_{k=n_{0}+1}^{\infty}\left\|x_{k}\right\|_{X} r^{k} k|z|^{k-1} \leq \sqrt{2} K \varepsilon\|f\|_{\mathrm{BMOA}_{\mathcal{C}}(X)}
$$

Since $\left\|\left(C_{r}-P_{n_{0}} C_{r}\right) f\right\|_{\text {BMOA }_{\mathcal{C}}(X)} \leq \sup _{z \in \mathbb{D}}\left\|\left(\left(C_{r}-P_{n_{0}} C_{r}\right) f\right)^{\prime}(z)\right\|_{X}$ by the definition of the $\operatorname{BMOA}_{\mathcal{C}}(X)$ norm, we get that $\left\|C_{r}-P_{n} C_{r}\right\| \rightarrow 0$ as $n \rightarrow \infty$. The proof of (3) is completed by noting that for every $n \in \mathbb{N}$ the operator P_{n} is weakly compact on $\mathrm{BMOA}_{\mathcal{C}}(X)$ since it factors through the reflexive direct sum $\ell_{2}^{n+1}(X)$ (see the proof of [LST, Proposition 2]).

For the proof of Lemma 4.3 we need a refinement of condition (2.1) due to Smith [Sm, Lemma 2.1]. For convenience, we use the following technical modification of Smith's result from [L].
Lemma 4.4 ([L, Lemma 10]). Let $\psi: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic function with $\psi(0)=0$. Suppose that there is $\varepsilon \in\left(0, \frac{1}{e}\right)$ such that

$$
\sup _{0<|w|<1}|w|^{2} N(\psi, w) \leq \varepsilon^{2}
$$

Then $N(\psi, z) \leq 2 \varepsilon \log (1 /|z|)$ for all $z \in \mathbb{D}$ with $\sqrt{\varepsilon} \leq|z|<1$.
We are now ready to prove Lemma 4.3.
Proof of Lemma 4.3. For $r \in(0,1)$ let S_{r} denote the linear operator $f \mapsto$ $f-C_{r} f$ so that $\left\|S_{r}\right\| \leq K:=1+\sqrt{2 c}$, by Lemma 4.2(1). Since

$$
\left.\lim _{r \rightarrow 1} \sup _{\|f\|_{\text {BMOA }}^{\mathcal{C}}(X)} \leq 1\right]\left(f-C_{r} f\right)(\varphi(0)) \|_{X}=0,
$$

by Lemma 4.2(2), it suffices to show that

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{\|f\|_{\mathrm{BMOA}}^{\mathcal{C}}(X)} \leq 1 \sup _{a \in \mathbb{D}} M_{a}\left(C_{\varphi} S_{r} f\right)=0, \tag{4.5}
\end{equation*}
$$

where we denote

$$
M_{a}(g)=\int_{\mathbb{D}}\left\|g^{\prime}(z)\right\|_{X}^{2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right) \frac{d A(z)}{\pi},
$$

for $g \in \operatorname{BMOA}_{\mathcal{C}}(X)$ and $a \in \mathbb{D}$. Let $\varepsilon \in\left(0, \frac{1}{e}\right)$ and let $f \in \operatorname{BMOA}_{\mathcal{C}}(X)$ be arbitrary. We will abbreviate $\varphi_{a}=\sigma_{\varphi(a)} \circ \varphi \circ \sigma_{a}$ and $g_{r, a}=\left(S_{r} f\right) \circ$
$\sigma_{\varphi(a)}$ for all $a \in \mathbb{D}$ and $r \in(0,1)$. By (4.1) there is $R \in(0,1)$ such that $\sup _{0<|w|<1}|w|^{2} N\left(\varphi_{a}, w\right)<\varepsilon^{2}$ for all $a \in \mathbb{D}$ with $|\varphi(a)|>R$. Since $\varphi_{a}(0)=0$, we get from Lemma 4.4 that

$$
\begin{equation*}
N\left(\varphi_{a}, z\right) \leq 2 \varepsilon \log (1 /|z|) \tag{4.6}
\end{equation*}
$$

for all $a, z \in \mathbb{D}$ such that $|\varphi(a)|>R$ and $\sqrt{\varepsilon} \leq|z|<1$. Using (3.2) and the identity $\left(C_{\varphi} S_{r} f\right) \circ \sigma_{a}=g_{r, a} \circ \varphi_{a}$ we get that

$$
M_{a}\left(C_{\varphi} S_{r} f\right)=\int_{\mathbb{D}}\left\|\left(g_{r, a} \circ \varphi_{a}\right)^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) \frac{d A(z)}{\pi} .
$$

Thus the estimate $\left(1-|z|^{2}\right) \leq 2 \log (1 /|z|)$ and the formula (2.5) applied to the function $\lambda(z)=\left\|g_{r, a}^{\prime}(z)\right\|_{X}^{2}$ give that

$$
\begin{equation*}
M_{a}\left(C_{\varphi} S_{r} f\right) \leq 2 \int_{\mathbb{D}}\left\|g_{r, a}^{\prime}(z)\right\|_{X}^{2} N\left(\varphi_{a}, z\right) \frac{d A(z)}{\pi}, \tag{4.7}
\end{equation*}
$$

for all $r \in(0,1)$. By applying (4.6), (3.1) and (3.2), we get that

$$
\begin{aligned}
& \int_{\sqrt{\varepsilon} \leq|z|<1}\left\|g_{r, a}^{\prime}(z)\right\|_{X}^{2} N\left(\varphi_{a}, z\right) \frac{d A(z)}{\pi} \leq 2 \varepsilon \int_{\mathbb{D}}\left\|g_{r, a}^{\prime}(z)\right\|_{X}^{2} \log \frac{1}{|z|} \frac{d A(z)}{\pi} \\
& \quad \leq 2 c \varepsilon \int_{\mathbb{D}}\left\|\left(\left(S_{r} f\right) \circ \sigma_{\varphi(a)}\right)^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) \frac{d A(z)}{\pi} \leq 2 c \varepsilon\left\|S_{r} f\right\|_{\mathcal{C}, X}^{2},
\end{aligned}
$$

for $a \in \mathbb{D}$ such that $|\varphi(a)|>R$. On the other hand, recall that $N\left(\varphi_{a}, z\right) \leq$ $\log (1 /|z|)$ for $z \in \mathbb{D} \backslash\{0\}$ by Littlewood's inequality (see [S, p. 380] or [CoM, p. 33]). Thus we get from Lemma 3.3 that

$$
\begin{array}{r}
\int_{|z|<\sqrt{\varepsilon}}\left\|g_{r, a}^{\prime}(z)\right\|_{X}^{2} N\left(\varphi_{a}, z\right) \frac{d A(z)}{\pi} \leq \int_{|z|<\sqrt{\varepsilon}}\left\|g_{r, a}^{\prime}(z)\right\|_{X}^{2} \log \frac{1}{|z|} \frac{d A(z)}{\pi} \\
=2 \int_{0}^{\sqrt{\varepsilon}} \int_{0}^{2 \pi}\left\|\left(\left(S_{r} f\right) \circ \sigma_{\varphi(a)}\right)^{\prime}\left(\rho e^{i \theta}\right)\right\|_{X}^{2} \frac{d \theta}{2 \pi}\left(\log \frac{1}{\rho}\right) \rho d \rho \\
\\
\leq \frac{4\left\|S_{r} f\right\|_{\mathcal{C}, X}^{2}}{(1-\varepsilon)^{2}} \int_{0}^{\sqrt{\varepsilon}}\left(\log \frac{1}{\rho}\right) \rho d \rho \leq \frac{4 \sqrt{\varepsilon}}{\left(1-\frac{1}{e}\right)^{2}}\left\|S_{r} f\right\|_{\mathcal{C}, X}^{2} .
\end{array}
$$

By combining these estimates with (4.7) we get that

$$
\begin{equation*}
\sup _{\{a \in \mathbb{D}:|\varphi(a)|>R\}} M_{a}\left(C_{\varphi} S_{r} f\right) \leq C(\varepsilon+\sqrt{\varepsilon})\|f\|_{\mathrm{BMOA}_{\mathcal{C}}(X)}^{2} \tag{4.8}
\end{equation*}
$$

for all $r \in(0,1)$, where C is a constant.
We consider next $a \in \mathbb{D}$ such that $|\varphi(a)| \leq R$. By (4.2) there is $t_{0} \in(0,1)$ such that

$$
\begin{equation*}
N\left(\varphi \circ \sigma_{a}, z\right) \leq \varepsilon \log (1 /|z|), \tag{4.9}
\end{equation*}
$$

for every $a, z \in \mathbb{D}$ satisfying $|\varphi(a)| \leq R$ and $|z|>t_{0}$. Using Lemma 4.2(2) we choose $r_{0} \in(0,1)$ so that

$$
\begin{equation*}
\sup _{|z| \leq t_{0}}\left\|\left(S_{r} f\right)^{\prime}(z)\right\|_{X}^{2} \leq \varepsilon\|f\|_{\mathrm{BMOA}_{\mathcal{C}}(X)}^{2} \tag{4.10}
\end{equation*}
$$

for all $r \geq r_{0}$. Using (3.2), the estimate $\left(1-|z|^{2}\right) \leq 2 \log (1 /|z|)$ and the formula (2.5) applied to the function $\lambda(z)=\left\|\left(S_{r} f\right)^{\prime}(z)\right\|_{X}^{2}$ we get that

$$
\begin{align*}
M_{a}\left(C_{\varphi} S_{r} f\right) & =\int_{\mathbb{D}}\left\|\left(\left(S_{r} f\right) \circ \varphi \circ \sigma_{a}\right)^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) \frac{d A(z)}{\pi} \\
& \leq 2 \int_{\mathbb{D}}\left\|\left(S_{r} f\right)^{\prime}(z)\right\|_{X}^{2} N\left(\varphi \circ \sigma_{a}, z\right) \frac{d A(z)}{\pi} . \tag{4.11}
\end{align*}
$$

From (4.9) and (3.1) we get that

$$
\begin{array}{r}
\int_{t_{0}<|z|<1}\left\|\left(S_{r} f\right)^{\prime}(z)\right\|_{X}^{2} N\left(\varphi \circ \sigma_{a}, z\right) \frac{d A(z)}{\pi} \leq \varepsilon \int_{\mathbb{D}}\left\|\left(S_{r} f\right)^{\prime}(z)\right\|_{X}^{2} \log \frac{1}{|z|} \frac{d A(z)}{\pi} \\
\leq c \varepsilon \int_{\mathbb{D}}\left\|\left(S_{r} f\right)^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) d A(z) \leq K^{2} c \varepsilon\|f\|_{\operatorname{BMOA}_{\mathcal{C}}(X)}^{2} .
\end{array}
$$

Moreover, by using (4.10) we get that

$$
\int_{|z| \leq t_{0}}\left\|\left(S_{r} f\right)^{\prime}(z)\right\|_{X}^{2} N\left(\varphi \circ \sigma_{a}, z\right) \frac{d A(z)}{\pi} \leq 2 \varepsilon\|f\|_{\mathrm{BMOA}_{\mathcal{C}}(X)}^{2}
$$

for $r \geq r_{0}$, since $2 \int_{\mathbb{D}} N\left(\varphi \circ \sigma_{a}, z\right) \frac{d A(z)}{\pi}=\left\|\varphi \circ \sigma_{a}-\varphi(a)\right\|_{H^{2}}^{2} \leq 4$ by (2.5) and (2.6). By combining the preceding estimates with (4.11) we get that

$$
\sup _{\{a \in \mathbb{D}:|\varphi(a)| \leq R\}} M_{a}\left(C_{\varphi} S_{r} f\right) \leq 2\left(K^{2} c+2\right) \varepsilon\|f\|_{\mathrm{BMOA}_{\mathcal{C}}(X)}^{2},
$$

for all $r \geq r_{0}$. Finally, by taking (4.8) together with the above estimate, we get (4.5). This proves the lemma and finishes the proof of Theorem 4.1.

We record separately the special case $X=\mathbb{C}$ of Theorem 4.1, where C_{φ} is compact on BMOA, since the operators C_{r} are compact on BMOA for $r \in(0,1)$.
Corollary 4.5. The composition operator C_{φ} is compact on BMOA if and only if (4.1) and (4.2) hold.

A complete characterization of the weakly compact composition operators on $\mathrm{BMOA}_{\mathcal{C}}(X)$ depends on the question whether all weakly compact composition operators on BMOA are compact or not. Unfortunately this question is open for arbitrary composition operators on BMOA (see e.g. [CM]). However, there are some partial positive results in the literature, which in combination with Theorem 4.1 lead to characterizations of weakly compact composition operators on $\mathrm{BMOA}_{\mathcal{C}}(X)$ in some cases. By applying [Sm, Theorem 4.1], [CM, Theorem 1] and [MT, Corollary 5.4] we obtain the following partial characterization. Assume that $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is analytic and satisfies one of the following conditions:
(1) φ is univalent, or
(2) $\varphi \in \mathrm{VMOA}$ and $\varphi(\mathbb{D})$ lies inside a polygon inscribed in the unit circle.
Then C_{φ} is weakly compact on $\operatorname{BMOA}_{\mathcal{C}}(X)$ if and only if X is reflexive and C_{φ} is compact on BMOA. See [L, p. 741] for the details.

Acknowledgements. I thank my supervisor Hans-Olav Tylli for his valuable suggestions and comments.

References

[AFP] J. Arazy, S.D. Fisher and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985) 110-145.
[B] A. Baernstein II, Analytic functions of bounded mean oscillation, in: Aspects of contemporary complex analysis, Proc. NATO Adv. Study Inst., Durham, 1979, Academic Press, London, 1980, pp. 3-36
[Bl] O. Blasco, Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces, Illinois J. Math. 41 (1997) 532-558.
[B12] O. Blasco, Remarks on vector-valued BMOA and vector-valued multipliers, Positivity 4 (2000) 339-356.
[Bl3] O. Blasco, On coefficients of vector-valued Bloch functions, Studia Math. 165 (2004) 101-110.
[BP] O. Blasco and M. Pavlović, Complex convexity and vector-valued Littlewood-Paley inequalities, Bull. London Math. Soc. 35 (2003) 749-758.
[BDL] J. Bonet, P. Domański and M. Lindström, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001) 233-248.
[BCM] P.S. Bourdon, J.A. Cima and A.L. Matheson, Compact composition operators on BMOA, Trans. Amer. Math. Soc. 351 (1999) 2183-2196.
[CM] J.A. Cima and A.L. Matheson, Weakly compact composition operators on VMO, Rocky Mountain J. Math. 32 (2002) 937-951.
[CoM] C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995.
[DJT] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Univ. Press, Cambridge, 1995.
[G] J.B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[L] J. Laitila, Weakly compact composition operators on vector-valued BMOA, J. Math. Anal. Appl. 308 (2005) 730-745.
[LT] J. Laitila and H.-O. Tylli, Composition operators on vector-valued harmonic functions and Cauchy transforms, Indiana Univ. Math. J. (to appear)
[LST] P. Liu, E. Saksman and H.-O. Tylli, Small composition operators on analytic vector-valued function spaces, Pacific J. Math. 184 (1998) 295-309.
[MT] S. Makhmutov and M. Tjani, Composition operators on some Möbius invariant Banach spaces, Bull. Austral. Math. Soc. 62 (2000) 1-19.
[S] J.H. Shapiro, The essential norm of a composition operator, Ann. Math. 125 (1987) 375-404.
[Sm] W. Smith, Compactness of composition operators on BMOA, Proc. Amer. Math. Soc. 127 (1999) 2715-2725.
[St] K. Stephenson, Weak subordination and stable classes of meromorphic functions, Trans. Amer. Math. Soc. 262 (1980) 565-577.
[WX] K.J. Wirths and J. Xiao, Global integral criteria for composition operators, J. Math. Anal. Appl. 269 (2002) 702-715.

Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, FIN-00014 University of Helsinki, Finland

E-mail address: jussi.laitila@helsinki.fi

[^0]: 2000 Mathematics Subject Classification. Primary: 47B33; Secondary: 30D50, 46E40.
 Key words and phrases. Composition operators, bounded mean oscillation, vectorvalued analytic functions.

 The author was supported in part by the Finnish Academy of Science and Letters (Väisälä Foundation) and the Academy of Finland, projects \#53893 and \#210970.

