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Abstract
We prove that W 1,n

loc-maps almost quasi-conformally close to quasi-isometries are
quasi-isometric under some assumptions. Estimates of the inner distances and
applications to the implicit function theory are given.

1 Main results

We study mappings of the class W 1,n
loc that are almost quasi-conformal by Callender

[1]. Together with quasi-conformal maps this class contains also quasi-isometric
mappings.

We show conditions under which the almost quasi-conformal maps close to
quasi-isometries are quasi-isometric. In particular, our results are related to the
well-known inverse mapping problem. Estimates of the inner distance and appli-
cations to the implicit function theory are given.

Firstly, we remind some notations and definitions. Let x = (x1, . . . , xn) be a
point of the n-dimensional Euclidean spaces Rn, n ≥ 1,

|x| =
(

n∑

i=1

x2
i

)1/2

.

We denote by S(a, r) and B(a, r) a sphere and a ball with center at a ∈ Rn and
radius 0 < r < ∞, respectively.

Let D be a domain in Rn. A map f : D → Rm, m ≥ 1, satisfies the Lipschitz
condition on D, if

sup
x′,x′′∈D

|f(x′′)− f(x′)|
|x′′ − x′| = L < ∞ .
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A map f satisfies the Lipschitz condition locally on D, if f satisfies this condition
on every subdomain D′ ⊂⊂ D with some Lipschitz constant L(D′).

Let C ′, C ′′ > 0 be some constants. A map f : D → Rn is called (C ′, C ′′)-
quasi-isometric, if

C ′ |x′′ − x′| ≤ |f(x′′)− f(x′)| ≤ C ′′ |x′′ − x′| ∀x′, x′′ ∈ D.(1.1)

A map f : D → Rn is called locally quasi-isometric, if it is (C ′, C ′′)-quasi-isometric
on every subdomain D′ ⊂⊂ D with some constants 0 < C ′(D′) ≤ C ′′(D′) < ∞.

By W 1,n
loc(D) we denote the set of the functions f having generalized Sobolew

derivatives ∂f/∂xi (i = 1, . . . , n) of the class Ln
loc(D) in a domain D ⊂ Rn. A

vector function f = (f1, . . . , fm) : D → Rn belongs to the class W 1,n
loc(D), if every

function fi (i = 1, . . . ,m) belong to this class.
By the Rademacher – Stepanoff theorem every locally Lipschitz function f :

D → R is differentiable almost everywhere on D [3, 3.1.6] and, as it is easy to see
that every locally Lipschitz map f : D → Rm belongs to the class W 1,n

loc(D).
Let f : D ⊂ Rn → Rm be a map of the class W 1,n

loc(D). We let

f ′(x) =




∂f1

∂x1
. . .

∂f1

∂xn

. . . . . .

∂fm

∂x1
. . .

∂fm

∂xn




and,

|f ′(x)| =



m∑

i=1

n∑

j=1

(
∂fi

∂xj
(x)

)2



1/2

, ‖f ′‖D = ess supx∈D|f ′(x)| .

By Callender [1], a map f : D ⊂ Rn → Rn of the class W 1,n
loc(D) is called almost

quasi-conformal on D with a distortion coefficient K > 0 and locally integrable
function δ(x) : D → R, if a.e. on D the following inequality holds

|f ′(x)|n ≤ K det
(
f ′(x)

)
+ δ(x) .(1.2)

For δ ≡ 0 the condition (1.2) means, that the map f has bounded distortion [7,
§3 Chapt. I], or is quasi-regular [10, Section 14.1].
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Observe, that the assumption (1.2) does not imply constancy of the sign of
the Jacobian det (f ′(x)). Thus, almost quasi-conformal maps can change their
orientation.

In order to evaluate volume of the considering class of maps, we formulate the
following elementary statement. See the proof in the end of this paper.

1.3. Proposition. Let f : D → Rn be a W 1,n
loc(D)-map such that ‖f ′‖D ≤

q < ∞ . Then f is almost quasi-conformal with a coefficient K = ε nn/2 and
δ = (1 + ε) qn, where ε = const > 0 is arbitrary.

Let f, g : D → Rn be maps of the class W 1,n
loc(D). We say that g is almost

quasi-conformally close to f on D with a coefficient K > 0 and locally integrable
function δ, if the map ϕ = (f − g) : D → Rn is almost quasi-conformal with the
coefficient K > 0 and the function δ, i.e. a.e. on D the following inequality holds

|f ′(x)− g′(x)|n ≤ K det
(
f ′(x)− g′(x)

)
+ δ(x) .(1.4)

We call the maps f and g almost quasi-conformally close, if g is close to f or
f is close to g.

If identically constant map g ≡ const is almost quasi-conformally close on
D ⊂ Rn with K > 0 and a locally integrable function δ to a map f , then f is
almost quasi-conformal with the same constant K > 0 and function δ.

For n = 2 and K = 2, δ = 0, the inequality (1.4) means, that f − g is a
holomorphic function.

The main result of this paper is the statement:

1.5. Theorem. Let a1, a2 ∈ Rn be a pair of points, such that d = |a2−a1| >
0. Let D = B(a1, d)∪B(a2, d) be a subdomain of Rn and b : D → Rn be (A′, A′′)-
quasi-isometric.

Let f : D → Rn be a continuous W 1,n
loc(D)-map almost quasi-conformally close

to b with a constant K > 0 and a function δ(x) satisfying to the assumption

1
r

∫

B(ai,r)

δ(x) dHn ≤ λ

∫

S(ai,r)

δ(x) dHn−1 , 0 < r < d ,(1.6)

for every i = 1, 2 and a constant λ ≥ n/K.
Let

h(a1, a2) ≡ max
i=1,2


 n

|B(0, d)|
∫

B(ai,d)

|f ′(x)− b′(x)|n dHn + λ d−n+ n
K

∫

B(ai,r)

δ+(x) dHn




1
n

,
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where
|B(0, d)| = Hn(B(0, d)) , δ+(x) = max{0, δ(x)} ,

and let
ν(n,K)h(a1, a2) < A′ .(1.7)

Then f(a1) 6= f(a2) and, moreover,

C ′ |a2 − a1| ≤ |f(a2)− f(a1)| ≤ C ′′ |a2 − a1| .(1.8)

Here Hk(E) is the k-dimensional Hausdorff measure of the set E ⊂ Rn,

C ′ = A′ − ν(n,K) h(a1, a2) , C ′′ = A′′ + ν(n,K) h(a1, a2)

and
µn = Hn (B(ξ1, 1) ∩B(ξ2, 1)) , |ξ1 − ξ2| = 1,

ν(n,K) =
2K(nK −K + 1)ωn−1

n(n−1)/n(nK + 1)µn
, ωn−1 = Hn−1(S(0, 1)) .

The volume of the class of δ, satisfying (1.6) is not clear. It is easy to see that
to (1.6) there satisfy, for example, the functions δ ≡ const for λ ≥ 1/n. Using
Lemma 5.48, it is not difficult to prove, that to this condition there satisfy the
functions δ(x) = |ϕ′(x)|, where ϕ : D → Rn is a quasi-regular map. Moreover, if
the distortion coefficient of ϕ equals K > 0, then we may choose λ = K/n. We
would like to find other examples.

The reversibility problem of maps is a well-known problem of analysis, see
[11], [12], [14], [21, Theorem 4.4.1 Ch. 1] [13], [15], [16], [19], [17], [18, Ch. 2], [20,
Section V.2], [9], [4], [5, Ch. 3], [27, Section 6.4] etc. Here we observe only the
special case of Theorem 1.5, touching upon the problem of global reversibility of
W 1,n

loc(R
n)-maps.

Let f : Rn → Rn be a map of the class W 1,n
loc(R

n) and D be arbitrary domain
of the form D = B(a1, r) ∪ B(a2, r). Denote by Bf = Bf (D,A′, A′′, K, δ) the set
of the (A′, A′′)-quasi-isometries b : D → Rn almost quasi-conformally close to f
with a constant K > 0 and an integrable on D function δ(x) satisfying (1.6).

We put

ηf (a1, a2,Bf ) = inf
b

max
i=1,2

n

Hn(B(0, d)

∫

B(ai,d)

|f ′(x)− b′(x)|n dHn ,

where the infimum is taken over the quasi-isometries b ∈ Bf (D, A′, A′′,K, δ).
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1.9. Corollary. Let f : Rn → Rn be a continuous map of the class
W 1,n

loc(R
n). Suppose that for every a1, a2 ∈ Rn the following statement holds

ηf (a1, a2,Bf ) + λ d−n+n/K max
i=1,2

∫

B(ai,r)

δ+(x) dHn ≤ 1
νn(n,K) (A′)n

.(1.10)

Then f is quasi-isometric on Rn. In particular, f is globally invertible.

2 W 1,p-closeness

Let D ⊂ Rn be a domain and p ≥ 1 be a constant. Let f, g : D → Rn be
W 1,p

loc(D)-maps. We say, that a map g is W 1,p-close to f on D with a nonnegative
function δ(x) ∈ Lp

loc(D), if

|f ′(x)− g′(x)| ≤ δ(x) a.e. on D .(2.11)

2.12. Theorem. Let a1, a2 ∈ Rn be a pair of points such that d =
|a2− a1| > 0. Let D = B(a1, d)∪B(a2, d) be a subdomain of Rn and f : D → Rn

be a continuous W 1,p
loc(D)-map.

Suppose, that there exists an (A′, A′′)-quasi-isometric map b : D → Rn, which
is W 1,p-close to f with δ(x) > 0, satisfying

τ−n
∫

B(ai,τ)

δp(x) dHn ≤ r−n
∫

B(ai,r)

δp(x) dHn , 0 < τ < r < d ,(2.13)

for every i = 1, 2.
Let

h1(a1, a2) ≡ max
i=1,2


d−n

∫

B(ai,d)

δp(x) dHn




1
p

and let
ν1(n, p) h1(a1, a2) < A′ .(2.14)

Then f(a1) 6= f(a2). Moreover,

C ′ |a2 − a1| ≤ |f(a2)− f(a1)| ≤ C ′′ |a2 − a1| .(2.15)
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Here

C ′ = A′ − ν1(n, p) h1(a1, a2) , C ′′ = A′′ + ν1(n, p) h1(a1, a2) ,

the constants µn, ωn−1 are defined as above, and

ν1(n, p) = 2p(ωn−1/n)(p−1)/pnp / (µn p(np + p)) .

The function δ ≡ const satisfies (2.13). Setting b(x) to be the identity map,
we obtain the known statement [4], [5].

2.16. Corollary. Let f : Rn → Rn be a continuous W 1,p
loc (Rn)-map.

Suppose that
‖f ′(x)− En‖Rn ≤ δ0 ,(2.17)

where δ0 ≡ const and En is the identity matrix.
If

q ≡ δ0

(
ωn−1

n

)1/p

< 1 ,(2.18)

then f is global invertible. Moreover

(1− q) |a2 − a1| ≤ |f(a2)− f(a1)| ≤

≤ (1 + q) |a2 − a1| ∀ a1, a2 ∈ Rn .
(2.19)

3 Convex and quasi-convex domains

Now let D ⊂ Rn be an arbitrary domain. We define the inner distance rD(x′, x′′)
between points x′ and x′′ in D by setting

rD(x′, x′′) = inf
γ

∫

γ

|dx| ,

where the infimum is taken over all rectifiable arcs γ ⊂ D joining points x′ and
x′′.

A distortion of D ⊂ Rn is called the quantity

distort (D) = sup
x′, x′′∈D

x′ 6=x′′

rD(x′′, x′)
|x′′ − x′|
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(see [2, Section 1.14]).
Let D ⊂ Rn be a domain. Recall that D is convex, if every its two points can

be joined by a segment containing in D. The condition distort (D) < ∞ implies
that

rD(x′′, x′) ≤ Q |x′′ − x′| , Q = distort (D) .(3.20)

Such domains D ⊂ Rn is called Q−quasi-convex (see [2, p. 393 ]).
It is easy to see that every convex domain is 1-quasi-convex.

3.21. Theorem. Let D ⊂ Rn be a domain and let f : D → Rm be a
W 1,n

loc(D)-map. Suppose, that there exists an (A′, A′′)–quasi-isometry b : D →
Rm, almost quasi-conformally close to f with a constant K > 0 and a function
δ(x) : D → R, satisfying (1.6) for every ball B(a, r) ⊂ D.

Suppose also that for every ball B(a, r) ⊂ D the following property holds

n

|B(0, r)|
∫

B(a,r)

|f ′(x)− b′(x)|n dHn + λ r−n+ n
K

∫

B(a,r)

δ+(x) dHn ≤ q(3.22)

with a constant

q <
(A′)n

νn(n,K)
.(3.23)

(i) Then D′ = f(D) is a domain and for an arbitrary pair of points a′, a′′ ∈ D
the following statement holds

(A′ − q1/n) ρD(a′, a′′) ≤ ρD′(f(a′), f(a′′)) ≤ (A′′ + q1/n) ρD(a′, a′′) .(3.24)

(ii) If D ⊂ Rn is convex, then D′ = f(D) is quasi-convex with the constant
Q = A′′ + q1/n and for every pair of points a′, a′′ ∈ D we have

(A′ − q1/n) |a′′ − a′| ≤ ρD′(f(a′′), f(a′)) ≤ (A′′ + q1/n) |a′′ − a′| .(3.25)

Proof. At first we prove the statement (i). We use Theorem 1.5. The as-
sumption (3.22) implies (1.7) for every pair of points a1, a2 ∈ D, satisfying the
condition

|a2 − a1| < min
i=1,2

dist (ai, ∂D) .(3.26)

From this we obtain (1.8) with constants

C ′ = A′ − q1/n , C ′′ = A′′ + q1/n .
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The inequalities (1.8) imply that f is local homeomorphic and, consequently,
D′ = f(D) is a domain.

Let a′, a′′ ∈ D be an arbitrary pair of points. We fix ε > 0 and choose an
Jordan arc γ ⊂ D with its endpoints at a′ and a′′, such that

∣∣∣H1(γ)− ρD(a′, a′′)
∣∣∣ < ε/2 .

We split the arc γ by points a′, x1, . . ., xn, a′′, such that
∣∣∣H1(γ)− (|a′ − x1|+ . . . + |xn − a′′|)

∣∣∣ < ε/2 ,

and neighboring points satisfy (3.26).
By (1.8), we have

|f(a′)− f(x1)|+ . . . + |f(xn)− f(a′′)| ≤ C ′′ (|a′ − x1|+ . . . + |xn − a′′|)
and

|f(a′)− f(x1)|+ . . . + |f(xn)− f(a′′)| ≤ C ′′ (ρD(a′, a′′) + ε) .

Turning fineness of the partition to zero, we obtain

ρD′(f(a′), f(a′′)) ≤ H1(f(γ)) ≤ C ′′ (ρD(a′, a′′) + ε)

and, using arbitrariness of ε > 0, we arrive at the upper estimate in (3.24).
The lower estimate in (3.24) is proved by the same arguments. It is only

necessary to suppose that the partition of γ with a′, x1,. . ., xn, a′′ is satisfies that
the length of f(γ) is small different from the distance ρD′(f(a′), f(a′′)) and the
length of the broken line with the tops at points f(a′), f(x1), . . ., f(xn), f(a′′) is
close enough to the length of f(γ). By (1.8), we have

|f(a′)− f(x1)|+ . . . + |f(xn)− f(a′′)| ≥ C ′ (|a′ − x1|+ . . . + |xn − a′′|) ,

whence the necessity follows easily.
Now we prove the statement (ii). Fix points a′, a′′ ∈ D and denote by l(a′, a′′)

the linear segment joining a′ and a′′. Since D is convex, then l(a′, a′′) lies entirely
on D.

We separate l(a′, a′′) with the consecutive one by another points x1, x2, . . . , xn,
such that every l(a′, x1), l(x1, x2), . . ., l(xn, a′′) satisfies (3.26). Thus, for every
of these segments we have (1.8) and

|f(a′)− f(x1)|+ . . . + |f(xn)− f(a′′)| ≤ (A′′ + q1/n) (|a′ − x1|+ . . . + |xn − a′′|) =

= (A′′ + q1/n) |a′ − a′′| .

8



Choosing a partition a′, x1, x2, . . . , xn, a′′ of l(a′, a′′) arbitrarily fine and observing
that the left side of this relation will be arbitrarily close to H1 f(l(a′, a′′)), we
obtain

H1 f(l(a′, a′′)) ≤ (A′′ + q1/n) |a′ − a′′| .
Therefore, we have

rD′(a′, a′′) ≤ (A′′ + q1/n) |a′ − a′′| .
Thus, the right of the relations (3.25) holds, and the domain D′ is quasi-convex
with the necessary constant Q.

On the other hand, suppose that γ ⊂ D′ is an Jordan arc with the endpoints
f(a′) and f(a′′), for which

∣∣∣H1(γ)− ρD′(f(a′), f(a′′))
∣∣∣ < ε/2 ,

where ε > 0 is an arbitrary constant.
Let Γ = f−1(γ). We choose the points x1, . . . , xn on Γ such that the distances

|a′ − x1|, |x1 − x2|, . . ., |xn − a′′| were lesser then dist (Γ, ∂D) and
∣∣∣H1(γ)− (|f(a′)− f(x1)|+ |f(x1)− f(x2)|+ . . . + |f(xn)− f(a′′)|)

∣∣∣ < ε/2 .

Then, as above,

|f(a′)− f(x1)|+ . . . + |f(xn)− f(a′′)| ≥ (A′ − q1/n) (|a′ − x1|+ . . . + |xn − a′′|) ≥

≥ (A′ − q1/n) |a′ − a′′| .

Thus,
ρD′(f(a′), f(a′′)) ≥ (A′ − q1/n) (|a′ − a′′| − ε)

and, by arbitrariness of ε > 0,

(A′ − q1/n) |a′ − a′′| ≤ ρD′(f(a′), f(a′′)) .

The theorem is proved. 2

As above, but using Theorem 2.12, we prove the following statement.

3.27. Theorem. Let D ⊂ Rn be a domain and let f : D → Rn be a map of
the class W 1,p

loc(D). Suppose that there exists an (A′, A′′)–quasi-isometry b : D →
Rn that is W 1,p-close to f with a function δ(x) : D → R of the class Lp

loc(D),
p ≥ 1, with the property (2.13) for arbitrary pair of balls B(a, τ) ⊂ B(a, r) ⊂ D.
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Suppose that for every ball B(a, r) ⊂ D the following inequality holds

r−n
∫

B(a,r)

δp(x) dHn ≤ q(3.28)

with a constant

q <
(A′)p

νp
1(n, p)

.(3.29)

(i) Then D′ = f(D) is a domain and for arbitrary pair of points a′, a′′ ∈ D
we have

(A′ − q1/p) ρD(a′, a′′) ≤ ρD′(f(a′), f(a′′)) ≤ (A′′ + q1/p) ρD(a′, a′′) .

(ii) If a domain D ⊂ Rn is convex, then the domain D′ = f(D) is quasi-
convex with a constant Q = A′′ + q1/p and for every pair of points a′, a′′ ∈ D we
have

(A′ − q1/p) |a′′ − a′| ≤ ρD′(f(a′′), f(a′)) ≤ (A′′ + q1/p) |a′′ − a′| .(3.30)

3.31. Corollary. Let D ⊂ Rn be a domain and let f : D → Rn be a map
of the class W 1,p

loc(D). Suppose that the identical map is W 1,p–close to f with a
function δ(x) : D → R of a class Lp

loc(D), p ≥ 1, satisfying (2.13) for every pair of
balls B(a, τ) ⊂ B(a, r) ⊂ D.

Suppose that for every ball B(a, r) ⊂ D the relation (3.28) holds with a con-
stant q, satisfying the assumption

q <
1

νp
1(n, p)

.(3.32)

Then for every pair of points a′, a′′ ∈ D we have

(1− q1/pν1(n, p)) ρD(a′, a′′) ≤ ρD′(f(a′), f(a′′)) ≤

≤ (1 + q1/pνp
1(n, p)) ρD(a′, a′′) .

(3.33)

Close by contents questions for quasi-isometric maps between two dimensional
surfaces were considered in [5].
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4 Implicit functions

Next we show some applications these results to the existence problem of implicit
functions. We follow the scheme of the proof of the corresponding statement in
[4], where its local version had been proved. On other nonsmooth variants, see
Pourciau [23], Warga [25], Cristea [24], Zhuravlev and Igumnov [26].

Let m,n ≥ 1 be integer and U ⊂ Rn, V ⊂ Rm be domains. Let F (x, y) be
a function of the class W 1,1

loc (D), where D = U × V . If (x, y) is a point, in which
there exist the partial derivatives

∂F/∂xi , ∂F/∂yj (i = 1, . . . , n ; j = 1, . . . , m) ,

then let F ′(x, y) be the Jacobi matrix, F ′
x(x, y) be the Jacobi matrix with respect

to x = (x1, . . . , xn) for fixed y = (y1, . . . , ym) and F ′
y(x, y) be the Jacobi matrix

with respect to y for a fixed x.
If P ⊂ D is a set and ϕ : P → Mk, k ≥ 1, is a matrix function, then we denote

by
osc(ϕ, P ) = ess sup

ξ,η∈P
|ϕ(ξ)− ϕ(η)|

the oscillation of ϕ on P .
We consider a map Φ : D → Rn+m defined by

(x, y) Φ→ (X, Y ) = (x1, . . . , xn, F1(x, y), . . . , Fm(x, y)) .

4.34. Theorem. Let x0 ∈ U ⊂ Rn, y0 ∈ V ⊂ Rm and F : D → V be a
continuous map. Suppose that one of the following assumptions holds.

(i) The map F ∈ W 1,n
loc (D) and there exists δ(x, y) : D → R satisfying (1.6)

for every (m + n)-dimensional ball B(a, r) ⊂ D and such that

|F ′
x(x, y)|2 + |F ′

y(x, y)− Em|2 ≤ δ2/(m+n)(x, y) .(4.35)

Moreover for every (m + n)-dimensional ball B(a, r) ⊂ D,

m + n

|B(0, r)|
∫

B(a,r)

δ(x, y) dHm+n+

λ r−(m+n)+(m+n)/K
∫

B(a,r)

δ(x, y) dHm+n ≤ q
(4.36)
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with a constant

q <
1

νm+n(m + n,K)
.(4.37)

(ii) The map F ∈ W 1,p
loc (D) and a.e. on D the following inequality holds

|F ′
x(x, y)|2 + |F ′

y(x, y)− Em|2 ≤ δ2/p(x, y)

with a function δ(x, y) : D → R of a class Lp
loc(D), p ≥ 1, satisfying (2.13) for

every pair of (m+n)-dimensional balls B(a, τ) ⊂ B(a, r) ⊂ D. Moreover, for every
(m + n)-dimensional ball B(a, r) ⊂ D,

r−n
∫

B(a,r)

δp(x, y) dHm+n ≤ q(4.38)

with a constant

q <
1

νp
1(m + n, p)

.(4.39)

(iii) The map F ∈ Liploc(D) and

‖F ′
y −Em‖D + osc (F ′

x, D) < 1 .(4.40)

Then there exists a (unique) continuous map

G(x) : U → V , G(x0) = y0 ,

such that
F (x,G(x)) = F (x0, y0) for all x ∈ U .

Moreover, G satisfies the Lipschitz condition globally on U with respect the inner
metrics ρU and ρV .

Proof. Firstly, we consider the case (i). The Jacobi matrix of Φ has the
following form

Φ′(x, y) =

(
En On

m

F ′
x(x, y) F ′

y(x, y)

)
,

where On
m is a zero n×m-matrix.

12



We have

Φ′(x, y)− Em+n =

(
En On

m

F ′
x(x, y) F ′

y(x, y)

)
− En+m =

=

(
On

n On
m

F ′
x(x, y) F ′

y(x, y)−Em

)
.

Thus,

det (Φ′(x, y)−Em+n) = 0 ,

|Φ′(x, y)− Em+n|m+n =
(
|F ′

x(x, y)|2 + |F ′
y(x, y)−Em|2

)(m+n)/2
.

The assumption (4.35) implies almost quasi-conformal proximity of Φ to the iden-
tity map, and we may use Theorem 3.21.

By (3.24), the set D′ = Φ(D) ⊂ Rm+n is a domain and for every pair of points
a′, a′′ ∈ D we have

(1− q1/(m+n)) ρD(a′, a′′) ≤ ρD′(f(a′), f(a′′)) ≤ (1 + q1/(m+n)) ρD(a′, a′′) .

The inverse map to Φ(x, y) has the form

x = X, y = Θ(X, Y ).

Moreover, the map Φ−1 satisfies the Lipschitz condition on D′ with the constant

Lip
(
Φ−1, D′

)
≤ 1/(1− q1/n) .

For Θ(X, Y ) we obtain

Lip
(
Θ, D′) ≤

√
1/(1− q1/(m+n))2 − 1 .

Now we observe that

(X,Y ) = Φ(Φ−1(X, Y )) = (X, F (X, Θ(X, Y ))).

This relation implies
F (X, Θ(X,Y )) = Y.(4.41)

13



Denote by Π a connected component of the intersection of the plane

Y1 = F1(x0, y0), . . . , Ym = Fm(x0, y0)

with the domain D′ containing the point (X0, Y0) = (x0, F (a)). Co-dimension of
Π equals to m. Let π be an orthogonal projection of Rn ×Rm onto Rn. For an
arbitrary subset A ⊂ Rn ×Rm we have

π(A) = {x ∈ Rn : (x, y) ∈ A}.
By the definition of Φ, we may write

π(Φ(A′)) = Φ(π(A′)) ∀ A′ ⊂ D,

π(Φ−1(A′′)) = Φ−1(π(A′′)) ∀ A′′ ⊂ D′ .

The equation of a connected piece of the surface Φ−1(Π) containing a = (x0, y0)
can be rewritten in the nonparametric form. In fact, let

(X, Y ) = (x,Θ(x, Y0)), x ∈ Φ−1(π(Φ(D))) .

We set G(x) = Θ(x, Y0).
By (4.41), we find

F (x,G(x)) = Y0 = F (x0, y0) ,

where
G(x0) = Θ(x0, Y0) = Θ(X0, Y0) = y0 .

Uniqueness of the map G is obvious because Φ(x, y) is bijective. Indeed, if
(x, y1), (x, y2) ∈ D and F (x, y1) = F (x, y2), then Φ(x, y1) = Φ(x, y2). Therefore,
y1 = y2.

In the case (ii) the map Φ is W 1,p-close to the identity map Em+n(x, y) : D →
D and we may use Theorem 3.27. The next considerations are as above.

Suppose that the assumptions of the case (iii) hold. We need to prove that
Φ(x, y) satisfy to to conditions of Corollary 3.31. Consider an (n + m)× (n + m)-
matrix

Q(x, y) =

(
En On

m

−F ′
x(x, y) Em

)
.

It is easy to see that

|Q(x1, y1)−Q(x2, y2)|D ≤ |F ′
x(x1, y1)− F ′

x(x2, y2)|D ≤ osc (F ′
x, D).

14



Thus, we have

Q(x, y)Φ′(x, y)− Em+n =

(
En On

m

Om
n F ′

y(x, y)

)
− En+m =

=

(
On

n On
m

Om
n F ′

y(x, y)−Em

)
.

From this relation,

‖Q(x, y)Φ′(x, y)− Em+n‖D = ‖F ′
y(x, y)− Em‖D.(4.42)

For every fixed point (x∗, y∗) ∈ D we define the map

Ψ(x, y) = Q(x∗, y∗)Φ(x, y) : D → Rn ×Rm.(4.43)

Using (4.42) we obtain

||Ψ′(x, y)−Em+n||D = ‖Q(x∗, y∗)Φ′(x, y)− En+m‖ =

= ‖Q(x, y)Φ′(x, y)−Em+n + (Q(x∗, y∗)−Q(x, y))Φ′(x, y))‖D ≤

≤ ‖Q(x, y)Φ′(x, y)−Em+n‖D+

+‖Q(x∗, y∗)−Q(x, y)‖D‖Φ′(x, y)‖D ≤

≤ ‖F ′
y −Em‖D + osc (F ′

x, D) ‖Φ′(x, y)‖D.

Take into consideration that

(Q(x∗, y∗)−Q(x, y)Φ′(x, y)) =




On
n On

m

F ′
x − F ′

x(x∗, y∗) Om
m







En On
m

F ′
x F ′

y


 =

=




On
n On

m

F ′
x(x, y)− F ′

x(x∗, y∗) Om
m


 .
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Thus,
‖ (Q(x∗, y∗)−Q) Φ′‖D = ‖F ′

x − F ′
x(x∗, y∗)‖D ≤ osc (F ′

x, D) .(4.44)

Now,
Ψ′(x, y)−En+m = Q∗Φ′(x, y)− En+m =

= (Q(x∗, y∗)−Q(x, y)) Φ′(x, y)+

+Q(x, y)Φ′(x, y)− En+m .

(4.45)

Thus, by (4.42), (4.44) and (4.45) we obtain

‖Ψ′(x, y)−Em+n‖D ≤ ‖Q(x, y)Φ′(x, y)−En+m‖D + ‖(Q∗ −Q)Φ′‖D ≤

≤ ‖F ′
y − Em‖D + osc (F ′

x, D) .

From (4.47) we may conclude, that the map Ψ(x, y) = Q(x∗, y∗)Φ(x, y) is home-
omorphic. By Corollary 5.6.16 of [8] from (4.47) we see that the matrix Ψ′(x, y)
is nondegenerate. In turn, according to what has been said, Φ′(x, y) and Q ≡
Q(x∗, y∗) are nondegenerate also. Consequently, the map Φ = Q−1Ψ : D → Rn+m

is homeomorphic.
We have

(1− µ) ρD ((x, y), (x0, y0)) ≤ ρΦ(D) (Ψ(x, y), Ψ(x0, y0)) ≤

≤ (1 + µ) ρD ((x, y), (x0, y0)) ,

where
µ = ‖F ′

y − Em‖D + osc (F ′
x, D) .

But since Ψ = QΦ, Q = Q(x∗, y∗), we may write

1− µ

|Q| ρU ((x, y), (x0, y0)) ≤ ρV (Φ(x, y), Φ(x0, y0)) ≤

≤ (1 + µ) ρU ((x, y), (x0, y0)) .
(4.46)

However,
(

En On
m

F ′
x(x0, y0) Em

)
=

(
En On

m

Om
n Em

)
+

(
On

n On
m

F ′
x(x0, y0) Om

m

)
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and, consequently, |Q| ≤ 1 + ‖F ′
x‖D.

By (3.33) the map Ψ−1 satisfies the Lipschitz condition on the domain Ψ(D)
with the constant

Lip
(
Ψ−1, Ψ(D)

)
≤ 1

1− µ
.

Thus, by (4.40) for every fixed point (x∗, y∗) we have

||Ψ′(x, y)− Em+n||D ≤ µ < 1.(4.47)

The next considerations as in the case (i). In place of Theorem 3.21 it is sufficient
to use Corollary 3.31. Theorem 4.34 is proved. 2

5 Energy integral

We need the following statement.

5.48. Lemma. Let f : D → Rn be a map of the class W 1, n
loc (D). Then for

an arbitrary point a ∈ D and a.e. r ∈ (0, R), R = dist (a, ∂D), we have

∣∣∣∣∣∣∣

∫

B(a,r)

det f ′(x) dHn

∣∣∣∣∣∣∣
≤ r

n

∫

S(a,r)

|f ′(x)|n dHn−1 .(5.49)

See proof in [7, Lemma 1.2 Chapt. II].

Let f : D → Rn be a map of the class W 1,n
loc(D). For every a ∈ D and r ∈ (0, R],

R = dist(a, ∂D), we put

I(a, r) =
∫

B(a,r)

|f ′(x)|n dHn .

5.50. Lemma. If f : D → Rn is a map of the class W 1, n
loc (D), almost quasi-

conformal with a constant K > 0 and a locally integrable function δ(x) satisfying
(1.6), then the quantity

r−n/K I(a, r) + λ

∫

B(a,r)

δ(x) dHn

17



is nondecreasing on (0, R].

Proof. Because for a.e. 0 < r < R the equality

I ′(a, r) =
∫

S(a,r)

|f ′(x)|n dHn−1

holds, then for a.e. 0 < r < R we can write

r−n/K I(a, r) + λ

∫

B(a,r)

δ(x) dHn



′

= − n

K
r−1−n/KI(a, r) + r−n/KI ′(a, r)+

+λJ ′(a, r) = − n

K
r−1−n/KI(a, r)+

+r−n/K
∫

S(a,r)

|f ′(x)|ndHn−1 + λ

∫

S(a,r)

δ(x)Hn−1 .

The relation (5.49) guarantees that

r

n

∫

S(a,r)

|f ′(x)|ndHn−1 ≥

∣∣∣∣∣∣∣

∫

B(a,r)

det
(
f ′(x)

)
dHn

∣∣∣∣∣∣∣

and by (1.2), we find
r

n

∫

S(a,r)

|f ′(x)|ndHn−1 ≥ 1
K

∫

B(a,r)

|f ′(x)|n dHn − 1
K

∫

B(a,r)

δ(x) dHn .

Thus, we have

r−n/K I(a, r) + λ

∫

B(a,r)

δ(x) dHn



′

≥ − n

K
r−1−n/KI(a, r)+

+
n

K
r−1−n/K

∫

B(a,r)

|f ′(x)|n dHn−

− n

rK

∫

B(a,r)

δ(x) dHn + λ

∫

S(a,r)

δ(x)Hn−1 .

18



By using (1.6), we obtain

(
r−n/K I(a, r) + λJ(a, r)

)′ ≥ λ

∫

S(a,r)

δ(x)Hn−1 − n

r K

∫

B(a,r)

δ(x)Hn = 0 .

The lemma is proved. 2

6 Morrey’s Lemma

Below we follow [22], where Morrey’s Lemma is proved for W 1,p-functions on
Riemannian manifolds.

Let a1, a2 ∈ Rn and d = |a2 − a1|. Let D = B(a1, d) ∪B(a2, d) be a domain.
Let Γ = Γ(a1, a2) be a family of locally rectifiable arcs γ ⊂ D joining points

a1 and a2.

6.51. Lemma. Let ρ(x) ≥ 0 be a function of a class Lp
loc(D), p ≥ 1.

If there exist constants α, c1 > 0 such that

∫

B(ai,r)

ρp dHn ≤ c1 rn−p+α for every r ∈ (0, d), i = 1, 2,(6.52)

then

inf
γ∈Γ(a1, a2)

∫

γ

ρ dH1 ≤ c2 |a1 − a2|α/p .(6.53)

Moreover we may put

c2 = 2p(ωn−1/n)(p−1)/p(α + np− p) c
1/p
1 / (µnα(np + α)),

ωn−1 = Hn−1(S(0, 1)).

7 Proof of Theorem 1.5

Our purpose is to obtain two-sided estimates of the distortion under mappings
almost quasi-conformally close to quasi-isometries.
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Let D = B(a1, d) ∪ B(a2, d) be as above, b : D → Rn be an (A′, A′′)-quasi-
isometric map and f : D → Rn be a map of the class W 1,n

loc(D) almost quasi-
conformally close to g with a constant K > 0 and a locally integrable function δ
satisfying (1.6).

By Lemma 5.50 for every 0 < r ≤ d = |a2 − a1| we have

r−n/K I(ai, r)+λ

∫

B(ai,r)

δ(x) dHn ≤ d−n/K I(ai, d)+λ

∫

B(ai,d)

δ(x) dHn (i = 1, 2) .

Observe that
∫

B(ai,d)

δ(x) dHn −
∫

B(ai,r)

δ(x) dHn ≤
∫

B(ai,d)

δ+(x) dHn) ,

where
δ+(x) = max{0, δ(x)} .

From this we find

I(ai, r) ≤ rn/K


d−n/KI(ai, d) + λ

∫

B(ai,d)

δ+(x) dHn


 (i = 1, 2) .(7.54)

We put

J(a, r) =
∫

B(a,r)

δ+(x) dHn (0 < r ≤ d) .

Choose in Lemma 6.51 the function ρ = |f ′(x) − b′(x)| and p = n. By (7.54)
the assumption (6.52) holds with the constants α = n/K and

c1 = d−n/K max
i=1,2

(
I(ai, d) + λdn/K J(ai, d)

)
.

The relation (6.53) implies

inf
γ∈Γ(a1, a2)

∫

γ

|f ′(x)−b′(x)| dH1 ≤ ω
−1/n
n−1 ν(n, K) max

i=1,2

(
I(ai, d) + λdn/K J(ai, d)

)1/n
.

However,

|(f(a2)− b(a2))− (f(a1)− b(a1))| ≤ inf
γ∈Γ(a1, a2)

∫

γ

|f ′(x)− b′(x)| dH1
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and consequently

|(f(a2)− f(a1))− (b(a2)− b(a1))| ≤

≤ ω
−1/n
n−1 ν(n,K) max

i=1,2

(
I(ai, d) + λdn/K J(ai, d)

)1/n
.

(7.55)

It follows from (7.55), that

|f(a2)− f(a1)| ≤ |b(a2)− b(a1)|+

+ω
−1/n
n−1 ν(n, K) max

i=1,2

(
I(ai, d) + λdn/K J(ai, d)

)1/n ≤

≤ A′′ |a2 − a1|+ ω
−1/n
n−1 ν(n,K) max

i=1,2

(
I(ai, d) + λ dn/K J(ai, d)

)1/n
.

Thus,
|f(a2)− f(a1)| ≤ |a2 − a1|

(
A′′ + ν(n,K) h(a1, a2)

)
.(7.56)

Analogously, if the mapping f is close to a bi-Lipschitz map b, then

|b(a2)− b(a1)| − |(f(a2)− f(a1))− (b(a2)− b(a1))| ≤ |f(a2)− f(a1)|

and

A′ |a2 − a1| − ω
−1/n
n−1 ν(n,K) max

i=1,2

(
I(ai, d) + λ dn/K J(ai, r)

)1/n ≤ |f(a2)− f(a1)| .

Thus, (
A′ − ν(n,K) h(a1, a2)

) |a2 − a1| ≤ |f(a2)− f(a1)| .(7.57)

By combining (7.56) and (7.57), we obtain Theorem 1.5. 2

8 Proof of Corollary 1.9

We fix a pair of points a1, a2 ∈ Rn and a constant ε > 0. The assumption (2.14)
implies existence of an (A′, A′′)-quasi-isometry b : D → Rn such that

h(a1, a2) ≤ A′ + ε

ν(n,K)
(i = 1, 2) .
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By Theorem 1.5, it guarantees (1.8) and,

(A′ + ε− ν(n,K)h) |a2 − a1| ≤ |f(a2)− f(a1)| ≤ (A′′ + ν(n,K)h) |a2 − a1| .

The arbitrariness of ε > 0 implies two-sided estimates (1.8) and global quasi-
isometry of f : Rn → Rn. 2

9 Proof of Proposition 1.3

Let ε > 0. Almost everywhere on D, we have

|f ′(x)|n ≤ (1 + ε) ‖f ′‖n
D − ε ‖f ′‖n .

By the Hadamard’s inequality for determinants,

∣∣det f ′
∣∣ ≤

n∏

k=1

|∇fk| .

Using the Cauchy inequality

n∏

k=1

|ak| ≤ n−n

(
n∑

k=1

|ak|
)n

,

we obtain
∣∣det f ′

∣∣2 ≤ n−n

(
n∏

k=1

|∇fk|2
)n

or,
−nn/2 det f ′(x) ≤ |f ′(x)|n ≤ ‖f ′‖n .

Thus, we find
|f ′(x)|n ≤ (1 + ε) ‖f ′‖n

D + ε nn/2 det f ′(x) .

For K = ε nn/2 we have δ = (1 + ε) ‖f ′‖n
D ≤ (1 + ε) qn. 2

10 Proof of Theorem 2.12

Let
I(a, r) =

∫

B(a,r)

δp(x) dHn (0 < r ≤ d) .

22



Then by assumptions (2.13), we have

I(ai, r) ≤ rnd−nI(ai, d) (i = 1, 2) .(10.58)

Choose the function ρ = |f ′(x) − b′(x)| in Lemma 6.51 . By (10.58) the
assumption (6.52) holds with the constants α = p and

c1 = d−n max
i=1,2

I(ai, d) .

The relation (6.53) implies that

inf
γ∈Γ(a1, a2)

∫

γ

|f ′(x)− b′(x)| dH1 ≤ ω
−1/p
n−1 ν1(n, p) max

i=1,2
I1/p(ai, d) .

However,

|(f(a2)− b(a2))− (f(a1)− b(a1))| ≤ inf
γ∈Γ(a1, a2)

∫

γ

|f ′(x)− b′(x)| dH1

and consequently,

|(f(a2)− f(a1))− (b(a2)− b(a1))| ≤

≤ ω
−1/p
n−1 ν(n, p) max

i=1,2
I1/p(ai, d) .(10.59)

It follows from (10.59) that

|f(a2)− f(a1)| ≤ |b(a2)− b(a1)|+

+ω
−1/p
n−1 ν1(n, p) max

i=1,2
I1/p(ai, d) ≤

≤ A′′ |a2 − a1|+ ω
−1/p
n−1 ν1(n, p) max

i=1,2
I1/p(ai, d) .

Thus,
|f(a2)− f(a1)| ≤ |a2 − a1|

(
A′′ + ν1(n, p) h(a1, a2)

)
.(10.60)

Analogously, if f is close to a quasi-isometry b, then

|b(a2)− b(a1)| − |(f(a2)− f(a1))− (b(a2)− b(a1))| ≤ |f(a2)− f(a1)|
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and
A′ |a2 − a1| − ω

−1/p
n−1 ν1(n, p) max

i=1,2
I1/p(ai, d) ≤ |f(a2)− f(a1)| .

Then (
A′ − ν1(n, p) h1(a1, a2)

) |a2 − a1| ≤ |f(a2)− f(a1)| .(10.61)

By combining (10.60) and (10.61), we obtain Theorem 2.12. 2
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