Homeomorphisms with lower bounds for moduli

D. Kovtonyuk and V. Ryazanov

August 24, 2005 (LOWER240805.tex)

Abstract

We elucidate possibilities of lower estimates of moduli for families of surfaces of dimension n-1 under mappings with finite distortion. In particular, it makes possible to investigate the boundary behavior of homeomorphisms of finite area distortion, especially, of finitely bi-Lipschitz homeomorphisms between quasi-extremal distance domains by Gehring-Martio.

1 Introduction

Many classes of the so-called mappings with finite distortion are intensively studied during the last years, see e.g. [AIKM], [FKZ], [GI], [HK₁], [HK_{*}], [HK^{*}₁], [HM], [HP], [IKO₁]–[IKO₂], [IM], [IŠ], [Ka], [KKM₁]–[KKM₂], [KM], [KKMOZ], [KO], [KOR], [MV₁]–[MV₂], [On₁]–[On₃], [Pa], and [Ra₁]–[Ra₄]. So far the upper estimates of moduli have played the major role in the theory, see e.g. [MRSY₁] – [MRSY₆], [IR₁] – [IR₂], [RS] and our previous preprint [KR].

In this paper we consider the lower estimates of moduli. First recall the base concepts. Let D be a domain in \mathbb{R}^n , $n \ge 2$, and let $Q : D \to [1, \infty]$ be a measurable function. A homeomorphism $f : D \to \overline{\mathbb{R}^n}$ is called a **Q**-homeomorphism if

(1.1)
$$M(f\Gamma) \le \int_{D} Q(x) \cdot \rho^{n}(x) \ dm(x)$$

for every family Γ of paths in D and every admissible function ρ for Γ , see $[MRSY_3]-[MRSY_6]$. Here the notation m refers to the Lebesgue measure in \mathbb{R}^n .

Recall that, given a family of paths Γ in \mathbb{R}^n , a Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called **admissible** for Γ , abbr. $\rho \in adm \Gamma$, if

(1.2)
$$\int_{\gamma} \rho \, ds \geq 1$$

for each $\gamma \in \Gamma$. The (conformal) **modulus** of Γ is the quantity

(1.3)
$$M(\Gamma) = \inf_{\rho \in adm \ \Gamma} \int_{D} \rho^{n}(x) \, dm(x) \; .$$

In particular, the homeomorphisms $f : D \to \mathbb{R}^n$, $n \geq 2$, of the class $W_{loc}^{1,n}$ with a locally integrable inner dilatation $K_I(x, f)$ are Q-homeomorphisms with $Q(x) = K_I(x, f)$.

The following localization and extension of the notion of Q-homeomorphisms was first introduced in [RSY₁] for n = 2 and then investigated in [RS] for an arbitrary $n \ge 2$. It was motivated by Gehring's ring definition of quasiconformality in [Ge₁].

Given a domain $D \subseteq \mathbb{R}^n$, $n \geq 2$, $x_0 \in D$, $\varepsilon_0 < dist(x_0, \partial D)$, a measurable function $Q: B(x_0, \varepsilon_0) \to [0, \infty]$, a homeomorphism $f: D \to \overline{\mathbb{R}^n}$ is called a **ring Q-homeomorphism** at x_0 if

(1.4)
$$M(\Gamma(fS_1, fS_2)) \leq \int_R Q(x) \cdot \eta^n(|x - x_0|) \, dm(x)$$

for every ring

$$R = R(x_0, r_1, r_2) = \{ x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2 \} , \quad 0 < r_1 < r_2 < \varepsilon_0 ,$$

and every measurable function $\eta: (r_1, r_2) \to [0, \infty]$ such that

(1.5)
$$\int_{r_1}^{r_2} \eta(r) \, dr \ge 1$$

where

$$S_i = S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}, \quad i = 1, 2,$$

and $\Gamma(C_1, C_2)$, $C_i = fS_i$, denotes the family of all path $\gamma : [a, b] \to \overline{\mathbb{R}^n}$ which join C_1 and C_2 .

We may assume in the above definition of the ring homeomorphism that Q is given in the whole domain D because every measurable function in $B(x_0, \varepsilon_0)$ can be extended to a measurable function in D, as in [RS]. There it was shown that (1.4) is equivalent to the inequality

(1.6)
$$M(\Gamma(fS_1, fS_2)) \leq \frac{\omega_{n-1}}{I^{n-1}}$$

where ω_{n-1} is an area of the unit sphere S^{n-1} in \mathbb{R}^n ,

(1.7)
$$I = I(x_0, r_1, r_2) = \int_{r_1}^{r_2} \frac{dr}{rq_{x_0}^{\frac{1}{n-1}}(r)}$$

where $q_{x_0}(r)$ is the mean of the function Q(x) over the sphere $|x - x_0| = r$. Note that the infimum of the expression from the right in (1.4) is realized for the function

$$\eta_0(r) = \frac{1}{I} \cdot \frac{1}{r \, q_{x_0}^{\frac{1}{n-1}}(r)}$$

In the present paper, we study a similar notion in terms of modulus for surfaces of the dimension n-1.

Below H^k , k = 1, ..., n - 1 denotes the **k**-dimensional Hausdorff measure in \mathbb{R}^n , $n \ge 2$. More precisely, if A is a set in \mathbb{R}^n , then

(1.8)
$$H^{k}(A) = \sup_{\varepsilon > 0} H^{k}_{\varepsilon}(A),$$

(1.9)
$$H_{\varepsilon}^{k}(A) = V_{k} \inf \sum_{i=1}^{\infty} \left(\frac{\delta_{i}}{2}\right)^{k}$$

where the infimum is taken over all countable collections of numbers $\delta_i \in (0, \varepsilon)$ such that some sets A_i in \mathbb{R}^n with diameters δ_i cover A. Here V_k denotes the volume of the unit ball in \mathbb{R}^k .

Let ω be an open set in \mathbb{R}^k , k = 1, ..., n-1. A (continuous) mapping $S : \omega \to \mathbb{R}^n$ is called a k-dimensional surface S in \mathbb{R}^n . Sometimes we call the image $S(\omega) \subseteq \mathbb{R}^n$ by the surface S, too. The number of preimages

(1.10)
$$N(S,y) = N(S,y,\omega) = card S^{-1}(y) = card \{x \in \omega : S(x) = y\}$$

is said to be a **multiplicity function** of the surface S at a point $y \in \mathbb{R}^n$. In the other words, N(S, y) means the multiplicity of covering of the point y by the surface S. It is known that multiplicity function is lower semi-continuous, i.e.,

$$N(S, y) \geq \liminf_{m \to \infty} N(S, y_m)$$

for every sequence $y_m \in \mathbb{R}^n$, m = 1, 2, ... such that $y_m \to y \in \mathbb{R}^n$ as $m \to \infty$, see e.g. [RR], p. 160. Thus, the function N(S, y) is Borel measurable and hence measurable with respect to every Hausdorff measure H^k , see e.g. [Sa], p. 52.

k-dimensional Hausdorff area in \mathbb{R}^n (or simply **area**) associated with a surface $S: \omega \to \mathbb{R}^n$ is given by

(1.11)
$$\mathcal{A}_S(B) = \mathcal{A}_S^k(B) := \int_B N(S, y) \, dH^k y$$

for every Borel set $B \subseteq \mathbb{R}^n$ and, more generally, for an arbitrary set which is measurable with respect to H^k in \mathbb{R}^n . The surface S is **rectifiable** if $S(\mathbb{R}^n) < \infty$.

If $\rho : \mathbb{R}^n \to [0, \infty]$ is a Borel function, then its **integral over** S is defined by the equality

(1.12)
$$\int_{S} \rho \ d\mathcal{A} := \int_{\mathbb{R}^{n}} \rho(y) \ N(S,y) \ dH^{k}y$$

Given a family Γ of k-dimensional surfaces S, a Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called **admissible** for Γ , abbr. $\rho \in adm \Gamma$, if

(1.13)
$$\int_{S} \rho^{k} d\mathcal{A} \geq 1$$

for every $S \in \Gamma$. Given $p \in (0, \infty)$, the **p**-modulus of Γ is the quantity

(1.14)
$$M_p(\Gamma) = \inf_{\rho \in adm\Gamma} \int_{\mathbb{R}^n} \rho^p(x) \ dm(x) \ .$$

We also set

(1.15)
$$M(\Gamma) = M_n(\Gamma)$$

The modulus is itself an outer measure on the collection of all families Γ of k-dimensional surfaces.

Sometimes, under proofs, it is more convenient to use the following notion. A Lebesgue measurable function $\rho : \mathbb{R}^n \to [0, \infty]$ is said to be **p**-extensively admissible for a family Γ of k-dimensional surfaces S in \mathbb{R}^n , abbr. $\rho \in ext_p \ adm \Gamma$, if

(1.16)
$$\int_{S} \rho^{k} d\mathcal{A} \geq 1$$

for p-a.e. $S \in \Gamma$. The **p**-extensive modulus $\overline{M}_p(\Gamma)$ of Γ is the quantity

(1.17)
$$\overline{M}_p(\Gamma) = \inf_{\mathbb{R}^n} \int_{\mathbb{R}^n} \rho^p(x) \, dm(x)$$

where the infimum is taken over all $\rho \in ext_p adm \Gamma$. In the case p = n, we use notations $\overline{M}(\Gamma)$ and $\rho \in ext adm \Gamma$, respectively. For every $p \in (0, \infty)$, k = 1, ..., n - 1, and every family Γ of k-dimensional surfaces in \mathbb{R}^n ,

(1.18)
$$\overline{M}_p(\Gamma) = M_p(\Gamma),$$

see Corollary 2.16 in [KR]. The same is also true for moduli with weights.

Given a domain $D \subseteq \mathbb{R}^n$, $n \geq 2$, $x_0 \in \overline{D} \setminus \{\infty\}$, a measurable function $Q : D \to (0, \infty)$, we say that a homeomorphism $f : D \to \overline{\mathbb{R}^n}$ is a **lower** Q-homeomorphism at the point x_0 if

(1.19)
$$M(f\Sigma_{\varepsilon}) \geq \inf_{\rho \in adm\Sigma_{\varepsilon}} \int_{D \cap R_{\varepsilon}} Q^{-1}(x) \ \varrho^{n}(x) \ dm(x)$$

for every ring

$$R_{\varepsilon} = \{ x \in \mathbb{R}^n : \varepsilon < |x - x_0| < \varepsilon_0 \}, \ \varepsilon \in (0, \varepsilon_0)$$

where

(1.20)
$$0 < \varepsilon_0 < d_0 = \sup_{x \in D} |x - x_0| = \sup_{x \in \partial D} |x - x_0|$$

and Σ_{ε} denotes the family of all intersections of the spheres

$$S(r) = S(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}, r \in (\varepsilon, \varepsilon_0),$$

with \overline{D} . Here $adm \Sigma_{\varepsilon}$ consists of Borel functions $\varrho : \mathbb{R}^n \to [0, \infty]$ with

(1.21)
$$\int_{D(r)} \varrho^{n-1} d\mathcal{A} \ge 1 , \quad \forall \ r \in (\varepsilon, \varepsilon_0)$$

where

(1.22)
$$D(r) = D(x_0, r) = \{x \in D : |x - x_0| = r\} = D \cap S(x_0, r).$$

As usual, the notion can be extended to the case $x_0 = \infty \in \overline{D}$ through applying the inversion T with respect to the unit sphere in $\overline{\mathbb{R}^n}$, $T(x) = x/|x|^2$, $T(\infty) = 0$, $T(0) = \infty.$

We also say that a homeomorphism $f: D \to \overline{\mathbb{R}^n}$ is a lower Q-homeomorp**hism** in D if f is a lower Q-homeomorphism at every point $x_0 \in \overline{D}$.

We show here that the condition (1.19) is equivalent to the inequality:

(1.23)
$$M(f\Sigma_{\varepsilon}) \geq \int_{\varepsilon}^{\varepsilon_{0}} \frac{dr}{||Q||_{n-1}(r)}$$

where

(1.24)
$$||Q||_{n-1}(r) = \left(\int_{D(r)} Q^{n-1} d\mathcal{A}\right)^{\frac{1}{n-1}}$$

Note that the infimum in (1.19) is attained only for the function

(1.25)
$$\varrho_0(x) = ||Q||_{n-1}^{-1}(|x|) \cdot Q^{n-1}(x).$$

Below we always assume that $Q \equiv 0$ outside of D and take the integrals in (1.24) over the whole spheres $S(r) = S(x_0, r)$.

Let Σ_{ε}^{*} be the family of all (n-1)-dimensional surfaces in D which separate the spheres $|x - x_0| = \varepsilon$ and $|x - x_0| = \varepsilon_0$ in D. Note that (1.23) implies the corresponding lower estimate for Σ_{ε}^* because $\Sigma_{\varepsilon} \subset \Sigma_{\varepsilon}^*$ and hence $\operatorname{adm} \Sigma_{\varepsilon}^* \subset$ adm Σ_{ε} . However, the inequality (1.23) for Σ_{ε}^* is not precise. The same is true for $\Sigma_{\varepsilon}^{**}$ consisting of all closed sets C in \overline{D} which separate the given spheres in D. Indeed, $\Sigma_{\varepsilon} \subseteq \Sigma_{\varepsilon}^{**}$ and hence $\operatorname{adm} \Sigma_{\varepsilon}^{**} \subset \operatorname{adm} \Sigma_{\varepsilon}$, cf. [Z]. In the case of $\Sigma_{\varepsilon}^{**}$, the definitions in the (1.11)–(1.15) are similar with $N(C, y) \equiv 1$. Thus, $M(f\Sigma_{\varepsilon})$ is majorized by $M(f\Sigma_{\varepsilon}^*)$ as well as by $M(f\Sigma_{\varepsilon}^{**})$.

This makes possible to find the corresponding estimates of distortion under lower Q-homeomorphisms and to investigate the removability of isolated singularities and other problems.

Moreover, here we state that homeomorphisms with finite area distortion studied in [KR] are lower Q-homeomorphisms with $Q(x) = K_O(x, f)$ where $K_O(x, f)$ is the outer dilatation of f at x. In particular, this holds for the so-called finitely bi–Lipschitz homeomorphisms which are a natural extension of isometries as well as quasi-isometries, see [K].

Given a mapping $\varphi: E \to \mathbb{R}^n$ and a point $x \in E \subseteq \mathbb{R}^n$, let

(1.26)
$$L(x,\varphi) = \limsup_{y \to x} \sup_{y \in E} \frac{|\varphi(y) - \varphi(x)|}{|y - x|},$$

and

(1.27)
$$l(x,\varphi) = \liminf_{y \to x} \inf_{y \in E} \frac{|\varphi(y) - \varphi(x)|}{|y - x|}$$

A mapping $f: D \to \mathbb{R}^n$ is said to be of **finitely be–Lipschitz** if

(1.28)
$$0 < l(x,f) \leq L(x,f) < \infty \quad \forall x \in D.$$

Recall that **outer dilatation** of f at x is defined by

(1.29)
$$K_O(x, f) = \begin{cases} \frac{|f'(x)|^n}{|J(x,f)|}, & \text{if } J(x, f) \neq 0\\ 1, & \text{if } f'(x) = 0 \end{cases}$$

and otherwise we set $K_O(x, f) = \infty$. Similarly, the **inner dilatation** of f at x is defined as

(1.30)
$$K_I(x,f) = \begin{cases} \frac{|J(x,f)|}{l(f'(x))^n}, & \text{if } J(x,f) \neq 0\\ 1, & \text{if } f'(x) = 0 \end{cases}$$

and $K_I(x, f) = \infty$ otherwise. Here f'(x) denotes the Jacobian matrix of f, $J(x, f) = \det f'(x)$ is its Jacobian, |f'(x)| is the operator norm of f'(x), i.e.

(1.31)
$$|f'(x)| = \max\{|f'(x)h| : h \in \mathbb{R}^n, |h| = 1\}$$

(1.32)
$$l(f'(x)) = \min\{|f'(x)h| : h \in \mathbb{R}^n, |h| = 1\}.$$

2 On mappings with finite area distortion.

Let Ω be an open set in \mathbb{R}^n , $n \geq 2$. A mapping $f : \Omega \to \mathbb{R}^n$ is said to be of **finite metric distortion**, abbr. $f \in FMD$, if f has (N)-property and

(2.1)
$$0 < l(x, f) \leq L(x, f) < \infty$$
 a.e.

Note that a mapping $f: \Omega \to \mathbb{R}^n$ is of FMD if and only if f is differentiable a.e. and has (N)- and (N^{-1}) -properties, see Corollary 3.4 in [MRSY₂]. Recall that a mapping $f: X \to Y$ between measurable spaces (X, Σ, μ) and (X', Σ', μ') is said to have (\mathbf{N}) -property if $\mu'(f(E)) = 0$ whenever $\mu(E) = 0$. Similarly, fhas the (\mathbf{N}^{-1}) -property if $\mu(E) = 0$ whenever $\mu'(f(E)) = 0$.

We say that a mapping $f : \Omega \to \mathbb{R}^n$ has (\mathbf{A}_k) -property if the two conditions hold:

 $(A_k^{(1)})$: for a.e. k-dimensional surface S in Ω the restriction $f|_S$ has (N)-property;

 $(A_k^{(2)})$: for a.e. k-dimensional surface S_* in $\Omega_* = f(\Omega)$ the restriction $f|_S$ has (N^{-1}) -property for each lifting S of S_* .

Here a surface S in Ω is a **lifting** of a surface S_* in \mathbb{R}^n under a mapping $f: \Omega \to \mathbb{R}^n$ if $S_* = f \circ S$. We also say that a mapping $f: \Omega \to \mathbb{R}^n$ is **of finite distortion of area in dimension** k = 1, ..., n-1, abbr. $f \in FAD_k$, if $f \in FMD$ and has the (A_k) -property. Note that analogues of (A_k) -properties and the classes FAD_k have been first formulated in the mentioned work [MRSY₂] for k = 1 where it is additionally requested local rectifiability of S_* and S in $(A_k^{(1)})$ - and $(A_k^{(2)})$ -properties, respectively. Thus, the mapping class FLD (finite length

distortion) in [MRSY₂] is a subclass of FAD_1 . Finally, we say that a mapping $f: \Omega \to \mathbb{R}^n$ is of **finite area distortion**, abbr. $f \in FAD$, if $f \in FAD_k$ for every k = 1, ..., n - 1, see [KR].

2.2. Lemma. Let Ω be an open set in \mathbb{R}^n , $n \geq 2$, and $f: \Omega \to \mathbb{R}^n$ a *FMD* homeomorphism with $(A_k^{(1)})$ -property for some $k = 1, \ldots, n-1$. Then

(2.3)
$$M(f\Gamma) \geq \inf_{\varrho \in adm\Gamma} \int_{\Omega} K_O^{-1}(x, f) \ \varrho^n(x) \ dm(x)$$

for every family Γ of k-dimensional surfaces S in Ω .

Proof. Let B be a (Borel) set of all points x in Ω where f has a differential f'(x) and $J(x, f) = \det f'(x) \neq 0$. As known, B is the union of a countable collection of Borel sets B_l , $l = 1, 2, \ldots$ such that $= f_l f|_{B_l}$ is bi–Lipschitz, see e.g. 3.2.2 in [Fe]. Without loss of generality we may assume that B_l are mutually disjoint. Note that $B_0 = \Omega \setminus B$ and $f(B_0)$ have the Lebesgue measure zero in \mathbb{R}^n for $f \in FMD$. Thus, by Theorem 2.11 in [KR] $\mathcal{A}_S(B_0) = 0$ for a.e. $S \in \Gamma$ and hence by $(A_k^{(1)})$ -property $\mathcal{A}_{S_*}(f(B_0)) = 0$ for a.e. $S \in \Gamma$ where $S_* = f \circ S$.

Let $\rho_* \in ext adm f\Gamma$, $\rho_* \equiv 0$ outside of f(D), and set $\rho \equiv 0$ outside of D and

$$\varrho(x) = \varrho_*(f(x)) || f'(x) ||, x \in D$$

Arguing piecewise on B_l , we have by 3.2.20 and 1.7.6 in [Fe] that

$$\int_{S} \varrho^{k} d\mathcal{A} \geq \int_{S_{*}} \varrho^{k}_{*} d\mathcal{A} \geq 1$$

for a.e. $S \in \Gamma$ and, thus, $\rho \in ext \, adm \, \Gamma$.

By the change of variables for the class FMD, see Proposition 3.7 in [MRSY₂],

$$\int_{\Omega} K_O^{-1}(x,f) \ \varrho^n(x) \ dm(x) = \int_{f(\Omega)} \varrho^n_*(y) \ dm(y)$$

and (2.3) follows.

2.4. Remark. It is easy to see by the well-known Lusin theorem that

$$(2.5)_{\varrho \in ext \, adm\Gamma} \int_{\Omega} K_O^{-1}(x,f) \ \varrho^n(x) \ dm(x) = \inf_{\varrho \in adm\Gamma} \int_{\Omega} K_O^{-1}(x,f) \varrho^n(x) \ dm(x) ,$$

see similar arguments to (2.17) in [MRSY₂]. The expressions in (2.5) are particular cases of moduli with weights.

Combining Lemma 3.10 in [KR] with Lemma 2.2 we have the following statement.

Theorem. Let Ω be an open set in \mathbb{R}^n , $n \geq 2$, and let a homeomorphism 2.6. $f: \Omega \to \mathbb{R}^n$ belong to FAD_k for some $k = 1, \ldots, n-1$. Then, for every family Γ of k-dimensional surfaces S in Ω , f satisfies the double inequality

$$(2.7)\inf_{\Omega} \int_{\Omega} K_O^{-1}(x,f) \cdot \varrho^n(x) dm(x) \le M(f\Gamma) \le \inf_{\Omega} \int K_I(x,f) \cdot \varrho^n(x) dm(x)$$

where the infimums are taken over all $\rho \in adm \ \Gamma$.

Corollary. Every homeomorphism $f: D \to \mathbb{R}^n$ of finite area distortion 2.8.in the dimension n-1 is a lower Q-homeomorphism with $Q(x) = K_O(x, f)$.

3 The main lemma on lower *Q*-homeomorphisms

We start first from the following general statement.

3.1. Lemma. Let (X, μ) be a measure space, $p \in (1, \infty)$ and let $\varphi : X \to X$ $(0,\infty)$ be a measurable function. Set

(3.2)
$$I(\varphi, p) = \inf_{\alpha} \int_{X} \varphi \, \alpha^{p} \, d\mu$$

where the infimum is taken over all measurable functions $\alpha : X \to [0, \infty]$ such that

(3.3)
$$\int_X \alpha \, d\mu = 1.$$

Then

(3.4)
$$I(\varphi, p) = \left[\int_{X} \varphi^{-\lambda} d\mu\right]^{-\frac{1}{\lambda}}$$

where

(3.5)
$$\lambda = \frac{q}{p}, \qquad \frac{1}{p} + \frac{1}{q} = 1,$$

i.e. $\lambda = 1/(p-1) \in (0,\infty)$. Moreover, the infimum in (3.2) is attained only under the function

(3.6)
$$\alpha_0 = C \cdot \varphi^{-\lambda}$$

where

(3.7)
$$C = \left(\int_{X} \varphi^{-\lambda} d\mu\right)^{-1}$$

Proof. Indeed, by the Hölder inequality

$$1 = \int_{X} \alpha \, d\mu = \int_{X} (\varphi^{-\frac{q}{p}})^{\frac{1}{q}} [\varphi \, \alpha^{p}]^{\frac{1}{p}} \, d\mu \leq \left[\int_{X} \varphi^{-\frac{q}{p}} \, d\mu \right]^{\frac{1}{q}} \cdot \left[\int_{X} \varphi \, \alpha^{p} \, d\mu \right]^{\frac{1}{p}}$$

1

and the equality holds if and only if

$$c \cdot \varphi^{-\frac{q}{p}} = \varphi \cdot \alpha^{p} \quad a.e.$$

1

see e.g. [HLP] or [Ru]. $C = c^{\frac{1}{p}}$ in (3.7), i.e.

$$C = \left(\int_X \varphi^{-\frac{1}{p-1}} \, d\mu \right)^{-1}$$

and

$$\alpha_0(x) = \left(\int_X \varphi^{-\frac{1}{p-1}} d\mu\right)^{-1} \cdot \varphi^{-\frac{1}{p-1}}(x) \,.$$

3.8. Theorem. Let D be a domain in \mathbb{R}^n , $n \geq 2$, $x_0 \in \overline{D}$, and let $Q: D \to (0, \infty)$ be a measurable function. A homeomorphism $f: D \to \mathbb{R}^n$ is a lower Q-homeomorphism at x_0 if and only if

(3.9)
$$M(f\Sigma_{\varepsilon}) \geq \int_{\varepsilon}^{\varepsilon_{0}} \frac{dr}{||Q||_{n-1}(r)} \quad \forall \varepsilon \in (0, \varepsilon_{0})$$

where

(3.10)
$$0 < \varepsilon_0 < d_0 = \sup_{x \in D} |x - x_0| = \sup_{x \in \partial D} |x - x_0| ,$$

 Σ_{ε} denotes the family of all the intersections of D with the spheres $S(r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}, r \in (\varepsilon, \varepsilon_0)$ and

(3.11)
$$||Q||_{n-1}(r) = \left(\int_{D(r)} Q^{n-1} d\mathcal{A}\right)^{\frac{1}{n-1}}$$

is the L_{n-1} -norm of Q over $D(r) = \{x \in D : |x - x_0| = r\} = D \cap S(r)$. The infimum of the expression from the right in (1.19) is attained only for the function

$$\varrho_0(x) = ||Q||_{n-1}^{-1}(|x|) \cdot Q^{n-1}(x).$$

Proof. Note that, in view of the Lusin theorem, in (1.19)

$$\inf_{\varrho \in adm\Sigma_{\varepsilon}} \int_{R_{\varepsilon}} Q^{-1}(x) \ \varrho^{n}(x) \ dm(x) = \inf_{\varrho \in ext \ adm\Sigma_{\varepsilon}} \int_{R_{\varepsilon}} Q^{-1}(x) \ \varrho^{n}(x) \ dm(x) ,$$

see (1.16) for the definition of $ext adm \Sigma_{\varepsilon}$. Moreover, for every $\varrho \in ext adm \Sigma_{\varepsilon}$,

$$A(r) = \int_{D(r)} \varrho^{n-1} \, d\mathcal{A} \neq 0 \qquad a.e.$$

is a measurable function in the parameter r, say by the Fubini theorem. Thus, we may request the equality $A(r) \equiv 1$ a.e. instead of (1.16) and

$$\inf_{\varrho \in ext \, adm \Sigma_{\varepsilon}} \int_{R_{\varepsilon}} Q^{-1}(x) \, \varrho^{n}(x) \, dm(x) = \int_{\varepsilon}^{\varepsilon_{0}} \left(\inf_{\alpha \in I(r)} \int_{D(r)} Q^{-1}(x) \, \alpha^{p}(x) \, d\mathcal{A} \right) dr$$

where p = n/(n-1) > 1 and I(r) denotes the set of all measurable function α on the surface $D(r) = S(r) \cap D$ such that

$$\int_{D(r)} \alpha \ d\mathcal{A} = 1$$

Hence Theorem 3.8 follows by Lemma 3.1 with X = D(r), the (n-1)-dimensional area as a measure μ on X, $\varphi = \frac{1}{Q}|_{D(r)}$ and p = n/(n-1) > 1.

3.12. Corollary. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in \overline{D}$, $Q : D \to (0, \infty)$ a measurable function and let $f : D \to \mathbb{R}^n$ be a lower Q-homeomorphism at x_0 . Then

(3.13)
$$M(f\Sigma_{\varepsilon}) \geq \omega_{n-1}^{\frac{1}{1-n}} \int_{\varepsilon}^{\varepsilon_{0}} \frac{dr}{r \cdot q_{n-1}(r)} \quad \forall \varepsilon \in (0, \varepsilon_{0})$$

where

(3.14)
$$q_{n-1}(r) = \left(\oint_{S(r)} q^{n-1} \, d\mathcal{A} \right)^{1/(n-1)}$$

where

(3.15)
$$q(x) = \begin{cases} Q(x), & x \in D, \\ 0, & x \in \mathbb{R}^n \setminus D. \end{cases}$$

4 Estimates of distortion under hyper *Q*-homeomorphisms

In what follows, we use the **spherical (chordal) metric** $h(x, y) = |\pi(x) - \pi(y)|$ in $\mathbb{R}^n = \mathbb{R}^n \bigcup \{\infty\}$ where π is the stereographic projection of \mathbb{R}^n onto the sphere $S^n(\frac{1}{2}e_{n+1}, \frac{1}{2})$ in \mathbb{R}^{n+1} :

(4.1)
$$h(x,\infty) = \frac{1}{\sqrt{1+|x|^2}}, \quad h(x,y) = \frac{|x-y|}{\sqrt{1+|x|^2}\sqrt{1+|y|^2}}, \quad x \neq \infty \neq y.$$

Thus, by definition $h(x, y) \leq 1$ for all x and $y \in \mathbb{R}^{\overline{n}}$. The spherical (chordal) diameter of a set $E \subset \mathbb{R}^{\overline{n}}$ is

(4.2)
$$h(E) = \sup_{x,y \in E} h(x,y)$$

Note that

$$(4.3) h(x,y) \leq |x-y|$$

for all $x, y \in \mathbb{R}^n$ and

(4.4)
$$h(x,y) \ge \frac{1}{2} |x-y|$$

for all x and y in the unit ball $\mathbb{B}^n \subset \mathbb{R}^n$ with the equality in (4.4) on $\partial \mathbb{B}^n$.

4.5. Lemma. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $f : D \to \mathbb{R}^n$ be a lower Q-homeomorphism at $x_0 \in D$ and let $0 < \varepsilon < \varepsilon_0 < dist(x_0, \partial D)$. Then

(4.6)
$$h(fS_{\varepsilon}) \leq \frac{\alpha_n}{h(fS_{\varepsilon_0})} \cdot \exp\left(-\int_{\varepsilon}^{\varepsilon_0} \frac{dr}{r q_{n-1}(r)}\right)$$

where $\alpha_n = 2\lambda_n^2$ with $\lambda_n \in [4, 2e^{n-1}), \lambda_2 = 4$ and $\lambda_n^{\frac{1}{n}} \to e$ as $n \to \infty$,

(4.7)
$$q_{n-1}(r) = \left(\oint_{|x-x_0|=r} Q^{n-1}(x) \, d\mathcal{A} \right)^{\frac{1}{n-1}}$$

 S_{ε} and S_{ε_0} denote the spheres in \mathbb{R}^n centered at x_0 with radii ε and ε_0 , correspondingly.

,

Proof. Set $E = fS_{\varepsilon}$ and $F = fS_{\varepsilon_0}$. By the known Gehring lemma

(4.8)
$$\operatorname{cap} R(E, F) \geq \operatorname{cap} R_T\left(\frac{1}{h(E) h(F)}\right)$$

where h(E) and h(F) denote the spherical diameters of E and F, correspondingly, and $R_T(s)$ is the Teichmüller ring

(4.9)
$$R_T(s) = \mathbb{R}^n \setminus ([-1,0] \cup [s,\infty]), \quad s > 1,$$

see e.g. 7.37 in $[Vu_1]$ or $[Ge_2]$. It is also known that

(4.10)
$$cap R_T(s) = \frac{\omega_{n-1}}{(\log \Psi(s))^{n-1}}$$

where the function Ψ admits the good estimates:

(4.11)
$$s+1 \leq \Psi(s) \leq \lambda_n^2 \cdot (s+1) < 2\lambda_n^2 \cdot s, \ s > 1,$$

see e.g. $[Ge_2]$, p. 225–226, and (7.19) and (7.22) in $[Vu_1]$. Hence the inequality (4.8) implies that

(4.12)
$$\operatorname{cap} R(E, F) \geq \frac{\omega_{n-1}}{\left(\log \frac{2\lambda_n^2}{h(E) h(F)}\right)^{n-1}}.$$

By Theorem 3.13 in [Z] and (3.13) we have

(4.13)
$$\operatorname{cap} R(E,F) \leq \frac{1}{M^{n-1}(f\Sigma_{\varepsilon})} \leq \frac{\omega_{n-1}}{\left(\int\limits_{\varepsilon}^{\varepsilon_0} \frac{dr}{r \cdot q_{n-1}(r)}\right)^{n-1}}$$

because $f\Sigma_{\varepsilon} \subset \Sigma(fS_{\varepsilon}, fS_{\varepsilon_0})$ where $\Sigma(fS_{\varepsilon}, fS_{\varepsilon_0})$ consists of all (n-1)-dimensional surfaces which separate fS_{ε} and fS_{ε_0} .

Finally, combining (4.12) and (4.13) we obtain (4.6).

5 On removability of isolated singularities

By Theorem 3.8 similarly to the proof of Lemma 4.5 we obtain the following statement.

5.1. Theorem. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in D$, $Q : D \to (0, \infty)$ be a measurable function and let $f : D \setminus \{x_0\} \to \mathbb{R}^n$ be a lower Q-homeomorphism. Suppose that

(5.2)
$$\int_{0}^{\varepsilon_{0}} \frac{dr}{r \cdot q_{n-1}(r)} = \infty$$

where $\varepsilon_0 < dist(x_0, \partial D)$ and

(5.3)
$$q_{n-1}(r) = \left(\oint_{|x-x_0|=r} Q^{n-1}(x) \, d\mathcal{A} \right)^{\frac{1}{n-1}},$$

then f has a homeomorphic extension to D.

5.4. Corollary. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in D$ and let $f : D \setminus \{x_0\} \to \mathbb{R}^n$ be a lower Q-homeomorphism. If

(5.5)
$$\int_{|x-x_0|=r} Q^{n-1}(x) \, d\mathcal{A} = O\left(\log^{n-1}\frac{1}{r}\right)$$

as $r \to 0$ then f has a homeomorphic extension to D.

5.6. Corollary. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in D$ and let $f : D \setminus \{x_0\} \to \mathbb{R}^n$ be a lower Q-homeomorphism. If

(5.7)
$$\oint_{|x-x_0|=r} Q^{n-1}(x) \ d\mathcal{A} = O\left(\left[\log\frac{1}{r} \cdot \log\log\frac{1}{r} \cdot \dots \cdot \log\dots\log\frac{1}{r}\right]^{n-1}\right)$$

as $r \to 0$ then f has a homeomorphic extension to D.

5.8. Corollary. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in D$ and $f : D \setminus \{x_0\} \to \mathbb{R}^n$ a homeomorphism of the class FAD_{n-1} . If

(5.9)
$$\int_{|x-x_0|=r} K_O^{n-1}(x,f) \, d\mathcal{A} = O\left(\log^{n-1}\frac{1}{r}\right)$$

as $r \to 0$ then f has a homeomorphic extension to D.

5.10. Remark. In particular, (5.9) holds if

(5.11)
$$K_O(x, f) = O\left(\log \frac{1}{|x - x_0|}\right)$$

as $x \to x_0$.

6 On continuous extension to boundary points

Let $D \subset \mathbb{R}^n$, $n \geq 2$, be a domain. ∂D is said to be **strongly accessible** if, for nondegenerate continua E and F in \overline{D} ,

(6.1)
$$M(\Delta(E,F;D)) > 0$$

and weakly flat if, for nondegenerate continua E and F in \overline{D} with $E \cap F \neq \emptyset$,

(6.2)
$$M(\Delta(E, F; D)) = \infty$$

where $\Delta(E, F; D)$ is the family of all paths joining E and F in D. It is known that every weakly flat boundary is strongly accessible, see Lemma 5.6 in [MRSY₆].

A domain $D \subset \mathbb{R}^n$, $n \geq 2$, is called **locally connected at** $x_0 \in \partial D$ if x_0 has an arbitrarily small neighborhood U such that $U \cap D$ is connected. Every Jordan domain D in \mathbb{R}^n is locally connected at every point of ∂D , see [Wi], p. 66.

6.3. Lemma. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in \partial D$, $Q : D \to (0, \infty)$ be a measurable function and let $f : D \to \mathbb{R}^n$ be a lower Q-homeomorphism at x_0 . Suppose that the domain D be locally connected at x_0 and the domain D' = f(D) has a strongly accessible boundary. If

(6.4)
$$\int_{0}^{\varepsilon_{0}} \frac{dr}{||Q||_{n-1}(r)} = \infty$$

where

(6.5)
$$0 < \varepsilon_0 < d_0 = \sup_{x \in D} |x - x_0| = \sup_{x \in \partial D} |x - x_0|$$

and

(6.6)
$$||Q||_{n-1}(r) = \left(\int_{D\cap S(x_0,r)} Q^{n-1} \, d\mathcal{A}\right)^{\frac{1}{n-1}}$$

then f extends by continuity to x_0 .

Proof. We must show that the cluster set $E = C(x_0, f) = \{y \in \mathbb{R}^n : y = \lim_{k \to \infty} f(x_k), x_k \to x_0, x_k \in D\}$ is a singleton. Note that E is a continuum because D is locally connected at x_0 . Let us assume that the continuum E is not degenerate.

Let Γ_{ε} be a family of all paths joining the spheres $S_{\varepsilon} = \{x \in \mathbb{R}^n : |x - x_0| = \varepsilon\}$ and $S_0 = \{x \in \mathbb{R}^n : |x - x_0| = \varepsilon_0\}.$

Arguing similarly to the Section 4 and 5 on the base of Theorem 3.8 we have that $M(f\Gamma_{\varepsilon}) \to 0$ as $\varepsilon \to 0$ in view of (6.4).

On the other hand, $M(f\Gamma_{\varepsilon}) \geq M_0 = M(\Delta(fS_0, E; D'))$ and by the strong accessibility of $\partial D'$ we have that $M_0 > 0$. The contradiction disproves the above assumption.

7 On quasiextremal distance domains

A domain $D \subset \mathbb{R}^n$, $n \geq 2$, is called a **quasiextremal distance domain**, abbr. a **QED domain**, if

(7.1)
$$M(\Delta(E,F;\mathbb{R}^n) \leq K \cdot M(\Delta(E,F;D))$$

for some $K \ge 1$ and for all pairs of disjoint continua E and F in D, see [GM]. It is known that the inequality (7.1) also holds in a QED domain for every pair of disjoint continua E and F in \overline{D} , see Theorem 2.8 in [HK₂], p. 173, cf. Lemma 6.11 in [MV], p. 35. The latter implies (7.1) for nondegenerate intersecting continua E and F in \overline{D} , too. Hence QED domains have weakly flat boundaries, see (6.2), cf. Lemma 3.1 in [HK₂], p. 196. Every QED domain is **quasiconvex**, i.e., each pair of points x_1 and $x_2 \in D$ can be joined by a rectifiable arc γ in D such that

$$(7.2) s(\gamma) \leq a \cdot |x_1 - x_2|,$$

see Lemma 2.7 in [GM], p. 184. Hence D is locally connected at ∂D , cf. also Lemma 2.11 in [GM], p. 187, and [HK₂^{*}], p. 190.

A domain $D \subset \mathbb{R}^n$, $n \geq 2$, is said to be **uniform** if the inequalities (7.2) and

(7.3)
$$\min_{i=1,2} s(\gamma(x_i, x)) \leq b \cdot d(x, \partial D)$$

hold for some γ and for all $x \in \gamma$ where $\gamma(x_i, x)$ is the part of γ between x_i and x, see [MS]. Every uniform domain is a *QED* domain but there exist *QED* domains which are not uniform, see [GM]. Bounded convex domains provide simple examples of uniform domains.

7.4. Theorem. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in \partial D$, $Q : D \to (0, \infty)$ be a measurable function and let $f : D \to \mathbb{R}^n$ be a lower Q-homeomorphism at x_0 . Suppose that D and D' = f(D) are QED domains. If

(7.5)
$$\int_{0}^{\varepsilon_{0}} \frac{dr}{||Q||_{n-1}(r)} = \infty$$

where

(7.6)
$$0 < \varepsilon_0 < d_0 = \sup_{x \in D} |x - x_0| = \sup_{x \in \partial D} |x - x_0|$$

and

(7.7)
$$||Q||_{n-1}(r) = \left(\int_{D\cap S(x_0,r)} Q^{n-1} \, d\mathcal{A}\right)^{\frac{1}{n-1}},$$

then f extends by continuity to x_0 .

8 On singular null-sets for extremal distances

A closed set $X \subset \mathbb{R}^n$, $n \ge 2$, is called a **null-set for extremal distances**, abbr. a **NED set**, if

(8.1)
$$M(\Delta(E,F;\mathbb{R}^n)) = M(\Delta(E,F;\mathbb{R}^n \setminus X))$$

for every pair of disjoint continua E and $F \subset \mathbb{R}^n \setminus X$.

8.2. Remark. It is known that, if $X \subset \mathbb{R}^n$ is a *NED* set, then

$$(8.3) |X| = 0$$

and X does not locally disconnect \mathbb{R}^n , i.e.,

$$(8.4) dim X \le n-2.$$

Conversely, if $X \subset \mathbb{R}^n$ is closed and

(8.5)
$$H^{n-1}(X) = 0,$$

then X is a NED set, see [Va₂].

Here $H^{n-1}(X)$ denotes the (n-1)-dimensional Hausdorff measure of a subset X in \mathbb{R}^n . We also denote by C(X, f) the **cluster set** of a mapping $f: D \to \overline{\mathbb{R}^n}$ in a set $X \subset \overline{D}$,

(8.6)
$$C(X,f) := \left\{ y \in \overline{\mathbb{R}^n} : y = \lim_{k \to \infty} f(x_k), \ x_k \to x_0 \in X, \ x_k \in D \right\}.$$

Note that the complements of NED sets in \mathbb{R}^n are a very particular case of QED domains considered in the previous section. Thus, arguing locally, we obtain by Theorem 7.4 the following statement.

8.7. Theorem. Let D be a domain in \mathbb{R}^n and let $f : D \setminus X \to \overline{\mathbb{R}^n}$, $n \ge 2$, be lower Q-homeomorphism at $x_0 \in X$ where $X \subset D$. Suppose that X and C(X, f) are NED sets. If

(8.8)
$$\int_{0}^{\varepsilon_{0}} \frac{dr}{||Q||_{n-1}(r)} = \infty$$

where $\varepsilon_0 < dist(x_0, \partial D)$ and

(8.9)
$$||Q||_{n-1}(r) = \left(\int_{|x-x_0|=r} Q^{n-1}(x) \, d\mathcal{A}\right)^{\frac{1}{n-1}},$$

then f extends by continuity to x_0 .

9 Lemma on cluster sets under lower *Q*-homeomorphisms

9.1. Lemma. Let D and D' be domains in \mathbb{R}^n , $n \geq 2$, z_1 and z_2 distinct points in ∂D and f a lower Q-homeomorphism of D onto D' with $Q \in L^{n-1}(D)$. If D is locally connected at z_1 and z_2 and $\partial D'$ is weakly flat, then

$$(9.2) C(z_1, f) \cap C(z_2, f) = \emptyset$$

9.3. Remark. In fact, it is sufficient for (9.2) to request in Lemma 9.1 instead of the condition $Q \in L^{n-1}(D)$ that $Q \in L^{n-1}(D \cap U)$ for some neighborhood U of one of the points z_i , i = 1, 2.

Furthermore, it follows from our proof below it is sufficient for (9.2) even that Q is integrable on

$$D(r) = \{x \in D : |x - z_1| = r\} = D \cap S(z_1, r)$$

for some set of $r < |z_1 - z_2|$ of a positive linear measure.

Proof. Without loss of generality, we may assume that the domain D is bounded. Let $d = |z_1 - z_2|$. By the Fubini theorem the set

$$E = \{ r \in (0, d) : Q|_{D(r)} \in L^{n-1}(D(r)) \}$$

has a positive linear measure because $Q \in L^{n-1}(D)$. Choose ε and $\varepsilon_0 \in (0, d)$ such that

$$E_0 = \{r \in E : r \in (\varepsilon, \varepsilon_0)\}$$

has a positive measure. The choice is possible because of a countable subadditivity of the linear measure and because of the exhaustion

$$E = \bigcup_{m=1}^{\infty} E_m$$

where

$$E_m = \{r \in E : r \in (1/m, d - 1/m)\}$$

Note that each of the spheres $S(z_1, r)$, $r \in E_0$, separates the points z_1 and z_2 in \mathbb{R}^n and D(r), $r \in E_0$, in D. Thus, by Theorem 3.8 we have that

$$(9.4) M(f\Sigma_{\varepsilon}) > 0$$

where Σ_{ε} denotes the family of all intersections of the spheres

$$S(r) = S(z_1, r) = \{x \in \mathbb{R}^n : |x - z_1| = r\}, r \in (\varepsilon, \varepsilon_0),$$

with D.

For i = 1, 2, let C_i be the cluster set $C(z_i, f)$ and suppose that $C_1 \cap C_2 \neq \emptyset$. Since D is locally connected at z_1 and z_2 , there exist neighborhoods U_i of z_i such that $W_i = D \cap U_i$ is connected and $U_1 \subset B^n(z_1, \varepsilon)$ and $U_2 \subset \mathbb{R}^n \setminus B^n(z_1, \varepsilon_0)$. Set $\Gamma = \Gamma(\overline{W_1}, \overline{W_2}; D)$. By (9.4)

(9.5)
$$M(f\Gamma) \leq \frac{1}{M^{n-1}(f\Sigma_{\varepsilon})} < \infty,$$

see Theorem 3.13 in [Z] and Theorem 5.13 in [Ma], cf. also [Ca], [He], [HK₂] and [Sh].

However, $\partial D'$ is weakly flat and $\overline{W_i}$, i = 1, 2 are non-degenerate continua in $\overline{D'}$ with a non-empty intersection contradicting (9.5). Thus, the assumption $C_1 \cap C_2 \neq \emptyset$ was not true.

As an immediate consequence of Lemma 9.1 we have the following statement.

9.6. Theorem. Let D and D' be domains in \mathbb{R}^n , $n \geq 2$, D be locally connected on ∂D and $\partial D'$ be weakly flat. If f is a lower Q-homeomorphism of D onto D' with $Q \in L^{n-1}(D)$, then f^{-1} has a continuous extension to $\overline{D'}$.

9.7. Remark. In view of Remark 9.3, really it is sufficient to request in Theorem 9.6 that Q is integrable in a neighborhood of ∂D only.

10 On homeomorphic extension to boundaries

Combining results of Sections 6–9 we obtain the following statements.

10.1. Theorem. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $Q : D \to (0, \infty)$ belong to $L^{n-1}(D)$ and let $f : D \to \mathbb{R}^n$ be a lower Q-homeomorphism in D. Suppose that the domain D be locally connected on ∂D and the domain D' = f(D) have a strongly accessible boundary. If at every point $x_0 \in \partial D$

(10.2)
$$\int_{0}^{\varepsilon_{0}} \frac{dr}{||Q||_{n-1}(r)} = \infty$$

where

(10.3)
$$0 < \varepsilon_0 < d_0 = \sup_{x \in D} |x - x_0| = \sup_{x \in \partial D} |x - x_0|$$

and

(10.4)
$$||Q||_{n-1}(r) = \left(\int_{D \cap S(x_0, r)} Q^{n-1}(x) \, d\mathcal{A}\right)^{\frac{1}{n-1}},$$

then f has a homeomorphic extension to \overline{D} .

10.5. Theorem. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $Q : D \to (0, \infty)$ belong to $L^{n-1}(D)$ and let $f : D \to \mathbb{R}^n$ be a lower Q-homeomorphism in D. Suppose that D and D' = f(D) are QED domains. If the condition (10.2) holds at every point $x_0 \in \partial D$, then f has a homeomorphic extension to \overline{D} .

10.6. Theorem. Let D be a domain in \mathbb{R}^n , $n \ge 2$, $Q : D \to (0, \infty)$ belong to $L^{n-1}(D)$ and let $f : D \setminus X \to \overline{\mathbb{R}^n}$, $n \ge 2$, $X \subset D$, be lower Q-homeomorphism. Suppose that X and C(X, f) are NED sets. If the condition (10.2) holds at every point $x_0 \in X$ for $\varepsilon_0 < dist(x_0, \partial D)$ where

(10.7)
$$||Q||_{n-1}(r) = \left(\int_{|x-x_0|=r} Q^{n-1}(x) \ d\mathcal{A}\right)^{\frac{1}{n-1}}$$

then f has homeomorphic extension to D.

10.8. Remark. The results of the section are valid if, instead of the condition $Q \in L^{n-1}(D)$, either $Q \in L^{n-1}(D \cap U)$ where U is a neighborhood of ∂D or $Q \in L^{n-1}(U)$ where U is a neighborhood of X. By Corollary 5.7 in [IR₁], the condition $Q \in L^{n-1}(U)$ in Theorem 10.6 can be omitted at all if $\dim X = 0$, i.e., if the set X is totally disconnected.

10.9. Corollary. Let D be a domain in \mathbb{R}^n , $n \ge 2$ and let $f : D \to \mathbb{R}^n$ be a homeomorphism of the class FAD_{n-1} . Suppose that the domain D be locally connected on ∂D and the domain D' = f(D) have a strongly accessible boundary. If at every point $x_0 \in \partial D$

(10.10)
$$K_O(x, f) = O\left(\log \frac{1}{|x - x_0|}\right)$$

as $x \to x_0$, then f has a homeomorphic extension to \overline{D} .

10.11. Corollary. Let D be a domain in \mathbb{R}^n , $n \geq 2$, and let $f : D \to \mathbb{R}^n$ be a homeomorphism of the class FAD_{n-1} . Suppose that D and D' = f(D) are QED domains. If the condition (10.10) holds at every point $x_0 \in \partial D$, then f has a homeomorphic extension to \overline{D} .

10.12. Corollary. Let D be a domain in \mathbb{R}^n , $n \ge 2$, and let $f : D \setminus X \to \overline{\mathbb{R}^n}$ be a homeomorphism of the class FAD_{n-1} . Suppose that X and C(X, f) are NED sets. If the condition (10.10) holds at every point $x_0 \in X$, then f has a homeomorphic extension to D which belongs to the class FAD_{n-1} .

10.13. Remark. In particular, the conclusion of Theorem 10.6 and Corollary 10.12 is valid if X is closed set with

(10.14)
$$H^{n-1}(X) = 0 = H^{n-1}(C(X, f))$$

Thus, the results of the paper extend the well-known Gehring-Martio-Vuorinen theorems for quasiconformal mappings to lower Q-homeomorphisms and, in particular, to homeomorphisms with finite area distortion and, especially, to finitely be-Lipschitz homeomorphisms, see [GM], p. 196, and [MV], p. 36, cf. [Na], [Va₁], [Vu₂] and [Vu₃], and also the corresponding results for Q-homeomorphisms in [MRSY₆] and [IR₁]-[IR₂].

Acknowledgements. The research has been partially supported by grants of the Helsinki University and by the State Fund of Fundamental Investigations of Ukraine, Grant 01.07/00241.

References

- [AIKM] ASTALA K., IWANIEC T., KOSKELA P. AND MARTIN G., Mappings of BMO-bounded distortion, Math. Annalen 317 (2000), 703–726.
- [Ca] CARAMAN P., Relations between p-capacity and p-module, I, II, Rev. Roumaine Math. Pures Appl. 39 (1994), no. 6, 509–553, 555–577.
- [FKZ] FARACO D., KOSKELA P, AND ZHONG X., Mappings of finite distortion: the degree of regularity, Adv. Math. 190, no. 2 (2005), 300–318.
- [Fe] FEDERER H., Geometric Measure Theory, Springer, Berlin etc., 1969.
- [Fu] FUGLEDE B., Extremal length and functional completion, Acta Math. 98 (1957), 171–219.
- [Ge₁] GEHRING F.W., Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393.
- [Ge₂] GEHRING F.W., Quasiconformal mappings, in Complex Analysis and its Applications, V. 2., International Atomic Energy Agency, Vienna, 1976.
- [GI] GEHRING F.W. AND IWANIEC T., The limit of mappings with finite distortion, Ann. Acad. Sci. Fenn. Math. 24 (1999), 253–264.
- [GM] GEHRING F.W. AND MARTIO O., Quasiextremal distance domains and extension of quasiconformal mappings, J. d'Anal. Math. 24 (1985), 181–206.
- [He] HEINONEN J., Lectures on Analysis on metric spaces, Springer, New York, 2001.
- [HK₁] HEINONEN J. AND KOSKELA P., Sobolev mappings with integrable dilatations, Arch. Rational Mech. Anal. 125 (1993), 81–97.
- [HK₂] HEINONEN J. AND KOSKELA P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61.
- [HK_{*}] HENCL S. AND KOSKELA P., Mappings with finite distortion: diascreteness and openness for quasi-light mappings, Ann. Inst. H. Poincare Anal. Non Lineare 22 (2005), no. 3, 331– 342.
- [HK₁^{*}] HERRON D.A. AND KOSKELA P., Mappings with finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math. 47 (2003), no. 4, 1243–1259.
- [HK₂] HERRON D.A. AND KOSKELA P., Quasiextremal distance domains and quasiconformal mappings onto circle domains, Complex Variables Theory Appl. 15 (1990), no. 3, 167–179.
- [HLP] HARDY G.H., LITTLEWOOD J.E. AND POLYA G., *Inequalities*, Cambridge Univ. Press, Cambridge, 1934.
- [HM] HENCL S. AND MALY J., Mappings with finite distortion: Hausdorff measure of zero sets, Math. Ann. 324 (2002), no. 3, 451–464.
- [HP] HOLOPAINEN I. AND PANKKA P., Mappings of finite distortion: global homeomorphism theorem, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 59–80.
- [HW] HUREWICZ W. AND WALLMAN H., *Dimension Theory*, Princeton Univ. Press, Princeton, 1948.

- [IKO₁] IWANIEC T., KOSKELA P, AND ONNINEN J., Mappings of finite distortion: compactness, Ann. Acad. Sci. Fenn. Math. 27, No. 2 (2002), 391–417.
- [IKO₂] IWANIEC T., KOSKELA P, AND ONNINEN J., Mappings of finite distortion: monotonicity and continuity, Invent. Math. 144, No. 3 (2001), 507–531.
- [IM] IWANIEC T. AND MARTIN G., Geometrical Function Theory and Non-linear Analysis, Clarendon Press, Oxford, 2001.
- [IR1] IGNAT'EV A. AND RYAZANOV V., Finite mean oscillation in the mapping theory, Reports of Dept. Math. Univ. Helsinki 332 (2002), 1–17.
- [IR₂] IGNAT'EV A. AND RYAZANOV V., On the boundary behavior of space mappings, Reports of Dept. Math. Univ. Helsinki 350 (2003), 1–11.
- [IS] IWANIEC T. AND ŠVERÁK V., On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181–188.
- [Ka] KALLUNKI S., Mappings of finite distortion: the metric definition. Dissertation, Univ. Jyvaskyla, Jyvaskyla, 2002. Ann. Acad. Sci. Fenn. Math. Diss. No. 131 (2002), 33 pp.
- [K] KOVTONYUK D., On finitely bi-Lipschitz mappings, Proc. of Inst. Appl. Math. & Mech. (to appear).
- [KKM₁] KAUHANEN J., KOSKELA P. AND MALY J., Mappings of finite distortion: discreteness and openness, Arch. Rat. Mech. Anal. 160 (2001), 135–151.
- [KKM₂] KAUHANEN J., KOSKELA P. AND MALY J., Mappings of finite distortion: condition N, Michigan Math. J. 49 (2001), 169–181.
- [KM] KOSKELA P. AND MALY J., Mappings of finite distortion: the zero set of the Jacobian, J. Eur. Math. Soc. 5 (2003), no. 2, 95–105.
- [KKMOZ] KAUHANEN J., KOSKELA P., MALY J., ONNINEN J., ZHONG X., Mappings of finite distortion: sharp Orlich-conditions, Rev. Mat. Iberoamericana 19 (2003), no. 3, 857–872.
- [KO] KOSKELA P. AND ONNINEN J., Mappings of finite distortion: the sharp modulus inequalities, Trans. Amer. Math. Soc. 355 (2003), no. 5, 1905–1920 (electronic).
- [KOR] KOSKELA P., ONNINEN J. AND RAJALA K., Mappings of finite distortion: injectivity radius of a local homeomorphism, Future trends in geometrical function theory, 169–174, Rep. Univ. Jyvaskyla Dep. Math. Stat., 92, Univ. Jyvaskyla, Jyvaskyla, 2003.
- [KR_{*}] KOSKELA P. AND RAJALA K., Mappings of finite distortion: removable singularities, Israel J. Math. 136 (2003), 269–283.
- [KR] KOVTONYUK D. AND RYAZANOV V., On mappings with finite hyperarea distortion, Proc. of Inst. Appl. Math. & Mech. 9 (2004), 102–111.
- [LV] LEHTO O. AND VIRTANEN K., Quasiconformal Mappings in the Plane, Springer, New York etc., 1973.
- [Ma] MARTIO O., Modern tools in the theory of quasiconformal maps, Texts in Math. Ser. B, 27. Univ. Combra, Dept. Mat., Coimbra (2000), 1–43.
- [MRV] MARTIO O., RICKMAN S., VÄISÄLÄ J., Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I. Math. 448 (1969), 1–40.
- [MRSY₁] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E., Mappings with finite length distortion, Reports of Dept. Math. Univ. Helsinki 322 (2000), 1–20.
- [MRSY₂] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E., Mappings with finite length distortion, J. d'Anal. Math. 93 (2004), 215–236.

- [MRSY₃] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E., BMO-quasiconformal mappings and Q-homeomorphisms in space, Reports of Dept. Math. Univ. Helsinki 288 (2001), 1–24.
- [MRSY₄] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E., On boundary behavior of *Q*-homeomorphisms, Reports of Dept. Math. Univ. Helsinki 318 (2002), 1–12.
- [MRSY₅] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E., On Q-homeomorphisms, Contemporary Math. 364 (2004), 193–203.
- [MRSY₆] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E., On Q-homeomorphisms, Ann. Acad. Sci. Fenn. 30 (2005), 49–69.
- [MS] MARTIO O. AND SARVAS J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A1. Math. 4 (1978/1979), 383–401.
- [MV] MARTIO O. AND VUORINEN M., Whitney cubes, *p*-capacity and Minkowski coutent, Expo. Math. 5 (1987), 17–40.
- [MV₁] MANFREDI J.J. AND VILLAMOR E., Mappings with integrable dilatation in higher dimensions, Bull. Amer. Math. Soc. 32, No. 2 (1995), 235–240.
- [MV₂] MANFREDI J.J. AND VILLAMOR E., An extension of Reshetnyak's theorem, Indiana Univ. Math. J. 47, No. 3 (1998), 1131–1145.
- [Na] NAKKI R., Boundary behavior of quasiconformal mappings in n-space, Ann. Acad. Sci. Fenn. Ser. A1. No. 484 (1970), 1–50.
- [On1] ONNINEN J., Mappings of finite distortion: future directions and problems, The pharmonic equation and recent advances in analysis, 199–207, Contemp. Math.., 370, Amer. Math.Soc., Providence, RI, 2005.
- [On₂] ONNINEN J., Mappings of finite distortion: minors of the differential matrix, Calc. Var. Partial Differential Equations 21 (2004), no. 4, 335–348.
- [On₃] ONNINEN J., Mappings of finite distortion: continuity. Dissertation, Univ. Jyvaskyla, Jyvaskyla, 2002, 24 pp..
- [Pa] PANKKA P., Mappings of finite distortion and weighted parabolicity, Future trends in geometrical function theory, 175–182, Rep. Univ. Jyvaskyla Dep. Math. Stat., 92, Univ. Jyvaskyla, Jyvaskyla, 2003.
- [Pol] POLETSKII, The modulus method for non-homeomorphic quasiconformal mappings, Mat. Sb. 83 (125) (1970) 261–272.
- [Ra1] RAJALA K., Mappings of finite distortion: the Rickman–Picard theorem for mappings of finite lower oder, J. Anal. Math. 94 (2004), 235–248.
- [Ra₂] RAJALA K., Mappings of finite distortion: removability of Cantor sets, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 269–281.
- [Ra₃] RAJALA K., Mappings of finite distortion: removable singularities for locally homeomorphic mappings, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3251–3258 (electronic).
- [Ra4] RAJALA K., Mappings of finite distortion: removable singularities. Dissertation, Univ. Jyvaskyla, Jyvaskyla, 2003, 74 pp.
- [Ri] RICKMAN S., Quasiregular Mappings, Springer, Berlin etc., 1993.
- [RR] RADO T., REICHELDERFER P.V., Continuous transformations in analysis, Berlin etc., Springer-Verlag, 1955.
- [RS] RYAZANOV V. AND SEVOSTYANOV E., On normal families of Q-homeomorphisms, Proc. of Inst. Appl. Math. & Mech. 9 (2004), 161–176.

- [RSY₁] RYAZANOV V., SREBRO U. AND YAKUBOV E., To the theory of BMO-quasiregular mappings, Dokl. Akad. Nauk Rossii 369, No. 1 (1999), 13–15,
- [RSY₂] RYAZANOV V., SREBRO U. AND YAKUBOV E., *BMO-quasiconformal mappings*, J. d'Anal. Math. 83 (2001), 1–20.
- [RSY₃] RYAZANOV V., SREBRO U. AND YAKUBOV E., Plane mappings with dilatation dominated by functions of bounded mean oscillation, Sib. Adv. in Math. 11, No. 2 (2001), 94–130.
- [Ru] RUDIN W., Real and Complex Analysis, 3rd edition, McGraw-Hill, New York, 1987.
- [Sa] SAKS S., Theory of the Integral, New York, Dover Publ. Inc., 1964.
- [Sh] SHLYK V.A., On the equality between p-capacity and p-modulus, Sibirsk. Mat. Zh. 34 (1993), no. 6, 216–221; transl. in Siberian Math. J. 34 (1993), no. 6, 1196–1200.
- [Va1] VÄISÄLÄ J., Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer-Verlag, Berlin etc., 1971.
- [Va₂] VÄISÄLÄ J., On the null-sets for extremal distances, Ann. Acad. Sci. Fenn. Ser. A1. No. 322 (1962), 1–12.
- [Vo] VODOP'YANOV S., Mappings with bounded distortion and with finite distortion on Carnot groups, Sibirsk. Mat. Zh. 40 (1999), no. 4, 764–804; transl. in Siberian Math. J. 40 (1999), no. 4, 644–677.
- [Vu1] VUORINEN M., Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math. 1319, Berlin etc., Springer-Verlag, 1988.
- [Vu₂] VUORINEN M., Exceptional sets and boundary behavior of quasiregular mappings in n-space, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes No.11 (1976), 44 pp.
- [Vu₃] VUORINEN M., Lower bounds for the moduli of path families with applications to nontangential limits of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. AI Math. (1979), no. 2, 279–291.
- [Wi] WILDER R.L., Topology of Manifolds, AMS, New York, 1949.
- [Ya] YAN B., On the weak limit of mappings with finite distortion, Proc. Amer. Math. Soc. 128, No. 11 (2000), 3335–3340.
- [Yo] YOUNG W.H., Zur Lehre der nicht abgeschlossenen Punktmengen, Ber. Verh. Sachs. Akad. Leipzig 55 (1903), 287–293.
- [Z] ZIEMER W.P., Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126, No. 3 (1967), 460–473.

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine