
SOBOLEV EMBEDDINGS IN METRIC MEASURE SPACES

WITH VARIABLE DIMENSION

PETTERI HARJULEHTO, PETER HÄSTÖ∗ AND VISA LATVALA

Abstract. In this article we study metric measure spaces with variable
dimension. We consider Lebesgue spaces on these sets, and embeddings
of the Riesz potential in these spaces. We also investigate Haj lasz-type
Sobolev spaces, and prove Sobolev and Trudinger inequalities with opti-
mal exponents. All of these questions lead naturally to function spaces
with variable exponents.

1. Introduction

Fractal-type spaces have been considered in connection with a vast va-
riety of phenomena since the late 1970’s. Early work was concerned with
estimating the fractal dimension of various things, and deriving some first
order estimates based on this, see e.g. [10, 29]. More recently, there has been
an interest in doing analysis on fractal-type spaces, with the eventual hope
of deriving more detailed information about the processes (described e.g. by
PDEs) taking place in the spaces, see e.g. [13, 14, 21]. However, also in the
latter investigations, the dimension has been treated as a single number, typ-
ically a vast overestimate derived from a doubling condition. We will argue
that the space can be better described by a variable dimension.

One recent mathematical investigation coming very close to a variable
dimension is the study by Hambly and Kumgai [16]: they study differential
equations on spaces where a countable number of fractal sets with different
dimensions are embedded into R

2. It is fair to ask whether it would not be
simpler to replace this by a continuum of fractals with continuously varying
dimension.

Let us also consider a physical example as motivation for variable dimen-
sional spaces: take the case of the surface of a silica gel. As described in
[2, 9, 29] the dimension of this surface is close to 3, and, moreover, it varies
both with the exact type of material and with the manufacturing process.
Thus we can easily conceive of a situation where there is, say, a gradient of
decreasing surface dimension.
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These kind of spaces, with variable dimension, are the object of this study.
In order to consider differential equations in the space, the first step is
to define a Lebesgue space on the set. After this, we can define spaces
of differentiable functions: in this article we will use the definition due to
Haj lasz [13]. Moreover, to arrive at such classical tools as the Sobolev in-
equality in this setting automatically involves a variable exponent version of
the Lebesgue space. Many fundamental tools of classical theory have been
worked out recently in the variable exponent, Euclidean setting, see e.g.
[1, 3, 6, 17, 24, 25], and some studies in the metric space setting have also
appeared [12, 18, 19, 20, 27].

In this article we expand the metric measure spaces framework by studying
Lebesgue spaces on fractal sets with variable dimension. It turns out that
many results can be directly transferred to this setting once we have chosen
an appropriate regularity condition – lower Ahlfors regular spaces. Notice
that the commonly used doubling assumption is stronger that lower Ahlfors
regularity, but weaker than Ahlfors regularity. In Section 3 we give precise
definitions of what we mean by a variable dimension Hausdorff measure and,
as an example, define a corresponding von Koch curve. In Section 4 we show
that the appropriate Riesz potential operator is bounded even for measures
that are only lower Ahlfors regular. In Section 5 we prove the Trudinger–
Sobolev inequality in the variable dimension case with point-wise optimal
exponent. All our embedding results are improved versions of the standard
results in the sense that they take into account the local variable dimension.

Notation. By a metric measure space we mean a triple (X, d, µ), where X
is a set, d is a metric on X and µ is a non-negative, Borel regular outer
measure on X, which is finite in every bounded set. For simplicity, we often
write X instead of (X, d, µ). For x ∈ X and r > 0 we denote by B(x, r)
the open ball centered at x with radius r; B(x, r) denotes the corresponding
closed ball. We use the convention that C denotes a generic constant, i.e.
a constant whose values can change even between different occurrences in a
chain of inequalities. The notation u . v means that there exists a constant
C such that u ≤ Cv, and u ≈ v means that u . v and v . u.

Variable exponent spaces. By a variable exponent we mean a bounded
measurable function p : X → [1,∞). For A ⊂ X we set p+

A = ess supx∈A p(x)
and p−A = ess infx∈A p(x); we abbreviate p+ = p+

X and p− = p−X . For a
µ–measurable function u : X → R we define the modular

%p(·)(u) =

∫

X

|u(y)|p(y)dµ(y)

and the norm
‖u‖p(·) = inf{λ > 0: %p(·)(u/λ) 6 1}.

The variable exponent Lebesgue space Lp(·)(X, d, µ) consists of those µ-measur-
able functions u : X → R for which ‖u‖p(·) < ∞. Some basic properties of
variable exponent Lebesgue spaces on metric measure spaces are given in
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[19]. Most of these are straightforward generalizations of the Euclidean case
[25]. In what follows, we will use the generalized Hölder inequality,

∫

X

f(x)g(x) dµ(x) ≤ 3‖f‖p(·)‖g‖p′(·)

[25, Theorem 2.1], and the elementary estimate

min
{

‖f‖p+

p(·), ‖f‖
p−

p(·)

}

≤ %p(·)(u) ≤ max
{

‖f‖p+

p(·), ‖f‖
p−

p(·)

}

without any further reference.
We say that the function p is log-Hölder continuous if

|p(x) − p(y)| ≤
C

log(1/d(x, y))

for all points with d(x, y) < 1
2
. It has been shown that this condition is

sufficient for proving many regularity results on variable exponent spaces.
In particular, if 1 < p− ≤ p+ < ∞ and p is log-Hölder continuous, then the
maximal operator is locally bounded in Lp(·) [4, 19].

2. Measure regularity conditions

In the context of metric measure spaces it is natural to assume some con-
nection between the measure and the metric. What we mean by dimension
is some quantity which relates the measure of a ball to its radius. Thus, if
we are given a measure space, we can either try to choose the metric so that
the dimension is constant, or choose the dimension so that the metric is in
some way natural.

The former trick was used by Hambly in [15]. In that study, a Sierpinski-
gasket type fractal is constructed, in which the density parameter (which
determines the dimension) is chosen randomly at each level of the construc-
tion. By defining a suitable metric, Hambly neatly avoids the complications
of a variable dimension, however, in so doing, he cannot use the natural, in-
herited metric from R

2. As we will show in this paper, very little regularity
is really needed for the variable dimension in order to get the usual results
in Lebesgue spaces. Thus one can ask whether modifying distances is really
warranted?

Perhaps the best-known regularity assumption on measures in the general
setting is Ahlfors regularity. We say that µ is Ahlfors Q-regular if

µ(B(x, r)) ≈ rQ

for all x ∈ X and r ≤ diam X. In this setting it is natural to call Q the
dimension of the metric space.

As was argued in the introduction, it is of interest to study also spaces
with variable dimension. Thus, if Q : X → (0,∞) is a bounded function,
then we say that µ is Ahlfors Q(·)-regular if

µ(B(x, r)) ≈ rQ(x)
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for all x ∈ X and r ≤ diam X. Ahlfors Q(·)-regularity is only possible for
sufficiently regular functions Q:

Lemma 2.1. If µ is Ahlfors Q(·)-regular, then Q is log-Hölder continuous.

Proof. Choose x, y ∈ X and assume r = d(x, y) < 1. Then

rQ(x) ≈ µ(B(x, 2r)) ≥ µ(B(y, r)) ≈ rQ(y),

and similarly rQ(x) . rQ(y). Hence

d(x, y)Q(x)−Q(y) ≈ 1

for all x, y ∈ X, which is equivalent to log-Hölder continuity. �

Another well established condition in the context of metric measure spaces
is the doubling condition. Recall that the measure µ is doubling if

µ(B(x, 2r)) ≤ Cµµ(B(x, r))

for every open ball B(x, r) in X. The constant Cµ is called the doubling
constant.

We also introduce a weaker condition: for a function Q as before we say
that µ is lower Ahlfors Q(·)-regular if

µ(B(x, r)) & rQ(x)

for all x ∈ X and r ∈ (0, 1). If Q is constant, we simply say that µ is lower
Ahlfors Q-regular. For bounded spaces X, the condition can be equivalently
assumed to hold for all r ∈ (0, diam X). It directly follows that a lower
Ahlfors Q(·)-regular measure is lower Ahlfors Q+-regular (as before, Q+ =
supx∈X Q(x)) so in this case our notion is easily related to existing theory.

It is immediately clear that every Ahlfors Q(·)-regular measure is doubling.
Suppose next that X is a bounded space with doubling measure. If B(y, R)
is an open ball in X, x ∈ B(y, R) and 0 < r ≤ R < ∞, then

µ(B(x, r))

µ(B(y, R))
&

( r

R

)Qµ

for Qµ = log2 Cµ. Choosing R = diam X we see that the doubling condition
implies lower Ahlfors regularity.

Lower Ahlfors regularity and log-Hölder continuity of the exponent p to-
gether imply certain very useful estimates on the measures of balls:

Lemma 2.2 (Lemma 3.6, [19]). Let µ be lower Ahlfors Q-regular and let p
be log-Hölder continuous. Then there is a constant K such that

µ(B)p−
B
−p+

B ≤ K

for all balls B ⊂ X.
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Lemma 2.3. Let µ be lower Ahlfors Q-regular in a bounded set X and let

p be log-Hölder continuous and bounded in X. Then for every ball B ⊂ X
centered at x we have

∫

B

µ(B)
−p(y)
p(x) dµ(y) ≤ max

{

µ(X)
p+

p− , K
1

p−
}

,

where K ≥ 1 is the constant of Lemma 2.2.

Proof. By the previous lemma we know that µ(B)p−
B
−p+

B ≤ K for all balls
B ⊂ X. Thus

µ(B)p(x)−p(y) ≤ max
{

µ(B)p+
B
−p−

B , µ(B)p−
B
−p+

B

}

≤ max
{

µ(B)p+

, K
}

for every x, y ∈ B. Hence we have
∫

B(x,r)

µ(B(x, r))
−p(y)
p(x) dµ(y) = –

∫

B(x,r)

µ(B(x, r))
p(x)−p(y)

p(x) dµ(y)

≤ max
{

µ(B)p+

, K
}

1
p− –

∫

B(x,r)

dµ(y),

which completes the proof. �

The following fact is proven like the previous lemma.

Lemma 2.4. Let µ be lower Ahlfors Q-regular in a bounded set X and let p
be bounded and log-Hölder continuous. Then for every ball B containing x

‖1‖Lp(·)(B) ≤ Cµ(B)
1

p(x) .

In the rest of this paper we will prove several result for variable dimension
metric measure spaces. The following trivial proposition guarantees that
these results are always at least as good as the constant-dimension results
that have been proven by other researchers.

Proposition 2.5. Let X be a metric measure space with a doubling measure

µ. Suppose also that the space is lower Q(·)-Ahlfors regular. Then X is

lower Q̃(·)-Ahlfors regular, where Q̃(x) = max{Q(x), Qµ}.

3. Measures of variable dimension

There is a standard way to relate measures and distances in metric measure
spaces to give some kind of dimension. The following definition of point-wise
upper and lower local dimensions appear e.g. in [7, 8, 22]:

dim X(x) = lim sup
r→0

log µ(B(x, r))

log r

and

dim X(x) = lim inf
r→0

log µ(B(x, r))

log r
,

where X ⊂ R
n. Measures for which dim X(x) = dim X(x) = C almost

everywhere are called exact dimensional in [7], and have been studied to some
extent. The strategy in [7] for studying non-exact (multifractal) measures is
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to consider them as composed of infinitely many exact measures. This is in
some sense analogous to thinking of a function as a sum of simple functions.
As this analogy suggests, it may be worthwhile to look at the measures also
from a more global point-of-view – in this case the dimension is described
by a function varying with the point x. With this perspective, we will define
a variable dimension Hausdorff measure which is very far from exact, and
show that it is the appropriate measure for a certain von Koch-type curve.

Hausdorff measures. The definition of the variable Hausdorff measure is
fairly straightforward. Let Q : X → (0,∞) be a bounded function. We
define the variable Hausdorff measure by first letting

H
Q(·)
δ (E) = inf

{

∑

i

diam(Bi)
Q(xi) : E ⊂

⋃

i

Bi, diam(Bi) ≤ δ
}

,

where xi is the center of Bi, and then taking the limit:

HQ(·)(E) = lim
δ→0

H
Q(·)
δ (E).

This is just a special case of a measure construction due to Carathéodory,
hence HQ(·) is a Borel regular outer measure [11, 2.10.1, p. 169].

Note that there is some degree of arbitrariness in choosing the value of s
at the center of the ball. We can similarly define lower and upper variable
Hausdorff measures by taking the limit δ → 0 of

H
Q(·)
δ (E) = inf

{

∑

i

diam(Bi)
Q+

Bi : E ⊂
⋃

i

Bi, diam(Bi) ≤ δ
}

and

H
Q(·)

δ (E) = inf
{

∑

i

diam(Bi)
Q−

Bi : E ⊂
⋃

i

Bi, diam(Bi) ≤ δ
}

.

However, we have the following uniqueness result:

Proposition 3.1. If Q : X → (0,∞) is log-Hölder continuous, then

H
Q(·)

(E) ≈ HQ(·)(E) ≈ HQ(·)(E)

for every E ⊂ X.

Proof. For any x ∈ X and r < 1/2 we have

1 ≤ diam(B(x, r))
Q−

B(x,r)
−Q+

B(x,r) ≤ C

by the log-Hölder continuity condition, so the claim follows. �

Von Koch curves. We next construct a variable dimensional von Koch
curve, modifying the standard procedure which can be found in any basic
book of modern real analysis or measure theory, see e.g. [26].

We construct a sequence of piece-wise linear curves. The length of the
segment K will be denoted by |K|. Let a function s : [0, 1] → (1/4, 1/2)
be given. We start with the unit segment [0, 1] ⊂ R

2. We divide this into
four equally long segments, and replace each subsegment with a segment of
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1/4 1/4 1/4 1/4 s(1/2)

s(1/2)s(1/2)

s(1/2)

Figure 1. The construction of the von Koch curve.

Figure 2. An ordinary Koch curve (upper) and a variable dimension
Koch curve (lower).

length s(1/2)|K|, in such a way that the segments K0 and K3 are subsets of
K at opposite ends of K, and K1 and K2 are the sides of an isosceles triangle
whose base is K \ (K0 ∪K3), see Figure 1. Notice that the right curve in the
figure is naturally parameterized by the unit interval; we denote by Φ(1) this
map of the unit interval onto the first level of the construction.

We repeat this process in each of the four segments, but using the lengths
give by the s(xi)-value, where xi is the parameter value of the middle point
of the segment, so the first four segments (K00, K01, K02, K03) have lengths
s(1/8)|K0|, the next four s(3/8)|K1|, then s(5/8)|K2|, and the last four
s(7/8)|K3|. In general, we denote by Ki1...ik the segments from the kth level
of the construction, where every ij belongs to {0, 1, 2, 3}. The corresponding
parameter map is denoted by Φ(k). This construction is continued, and the
von Koch curve is the limit set. Of course, if s equals a constant, we get the
ordinary von Koch curve. The fifth level of this construction is illustrated in
Figure 2 for s ≡ 0.35 and s(t) = 0.25 + t/5. The construction also directly
produces a continuous map Φ from [0, 1] to the von Koch curve.

We want to show that if the function s is reasonably regular, then the
construction produces a curve with variable dimension given by

(3.2) Q(x) =
log 4

log(1/s(x))
.
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Of course, if s is a constant function, then this is well-known. We will use
the following lemma.

Lemma 3.3. Let s : [0, 1] → (1/4, 1/2) be Lipschitz and let Ks(·) be the

corresponding von Koch curve. Then

|Ki1...ik | ≈ s(x)k,

for every x ∈ Φ−1
(k)(Ki1...ik), where the implicit constants are independent of

k.

Proof. Recursively we find that

|Ki1...ik | = |Ki1...ik−1
|s(xk) = . . . = |K|s(1

2
)s(2x1−1

8
) · · · s(2xk−1

2·4k ),

where xj ∈ [1, 4j] is an integer chosen so that
2xj−1

2·4j is as close to x as possible.
This choice of xj implies that

∣

∣

∣

2xj − 1

2 · 4j
− x

∣

∣

∣
≤

1

2 · 4j
.

Let L > 0 denote the Lipschitz constant of s. Then

s(1
2
)s(2x1−1

8
) · · · s(2xk−1

2·4k ) ≤
(

s(x) + L
2

)(

s(x) + L
8

)

· · ·
(

s(x) + L
2·4k

)

≤
(

1 + L
2s−

)(

1 + L
8s−

)

· · ·
(

1 + L
2·4ks−

)

s+s(x)k

≤ CKs(x)k,

where CK = exp(L/s−)s+ and the last estimate is derived using the inequal-
ity 1 + z ≤ exp z for each of the terms. Similarly, we derive the lower bound
s(x)k/CK for the product. �

We next show that the variable dimensional Hausdorff measure is indeed
suitable for our Koch curve. The idea with the proof is that the Hausdorff
measure of a ball B ⊂ Ks(·) is essentially the Euclidean measure of the
preimage Φ−1(B) ⊂ [0, 1].

Theorem 3.4. Let s : [0, 1] → (1/4, 1/2) be Lipschitz, let Ks(·) be the corre-

sponding von Koch curve and let Q be as in (3.2). Then

0 < HQ(·)(Ks(·)) < ∞

and HQ(·) is Ahlfors Q(·)-regular.

Proof. For a segment Ki1...ik in the construction of the von Koch curve we
denote by B(Ki1...ik) the open ball whose diametrical chord is Ki1...ik . We
define ball families by

Bk = {B(Ki1...ik) : ij ∈ {0, 1, 2, 3}}.

The curve Ks(·) is covered by the 4k balls in Bk (except for a finite number
of points, which clearly constitute a set of measure zero). Denoting δ =
max |Ki1...ik |, we infer using Lemma 3.3 that

H
Q(·)
δ (Ks(·)) ≤ CK

4k
∑

i=1

s(xi)
kQ(xi) = CK

4k
∑

i=1

4−k = CK,
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where xi = 2i−1
2·4k and we used the assumption Q(x) = log 4

log(1/s(x))
for the second-

to-last equality. Since δ tends to zero as k → ∞, this implies that

HQ(·)(Ks(·)) ≤ CK.

Next we derive a lower bound for H
Q(·)
δ (Ks(·)). So let (Bi) be a cover by

balls of Ks(·). Since Ks(·) is compact we find a finite subcover Bi = B(x′
i, ri)

of Ks(·). For each ball Bi we can find a part Ki of the curve which is contained
in Bi and whose length is at least half of ri. We denote xi = Φ−1(x′

i). Then
we have

∑

i

diam(Bi)
Q(xi) ≈

∑

i

|Ki|
Q(xi) ≈

∑

i

s(xi)
kiQ(xi) =

∑

i

4−ki ≥ 1
4
,

where ki denotes the level of Ki. The last inequality holds, since at least one
quarter of every ball contributes to the sum, and the whole balls cover the
unit interval.

Proving Ahlfors Q(·)-regularity follows exactly the same line of argument,
we just replace the set Ks(·) by the subset which is contained in the ball
whose measure we are estimating. �

Remark 3.5. The assumption that s is Lipschitz in the previous theorem
is necessary in the following sense: if the Hausdorff measure is assumed to
be Q(·)-Ahlfors regular, with Q(x) = log 4

log(1/s(x))
, then we easily conclude by

Lemma 2.1 that s is Lipschitz.

4. Embeddings for Riesz potentials

In this section we assume that X is a bounded subset of R
n equipped with

the standard Euclidean metric and a measure µ, which is Borel regular and
finite in every ball. Moreover, we assume that µ is lower Ahlfors Q-regular.
The reason for focusing on the subsets of R

n is that we need the maximal
function theorem, which is known, without a doubling condition, only for
subsets of R

n (but see also Remark 4.3).

The Hardy–Littlewood maximal operator. For a locally integrable
function u on X, we define the Hardy-Littlewood maximal operator by

Mu(x) = sup
r>0

–

∫

B(x,r)

|u| dµ.

Under our assumptions the Hardy-Littlewood maximal operator satisfies the
following weak and strong type estimates. These are easy consequences of
the standard results.

Lemma 4.1. Let µ be lower Ahlfors Q-regular in a bounded set X ⊂ R
n.

For all t > 0 and for any constant exponent p > 1 we have

µ({Mu > t }) ≤
C1

t

∫

X

|u| dµ



10 P. Harjulehto, P. Hästö and V. Latvala

and
∫

X

|Mu|p dµ ≤ C2

∫

X

|u|p dµ.

Proof. We extend µ to the whole of R
n by setting µ(A) = µ(A ∩ X) for all

A ⊂ R
n. This extended µ is a Radon measure on R

n, see [26, Corollary
1.11]. The claim then follows from [26, Theorem 2.19]. �

Combining Lemmas 4.1 and 2.2 with the arguments in [19, Lemma 4.2 and
Theorem 4.3] yields that the Hardy-Littlewood maximal operator is bounded
also in the variable exponent space under our assumptions.

Theorem 4.2. Let µ be lower Ahlfors Q-regular in a bounded set X ⊂ R
n

and let p be log-Hölder continuous in X with 1 < p− ≤ p+ < ∞. Then

‖Mu‖p(·) ≤ C‖u‖p(·)

for all u ∈ Lp(·)(X).

Remark 4.3. Instead of assuming that X is a subset of R
n we could more

generally assume that X is directionally (ε, M)-limited in the sense of [21,
p. 7].

Riesz-potentials. Let α > 0 be fixed. Following [14] we consider a Riesz-
type operator which is better suited to the metric measure space setting. We
define for an open set Ω ⊂ X and an integrable function u an operator

JΩ
α u(x) =

∑

2i≤2 diam Ω

2iα –

∫

B(x,2i)

|u(y)| dµ(y).

Here, and later, the sum should be understood to be taken over all integers
i satisfying 2i ≤ 2 diam Ω. If the measure µ is doubling, then IΩ

α |u|(x) ≤
JΩ

α u(x) for almost every x ∈ X, where

IΩ
α |u|(x) =

∫

Ω

|u(y)|d(x, y)α

µ(B(x, d(x, y))
dµ(y)

is the usual Riesz potential. We abbreviate Jα = JX
α . Riesz potentials in the

variable exponent setting have to been studied for instance in [5, 12, 23, 28].

We want to show that Jα maps Lp(·)(X) to Lp#(·)(X), where

p#(x) =
Q(x)p(x)

Q(x) − αp(x)
.

From the constant exponent case we know that we can only hope to achieve
this when Q(x)− αp(x) is bounded away from 0. The proof of the following
result is based on [14, Theorem 5.3].

Proposition 4.4. Let µ be lower Ahlfors Q(·)-regular in a bounded set X ⊂
R

n. Let p be log-Hölder continuous in X with 1 < p− ≤ p+ < ∞. If

α + 1
k
≤ Q(x)

p(x)
for some k ≥ 1 and every x ∈ X, then

∫

B

[JB
α u(x)]p

#(x)dµ(x) ≤ C(Ck)Q+k



Sobolev embeddings in variable dimension metric spaces 11

for every ball B ⊂ X and every u ∈ Lp(·)(X) with ‖u‖Lp(·)(5B) ≤ 1, where the

constant C does not depend on k.

Proof. Let x ∈ B and let 0 < δ ≤ 2 diam B be a number to be specified later.
Since p is log-Hölder continuous, p′ is too, and by Lemma 2.4 we obtain that

(4.5) ‖1‖Lp′(·)(B(x,2i)) ≤ Cµ
(

B(x, 2i)
)

1
p′(x) .

Using Hölder’s inequality for the first estimate, we have for every x ∈ B that

∑

δ≤2i≤2 diam B

2iα –

∫

B(x,2i)

|u(y)| dµ(y)

.
∑

δ≤2i

2iα

µ(B(x, 2i))
‖u‖Lp(·)(B(x,2i))‖1‖Lp′(·)(B(x,2i))

.
∑

δ≤2i

2iαµ(B(x, 2i))−1+1/p′(x) =
∑

δ≤2i

2iαµ(B(x, 2i))−1/p(x)

.
∑

δ≤2i

2
iα−i

Q(x)
p(x) ≤

δ−Q(x)/p#(x)

1 − 2−Q(x)/p#(x)
.

In the last inequality we used the formula for the geometric sum. Since
Q(x)/p#(x) ≥ 1/k and k ≥ 1 by assumption, we see that

(1 − 2−Q(x)/p#(x))−1 ≤ 2k.

Estimating a geometric sum by its first term, we find that

(4.6)
∑

2i≤δ

2iα –

∫

B(x,2i)

|u(y)| dµ(y) . δαM(uχ5B)(x).

Combining the estimates gives

JB
α u(x) . δαM(uχ5B)(x) + kδ

−
Q(x)
p#(x) .

For almost every x we have M(uχ5B)(x) < +∞, so by the previous estimate,
the same is true for the Riesz potential.

If [M(uχ5B)(x)]
−

p(x)
Q(x) < 2 diam(B), we choose δ = [M(uχ5B)(x)]

−
p(x)
Q(x) .

Then the previous inequality gives

(4.7) JB
α u(x) . k [M(uχ5B)(x)]

1−α
p(x)
Q(x) .

If [M(uχ5B)(x)]
−

p(x)
Q(x) ≥ 2 diam(B), we choose δ = 2 diam(B). Now we have

δα ≤ [M(uχ5B)(x)]
−α

p(x)
Q(x) ,

which by (4.6) implies (4.7).
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We raise both sides of (4.7) to the power of p#(x) and integrate over
x ∈ B. This yields

∫

B

[JB
α u(x)]p

#(x)dµ(x) ≤ (Ck)Q+k

∫

X

[M(uχ5B)(x)]p(x) dµ(x).

By Theorem 4.2, the Hardy-Littlewood maximal operator is bounded and
hence

‖Muχ5B‖Lp(·)(X) . ‖u‖Lp(·)(5B) ≤ 1.

This implies that %Lp(·)(X)(Muχ5B) ≤ C, which, combined with the previous
inequality, gives

∫

X

[JB
α u(x)]p

#(x)dµ(x) ≤ C(Ck)Q+k. �

Theorem 4.8. Let µ be lower Ahlfors Q(·)-regular in a bounded set X ⊂ R
n.

Let p be log-Hölder continuous in X and let 1 < p− ≤ p+ < ∞. Then the

following claims hold for every u ∈ Lp(·)(X).

(1) If α < inf Q(x)
p(x)

, then for each ball B ⊂ X we have

‖JB
α u‖

Lp#(·)(B)
. ‖u‖Lp(·)(5B).

(2) If Q(x) ≥ 1 and α = Q(x)
p(x)

for all x ∈ X, then there exists C1 > 1 so

that for each ball B ⊂ X we have

∫

B

exp

(

C1J
B
α u(x)

‖u‖Lp(·)(5B)

)
1

Q+

dµ(x) ≤ 2.

(3) If α > sup Q(x)
p(x)

, then for each ball B ⊂ X we have

‖JB
α u‖L∞(B) . ‖u‖Lp(·)(5B).

Proof. Using Proposition 4.4 for u/‖u‖Lp(·)(5B) and some sufficiently large k,
we obtain claim (1).

Next we consider the case α = Q(x)
p(x)

. For every positive integer k we define

a function εk : X → (0,∞) by εk(x) = p(x)2/(k/Q+ + p(x)). Then it follows
that (p − εk)#(x) = k/Q+. Since

‖u‖Lp(·)−εk(·)(5B) ≤ (1 + µ(5B))‖u‖Lp(·)(5B)

we obtain by using Proposition 4.4 for the function u/‖u‖Lp(·)(5B) with the
exponent p − εk that

∫

B

(

C1J
B
α u(x)

‖u‖Lp(·)(5B)

)
k

Q+

dµ(x) ≤ (C2k)k,

where C1 is chosen so small that C2 < 1/e (note that this can be done
uniformly in k). The proposition is applicable, since Q(x) ≥ 1 implies that
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α + 1
k
≤ Q(x)

p(x)−εk(x)
. Using a series expansion for ex, we find that

∫

B

exp

(

C1J
B
α u(x)

‖u‖Lp(·)(5B)

)
1

Q+

dµ(x) =
∑

k≥0

1

k!

∫

B

(

C1J
B
α u(x)

‖u‖Lp(·)(5B)

)
k

Q+

dµ(x)

≤
∑

k≥0

(C2k)k

k!
< ∞.

Finally, we have the case α > sup Q(x)
p(x)

. We denote r = 2 diam B. By

Hölder’s inequality and inequality (4.5) we obtain that

JB
α u(x) =

∑

2i≤r

2iα –

∫

B(x,2i)

|u(y)| dµ(y)

.
∑

2i≤r

2iαµ(B(x, 2i))
−1+ 1

p′(x)‖u‖Lp(·)(B(x,2i))

.
∑

2i≤r

2
iα−i

Q(x)
p(x) ‖u‖Lp(·)(B(x,2i)) ≤ r

α−sup
Q(x)
p(x) ‖u‖Lp(·)(B(x,r))

≤
(

1 + (diam X)α
)

‖u‖Lp(·)(5B). �

Remark 4.9. There is a power 1/Q+ on the Riesz potential in (2), above.
This exponent does not appear in the paper [14], but a careful scrutiny of
their argument shows that in fact it should occur. In other words, their
argument does not not prove their claim, only a weaker claim of the kind
presented here.

Remark 4.10. We have stated the results in this section for metric measure
spaces (X, d, µ) where X ⊂ R

n and the measure is lower Ahlfors regular.
However, the condition X ⊂ R

n is needed only to imply that the maximal
operator is bounded for constant exponents p > 1. In particular, if our
metric measure space is doubling or (ε, M)-directional, then we do not need
to assume that X ⊂ R

n.

5. Embeddings in Haj lasz spaces

We end this paper by applying the results of the previous section to obtain
two embedding theorems for variable exponent and variable dimension.

In this section we assume that µ is lower Ahlfors Q(·)-regular and doubling
in a metric measure space X. Our basic example is the variable dimensional
von Koch curve which does not contain rectifiable curves. Hence the defi-
nition of Sobolev spaces can not be based on upper gradients (which would
give us Newtonian spaces). Instead of that we use the Haj lasz-Sobolev space
M1,p(·), which was introduced in [15].

A measurable function u ∈ Lp(·)(X) belongs to M 1,p(·)(X) if there exists a
non-negative g ∈ Lp(·)(X) such that

(5.1) |u(x) − u(y)| ≤ Cd(x, y)(g(x) + g(y))
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for µ-almost every x, y ∈ X. Any such function g is called here a Haj lasz
gradient of u. If 1 < p− ≤ p+ < ∞, then there exists a unique Haj lasz
gradient g which minimizes the norm in M 1,p(·)(X), [20, Proposition 3.1].

Sobolev embeddings. Our first embedding follows easily by combining
the point-wise estimate (5.1) with the results of the previous section. Let
u ∈ M1,p(·)(X) and let g ∈ Lp(·)(X) be a Haj lasz gradient of u. Integrating
both sides in (5.1) over y and x we obtain in a standard manner the Poincaré
inequality

(5.2)

∫

B

|u(x) − uB| dµ ≤ C(X) diam(B)

∫

B

g(x) dµ

for every ball B ⊂ X. Since the measure is assumed to be doubling we find
by [14, Theorem 5.2] that

(5.3) |u(x) − uB| ≤ CJB
1 g(x)

for µ-almost every x ∈ B. Now Theorem 4.8 yields the following result.

Corollary 5.4. Let µ be lower Ahlfors Q(·)-regular and doubling in a bounded

metric space X. Let p be log-Hölder continuous in X and let 1 < p− ≤ p+ <

∞. If 1 < inf Q(x)
p(x)

, then for each ball B ⊂ X we have

‖u − uB‖Lp#(·)(B)
≤ C‖g‖Lp(·)(5B).

Trudinger–Sobolev embeddings. As the main result of this section we
extend a Trudinger–Sobolev type embedding to our setting. Recall that in
the classical case this embedding states that W 1,n embeds into exp Ln′

, where
the exponent n′ = n/(n − 1) is the best possible. With variable exponent
spaces we can prove a similar result for the case of variable dimensional
spaces.

We will modify the proof of [14, Theorem 6.1] to the variable exponent,
variable dimension case. We start with an auxiliary lemma.

Lemma 5.5. Let p be bounded and log-Hölder continuous, B is a ball and

x ∈ λB, where λ ≥ 1. If ‖u‖Lp(·)(B) ≤ 1, then

–

∫

B

u dµ . 1 + µ(B)s− 1
p(x) [M(up(·))(x)]s%Lp(·)(B)(u)

1
p(x)

−s

for all s < 1/p(x). Here the implicit constant depends on λ, s and p.
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Proof. We start in the standard way, using Hölder’s inequality for the con-
stant exponent p+

λB:

(

–

∫

B

u dµ

)p(x)

≤

(

–

∫

B

up−
λB dµ

)

p(x)

p
−

λB ≤

(

–

∫

B

1 + u(y)p(y) dµ(y)

)

p(x)

p
−

λB

. 1 + µ(B)
−

p(x)

p
−

λB

(
∫

B

u(y)p(y) dµ(y)

)

p(x)

p
−

λB

≤ 1 + µ(B)
1− p(x)

p
−

λB –

∫

B

u(y)p(y) dµ(y),

where we used that
∫

up ≤ 1 in the last inequality. Since p is log-Hölder
continuous and µ is doubling, we find that

µ(B)
1− p(x)

p
−

λB .
(

µ(λB)p−
λB

−p(x)
)

1

p
−

λB ≤ C.

Thus we have shown that

–

∫

B

u dµ . 1 +

(

–

∫

B

u(y)p(y) dµ(y)

)
1

p(x)

.

To conclude the proof we use that
(

–

∫

B

u(y)p(y) dµ(y)

)
1

p(x)

= µ(B)s− 1
p(x)

(

–

∫

B

u(y)p(y) dµ(y)

)s( ∫

B

u(y)p(y) dµ(y)

)
1

p(x)
−s

,

and estimate the second factor in the last line by the maximal function. �

Adapting [14, Section 6], we say that a metric measure space X satisfies
a chain condition if there is a constant M such that for each x ∈ X and all
0 < R1 < R2 < 1

4
diam X there is a finite sequence of balls B0, B1, . . ., Bk

which satisfy

(1) B0 ⊂ X \ B(x, R2) and Bk ⊂ B(x, R1),
(2) M−1 diam(Bi) ≤ dist(x, Bi) ≤ M diam(Bi) for i = 0, 1, . . ., k,
(3) Bi ⊂ B(x, 4R2) for i = 0, 1, . . ., k,
(4) there is a ball B′

i ⊂ Bi ∩ Bi+1 such that Bi ∩ Bi+1 ⊂ MB′
i for i =

0, 1, . . ., k − 1 and
(5) no points of X belongs to more than M balls Bi.

It was shown in [14, Section 6] that if X is a bounded connected doubling
space then it satisfies this chain condition. Condition (3) is not explicitly
stated in [14], but it can be easily deduced from the construction presented
in [14], p. 30.

The following lemma is proved in the third paragraph of the proof of [14,
Theorem 6.1].

Lemma 5.6. Let ri be the radii of the balls from a chain whose largest ball

has radius r. Then
∑

rs
i . rs/s for any s > 0.
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Theorem 5.7. Let X be a bounded connected doubling space, and assume

that µ is lower Ahlfors Q(·)-regular, where Q is log-Hölder continuous and

1 < Q− ≤ Q+ < ∞. Then there is a constant C1, depending on X, such

that

–

∫

B

exp

(

C1|u(x) − uB|

‖g‖LQ(·)(5B)

)Q′(x)

dµ(x) ≤ 2

for every ball B ⊂ X and for each u ∈ M 1,Q(·)(X) with Haj lasz gradient g.

Proof. Fix a ball B ⊂ X, diam(B) ≤ diam(X), with radius r and a point
x ∈ B. Let u ∈ M1,p(·)(X) and assume without loss of generality that
‖g‖LQ(·)(5B) = 1. Let B0, . . ., Bk be a chain associated to x with R2 =
1
5

diam(B) and 0 < R1 < R2. By (1), (2) and (3) we have µ(B0) ≈ µ(B) and
by (3) Bi ⊂ 5B for every i = 0, . . ., k. By Lemma 6.2, [14], there exits an
R1 > 0 and a corresponding k such that

|u(x) − uB0 | .

k
∑

i=0

ri –

∫

Bi

g dµ.

Let q(x) = 2kQ(x)/(Q(x)−1) and note that q is also log-Hölder continuous
and satisfies 1 < q− ≤ q+ < ∞. We consider first the case k > (Q+ − 1)/2,
and note that then q > Q. Let us denote f(y) = g(y)Q(y). By the chain
property (2) we have x ∈ (2M + 1)Bi. Using Lemma 5.5 with s = 1/q(x)
and λ = 2M + 1 in the previous inequality, we find that

|u(x) − uB0 | .

k
∑

i=0

ri

[

1 + µ (Bi)
1

q(x)
− 1

Q(x)
(

Mf(x)
)

1
q(x) %LQ(·)(Bi)(g)

1
Q(x)

− 1
q(x)

]

.

k
∑

i=0

[

ri + r
1−

Q(x)

q(x)2

i

(

r
Q(x)
q(x)

i Mf(x)
)

1
q(x)

(

%LQ(·)(Bi)(g)

µ(Bi)

)

1
Q(x)

− 1
q(x)

]

.

The first sum on the right-hand-side is dominated by r, by Lemma 5.6. For
the second term, notice that we regard x as a fixed point, so all the exponents
are actually non-variable. Hence the previous inequality is essentially the
same as the one appearing in the proof of Theorem 6.1, [14], p. 31, lines 7–8.
By replacing every q by q(x), every s by Q(x), and every ε by Q(x)/q(x)2 in
paragraphs 2–4 of the same proof, we arrive at the inequality

|u(x) − uB0| . r + q(x)
1

q(x)
+ 1

Q′(x) µ(B)
1

q(x)
− 1

Q(x) r[Mf(x)]
1

q(x) ,

which corresponds to the estimate [14], p. 32, line 3. Since µ is doubling and
X is bounded, we obtain from the lower Ahlfors regularity that

rQ(x) . µ(B(x, r)) ≤ µ(2B) . µ(B).

Hence we conclude that

(5.8) |u(x) − uB0| . diam(X) + q(x)
1

q(x)
+ 1

Q′(x) µ(B)
1

q(x) [Mf(x)]
1

q(x) .

Next, we use the estimate |u(x) − uB| ≤ |u(x) − uB0 | + |uB0 − uB|. By
the Poincaré inequality, Hölder’s inequality, Lemma 2.4, the assumption
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‖g‖LQ(·)(5B) = 1 and lower Ahlfors regularity we may estimate the second
term as follows:

|uB0 − uB| ≤ |uB0 − u5B| + |uB − u5B| ≤ –

∫

B0

|u − u5B| dµ + –

∫

B

|u − u5B| dµ

. –

∫

5B

|u − u5B| dµ + –

∫

5B

|u − u5B| dµ . r –

∫

5B

g dµ

.
r

µ(5B)
‖1‖LQ′(·)(5B)‖g‖LQ(·)(5B) .

r

µ(B)
µ(B)

1
Q′(x) ≤ C.

We combine this with (5.8) and conclude that

|u(x) − uB| . 1 + q(x)
1

q(x)
+ 1

Q′(x) µ(B)
1

q(x) [Mf(x)]
1

q(x) .

We raise both sides of this inequality to the power q(x)/2 and integrate over
x ∈ B. This gives

∫

B

|u(x) − uB|
q(x)
2 dµ(x)

. Cq+
Bµ(B) + Cq+

B

∫

B

q(x)
1
2
+ q(x)

2Q′(x) [µ(B)Mf(x)]
1
2 dµ(x).

Next we use the expression q(x) = 2kQ′(x) ≤ 2k(Q−
B)′ for q, and note that

2(Q−
B)′ is bounded by a constant. Thus our inequality becomes
∫

B

|u(x) − uB|
kQ′(x)dµ(x) . Ckµ(B) + Ckk

1
2
+kµ(B)

1
2

∫

B

[Mf ]
1
2 dµ.

Using the weak type estimate (4.1) it follows by [14, Theorem 14.11] that
∫

B

[Mf ]
1
2 dµ .

(

µ(B)

∫

5B

f dµ

)
1
2

.

So we continue our previous estimate by
∫

B

|u(x) − uB|
kQ′(x)dµ(x) . Ckµ(B) + Ckk

1
2
+kµ(B)

(

∫

5B

f dµ
)

1
2

≤ µ(B)Ck
(

1 + k
1
2
+k

)

.

We divide the previous inequality by µ(B) and obtain

(5.9) –

∫

B

|u(x) − uB|
kQ′(x)dµ(x) . Ck(1 + k

1
2
+k).

Recall that this was derived under the assumption k > (Q+ − 1)/2.
Let us then consider the case 0 < k ≤ (Q+ − 1)/2. By [25], Theorem 2.8,

we obtain

‖g‖
L

kQ(·)
Q(·)−1+k (5B)

≤ (1 + µ(5B))‖g‖LQ(·)(5B) = 1 + µ(5B).

Applying (5.3) for the functions u
(1+µ(5B))

and g
(1+µ(5B))

, we have

–

∫

B

|u(x) − uB|
kQ′(x)dµ(x) . (1 + µ(5B))( Q+

−1
2

)(Q′)+ –

∫

B

J1( g(x)
(1+µ(5B)

)kQ′(x) dµ.
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The integral average on the right hand side can be estimated with the aid of
Proposition 4.4 by choosing

p(x) :=
kQ(x)Q′(x)

kQ′(x) + Q(x)
and k∗ ≥

(Q+ − 1)(Q′)+

2Q−
,

since then p#(x) = kQ′(x) and k∗ satisfies 1 + 1
k∗

≤ Q(x)
p(x)

for all x ∈ X. By

Proposition 4.4,

–

∫

B

J1( g(x)
(1+µ(5B)

)kQ′(x) dµ . (Ck∗)Q+k∗

≤ C,

so (5.9) holds in this case also.
Let t ∈ (0, 1). Using a series expansion for the exponential function and

the estimate (5.9), we find that

–

∫

B

exp
[

(t|u(x) − uB|)
Q′(x)

]

dµ(x) =
∞

∑

k=0

–

∫

B

1

k!

[

(t|u(x) − uB|)
kQ′(x)

]

dµ(x)

≤
∞

∑

k=0

tk(Q+
B

)′

k!
–

∫

B

|u(x) − uB|
kQ′(x) dµ(x) . 1 +

∞
∑

k=1

(Ct(Q
+
B

)′)k

k!
k1+k.

By the ratio test, we see that the sum is convergent if t < [e/C]−1/(Q+
B

)′ .
Thus t can be chosen so small that the upper bound is 2, which completes
the proof. �
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[22] E. Järvenpää, M. Järvenpää and M. Llorente: Local dimensions of sliced measures
and stability of packing dimensions of sections of sets, Adv. Math. 183 (2004), no. 1,
127–154.

[23] V. Kokilashvili and S. Samko: On Sobolev theorem for Riesz type potentials in the
Lebesgue spaces with variable exponent, Z. Anal. Anwendungen 22 (2003), no. 4,
899–910.

[24] V. Kokilashvili and S. Samko: Maximal and fractional operators in weighted Lp(x)

spaces, Rev. Mat. Iberoamericana 20 (2004), no. 2, 493–515.
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