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Abstract

We elucidate possibilities of lower estimates of moduli for families of surfaces of dimension
n − 1 under mappings with finite distortion. In particular, it makes possible to investigate
the boundary behavior of homeomorphisms of finite area distortion, especially, of finitely bi–
Lipschitz homeomorphisms between quasi-extremal distance domains by Gehring–Martio.

1 Introduction

Many classes of the so–called mappings with finite distortion are intensively stud-
ied during the last years, see e.g. [AIKM], [FKZ], [GI], [HK1], [HK∗], [HK∗

1],
[HM], [HP], [IKO1]–[IKO2], [IM], [IŠ], [Ka], [KKM1]–[KKM2], [KM], [KKMOZ],
[KO], [KOR], [MV1]–[MV2], [On1]–[On3], [Pa], and [Ra1]–[Ra4]. So far the upper
estimates of moduli have played the major role in the theory, see e.g. [MRSY1] –
[MRSY6], [IR1] – [IR2], [RS] and our previous preprint [KR].

In this paper we consider the lower estimates of moduli. First recall the base
concepts. Let D be a domain in Rn, n ≥ 2, and let Q : D → [1,∞] be a measurable
function. A homeomorphism f : D → Rn is called a Q−homeomorphism if

M(fΓ) ≤
∫
D

Q(x) · ρn(x) dm(x)(1.1)

for every family Γ of paths in D and every admissible function ρ for Γ, see
[MRSY3]–[MRSY6]. Here the notation m refers to the Lebesgue measure in Rn.

Recall that, given a family of paths Γ in Rn, a Borel function ρ : Rn → [0,∞]
is called admissible for Γ, abbr. ρ ∈ adm Γ, if∫

γ

ρ ds ≥ 1(1.2)

for each γ ∈ Γ. The (conformal) modulus of Γ is the quantity

M(Γ) = inf
ρ∈adm Γ

∫
D

ρn(x) dm(x) .(1.3)
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In particular, the homeomorphisms f : D → Rn, n ≥ 2, of the class W 1,n
loc

with a locally integrable inner dilatation KI(x, f) are Q–homeomorphisms with
Q(x) = KI(x, f).

The following localization and extension of the notion of Q−homeomorphisms
was first introduced in [RSY1] for n = 2 and then investigated in [RS] for an ar-
bitrary n ≥ 2. It was motivated by Gehring’s ring definition of quasiconformality
in [Ge1].

Given a domain D ⊆ Rn, n ≥ 2, x0 ∈ D, ε0 < dist (x0, ∂D), a measurable
function Q : B(x0, ε0) → [0,∞], a homeomorphism f : D → Rn is called a ring
Q−homeomorphism at x0 if

M(Γ(fS1, fS2)) ≤
∫
R

Q(x) · ηn(|x− x0|) dm(x)(1.4)

for every ring

R = R(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2} , 0 < r1 < r2 < ε0 ,

and every measurable function η : (r1, r2) → [0,∞] such that

r2∫
r1

η(r) dr ≥ 1(1.5)

where
Si = S(x0, ri) = {x ∈ Rn : |x− x0| = ri} , i = 1, 2 ,

and Γ(C1, C2), Ci = fSi, denotes the family of all path γ : [a, b] → Rn which join
C1 and C2.

We may assume in the above definition of the ring homeomorphism that Q is
given in the whole domain D because every measurable function in B(x0, ε0) can
be extended to a measurable function in D, as in [RS]. There it was shown that
(1.4) is equivalent to the inequality

M(Γ(fS1, fS2)) ≤ ωn−1

In−1
(1.6)

where ωn−1 is an area of the unit sphere Sn−1 in Rn,

I = I(x0, r1, r2) =

r2∫
r1

dr

rq
1

n−1
x0 (r)

(1.7)

where qx0(r) is the mean of the function Q(x) over the sphere |x − x0| = r.
Note that the infimum of the expression from the right in (1.4) is realized for the
function

η0(r) =
1

I
· 1

r q
1

n−1
x0 (r)

.

In the present paper, we study a similar notion in terms of modulus for surfaces
of the dimension n− 1.
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Below Hk, k = 1, ..., n− 1 denotes the k−dimensional Hausdorff measure
in Rn, n ≥ 2. More precisely, if A is a set in Rn, then

Hk(A) = sup
ε>0

Hk
ε (A),(1.8)

Hk
ε (A) = Vk inf

∞∑
i=1

(
δi

2

)k

(1.9)

where the infimum is taken over all countable collections of numbers δi ∈ (0, ε)
such that some sets Ai in Rn with diameters δi cover A. Here Vk denotes the
volume of the unit ball in Rk.

Let ω be an open set in Rk, k = 1, ..., n−1. A (continuous) mapping S : ω → Rn

is called a k−dimensional surface S in Rn. Sometimes we call the image S(ω) ⊆ Rn

by the surface S, too. The number of preimages

N(S, y) = N(S, y, ω) = card S−1(y) = card {x ∈ ω : S(x) = y}(1.10)

is said to be a multiplicity function of the surface S at a point y ∈ Rn. In
the other words, N(S, y) means the multiplicity of covering of the point y by the
surface S. It is known that multiplicity function is lower semi-continuous, i.e.,

N(S, y) ≥ lim inf
m→∞

N(S, ym)

for every sequence ym ∈ Rn, m = 1, 2, ... such that ym → y ∈ Rn as m → ∞,
see e.g. [RR], p. 160. Thus, the function N(S, y) is Borel measurable and hence
measurable with respect to every Hausdorff measure Hk, see e.g. [Sa], p. 52.

k−dimensional Hausdorff area in Rn (or simply area) associated with a surface
S : ω → Rn is given by

AS(B) = Ak
S(B) :=

∫
B

N(S, y) dHky(1.11)

for every Borel set B ⊆ Rn and, more generally, for an arbitrary set which is
measurable with respect to Hk in Rn. The surface S is rectifiable if S(Rn) < ∞.

If ρ : Rn → [0,∞] is a Borel function, then its integral over S is defined by
the equality ∫

S

ρ dA :=
∫

Rn

ρ(y) N(S, y) dHky .(1.12)

Given a family Γ of k−dimensional surfaces S, a Borel function ρ : Rn → [0,∞]
is called admissible for Γ, abbr. ρ ∈ adm Γ, if∫

S

ρk dA ≥ 1(1.13)

for every S ∈ Γ. Given p ∈ (0,∞), the p−modulus of Γ is the quantity

Mp(Γ) = inf
ρ∈admΓ

∫
Rn

ρp(x) dm(x) .(1.14)
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We also set
M(Γ) = Mn(Γ) .(1.15)

The modulus is itself an outer measure on the collection of all families Γ of k–
dimensional surfaces.

Sometimes, under proofs, it is more convenient to use the following notion. A
Lebesgue measurable function ρ : Rn → [0,∞] is said to be p−extensively ad-
missible for a family Γ of k−dimensional surfaces S in Rn, abbr. ρ ∈ extp admΓ,
if ∫

S

ρk dA ≥ 1(1.16)

for p−a.e. S ∈ Γ. The p−extensive modulus Mp(Γ) of Γ is the quantity

Mp(Γ) = inf
∫

Rn

ρp(x) dm(x)(1.17)

where the infimum is taken over all ρ ∈ extp adm Γ. In the case p = n, we
use notations M(Γ) and ρ ∈ ext adm Γ, respectively. For every p ∈ (0,∞),
k = 1, ..., n− 1, and every family Γ of k−dimensional surfaces in Rn,

Mp(Γ) = Mp(Γ),(1.18)

see Corollary 2.16 in [KR]. The same is also true for moduli with weights.

Given a domain D ⊆ Rn, n ≥ 2, x0 ∈ D \ {∞}, a measurable function
Q : D → (0,∞), we say that a homeomorphism f : D → Rn is a lower
Q−homeomorphism at the point x0 if

M(fΣε) ≥ inf
ρ∈admΣε

∫
D∩Rε

Q−1(x) %n(x) dm(x)(1.19)

for every ring

Rε = {x ∈ Rn : ε < |x− x0| < ε0} , ε ∈ (0, ε0)

where
0 < ε0 < d0 = sup

x∈D
|x− x0| = sup

x∈∂D
|x− x0|(1.20)

and Σε denotes the family of all intersections of the spheres

S(r) = S(x0, r) = {x ∈ Rn : |x− x0| = r} , r ∈ (ε, ε0) ,

with D. Here adm Σε consists of Borel functions % : Rn → [0,∞] with∫
D(r)

%n−1 dA ≥ 1 , ∀ r ∈ (ε, ε0)(1.21)

where

D(r) = D(x0, r) = {x ∈ D : |x− x0| = r} = D ∩ S(x0, r) .(1.22)
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As usual, the notion can be extended to the case x0 = ∞ ∈ D through applying
the inversion T with respect to the unit sphere in Rn, T (x) = x/|x|2, T (∞) = 0,
T (0) = ∞.

We also say that a homeomorphism f : D → Rn is a lower Q−homeomorp-
hism in D if f is a lower Q−homeomorphism at every point x0 ∈ D.

We show here that the condition (1.19) is equivalent to the inequality:

M(fΣε) ≥
ε0∫
ε

dr

||Q|| n−1(r)
(1.23)

where

||Q|| n−1(r) =

 ∫
D(r)

Qn−1 dA


1

n−1

.(1.24)

Note that the infimum in (1.19) is attained only for the function

%0(x) = ||Q|| −1
n−1(|x|) ·Qn−1(x) .(1.25)

Below we always assume that Q ≡ 0 outside of D and take the integrals in (1.24)
over the whole spheres S(r) = S(x0, r).

Let Σ∗
ε be the family of all (n− 1)−dimensional surfaces in D which separate

the spheres |x − x0| = ε and |x − x0| = ε0 in D. Note that (1.23) implies
the corresponding lower estimate for Σ∗

ε because Σε ⊂ Σ∗
ε and hence adm Σ∗

ε ⊂
adm Σε. However, the inequality (1.23) for Σ∗

ε is not precise. The same is true
for Σ∗∗

ε consisting of all closed sets C in D which separate the given spheres in
D. Indeed, Σε ⊆ Σ∗∗

ε and hence adm Σ∗∗
ε ⊂ adm Σε, cf. [Z]. In the case of Σ∗∗

ε ,
the definitions in the (1.11)–(1.15) are similar with N(C, y) ≡ 1. Thus, M(fΣε)
is majorized by M(fΣ∗

ε) as well as by M(fΣ∗∗
ε ).

This makes possible to find the corresponding estimates of distortion under
lower Q−homeomorphisms and to investigate the removability of isolated singu-
larities and other problems.

Moreover, here we state that homeomorphisms with finite area distortion stud-
ied in [KR] are lower Q−homeomorphisms with Q(x) = KO(x, f) where KO(x, f)
is the outer dilatation of f at x. In particular, this holds for the so–called finitely
bi–Lipschitz homeomorphisms which are a natural extension of isometries as well
as quasi–isometries, see [K].

Given a mapping ϕ : E → Rn and a point x ∈ E ⊆ Rn, let

L(x, ϕ) = lim sup
y→x y∈E

|ϕ(y)− ϕ(x)|
|y − x|

,(1.26)

and

l(x, ϕ) = lim inf
y→x y∈E

|ϕ(y)− ϕ(x)|
|y − x|

.(1.27)
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A mapping f : D → Rn is said to be of finitely be–Lipschitz if

0 < l(x, f) ≤ L(x, f) < ∞ ∀x ∈ D .(1.28)

Recall that outer dilatation of f at x is defined by

KO(x, f) =

{ |f ′(x)|n
|J(x,f)| , if J(x, f) 6= 0

1, if f ′(x) = 0
(1.29)

and otherwise we set KO(x, f) = ∞. Similarly, the inner dilatation of f at x is
defined as

KI(x, f) =

{ |J(x,f)|
l(f ′(x))n , if J(x, f) 6= 0

1, if f ′(x) = 0
(1.30)

and KI(x, f) = ∞ otherwise. Here f ′(x) denotes the Jacobian matrix of f ,
J(x, f) = det f ′(x) is its Jacobian, |f ′(x)| is the operator norm of f ′(x), i.e.

| f ′(x)| = max{| f ′(x)h| : h ∈ Rn, |h| = 1} ,(1.31)

l(f ′(x)) = min{| f ′(x)h| : h ∈ Rn, |h| = 1} .(1.32)

2 On mappings with finite area distortion.

Let Ω be an open set in Rn, n ≥ 2. A mapping f : Ω → Rn is said to be of finite
metric distortion, abbr. f ∈ FMD, if f has (N)−property and

0 < l(x, f) ≤ L(x, f) < ∞ a.e.(2.1)

Note that a mapping f : Ω → Rn is of FMD if and only if f is differentiable
a.e. and has (N)− and (N−1)−properties, see Corollary 3.4 in [MRSY2]. Recall
that a mapping f : X → Y between measurable spaces (X, Σ, µ) and (X ′, Σ′, µ′)
is said to have (N)−property if µ′(f(E)) = 0 whenever µ(E) = 0. Similarly, f
has the (N−1)−property if µ(E) = 0 whenever µ′(f(E)) = 0.

We say that a mapping f : Ω → Rn has (Ak)−property if the two conditions
hold:

(A
(1)
k ) : for a.e. k−dimensional surface S in Ω the restriction f |S has (N)−pro-

perty;

(A
(2)
k ) : for a.e. k−dimensional surface S∗ in Ω∗ = f(Ω) the restriction f |S has

(N−1)−property for each lifting S of S∗.

Here a surface S in Ω is a lifting of a surface S∗ in Rn under a mapping
f : Ω → Rn if S∗ = f ◦ S. We also say that a mapping f : Ω → Rn is of finite
distortion of area in dimension k = 1, ..., n−1, abbr. f ∈ FADk, if f ∈ FMD
and has the (Ak)−property. Note that analogues of (Ak)−properties and the
classes FADk have been first formulated in the mentioned work [MRSY2] for

k = 1 where it is additionally requested local rectifiability of S∗ and S in (A
(1)
k )−

and (A
(2)
k )−properties, respectively. Thus, the mapping class FLD (finite length
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distortion) in [MRSY2] is a subclass of FAD1. Finally, we say that a mapping
f : Ω → Rn is of finite area distortion, abbr. f ∈ FAD, if f ∈ FADk for every
k = 1, ..., n− 1, see [KR].

2.2. Lemma. Let Ω be an open set in Rn, n ≥ 2, and f : Ω → Rn a FMD

homeomorphism with (A
(1 )
k )−property for some k = 1, . . . , n− 1. Then

M(fΓ) ≥ inf
%∈admΓ

∫
Ω

K−1
O (x, f) %n(x) dm(x)(2.3)

for every family Γ of k−dimensional surfaces S in Ω.

Proof. Let B be a (Borel) set of all points x in Ω where f has a differential
f ′(x) and J(x, f) = det f ′(x) 6= 0. As known, B is the union of a countable
collection of Borel sets Bl, l = 1, 2, . . . such that = flf |Bl

is bi–Lipschitz, see e.g.
3.2.2 in [Fe]. Without loss of generality we may assume that Bl are mutually
disjoint. Note that B0 = Ω \B and f(B0) have the Lebesgue measure zero in Rn

for f ∈ FMD. Thus, by Theorem 2.11 in [KR] AS(B0) = 0 for a.e. S ∈ Γ and

hence by (A
(1 )
k )−property AS∗(f(B0)) = 0 for a.e. S ∈ Γ where S∗ = f ◦ S.

Let %∗ ∈ ext adm fΓ, %∗ ≡ 0 outside of f(D), and set % ≡ 0 outside of D and

%(x) = %∗(f(x)) || f ′(x)|| , x ∈ D .

Arguing piecewise on Bl, we have by 3.2.20 and 1.7.6 in [Fe] that∫
S

%k dA ≥
∫
S∗

%k
∗ dA ≥ 1

for a.e. S ∈ Γ and, thus, % ∈ ext adm Γ.
By the change of variables for the class FMD, see Proposition 3.7 in [MRSY2],∫

Ω

K−1
O (x, f) %n(x) dm(x) =

∫
f(Ω)

%n
∗ (y) dm(y)

and (2.3) follows.

2.4. Remark. It is easy to see by the well–known Lusin theorem that

inf
%∈ext admΓ

∫
Ω

K−1
O (x, f) %n(x) dm(x) = inf

%∈admΓ

∫
Ω

K−1
O (x, f)%n(x) dm(x) ,(2.5)

see similar arguments to (2.17) in [MRSY2]. The expressions in (2.5) are particular
cases of moduli with weights.

Combining Lemma 3.10 in [KR] with Lemma 2.2 we have the following state-
ment.
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2.6. Theorem. Let Ω be an open set in Rn, n ≥ 2, and let a homeomorphism
f : Ω → Rn belong to FADk for some k = 1, . . . , n− 1. Then, for every family Γ
of k−dimensional surfaces S in Ω, f satisfies the double inequality

inf
∫
Ω

K−1
O (x, f) · %n(x)dm(x) ≤ M(fΓ) ≤ inf

∫
KI(x, f) · %n(x)dm(x)(2.7)

where the infimums are taken over all % ∈ adm Γ.

2.8. Corollary. Every homeomorphism f : D → Rn of finite area distortion
in the dimension n− 1 is a lower Q−homeomorphism with Q(x) = KO(x, f).

3 The main lemma on lower Q−homeomorphisms

We start first from the following general statement.

3.1. Lemma. Let (X,µ) be a measure space, p ∈ (1,∞) and let ϕ : X →
(0,∞) be a measurable function. Set

I(ϕ, p) = inf
α

∫
X

ϕ αp dµ(3.2)

where the infimum is taken over all measurable functions α : X → [0,∞] such
that ∫

X

α dµ = 1 .(3.3)

Then

I(ϕ, p) =

∫
X

ϕ−λ dµ

− 1
λ

(3.4)

where

λ =
q

p
,

1

p
+

1

q
= 1 ,(3.5)

i.e. λ = 1/(p−1) ∈ (0,∞). Moreover, the infimum in (3.2) is attained only under
the function

α0 = C · ϕ−λ(3.6)

where

C =

∫
X

ϕ−λ dµ

−1

.(3.7)

Proof. Indeed, by the Hölder inequality

1 =
∫
X

α dµ =
∫
X

(ϕ− q
p )

1
q [ϕ αp]

1
p dµ ≤

∫
X

ϕ− q
p dµ

 1
q

·

∫
X

ϕ αp dµ

 1
p
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and the equality holds if and only if

c · ϕ− q
p = ϕ · αp a.e.,

see e.g. [HLP] or [Ru]. C = c
1
p in (3.7), i.e.

C =

∫
X

ϕ− 1
p−1 dµ

−1

and

α0(x) =

∫
X

ϕ− 1
p−1 dµ

−1

· ϕ− 1
p−1 (x) .

3.8. Theorem. Let D be a domain in Rn, n ≥ 2, x0 ∈ D, and let
Q : D → (0,∞) be a measurable function. A homeomorphism f : D → Rn is a
lower Q−homeomorphism at x0 if and only if

M(fΣε) ≥
ε0∫
ε

dr

||Q|| n−1(r)
∀ ε ∈ (0, ε0)(3.9)

where
0 < ε0 < d0 = sup

x∈D
|x− x0| = sup

x∈∂D
|x− x0| ,(3.10)

Σε denotes the family of all the intersections of D with the spheres S(r) = {x ∈
Rn : |x− x0| = r}, r ∈ (ε, ε0) and

||Q|| n−1(r) =

 ∫
D(r)

Qn−1 dA


1

n−1

(3.11)

is the Ln−1−norm of Q over D(r) = {x ∈ D : |x − x0| = r} = D ∩ S(r). The
infimum of the expression from the right in (1.19) is attained only for the function

%0(x) = ||Q|| −1
n−1(|x|) ·Qn−1(x) .

Proof. Note that, in view of the Lusin theorem, in (1.19)

inf
%∈admΣε

∫
Rε

Q−1(x) %n(x) dm(x) = inf
%∈ext admΣε

∫
Rε

Q−1(x) %n(x) dm(x) ,

see (1.16) for the definition of ext adm Σε. Moreover, for every % ∈ ext adm Σε,

A(r) =
∫

D(r)

%n−1 dA 6= 0 a.e.

is a measurable function in the parameter r, say by the Fubini theorem. Thus,
we may request the equality A(r) ≡ 1 a.e. instead of (1.16) and

inf
%∈ext admΣε

∫
Rε

Q−1(x) %n(x) dm(x) =

ε0∫
ε

 inf
α∈I(r)

∫
D(r)

Q−1(x) αp(x) dA

 dr
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where p = n/(n− 1) > 1 and I(r) denotes the set of all measurable function α on
the surface D(r) = S(r) ∩D such that∫

D(r)

α dA = 1 .

Hence Theorem 3.8 follows by Lemma 3.1 with X = D(r), the (n − 1)–
dimensional area as a measure µ on X, ϕ = 1

Q
|D(r) and p = n/(n− 1) > 1.

3.12. Corollary. Let D be a domain in Rn, n ≥ 2, x0 ∈ D, Q : D → (0,∞)
a measurable function and let f : D → Rn be a lower Q−homeomorphism at x0.
Then

M(fΣε) ≥ ω
1

1−n

n−1

ε0∫
ε

dr

r · qn−1(r)
∀ ε ∈ (0, ε0)(3.13)

where

qn−1(r) =

(
−
∫

S(r)
qn−1 dA

)1/(n−1)

(3.14)

where

q(x) =

{
Q(x), x ∈ D ,

0, x ∈ Rn \D .
(3.15)

4 Estimates of distortion under hyper Q−homeomorphisms

In what follows, we use the spherical (chordal) metric h(x, y) = |π(x)− π(y)|
in Rn = Rn⋃{∞} where π is the stereographic projection of Rn onto the sphere
Sn(1

2
en+1,

1
2
) in Rn+1:

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + | y|2

, x 6= ∞ 6= y .(4.1)

Thus, by definition h(x, y) ≤ 1 for all x and y ∈ Rn. The spherical (chordal)
diameter of a set E ⊂ Rn is

h(E) = sup
x, y∈E

h(x, y).(4.2)

Note that

h(x, y) ≤ |x− y|(4.3)

for all x,y ∈ Rn and

h(x, y) ≥ 1

2
|x− y|(4.4)

for all x and y in the unit ball Bn ⊂ Rn with the equality in (4.4) on ∂ Bn.
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4.5. Lemma. Let D be a domain in Rn, n ≥ 2, f : D → Rn be a lower
Q−homeomorphism at x0 ∈ D and let 0 < ε < ε0 < dist(x0, ∂D). Then

h(fSε) ≤ αn

h(fSε0)
· exp

− ε0∫
ε

dr

r qn−1(r)

(4.6)

where αn = 2λ2
n with λn ∈ [4, 2en−1), λ2 = 4 and λ

1
n
n → e as n →∞,

qn−1(r) =

(
−
∫
|x−x0|=r

Qn−1(x) dA
) 1

n−1

,(4.7)

Sε and Sε0 denote the spheres in Rn centered at x0 with radii ε and ε0, corre-
spondingly.

Proof. Set E = fSε and F = fSε0 . By the known Gehring lemma

cap R(E, F ) ≥ cap RT

(
1

h(E) h(F )

)
(4.8)

where h(E) and h(F ) denote the spherical diameters of E and F , correspondingly,
and RT (s) is the Teichmüller ring

RT (s) = Rn \ ([−1, 0] ∪ [s,∞]) , s > 1 ,(4.9)

see e.g. 7.37 in [Vu1] or [Ge2]. It is also known that

cap RT (s) =
ωn−1

(log Ψ(s))n−1(4.10)

where the function Ψ admits the good estimates:

s + 1 ≤ Ψ(s) ≤ λ2
n · (s + 1) < 2λ2

n · s , s > 1 ,(4.11)

see e.g. [Ge2], p. 225–226, and (7.19) and (7.22) in [Vu1]. Hence the inequality
(4.8) implies that

cap R(E, F ) ≥ ωn−1(
log 2λ2

n

h(E) h(F )

)n−1 .(4.12)

By Theorem 3.13 in [Z] and (3.13) we have

cap R(E, F ) ≤ 1

Mn−1(fΣε)
≤ ωn−1(ε0∫

ε

dr
r·qn−1(r)

)n−1(4.13)

because fΣε ⊂ Σ(fSε, fSε0) where Σ(fSε, fSε0) consists of all (n−1)−dimensional
surfaces which separate fSε and fSε0 .

Finally, combining (4.12) and (4.13) we obtain (4.6).
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5 On removability of isolated singularities

By Theorem 3.8 similarly to the proof of Lemma 4.5 we obtain the following
statement.

5.1. Theorem. Let D be a domain in Rn, n ≥ 2, x0 ∈ D, Q : D → (0,∞) be
a measurable function and let f : D \ {x0} → Rn be a lower Q−homeomorphism.
Suppose that

ε0∫
0

dr

r · qn−1(r)
= ∞(5.2)

where ε0 < dist(x0, ∂D) and

qn−1(r) =

(
−
∫
|x−x0|=r

Qn−1(x) dA
) 1

n−1

,(5.3)

then f has a homeomorphic extension to D.

5.4. Corollary. Let D be a domain in Rn, n ≥ 2, x0 ∈ D and let f :
D\{x0} → Rn be a lower Q−homeomorphism. If

−
∫
|x−x0|=r

Qn−1(x) dA = O
(
logn−1 1

r

)
(5.5)

as r → 0 then f has a homeomorphic extension to D.

5.6. Corollary. Let D be a domain in Rn, n ≥ 2, x0 ∈ D and let f :
D\{x0} → Rn be a lower Q−homeomorphism. If

−
∫
|x−x0|=r

Qn−1(x) dA = O

([
log

1

r
· log log

1

r
· . . . · log . . . log

1

r

]n−1
)

(5.7)

as r → 0 then f has a homeomorphic extension to D.

5.8. Corollary. Let D be a domain in Rn, n ≥ 2, x0 ∈ D and f : D\{x0} →
Rn a homeomorphism of the class FADn−1. If

−
∫
|x−x0|=r

Kn−1
O (x, f) dA = O

(
logn−1 1

r

)
(5.9)

as r → 0 then f has a homeomorphic extension to D.

5.10. Remark. In particular, (5.9) holds if

KO(x, f) = O

(
log

1

|x− x0|

)
(5.11)

as x → x0.
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6 On continuous extension to boundary points

Let D ⊂ Rn, n ≥ 2, be a domain. ∂D is said to be strongly accessible if, for
nondegenerate continua E and F in D,

M(∆(E, F ; D)) > 0(6.1)

and weakly flat if, for nondegenerate continua E and F in D with E ∩ F 6= ∅,

M(∆(E, F ; D)) = ∞(6.2)

where ∆(E, F ; D) is the family of all paths joining E and F in D. It is known that
every weakly flat boundary is strongly accessible, see Lemma 5.6 in [MRSY6].

A domain D ⊂ Rn, n ≥ 2, is called locally connected at x0 ∈ ∂D if x0 has
an arbitrarily small neighborhood U such that U ∩D is connected. Every Jordan
domain D in Rn is locally connected at every point of ∂D, see [Wi], p. 66.

6.3. Lemma. Let D be a domain in Rn, n ≥ 2, x0 ∈ ∂D, Q : D → (0,∞) be
a measurable function and let f : D → Rn be a lower Q–homeomorphism at x0.
Suppose that the domain D be locally connected at x0 and the domain D′ = f(D)
has a strongly accessible boundary. If

ε0∫
0

dr

||Q|| n−1(r)
= ∞(6.4)

where

0 < ε0 < d0 = sup
x∈D

|x− x0| = sup
x∈∂D

|x− x0|(6.5)

and

||Q|| n−1(r) =

 ∫
D∩S(x0,r)

Qn−1 dA


1

n−1

,(6.6)

then f extends by continuity to x0.

Proof. We must show that the cluster set E = C(x0, f) = {y ∈ Rn : y =
lim
k→∞

f(xk), xk → x0, xk ∈ D} is a singleton. Note that E is a continuum because D

is locally connected at x0. Let us assume that the continuum E is not degenerate.
Let Γε be a family of all paths joining the spheres Sε = {x ∈ Rn : |x−x0| = ε}

and S0 = {x ∈ Rn : |x− x0| = ε0}.
Arguing similarly to the Section 4 and 5 on the base of Theorem 3.8 we have

that M(fΓε) → 0 as ε → 0 in view of (6.4).
On the other hand, M(fΓε) ≥ M0 = M(∆(fS0, E; D′) and by the strong

accessibility of ∂D′ we have that M0 > 0. The contradiction disproves the above
assumption.
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7 On quasiextremal distance domains

A domain D ⊂ Rn, n ≥ 2, is called a quasiextremal distance domain, abbr.
a QED domain, if

M(∆(E, F ; Rn) ≤ K ·M(∆(E, F ; D))(7.1)

for some K ≥ 1 and for all pairs of disjoint continua E and F in D, see [GM]. It
is known that the inequality (7.1) also holds in a QED domain for every pair of
disjoint continua E and F in D, see Theorem 2.8 in [HK∗

2], p. 173, cf. Lemma 6.11
in [MV], p. 35. The latter implies (7.1) for nondegenerate intersecting continua
E and F in D, too. Hence QED domains have weakly flat boundaries, see (6.2),
cf. Lemma 3.1 in [HK∗

2], p. 196. Every QED domain is quasiconvex, i.e., each
pair of points x1 and x2 ∈ D can be joined by a rectifiable arc γ in D such that

s(γ) ≤ a · |x1 − x2|,(7.2)

see Lemma 2.7 in [GM], p. 184. Hence D is locally connected at ∂D, cf. also
Lemma 2.11 in [GM], p. 187, and [HK∗

2], p. 190.

A domain D ⊂ Rn, n ≥ 2, is said to be uniform if the inequalities (7.2) and

min
i=1,2

s(γ(xi, x)) ≤ b · d(x, ∂D)(7.3)

hold for some γ and for all x ∈ γ where γ(xi, x) is the part of γ between xi

and x, see [MS]. Every uniform domain is a QED domain but there exist QED
domains which are not uniform, see [GM]. Bounded convex domains provide
simple examples of uniform domains.

7.4. Theorem. Let D be a domain in Rn, n ≥ 2, x0 ∈ ∂D, Q : D → (0,∞)
be a measurable function and let f : D → Rn be a lower Q−homeomorphism at
x0. Suppose that D and D′ = f(D) are QED domains. If

ε0∫
0

dr

||Q|| n−1(r)
= ∞(7.5)

where

0 < ε0 < d0 = sup
x∈D

|x− x0| = sup
x∈∂D

|x− x0|(7.6)

and

||Q|| n−1(r) =

 ∫
D∩S(x0,r)

Qn−1 dA


1

n−1

,(7.7)

then f extends by continuity to x0.
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8 On singular null-sets for extremal distances

A closed set X ⊂ Rn, n ≥ 2, is called a null-set for extremal distances, abbr.
a NED set, if

M(∆(E, F ; Rn)) = M(∆(E, F ; Rn\X))(8.1)

for every pair of disjoint continua E and F ⊂ Rn\X.

8.2. Remark. It is known that, if X ⊂ Rn is a NED set, then

|X| = 0(8.3)

and X does not locally disconnect Rn, i.e.,

dim X ≤ n− 2 .(8.4)

Conversely, if X ⊂ Rn is closed and

Hn−1(X) = 0 ,(8.5)

then X is a NED set, see [Va2].

Here Hn−1(X) denotes the (n− 1)-dimensional Hausdorff measure of a subset
X in Rn. We also denote by C(X, f) the cluster set of a mapping f : D → Rn

in a set X ⊂ D,

C(X, f) : = {y ∈ Rn : y = lim
k→∞

f(xk), xk → x0 ∈ X, xk ∈ D} .(8.6)

Note that the complements of NED sets in Rn are a very particular case of
QED domains considered in the previous section. Thus, arguing locally, we obtain
by Theorem 7.4 the following statement.

8.7. Theorem. Let D be a domain in Rn and let f : D\X → Rn, n ≥ 2, be
lower Q−homeomorphism at x0 ∈ X where X ⊂ D. Suppose that X and C(X, f)
are NED sets. If

ε0∫
0

dr

||Q|| n−1(r)
= ∞(8.8)

where ε0 < dist(x0, ∂D) and

||Q|| n−1(r) =

 ∫
|x−x0|=r

Qn−1(x) dA


1

n−1

,(8.9)

then f extends by continuity to x0.
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9 Lemma on cluster sets under lower Q−homeomorphisms

9.1. Lemma. Let D and D′ be domains in Rn, n ≥ 2, z1 and z2 distinct points
in ∂D and f a lower Q−homeomorphism of D onto D′ with Q ∈ Ln−1(D). If D
is locally connected at z1 and z2 and ∂D′ is weakly flat, then

C(z1, f) ∩ C(z2, f) = ∅ .(9.2)

9.3. Remark. In fact, it is sufficient for (9.2) to request in Lemma 9.1 in-
stead of the condition Q ∈ Ln−1(D) that Q ∈ Ln−1(D∩U) for some neighborhood
U of one of the points zi, i = 1, 2.

Furthermore, it follows from our proof below it is sufficient for (9.2) even that
Q is integrable on

D(r) = {x ∈ D : |x− z1| = r} = D ∩ S(z1, r)

for some set of r < | z1 − z2| of a positive linear measure.

Proof. Without loss of generality, we may assume that the domain D is
bounded. Let d = | z1 − z2|. By the Fubini theorem the set

E = {r ∈ (0, d) : Q|D(r) ∈ Ln−1(D(r))}

has a positive linear measure because Q ∈ Ln−1(D). Choose ε and ε0 ∈ (0, d)
such that

E0 = {r ∈ E : r ∈ (ε, ε0)}
has a positive measure. The choice is possible because of a countable subadditivity
of the linear measure and because of the exhaustion

E =
∞⋃

m=1

Em

where
Em = {r ∈ E : r ∈ (1/m, d− 1/m)} .

Note that each of the spheres S(z1, r), r ∈ E0, separates the points z1 and z2 in
Rn and D(r), r ∈ E0, in D. Thus, by Theorem 3.8 we have that

M(fΣε) > 0(9.4)

where Σε denotes the family of all intersections of the spheres

S(r) = S(z1, r) = {x ∈ Rn : |x− z1| = r} , r ∈ (ε, ε0) ,

with D.
For i = 1, 2, let Ci be the cluster set C(zi, f) and suppose that C1 ∩ C2 6= ∅.

Since D is locally connected at z1 and z2, there exist neighborhoods Ui of zi such
that Wi = D ∩ Ui is connected and U1 ⊂ Bn(z1, ε) and U2 ⊂ Rn \Bn(z1, ε0).
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Set Γ = Γ(W1, W2; D). By (9.4)

M(fΓ) ≤ 1

Mn−1(fΣε)
< ∞ ,(9.5)

see Theorem 3.13 in [Z] and Theorem 5.13 in [Ma], cf. also [Ca], [He], [HK2] and
[Sh].

However, ∂D′ is weakly flat and Wi, i = 1, 2 are non-degenerate continua
in D′ with a non–empty intersection contradicting (9.5). Thus, the assumption
C1 ∩ C2 6= ∅ was not true.

As an immediate consequence of Lemma 9.1 we have the following statement.

9.6. Theorem. Let D and D′ be domains in Rn, n ≥ 2, D be locally
connected on ∂D and ∂D′ be weakly flat. If f is a lower Q−homeomorphism of
D onto D′ with Q ∈ Ln−1(D), then f−1 has a continuous extension to D′.

9.7. Remark. In view of Remark 9.3, really it is sufficient to request in
Theorem 9.6 that Q is integrable in a neighborhood of ∂D only.

10 On homeomorphic extension to boundaries

Combining results of Sections 6–9 we obtain the following statements.

10.1. Theorem. Let D be a domain in Rn, n ≥ 2, Q : D → (0,∞) belong
to Ln−1(D) and let f : D → Rn be a lower Q–homeomorphism in D. Suppose
that the domain D be locally connected on ∂D and the domain D′ = f(D) have
a strongly accessible boundary. If at every point x0 ∈ ∂D

ε0∫
0

dr

||Q|| n−1(r)
= ∞(10.2)

where
0 < ε0 < d0 = sup

x∈D
|x− x0| = sup

x∈∂D
|x− x0|(10.3)

and

||Q|| n−1(r) =

 ∫
D∩S(x0,r)

Qn−1(x) dA


1

n−1

,(10.4)

then f has a homeomorphic extension to D.

10.5. Theorem. Let D be a domain in Rn, n ≥ 2, Q : D → (0,∞) belong
to Ln−1(D) and let f : D → Rn be a lower Q–homeomorphism in D. Suppose
that D and D′ = f(D) are QED domains. If the condition (10.2) holds at every
point x0 ∈ ∂D, then f has a homeomorphic extension to D.
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10.6. Theorem. Let D be a domain in Rn, n ≥ 2, Q : D → (0,∞) belong
to Ln−1(D) and let f : D\X → Rn, n ≥ 2, X ⊂ D, be lower Q−homeomorphism.
Suppose that X and C(X, f) are NED sets. If the condition (10.2) holds at every
point x0 ∈ X for ε0 < dist(x0, ∂D) where

||Q|| n−1(r) =

 ∫
|x−x0|=r

Qn−1(x) dA


1

n−1

,(10.7)

then f has homeomorphic extension to D.

10.8. Remark. The results of the section are valid if, instead of the con-
dition Q ∈ Ln−1(D), either Q ∈ Ln−1(D ∩ U) where U is a neighborhood of ∂D
or Q ∈ Ln−1(U) where U is a neighborhood of X. By Corollary 5.7 in [IR1], the
condition Q ∈ Ln−1(U) in Theorem 10.6 can be omitted at all if dim X = 0, i.e.,
if the set X is totally disconnected.

10.9. Corollary. Let D be a domain in Rn, n ≥ 2 and let f : D → Rn be
a homeomorphism of the class FADn−1. Suppose that the domain D be locally
connected on ∂D and the domain D′ = f(D) have a strongly accessible boundary.
If at every point x0 ∈ ∂D

KO(x, f) = O

(
log

1

|x− x0|

)
(10.10)

as x → x0, then f has a homeomorphic extension to D.

10.11. Corollary. Let D be a domain in Rn, n ≥ 2, and let f : D → Rn

be a homeomorphism of the class FADn−1. Suppose that D and D′ = f(D) are
QED domains. If the condition (10.10) holds at every point x0 ∈ ∂D, then f has
a homeomorphic extension to D.

10.12. Corollary. Let D be a domain in Rn, n ≥ 2, and let f : D\X → Rn

be a homeomorphism of the class FADn−1. Suppose that X and C(X, f) are
NED sets. If the condition (10.10) holds at every point x0 ∈ X, then f has a
homeomorphic extension to D which belongs to the class FADn−1.

10.13. Remark. In particular, the conclusion of Theorem 10.6 and Corol-
lary 10.12 is valid if X is closed set with

Hn−1(X) = 0 = Hn−1(C(X, f)) .(10.14)

Thus, the results of the paper extend the well–known Gehring–Martio–Vuorinen
theorems for quasiconformal mappings to lower Q–homeomorphisms and, in par-
ticular, to homeomorphisms with finite area distortion and, especially, to finitely
be–Lipschitz homeomorphisms , see [GM], p. 196, and [MV], p. 36, cf. [Na],
[Va1], [Vu2] and [Vu3], and also the corresponding results for Q–homeomorphisms
in [MRSY6] and [IR1]–[IR2].
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