# Wiman and Arima theorems for quasiregular mappings 

O. Martio, V.M. Miklyukov, and M. Vuorinen


#### Abstract

Generalizations of the theorems of Wiman and of Arima on entire functions are proved for spatial quasiregular mappings.


## 1 Main results

It follows from the Ahlfors theorem that an entire holomorphic function $f$ of order $\rho$ has no more than $[2 \rho]$ distinct asymptotic curves where $[r]$ stands for the largest integer $\leq r$. This theorem does not give any information if $\rho<1 / 2$. This case is covered by two theorems: if an entire holomorphic function $f$ has order $\rho<1 / 2$ then $\lim \sup _{r \rightarrow \infty} \min _{|z|=r}|f(z)|=\infty$. (Wiman [22]) and if $f$ is an entire holomorphic function of order $\rho>0$ and $l$ is a number satisfying the conditions $0<l \leq 2 \pi, l<\frac{\pi}{\rho}$, then there exists a sequence of circular arcs $\left\{|z|=r_{k}, \theta_{k} \leq \arg z \leq \theta_{k}+l\right\}, r_{k} \rightarrow \infty$, $0 \leq \theta_{k}<2 \pi$, along which $|f(z)|$ tends to $\infty$ uniformly with respect to $\arg z$ (Arima [1]).

Below we prove generalizations of these theorems for quasiregular mappings for $n \geq 2$. The next two theorems are generalizations of the theorems of Wiman and of Arima for quasiregular mappings on manifolds.
1.1. Theorem. Let $\mathcal{M}, \mathcal{N}$ be $n$-dimensional noncompact Riemannian manifolds without boundary. Assume that $h: \mathcal{M} \rightarrow(0, \infty)$ is a special exhaustion function of the manifold $\mathcal{M}$ and $u$ is a nonnegative growth function on the manifold $\mathcal{N}$, which is a subsolution of an equation (3.3) with the structure conditions (3.1), (3.2) and the structure constants $p=n, \nu_{1}, \nu_{2}$.

Let $f: \mathcal{M} \rightarrow \mathcal{N}$ be a non-constant quasiregular mapping. Suppose that the manifold $\mathcal{M}$ is such that

$$
\begin{equation*}
\int^{\infty} \lambda_{n}\left(\Sigma_{h}(t) ; 1\right) d t=\infty \tag{1.2}
\end{equation*}
$$

If now

$$
\begin{equation*}
\liminf _{\tau \rightarrow \infty} \max _{h(m)=\tau} u(f(m)) \exp \left\{-C \int^{\tau} \lambda_{n}\left(\Sigma_{h}(t) ; 1\right) d t\right\}=0 \tag{1.3}
\end{equation*}
$$

then

$$
\limsup _{\tau \rightarrow \infty} \min _{h(m)=\tau} u(f(m))=\infty .
$$

Here

$$
C=\left(n-1+n\left(\left(\frac{\nu_{2}}{\nu_{1}}\right)^{2} K^{2}(f)-1\right)^{1 / 2}\right)^{-1}
$$

is a constant, $K(f)$ is the maximal dilatation of $f, \Sigma_{h}(t)$ is a $h$-sphere in the manifold $\mathcal{M}, \lambda_{n}(U)$ is a fundamental frequency of an open subset $U \subset \Sigma_{h}(t)$, and
$\lambda_{n}\left(\Sigma_{h}(t) ; 1\right)=\inf \lambda_{n}(U)$ where the infimum is taken over all open sets $U \subset \Sigma_{h}(t)$ with $U \neq \Sigma_{h}(t)$. (See Sections 4 and 6.)
1.4. Theorem. Let $\mathcal{M}, \mathcal{N}$ be $n$-dimensional noncompact Riemannian manifolds without boundary. Assume that $h: \mathcal{M} \rightarrow(0, \infty)$ is a special exhaustion function of the manifold $\mathcal{M}$ and $u$ is a nonnegative growth function on the manifold $\mathcal{N}$, which is a subsolution of an equation (3.3) with the structure conditions (3.1), (3.2) and the structure constants $p=n, \nu_{1}, \nu_{2}$.

Let $f: \mathcal{M} \rightarrow \mathcal{N}$ be a quasiregular mapping and $M(\tau)=\max _{\Sigma_{h}(\tau)} u(f(m))$. If for some $\gamma>0$ the mapping $f$ satisfies the condition

$$
\begin{equation*}
\liminf _{\tau \rightarrow \infty} M(\tau+1) \exp \left\{-\gamma \int^{\tau} \lambda_{n}\left(\Sigma_{h}(t) ; 1\right) d t\right\}=0 \tag{1.5}
\end{equation*}
$$

then for each $k=1,2, \ldots$ there exists an $h$-sphere $\Sigma_{h}\left(t_{k}\right)$ and an open set $U \subset \Sigma_{h}\left(t_{k}\right)$, for which

$$
\begin{equation*}
\left.u(f)\right|_{U} \geq k \quad \text { and } \quad \lambda_{n}(U)<\frac{n \gamma}{C} \lambda_{n}\left(\Sigma_{h}\left(t_{k}\right) ; 1\right) \tag{1.6}
\end{equation*}
$$

The proofs of these results are based upon Phragmén-Lindelöf's and Ahlfors theorems for differential forms of $\mathcal{W} \mathcal{T}$-classes obtained in [16].

For $n$-harmonic functions on abstract cones similar theorems were obtained in [15].

Our notation is as in [4] and [16]. We assume that the results of [16] are known to the reader and we only recall some results on qr-mappings.

## 2 Quasiregular mappings

Let $\mathcal{M}$ and $\mathcal{N}$ be Riemannian manifolds of dimension $n$. A continuous mapping $F: \mathcal{M} \rightarrow \mathcal{N}$ of the class $W_{n, \text { loc }}^{1}(\mathcal{M})$ is called a quasiregular mapping if $F$ satisfies

$$
\begin{equation*}
\left|F^{\prime}(m)\right|^{n} \leq K J_{F}(m) \tag{2.1}
\end{equation*}
$$

almost everywhere on $\mathcal{M}$. Here $F^{\prime}(m): T_{m}(\mathcal{M}) \rightarrow T_{F(m)}(\mathcal{N})$ is the formal derivative of $F(m)$, further, $\left|F^{\prime}(m)\right|=\max _{|h|=1}\left|F^{\prime}(m) h\right|$. We denote by $J_{F}(m)$ the Jacobian of $F$ at the point $m \in \mathcal{M}$, i.e. the determinant of $F^{\prime}(m)$.

The best constant $K \geq 1$ in the inequality (2.1) is called the outer dilatation of $F$ and denoted by $K_{O}(F)$. If $F$ is quasiregular then the least constant $K \geq 1$ for which we have

$$
\begin{equation*}
J_{F}(m) \leq K l\left(F^{\prime}(m)\right)^{n} \tag{2.2}
\end{equation*}
$$

almost everywhere on $\mathcal{M}$ is called the inner dilatation and denoted by $K_{I}(F)$. Here

$$
l\left(F^{\prime}(m)\right)=\min _{|h|=1}\left|F^{\prime}(m) h\right| .
$$

The quantity

$$
K(F)=\max \left\{K_{O}(F), K_{I}(F)\right\}
$$

is called the maximal dilatation of $F$ and if $K(F) \leq K$ then the mapping $F$ is called $K$-quasiregular.

If $F: \mathcal{M} \rightarrow \mathcal{N}$ is a quasiregular homeomorphism then the mapping $F$ is called quasiconformal. In this case the inverse mapping $F^{-1}$ is also quasiconformal in the domain $F(\mathcal{M}) \subset \mathcal{N}$ and $K\left(F^{-1}\right)=K(F)$.

Let $\mathcal{A}$ and $\mathcal{B}$ be Riemannian manifolds of dimensions $\operatorname{dim} \mathcal{A}=k, \operatorname{dim} \mathcal{B}=$ $n-k, 1 \leq k<n$, and with scalar products $\langle,\rangle_{A},\langle,\rangle_{B}$, respectively. The Cartesian product $\mathcal{N}=\mathcal{A} \times \mathcal{B}$ has the natural structure of a Riemannian manifold with the scalar product

$$
\langle,\rangle=\langle,\rangle_{\mathcal{A}}+\langle,\rangle_{\mathcal{B}} .
$$

We denote by $\pi: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{A}$ and $\eta: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{B}$ the natural projections of the manifold $\mathcal{N}$ onto submanifolds.

If $w_{\mathcal{A}}$ and $w_{\mathcal{B}}$ are volume forms on $\mathcal{A}$ and $\mathcal{B}$, respectively, then the differential form $w_{\mathcal{N}}=\pi^{*} w_{\mathcal{A}} \wedge \eta^{*} w_{\mathcal{B}}$ is a volume form on $\mathcal{N}$.
2.3. Theorem[4]. Let $F: \mathcal{M} \rightarrow \mathcal{N}$ be a quasiregular mapping and let $f=\pi \circ F: \mathcal{M} \rightarrow \mathcal{A}$. Then the differential form $f^{*} w_{\mathcal{A}}$ is of the class $\mathcal{W} \mathcal{T}_{2}$ on $\mathcal{M}$ with the structure constants $p=n / k, \nu_{1}=\nu_{1}\left(n, k, K_{O}\right)$ and $\nu_{2}=\nu_{2}\left(n, k, K_{O}\right)$.
2.4. Remark. The structure constants can be chosen to be

$$
\nu_{1}^{-1}=\left(k+\frac{n-k}{\bar{c}^{2}}\right)^{-n / 2} n^{n / 2} K_{O}, \quad \nu_{2}^{-1}=\underline{c}^{n-k},
$$

where $\bar{c}=\bar{c}\left(k, n, K_{O}\right)$ and $\underline{c}=\underline{c}\left(k, n, K_{O}\right)$ are, respectively, the greatest and smallest positive roots of the equation

$$
\begin{equation*}
\left(k \xi^{2}+(n-k)\right)^{n / 2}-n^{n / 2} K_{O} \xi^{k}=0 \tag{2.5}
\end{equation*}
$$

## 3 Domains of growth

Let $D \subset \mathbf{C}$ be an unbounded domain and let $w=f(z)$ be a holomorphic function continuous on the closure $\bar{D}$. The Phragmén-Lindelöf principle [18] traditionally refers to the alternatives of the following type:
$\alpha)$ If $\operatorname{Re} f(z) \leq 1$ everywhere on $\partial D$, then either $\operatorname{Re} f(z)$ grows with a certain rate as $z \rightarrow \infty$, or $\operatorname{Re} f(z) \leq 1$ for all $z \in D$;
$\beta$ If $|f(z)| \leq 1$ on $\partial D$, then either $|f(z)|$ grows with a certain rate as $|z| \rightarrow \infty$ or $|f(z)| \leq 1$ for all $z \in D$.

Here the rate of growth of the quantities $\operatorname{Re} f(z)$ and $|f(z)|$ depends on the "width" of the domain $D$ near infinity.

It is not difficult to prove that these conditions are equivalent with the following conditions:
$\alpha_{1}$ ) If $\operatorname{Re} f(z)=1$ on $\partial D$ and $\operatorname{Re} f(z) \geq 1$ in $D$, then either $\operatorname{Re} f(z)$ grows with a certain rate as $z \rightarrow \infty$ or $f \equiv$ const;
$\beta_{1}$ ) If $|f(z)|=1$ on $\partial D$ and $|f(z)| \geq 1$ in $D$ then either $|f(z)|$ grows with a certain rate as $z \rightarrow \infty$ or $f \equiv$ const.

Let $D$ be an unbounded domain in $\mathbf{R}^{n}$ and let $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right): D \rightarrow \mathbf{R}^{n}$, be a quasiregular mapping. We assume that $f \in C^{0}(\bar{D})$. It is natural to consider the Phragmén-Lindelöf alternative under the following assumptions:
a) $\left.f_{1}(x)\right|_{\partial D}=1$ and $f_{1}(x) \geq 1$ everywhere in $D$,
b) $\left.\sum_{i=1}^{p} f_{i}^{2}(x)\right|_{\partial D}=1$ and $\sum_{i=1}^{p} f_{i}^{2}(x) \geq 1$ on $D, 1<p<n$,
c) $|f(x)|=1$ on $\partial D$ and $|f(x)| \geq 1$ on $D$.

Several formulations of the Phragmén-Lindelöf theorem under various assumptions can be found in [17], [21], [6], [14], [13]. However, these results are mainly of qualitative character. Here we give a new approach to Phragmén-Lindelöf type theorems for quasiregular mappings, based on isoperimetry, that leads to almost sharp results. Our approach can be used to prove Phragmén-Lindelöf type results for quasiregular mappings of Riemannian manifolds.

Let $\mathcal{N}$ be an $n$-dimensional noncompact Riemannian $C^{2}$-manifold with piecewise smooth boundary $\partial \mathcal{N}$ (possibly empty). A function $u \in C^{0}(\overline{\mathcal{N}}) \cap W_{n, \text { loc }}^{1}(\mathcal{N})$ is called a growth function with $\mathcal{N}$ as a domain of growth if (i) $u \geq 1$, (ii) $u \mid \partial \mathcal{N}=1$ if $\partial \mathcal{N} \neq \emptyset$, and $\sup _{y \in \mathcal{N}} u(y)=+\infty$.

We consider a quasiregular mapping $f: \mathcal{M} \rightarrow \mathcal{N}, f \in C^{0}(\mathcal{M} \cup \partial M)$, where $\mathcal{M}$ is a noncompact Riemannian $C^{2}$-manifold, $\operatorname{dim} \mathcal{M}=n$ and $\partial \mathcal{M} \neq \emptyset$. We assume that $f(\partial \mathcal{M}) \subset \partial \mathcal{N}$. In what follows we mean by the Phragmén-Lindelöf principle an alternative of the form: either the function $u(f(m))$ has a certain rate of growth in $\mathcal{M}$ or $f(m) \equiv$ const.

By choosing the domain of growth $\mathcal{N}$ and the growth function $u$ in a special way we can obtain several formulations of Phragmén-Lindelöf theorems for quasiregular mappings. In view of the examples in [17], the best results are obtained if an $n$-harmonic function is chosen as a growth function. In the case a) the domain of growth is $\mathcal{N}=\left\{y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{n}: y_{1} \geq 0\right\}$ and as the function of growth it is natural to choose $u(y)=y_{1}+1$; in the case b) the domain $\mathcal{N}$ is the set $\left\{y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{n}: \sum_{i=1}^{p} y_{i}^{2} \geq 1\right\}, 1<p<n$, and $u(y)=\left(\sum_{i=1}^{p} y_{i}^{2}\right)^{(n-p) /(2(n-1))}$; in the case c) the domain of growth is $\mathcal{N}=\left\{y \in \mathbf{R}^{n}:|y|>1\right\}$ and $u(y)=\log |y|+1$.

In the general case we shall consider growth functions which are $A$-solutions of elliptic equations [8]. Namely, let $\mathcal{M}$ be a Riemannian manifold and let

$$
A: T(\mathcal{M}) \rightarrow T(\mathcal{M})
$$

be a mapping defined a.e. on the tangent bundle $T(\mathcal{M})$. Suppose that for a.e. $m \in \mathcal{M}$ the mapping $A$ is continuous on the fiber $T_{m}$, i.e. for a.e. $m \in \mathcal{M}$ the function $A(m, \cdot): T_{m} \rightarrow T_{m}$ is defined and continuous; the mapping $m \mapsto A_{m}(X)$ is measurable for all measurable vector fields $X$ (see [8]).

Suppose that for a.e. $m \in \mathcal{M}$ and for all $\xi \in T_{m}$ the inequalities

$$
\begin{equation*}
\nu_{1}|\xi|^{p} \leq\langle\xi, A(m, \xi)\rangle \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|A(m, \xi)| \leq \nu_{2}|\xi|^{p-1} \tag{3.2}
\end{equation*}
$$

hold with $p>1$ and for some constants $\nu_{1}, \nu_{2}>0$. It is clear that we have $\nu_{1} \leq \nu_{2}$.
We consider the equation

$$
\begin{equation*}
\operatorname{div} A(m, \nabla f)=0 \tag{3.3}
\end{equation*}
$$

Solutions to (3.3) are understood in the weak sense, that is, $A$-solutions are $W_{p, l o c}^{1}$ functions satisfying the integral identity

$$
\begin{equation*}
\int_{\mathcal{M}}\langle\nabla \theta, A(m, \nabla f)\rangle * \mathbb{1}_{\mathcal{M}}=0 \tag{3.4}
\end{equation*}
$$

for all $\theta \in W_{p}^{1}(\mathcal{M})$ with compact support in $\mathcal{M}$.
A function $f$ in $W_{p, l o c}^{1}(\mathcal{M})$ is a $A$-subsolution of (3.3) in $\mathcal{M}$ if

$$
\begin{equation*}
\operatorname{div} A(m, \nabla f) \geq 0 \tag{3.5}
\end{equation*}
$$

weakly in $\mathcal{M}$, i.e.

$$
\begin{equation*}
\int_{\mathcal{M}}\langle\nabla \theta, A(m, \nabla f)\rangle * \mathbb{1}_{\mathcal{M}} \leq 0 \tag{3.6}
\end{equation*}
$$

whenever $\theta \in W_{p}^{1}(\mathcal{M})$, is nonnegative with compact support in $\mathcal{M}$.
A basic example of such an equation is the $p$-Laplace equation

$$
\begin{equation*}
\operatorname{div}\left(|\nabla f|^{p-2} \nabla f\right)=0 \tag{3.7}
\end{equation*}
$$

## 4 Exhaustion functions

Below we introduce exhaustion and special exhaustion functions on Riemannian manifolds and give illustrating examples.
4.1. Exhaustion functions of boundary sets. Let $h: \mathcal{M} \rightarrow\left(0, h_{0}\right)$, $0<h_{0} \leq \infty$, be a locally Lipschitz function such that

$$
\begin{equation*}
\operatorname{ess} \inf _{Q}|\nabla h|>0 \quad \forall \quad Q \subset \subset \mathcal{M} \tag{4.2}
\end{equation*}
$$

For arbitrary $t \in\left(0, h_{0}\right)$ we denote by

$$
B_{h}(t)=\{m \in \mathcal{M}: h(m)<t\}, \quad \Sigma_{h}(t)=\{m \in \mathcal{M}: h(m)=t\}
$$

the $h$-balls and $h$-spheres, respectively.
Let $h: \mathcal{M} \rightarrow \mathbf{R}$ be a locally Lipschitz function such that there exists a compact $K \subset \mathcal{M}$ with $|\nabla h(x)|>0$ for a.e. $m \in \mathcal{M} \backslash K$. We say that the function $h$ is an
exhaustion function for a boundary set $\Xi$ of $\mathcal{M}$ if for an arbitrary sequence of points $m_{k} \in \mathcal{M}, k=1,2, \ldots$ the function $h\left(m_{k}\right) \rightarrow h_{0}$ if and only if $m_{k} \rightarrow \xi$.

It is easy to see that this requirement is satisfied if and only if for an arbitrary increasing sequence $t_{1}<t_{2}<\ldots<h_{0}$ the sequence of the open sets $V_{k}=\{m \in \mathcal{M}$ : $\left.h(m)>t_{k}\right\}$ is a chain, defining a boundary set $\xi$. Thus the function $h$ exhausts the boundary set $\xi$ in the traditional sense of the word.

The function $h: \mathcal{M} \rightarrow\left(0, h_{0}\right)$ is called the exhaustion function of the manifold $\mathcal{M}$ if the following two conditions are satisfied
(i) for all $t \in\left(0, h_{0}\right)$ the $h$-ball $\overline{B_{h}(t)}$ is compact;
(ii) for every sequence $t_{1}<t_{2}<\ldots<h_{0}$ with $\lim _{k \rightarrow \infty} t_{k}=h_{0}$, the sequence of $h$-balls $\left\{B_{h}\left(t_{k}\right)\right\}$ generates an exhaustion of $\mathcal{M}$, i.e.

$$
B_{h}\left(t_{1}\right) \subset B_{h}\left(t_{2}\right) \subset \ldots \subset B_{h}\left(t_{k}\right) \subset \ldots \quad \text { and } \quad \cup_{k} B_{h}\left(t_{k}\right)=\mathcal{M}
$$

4.3. Example. Let $\mathcal{M}$ be a Riemannian manifold. We set $h(m)=\operatorname{dist}\left(m, m_{0}\right)$ where $m_{0} \in \mathcal{M}$ is a fixed point. Because $|\nabla h(m)|=1$ almost everywhere on $\mathcal{M}$, the function $h$ defines an exhaustion function of the manifold $\mathcal{M}$.
4.4. Special exhaustion functions. Let $\mathcal{M}$ be a noncompact Riemannian manifold with the boundary $\partial \mathcal{M}$ (possibly empty). Let $A$ satisfy (3.1) and (3.2) and let $h: \mathcal{M} \rightarrow\left(0, h_{0}\right)$ be an exhaustion function, satisfying the following additional conditions:
$\left.a_{1}\right)$ there is $h^{\prime}>0$ such that $h^{-1}\left(\left(0, h^{\prime}\right)\right)$ is compact and $h$ is a solution of (3.3) in the open set $K=h^{-1}\left(\left(h^{\prime}, h_{0}\right)\right)$;
$a_{2}$ ) for a.e. $t_{1}, t_{2} \in\left(h^{\prime}, h_{0}\right), t_{1}<t_{2}$,

$$
\int_{\Sigma_{h}\left(t_{2}\right)}\left\langle\frac{\nabla h}{|\nabla h|}, A(x, \nabla h)\right\rangle d \mathcal{H}^{n-1}=\int_{\Sigma_{h}\left(t_{1}\right)}\left\langle\frac{\nabla h}{|\nabla h|}, A(x, \nabla h)\right\rangle d \mathcal{H}^{n-1} .
$$

Here $d \mathcal{H}^{n-1}$ is the element of the $(n-1)$-dimensional Hausdorff measure on $\Sigma_{h}$. Exhaustion functions with these properties will be called the special exhaustion functions of $\mathcal{M}$ with respect to $A$. In most cases the mapping $A$ will be the $p$-Laplace operator (3.7) and, unless otherwise stated, $A$ is the $p$-Laplace operator.

Since the unit vector $\nu=\nabla h /|\nabla h|$ is orthogonal to the $h$-sphere $\Sigma_{h}$, the condition $a_{2}$ ) means that the flux of the vector field $A(m, \nabla h)$ through $h$-spheres $\Sigma_{h}(t)$ is constant.

In the following we consider domains $D$ in $\mathbf{R}^{n}$ as manifolds $\mathcal{M}$. However, the boundaries $\partial D$ of $D$ are allowed to be rather irregular. To handle this situation we introduce $(A, h)$-transversality property for $\mathcal{M}$.

Let $h: \mathcal{M} \rightarrow\left(0, h_{0}\right)$ be a $C^{2}$-exhaustion function. We say that $\mathcal{M}$ satisfies the $(A, h)$-transversality property if for a.e. $t_{1}, t_{2}, h<t_{1}<t_{2}<h_{0}$, and for every $\varepsilon>0$ there exists an open set

$$
G=G_{\varepsilon}\left(t_{1}, t_{2}\right) \subset B_{h}\left(t_{2}\right) \backslash \bar{B}_{h}\left(t_{1}\right)
$$

with piecewise regular boundary such that

$$
\begin{gather*}
\mathcal{H}^{n-1}\left(\Sigma_{h}\left(t_{1}\right) \cap \Sigma_{h}\left(t_{2}\right) \backslash \partial G\right)<\varepsilon,  \tag{4.5}\\
\mathcal{H}^{n}\left(\left(B_{h}\left(t_{2}\right) \backslash \bar{B}_{h}\left(t_{1}\right)\right) \backslash G\right)<\varepsilon,  \tag{4.6}\\
\langle A(m, \nabla h(m), v)\rangle=0 \tag{4.7}
\end{gather*}
$$

where $v$ is the unit inner normal to $\partial G$.
We say that $\mathcal{M}$ satisfies the $h$-transversality condition if $\mathcal{M}$ satisfies the $(A, h)$ transversality condition for the $p$-Laplace operator $A(m, \xi)=|\xi|^{p-2} \xi$. In this case (4.7) reduces to

$$
\begin{equation*}
\langle\nabla h(m), v\rangle=0 . \tag{4.8}
\end{equation*}
$$

4.9. Example. Let $D$ be a bounded domain in $\mathbf{R}^{2}$ and let

$$
\mathcal{M}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}:\left(x_{1}, x_{2}\right) \in D, x_{3}>0\right\}
$$

be a cylinder with base $D$. The function $h:(0, \infty) \rightarrow \mathbf{R}, h(x)=x_{3}$, is an exhaustion function for $\mathcal{M}$. Since every domain $D$ in $\mathbf{R}^{2}$ can be approximated by smooth domains $D^{\prime}$ from inside, it is easy to see that for $0<t_{1}<t_{2}<\infty$ the domain $G=D^{\prime} \times\left(t_{1}, t_{2}\right)$ can be used as an approximating domain $G_{\varepsilon}\left(t_{1}, t_{2}\right)$. Note that the transversality condition (4.7) is automatically satisfied for the $p$-Laplace operator $A(m, \xi)=|\xi|^{p-2} \xi$
4.10. Lemma. Suppose that an exhaustion function $h \in C^{2}(\mathcal{M} \backslash K)$ satisfies the equation (3.3) in $\mathcal{M} \backslash K$ and that the function $A(m, \xi)$ is continuously differentiable. If $\mathcal{M}$ satisfies the $(A, h)$-transversality condition, then $h$ is a special exhaustion function on the manifold $\mathcal{M}$.

Proof. It suffices to show $a_{2}$ ). Let $h^{\prime}<t_{1}<t_{2}<h_{0}$ and $\varepsilon>0$. Choose an open set $G$ as in the definition of the $(A, h)$-transversality condition. $|A(m, \nabla h(m))| \leq$ $M<\infty$ for every $m \in \mathcal{M}$, and (4.5) - (4.7) together with the Gauss formula imply for a.e. $t_{1}, t_{2}$

$$
\begin{aligned}
& \left.\quad \int_{\Sigma_{h}\left(t_{2}\right)}\left\langle\frac{\nabla h}{|\nabla h|}, A(m, \nabla h)\right\rangle d \mathcal{H}^{n-1}-\int_{\Sigma_{h}\left(t_{1}\right)}\left\langle\frac{\nabla h}{|\nabla h|}, A(m, \nabla h)\right\rangle d \mathcal{H}^{n-1} \right\rvert\, \leq \\
& \leq\left|\int_{\partial G \cup \Sigma_{h}\left(t_{2}\right)}\left\langle\frac{\nabla h}{|\nabla h|}, A(m, \nabla h)\right\rangle d \mathcal{H}^{n-1}-\int_{\partial G \cup \Sigma_{h}\left(t_{1}\right)}\left\langle\frac{\nabla h}{|\nabla h|}, A(m, \nabla h)\right\rangle d \mathcal{H}^{n-1}\right|+\varepsilon M= \\
& =\left|\int_{\partial G}\left\langle\frac{\nabla h}{|\nabla h|}, A(m, \nabla h)\right\rangle d \mathcal{H}^{n-1}\right|+\varepsilon M=\left|\int_{\partial G}\langle v, A(m, \nabla h)\rangle d \mathcal{H}^{n-1}\right|+\varepsilon M= \\
& =\left|\int_{G} \operatorname{div} A(m, \nabla h) d \mathcal{H}^{n}\right|+\varepsilon M=\varepsilon M .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $a_{2}$ ) follows.
4.11. Example. Fix $1 \leq n \leq p$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be an orthonormal system of coordinates in $\mathbf{R}^{n}, 1 \leq n<p$. Let $D \subset \mathbf{R}^{n}$ be an unbounded domain with piecewise smooth boundary and let $\mathcal{B}$ be an $(p-n)$-dimensional compact Riemannian manifold with or without boundary. We consider the manifold $\mathcal{M}=D \times \mathcal{B}$.

We denote by $x \in D, b \in \mathcal{B}$, and $(x, b) \in \mathcal{M}$ the points of the corresponding manifolds. Let $\pi: D \times \mathcal{B} \rightarrow D$ and $\eta: D \times \mathcal{B} \rightarrow \mathcal{B}$ be the natural projections of the manifold $\mathcal{M}$.

Assume now that the function $h$ is a function on the domain $D$ satisfying the conditions $b_{1}$ ), $b_{2}$ ) and the equation (3.7). We consider the function $h^{*}=h \circ \pi$ : $\mathcal{M} \rightarrow(0, \infty)$.

We have

$$
\nabla h^{*}=\nabla(h \circ \pi)=\left(\nabla_{x} h\right) \circ \pi
$$

and

$$
\begin{gathered}
\operatorname{div}\left(\left|\nabla h^{*}\right|^{p-2} \nabla h^{*}\right)=\operatorname{div}\left(|\nabla(h \circ \pi)|^{p-2} \nabla(h \circ \pi)\right)= \\
=\operatorname{div}\left(\left|\nabla_{x} h\right|^{p-2} \circ \pi\left(\nabla_{x} h\right) \circ \pi\right)=\left(\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\nabla_{x} h\right|^{p-2} \frac{\partial h}{\partial x_{i}}\right)\right) \circ \pi .
\end{gathered}
$$

Because $h$ is a special exhaustion function of $D$ we have

$$
\operatorname{div}\left(\left|\nabla h^{*}\right|^{p-2} \nabla h^{*}\right)=0
$$

Let $(x, b) \in \partial \mathcal{M}$ be an arbitrary point where the boundary $\partial \mathcal{M}$ has a tangent hyperplane and let $\nu$ be a unit normal vector to $\partial \mathcal{M}$.

If $x \in \partial D$, then $\nu=\nu_{1}+\nu_{2}$ where the vector $\nu_{1} \in \mathbf{R}^{k}$ is orthogonal to $\partial D$ and $\nu_{2}$ is a vector from $T_{b}(\mathcal{B})$. Thus

$$
\left\langle\nabla h^{*}, \nu\right\rangle=\left\langle\left(\nabla_{x} h\right) \circ \pi, \nu_{1}\right\rangle=0,
$$

because $h$ is a special exhaustion function on $D$ and satisfies the property $b_{2}$ ) on $\partial D$. If $b \in \partial \mathcal{B}$, then the vector $\nu$ is orthogonal to $\partial \mathcal{B} \times \mathbf{R}^{n}$ and

$$
\left\langle\nabla h^{*}, \nu\right\rangle=\left\langle\left(\nabla_{x} h\right) \circ \pi, \nu\right\rangle=0,
$$

because the vector $\left(\nabla_{x} h\right) \circ \pi$ is parallel to $\mathbf{R}^{n}$.
The other requirements for a special exhaustion function for the manifold $\mathcal{M}$ are easy to verify.

Therefore, the function

$$
\begin{equation*}
h^{*}=h^{*}(x, b)=h \circ \pi: \mathcal{M} \rightarrow(0, \infty) \tag{4.12}
\end{equation*}
$$

is a special exhaustion function on the manifold $\mathcal{M}=D \times \mathcal{B}$.
4.13. Example. We fix an integer $k, 1 \leq k \leq n$, and set

$$
d_{k}(x)=\left(\sum_{i=1}^{k} x_{i}^{2}\right)^{1 / 2} .
$$

It is easy to see that $\left|\nabla d_{k}(x)\right|=1$ everywhere in $\mathbf{R}^{n} \backslash \Sigma_{0}$ where $\Sigma_{0}=\left\{x \in \mathbf{R}^{n}\right.$ : $\left.d_{k}(x)=0\right\}$. We shall call the set

$$
B_{k}(t)=\left\{x \in \mathbf{R}^{n}: d_{k}(x)<t\right\}
$$

a $k$-ball and the set

$$
\Sigma_{k}(t)=\left\{x \in \mathbf{R}^{n}: d_{k}(x)=t\right\}
$$

a $k$-sphere in $\mathbf{R}^{n}$.
We shall say that an unbounded domain $D \subset \mathbf{R}^{n}$ is $k$-admissible if for each $t>\inf _{x \in D} d_{k}(x)$ the set $D \cap B_{k}(t)$ has compact closure.

It is clear that every unbounded domain $D \subset \mathbf{R}^{n}$ is $n$-admissible. In the general case the domain $D$ is $k$-admissible if and only if the function $d_{k}(x)$ is an exhaustion function of $D$. It is not difficult to see that if a domain $D \subset \mathbf{R}^{n}$ is $k$-admissible, then it is $l$-admissible for all $k<l<n$.

Fix $1 \leq k<n$. Let $\Delta$ be a bounded domain in the $(n-k)$-plane $x_{1}=\ldots=$ $x_{k}=0$ and let

$$
D=\left\{x=\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}:\left(x_{k+1}, \ldots, x_{n}\right) \in \Delta\right\}
$$

The domain $D$ is $k$-admissible. The $k$-spheres $\Sigma_{k}(t)$ are orthogonal to the boundary $\partial D$ and therefore $\left\langle\nabla d_{k}, \nu\right\rangle=0$ everywhere on the boundary. The function

$$
h(x)= \begin{cases}\log d_{k}(x), & p=k, \\ d_{k}^{(p-k) /(p-1)}(x), & p \neq k,\end{cases}
$$

satisfies (3.3). By Lemma 4.10 the function $h$ is a special exhaustion function of the domain $D$. Therefore the domain $D$ has $p$-parabolic type for $p \geq k$ and $p$-hyperbolic type for $p<k$.
4.14. Example. Fix $1 \leq k<n$. Let $\Delta$ be a bounded domain in the plane $x_{1}=\ldots=x_{k}=0$ with a (piecewise) smooth boundary and let

$$
\begin{equation*}
D=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}:\left(x_{k+1}, \ldots, x_{n}\right) \in \Delta\right\}=\mathbf{R}^{n-k} \times \Delta \tag{4.15}
\end{equation*}
$$

be the cylinder domain with base $\Delta$.
The domain $D$ is $k$-admissible. The $k$-spheres $\Sigma_{k}(t)$ are orthogonal to the boundary $\partial D$ and therefore $\left\langle\nabla d_{k}, \nu\right\rangle=0$ everywhere on the boundary, where $d_{k}$ is as in Example 4.13.

Let $h=\phi\left(d_{k}\right)$ where $\phi$ is a $C^{2}$-function with $\phi^{\prime} \geq 0$. We have $\nabla h=\phi^{\prime} \nabla d_{k}$ and since $\left|\nabla d_{k}\right|=1$, we obtain

$$
\begin{gathered}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(|\nabla h|^{n-2} \frac{\partial h}{\partial x_{i}}\right)=\sum_{i=1}^{k} \frac{\partial}{\partial x_{i}}\left(\left(\phi^{\prime}\right)^{n-1} \frac{\partial d_{k}}{\partial x_{i}}\right) \\
=(n-1)\left(\phi^{\prime}\right)^{n-2} \phi^{\prime \prime}+\frac{k-1}{d_{k}}\left(\phi^{\prime}\right)^{n-1} .
\end{gathered}
$$

From the equation

$$
(n-1) \phi^{\prime \prime}+\frac{k-1}{d_{k}} \phi^{\prime}=0
$$

we conclude that the function

$$
\begin{equation*}
h(x)=\left(d_{k}(x)\right)^{\frac{n-k}{n-1}} \tag{4.16}
\end{equation*}
$$

satisfies the equation (3.7) in $D \backslash K$ and thus it is a special exhaustion function of the domain $D$.
4.17. Example. Let $(r, \theta)$, where $r \geq 0, \theta \in S^{n-1}(1)$, be the spherical coordinates in $\mathbf{R}^{n}$. Let $U \subset S^{n-1}(1), \partial U \neq \emptyset$, be an arbitrary domain with a piecewise smooth boundary on the unit sphere $S^{n-1}(1)$. We fix $0 \leq r_{1}<\infty$ and consider the domain

$$
\begin{equation*}
D=\left\{(r, \theta) \in \mathbf{R}^{n}: r_{1}<r<\infty, \theta \in U\right\} \tag{4.18}
\end{equation*}
$$

As above it is easy to verify that the given domain is $n$-admissible and the function

$$
\begin{equation*}
h(|x|)=\log \frac{|x|}{r_{1}} \tag{4.19}
\end{equation*}
$$

is a special exhaustion function of the domain $D$ for $p=n$.
4.20. Example. Let $\mathcal{A}$ be a compact Riemannian manifold, $\operatorname{dim} \mathcal{A}=k$, with piecewise smooth boundary or without boundary. We consider the Cartesian product $\mathcal{M}=\mathcal{A} \times \mathbf{R}^{n}$, $n \geq 1$. We denote by $a \in \mathcal{A}, x \in \mathbf{R}^{n}$ and $(a, x) \in \mathcal{M}$ the points of the corresponding spaces. It is easy to see that the function

$$
h(a, x)= \begin{cases}\log |x|, & p=n, \\ |x|^{\frac{p-n}{p-1}}, & p \neq n,\end{cases}
$$

is a special exhaustion function for the manifold $\mathcal{M}$. Therefore, for $p \geq n$ the given manifold has $p$-parabolic type and for $p<n p$-hyperbolic type.
4.21. Example. Let $(r, \theta)$, where $r \geq 0, \theta \in S^{n-1}(1)$, be the spherical coordinates in $\mathbf{R}^{n}$. Let $U \subset S^{n-1}(1)$ be an arbitrary domain on the unit sphere $S^{n-1}(1)$. We fix $0 \leq r_{1}<r_{2}<\infty$ and consider the domain

$$
D=\left\{(r, \theta) \in \mathbf{R}^{n}: r_{1}<r<r_{2}, \theta \in U\right\}
$$

with the metric

$$
\begin{equation*}
d s_{\mathcal{M}}^{2}=\alpha^{2}(r) d r^{2}+\beta^{2}(r) d l_{\theta}^{2}, \tag{4.22}
\end{equation*}
$$

where $\alpha(r), \beta(r)>0$ are $C^{0}$-functions on $\left[r_{1}, r_{2}\right)$ and $d l_{\theta}$ is an element of length on $S^{n-1}(1)$.

The manifold $\mathcal{M}=\left(D, d s_{\mathcal{M}}^{2}\right)$ is a warped Riemannian product. In the case $\alpha(r) \equiv 1, \beta(r)=1$, and $U=S^{n-1}$ the manifold $\mathcal{M}$ is isometric to a cylinder in $\mathbf{R}^{n+1}$. In the case $\alpha(r) \equiv 1, \beta(r)=r, U=S^{n-1}$ the manifold $\mathcal{M}$ is a spherical annulus in $\mathbf{R}^{n}$.

The volume element in the metric (4.22) is given by the expression

$$
d \sigma_{\mathcal{M}}=\alpha(r) \beta^{n-1}(r) d r d S^{n-1}(1)
$$

If $\phi(r, \theta) \in C^{1}(D)$, then the length of the gradient $\nabla \phi$ in $\mathcal{M}$ takes the form

$$
|\nabla \phi|^{2}=\frac{1}{\alpha^{2}}\left(\phi_{r}^{\prime}\right)^{2}+\frac{1}{\beta^{2}}\left|\nabla_{\theta} \phi\right|^{2}
$$

where $\nabla_{\theta} \phi$ is the gradient in the metric of the unit sphere $S^{n-1}(1)$.
For the special exhaustion function $h(r, \theta) \equiv h(r)$ the equation (3.7) reduces to the following form

$$
\frac{d}{d r}\left(\left(\frac{1}{\alpha(r)}\right)^{p-1}\left(h_{r}^{\prime}(r)\right)^{p-1} \beta^{n-1}(r)\right)=0 .
$$

Solutions of this equation are the functions

$$
h(r)=C_{1} \int_{r_{1}}^{r} \frac{\alpha(t)}{\beta^{\frac{n-1}{p-1}}(t)} d t+C_{2}
$$

where $C_{1}$ and $C_{2}$ are constants.
Because the function $h$ satisfies obviously the boundary condition $a)_{2}$ as well as the other conditions of (4.4), we see that under the assumption

$$
\begin{equation*}
\int^{r_{2}} \frac{\alpha(t)}{\beta^{\frac{n-1}{p-1}}(t)} d t=\infty \tag{4.23}
\end{equation*}
$$

the function

$$
\begin{equation*}
h(r)=\int_{r_{1}}^{r} \frac{\alpha(t)}{\beta^{\frac{n-1}{p-1}}(t)} d t \tag{4.24}
\end{equation*}
$$

is a special exhaustion function on the manifold $\mathcal{M}$.
4.25. Theorem. Let $h: \mathcal{M} \rightarrow\left(0, h_{0}\right)$ be a special exhaustion function of a boundary set $\xi$ of the manifold $\mathcal{M}$. Then
(i) if $h_{0}=\infty$, the set $\xi$ has $p$-parabolic type,
(ii) if $h_{0}<\infty$, the set $\xi$ has $p$-hyperbolic type.

Proof. Choose $0<t_{1}<t_{2}<h_{0}$ such that $K \subset B_{h}\left(t_{1}\right)$. We need to estimate the $p$-capacity of the condenser $\left(B_{h}\left(t_{1}\right), \mathcal{M} \backslash B_{h}\left(t_{2}\right) ; \mathcal{M}\right)$. We have

$$
\begin{equation*}
\operatorname{cap}_{p}\left(\bar{B}_{h}\left(t_{1}\right), \mathcal{M} \backslash B_{h}\left(t_{2}\right) ; \mathcal{M}\right)=\frac{J}{\left(t_{2}-t_{1}\right)^{p-1}} \tag{4.26}
\end{equation*}
$$

where

$$
J=\int_{\Sigma_{h}(t)}|\nabla h|^{p-1} d \mathcal{H}_{\mathcal{M}}^{n-1}
$$

is a quantity independent of $t>h(K)=\sup \{h(m): m \in K\}$. Indeed, for the variational problem $[16,(2.9)]$ we choose the function $\varphi_{0}, \varphi_{0}(m)=0$ for $m \in B_{h}\left(t_{1}\right)$,

$$
\varphi_{0}(m)=\frac{h(m)-t_{1}}{t_{2}-t_{1}}, m \in B_{h}\left(t_{2}\right) \backslash B_{h}\left(t_{1}\right)
$$

and $\varphi_{0}(m)=1$ for $m \in \mathcal{M} \backslash B_{h}\left(t_{2}\right)$. Using the Kronrod-Federer formula [3, Theorem 3.2.22], we get

$$
\begin{aligned}
\operatorname{cap}_{p}\left(B_{h}\left(t_{1}\right), \mathcal{M} \backslash B_{h}\left(t_{2}\right) ; \mathcal{M}\right) & \leq \int_{\mathcal{M}}\left|\nabla \varphi_{0}\right|^{p} * \mathbb{1}_{\mathcal{M}} \leq \\
& \leq \frac{1}{\left(t_{2}-t_{1}\right)^{p}} \int_{t_{1}<h(m)<t_{2}}|\nabla h(m)|^{p} * \mathbb{1}_{\mathcal{M}}= \\
& =\int_{t_{1}}^{t_{2}} d t \int_{\Sigma_{h}(t)}|\nabla h(m)|^{p-1} d \mathcal{H}_{\mathcal{M}}^{n-1}
\end{aligned}
$$

Because the special exhaustion function satisfies the equation (3.7) and the boundary condition $a)_{2}$, one obtains for arbitrary $\tau_{1}, \tau_{2}, h(K)<\tau_{1}<\tau_{2}<h_{0}$

$$
\begin{gathered}
\int_{\Sigma_{h}\left(t_{2}\right)}|\nabla h|^{p-1} d \mathcal{H}_{\mathcal{M}}^{n-1}-\int_{\Sigma_{h}\left(t_{1}\right)}|\nabla h|^{p-1} d \mathcal{H}_{\mathcal{M}}^{n-1}= \\
=\int_{\Sigma_{h}\left(t_{2}\right)}|\nabla h|^{p-2}\langle\nabla h, \nu\rangle d \mathcal{H}_{\mathcal{M}}^{n-1}-\int_{\Sigma_{h}\left(t_{1}\right)}|\nabla h|^{p-2}\langle\nabla h, \nu\rangle d \mathcal{H}_{\mathcal{M}}^{n-1}= \\
=\int_{t_{1}<h(m)<t_{2}} \operatorname{div} \mathcal{M}_{\mathcal{M}}\left(|\nabla h|^{p-2} \nabla h\right) * \mathbb{1}_{\mathcal{M}}=0
\end{gathered}
$$

Thus we have established the inequality

$$
\operatorname{cap}_{p}\left(B_{h}\left(t_{1}\right), \mathcal{M} \backslash B_{h}\left(t_{2}\right) ; \mathcal{M}\right) \leq \frac{J}{\left(t_{2}-t_{1}\right)^{p-1}}
$$

By the conditions, imposed on the special exhaustion function, the function $\varphi_{0}$ is an extremal in the variational problem [16, (2.9)]. Such an extremal is unique and therefore the preceding inequality holds as an equality. This conclusion proves the equation (4.26).

If $h_{0}=\infty$, then letting $t_{2} \rightarrow \infty$ in (4.26) we conclude the parabolicity of the type of $\xi$. Let $h_{0}<\infty$. Consider an exhaustion $\left\{\mathcal{U}_{k}\right\}$ and choose $t_{0}>0$ such that the $h$-ball $B_{h}\left(t_{0}\right)$ contains the compact set $K$.

Set $t_{k}=\sup _{m \in \partial \mathcal{U}_{k}} h(m)$. Then for $t_{k}>t_{0}$ we have

$$
\operatorname{cap}_{p}\left(\bar{U}_{k_{0}}, \mathcal{U}_{k} ; \mathcal{M}\right) \geq \operatorname{cap}_{p}\left(B_{h}\left(t_{0}\right), B_{h}\left(t_{k}\right) ; \mathcal{M}\right)=J /\left(t_{k}-t_{0}\right)^{p-1}
$$

and hence

$$
\liminf _{k \rightarrow \infty} \operatorname{cap}_{p}\left(\bar{U}_{k_{0}}, \mathcal{U}_{k} ; \mathcal{M}\right) \geq J /\left(h_{0}-t_{0}\right)^{p-1}>0
$$

and the boundary set $\xi$ has $p$-hyperbolic type.

## 5 Wiman theorem

Now we will prove Theorem 1.1.
5.1. Fundamental frequency. Let $U \subset \Sigma_{h}(\tau)$ be an open set. We need further the following quantity

$$
\begin{equation*}
\lambda_{p}(U)=\inf \frac{\left(\int_{U}|\nabla h|^{-1}\left|\nabla_{2} \varphi\right|^{p} d \mathcal{H}_{\mathcal{M}}^{n-1}\right)^{1 / p}}{\left(\int_{U}|\nabla h|^{p-1}|\varphi|^{p} d \mathcal{H}_{\mathcal{M}}^{n-1}\right)^{1 / p}} \tag{5.2}
\end{equation*}
$$

where the infimum is taken over all functions $\varphi \in W_{p}^{1}(U)^{1}$ with $\operatorname{supp} \varphi \subset U$. Here $\nabla_{2} \varphi$ is the gradient of $\varphi$ on the surface $\Sigma_{h}(\tau)$.

In the case $|\nabla h| \equiv 1$ this quantity is well-known and can be interpreted, in particular, as the best constant in the Poincaré inequality. Following [19] we shall call this quantity the fundamental frequency of the rigidly supported membrane $U$.

Observe a useful property of the fundamental frequency.
5.3. Lemma. Let $U \subset \Sigma_{h}(\tau)$ be an open set and let $U_{i}$ be the components of $U, i=1,2, \ldots$.. Then

$$
\lambda_{p}(U)=\inf _{i} \lambda_{p}\left(U_{i}\right) .
$$

Proof. To prove this property we fix arbitrary functions $\varphi_{i}$ with $\operatorname{supp} \varphi_{i} \subset U_{i}$. Set $\varphi(m)=\varphi_{i}(m)$ for $m \in U_{i}$ and $\varphi=0$ for $U \backslash\left(\cup_{i} U_{i}\right)$. Hence

$$
\lambda_{p}^{p}\left(U_{i}\right) \int_{U_{i}}|\nabla h|^{p-1}\left|\varphi_{i}\right|^{p} d \mathcal{H}^{n-1} \leq \int_{U_{i}}|\nabla h|^{-1}\left|\nabla_{2} \varphi_{i}\right|^{p} d \mathcal{H}^{n-1}
$$

Summation yields

$$
\left(\inf _{i} \lambda_{p}^{p}\left(U_{i}\right)\right) \sum_{i} \int_{U_{i}}|\nabla h|^{p-1}\left|\varphi_{i}\right|^{p} d \mathcal{H}^{n-1} \leq \sum_{i} \int_{U_{i}}|\nabla h|^{-1}\left|\nabla_{2} \varphi_{i}\right|^{p} d \mathcal{H}^{n-1}
$$

[^0]and we obtain
$$
\left(\inf _{i} \lambda_{p}^{p}\left(U_{i}\right)\right) \int_{U}|\nabla h|^{p-1}|\varphi|^{p} d \mathcal{H}^{n-1} \leq \int_{U}|\nabla h|^{-1}\left|\nabla_{2} \varphi\right|^{p} d \mathcal{H}^{n-1}
$$

This gives

$$
\inf _{i} \lambda_{p}\left(U_{i}\right) \leq \lambda_{p}(U)
$$

The reverse inequality is evident. Indeed, if $U_{i}$ is a component of $U$, then evidently

$$
\lambda_{p}(U) \leq \lambda_{p}\left(U_{i}\right)
$$

and hence

$$
\lambda_{p}(U) \leq \inf _{i} \lambda_{p}\left(U_{i}\right)
$$

We also need the following statement.
5.4. Lemma. Under the above assumptions for a.e. $\tau \in\left(0, h_{0}\right)$ we have

$$
\begin{equation*}
\varepsilon\left(\tau ; \mathcal{F}_{B}\right) \geq \lambda_{p}\left(\Sigma_{h}(\tau)\right) / c \tag{5.5}
\end{equation*}
$$

where $\lambda_{p}$ is the fundamental frequency of the membrane $\Sigma_{h}(\tau)$ defined by formula (5.2) and

$$
c=c\left(\nu_{1}, \nu_{2}, p\right)= \begin{cases}c_{1} & \text { for } p \leq 2 \\ c_{2} & \text { for } p \geq 2\end{cases}
$$

where

$$
c_{1}=\sqrt{\nu_{2}^{2}-\nu_{1}^{2}}+2^{(2-p) / 2} \nu_{1} p^{-1}(p-1)^{(p-1) / p}
$$

and

$$
c_{2}=\sqrt{\nu_{2}^{2}-\nu_{1}^{2}}+\nu_{1} \frac{p-1}{p} .
$$

For the proof see Lemma 4.3 in [14].
We now use these estimates for proving Phragmén-Lindelöf type theorems for the solutions of quasilinear equations on manifolds.
5.6. Theorem. Let $h: \mathcal{M} \rightarrow(0, \infty)$ be an exhaustion function. Suppose that the manifold $\mathcal{M}$ satisfies the condition

$$
\begin{equation*}
\int^{\infty} \lambda_{p}\left(\Sigma_{h}(t)\right) d t=\infty \tag{5.7}
\end{equation*}
$$

Let $f$ be a continuous solution of the equation (3.3) with (3.1), (3.2) on $\mathcal{M}$ such that

$$
\begin{equation*}
\limsup _{m \rightarrow m_{0}} f(m) \leq 0, \quad \text { for all } m_{0} \in \partial \mathcal{M} \tag{5.8}
\end{equation*}
$$

Then either $f(m) \leq 0$ everywhere on $\mathcal{M}$ or

$$
\begin{equation*}
\liminf _{\tau \rightarrow \infty} \int_{\tau<h(m)<\tau+1}|\nabla h||f(m)||\nabla f(m)|^{p-1} * \mathbb{1} \exp \left\{-c_{3} \int^{\tau} \lambda_{p}\left(\Sigma_{h}(t)\right) d t\right\}>0 \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{\tau \rightarrow \infty} \int_{\tau<h(m)<\tau+1}|\nabla h(m)|^{p}|f(m)|^{p} * \mathbb{1} \exp \left\{-c_{3} \int^{\tau} \lambda_{p}\left(\Sigma_{h}(t)\right) d t\right\}>0 . \tag{5.10}
\end{equation*}
$$

In particular, if $h$ is a special exhaustion function on $\mathcal{M}$, then

$$
\begin{equation*}
\liminf _{\tau \rightarrow \infty} M(\tau+1) \exp \left\{-\frac{c_{3}}{p} \int^{\tau} \lambda_{p}\left(\Sigma_{h}(\tau)\right) d t\right\}>0 \tag{5.11}
\end{equation*}
$$

Here

$$
M(t)=\sup _{m \in \Sigma_{h}(t)}|f(m)|
$$

and $c_{3}=\nu_{1} c^{-1}$ where $c$ is the constant of Lemma 5.4.
Proof. We assume that at some point $m_{1} \in \operatorname{int} \mathcal{M}$ we have $f\left(m_{1}\right)>0$. We consider the set

$$
\mathcal{O}=\left\{m \in \mathcal{M}: f(m)>f\left(m_{1}\right)\right\}
$$

By Corollary [16, 4.57] the set $\mathcal{O}$ is noncompact.
The function $h$ is an exhaustion function on $\mathcal{O}$. Using the relation [16, 6.74] for the function $f(m)-f\left(m_{1}\right)$ on $\mathcal{O}$ we have

$$
\liminf _{\tau \rightarrow \infty} \int_{\mathcal{O}(\tau)}|\nabla h|\left|f(m)-f\left(m_{1}\right)\right||A(m, \nabla f)| * \mathbb{1} \exp \left\{-\nu_{1} \int_{\tau_{0}}^{\tau} \varepsilon\left(t ; \mathcal{F}_{\mathcal{O}}\right) d t\right\}>0
$$

where $\mathcal{O}(\tau)=\{m \in \mathcal{O}: \tau<h(m)<\tau+1\}$.
By Lemma 5.4 the following inequality holds

$$
\varepsilon\left(t ; \mathcal{F}_{\mathcal{O}}\right) \geq \lambda_{p}\left(\Sigma_{h}(t) \cap \mathcal{O}\right) / c
$$

Because $\Sigma_{h}(t) \cap \mathcal{O} \subset \Sigma_{h}(t)$ it follows that $\lambda_{p}\left(\Sigma_{h}(t) \cap \mathcal{O}\right) \geq \lambda_{p}\left(\Sigma_{h}(t)\right)$ and hence

$$
\varepsilon\left(t ; \mathcal{F}_{\mathcal{O}}\right) \geq \lambda_{p}\left(\Sigma_{h}(t)\right) / c
$$

Thus using the requirement (3.2) for the equation (3.3), we arrive at the estimate

$$
\liminf _{\tau \rightarrow \infty} \int_{\mathcal{O}(\tau)}\left|\nabla h(m)\left\|f(m)-f\left(m_{1}\right)\right\| \nabla f(m)\right|^{p-1} * \mathbb{1} \exp \left\{-c_{3} \int^{\tau} \lambda_{p}\left(\Sigma_{h}(t)\right) d t\right\}>0
$$

Further we observe that from the condition $f(m)>f\left(m_{1}\right)>0$ on $\mathcal{O}$ it follows that

$$
\begin{aligned}
& \int_{\mathcal{O}(\tau)}|\nabla h|\left|f(m)-f\left(m_{1}\right)\right||\nabla f(m)|^{p-1} * \mathbb{1}= \\
& =\int_{\mathcal{O}(\tau)} f(m)|\nabla h||\nabla f(m)|^{p-1} * \mathbb{1}-f\left(m_{1}\right) \int_{\mathcal{O}(\tau)}|\nabla h||\nabla f(m)|^{p-1} * \mathbb{1} \leq \\
& \leq \int_{\tau<h(m)<\tau+1}|\nabla h||f(m)||\nabla f(m)|^{p-1} * \mathbb{1} .
\end{aligned}
$$

From this relation we arrive at (5.9).
The proof of (5.10) is carried out exactly in the same way by means of the inequality [16, 5.75].

In order to convince ourselves of the validity of (5.11) we observe that by the maximum principle we have

$$
\int_{\tau<h(m)<\tau+1}|\nabla h(m)|^{p}|f(m)|^{p} * \mathbb{1} \leq M^{p}(\tau+1) \int_{\tau<h(m)<\tau+1}|\nabla h(m)|^{p} * \mathbb{1} .
$$

But $h$ is a special exhaustion function and therefore by (4.26) we can write

$$
\int_{\tau<h(m)<\tau+1}|\nabla h(m)|^{p} * \mathbb{1}=J
$$

where $J$ is a number independent of $\tau$.
The relation (5.10) implies then that (5.11) holds.
5.12. Example. Let $\mathcal{A}$ be a compact Riemannian manifold with nonempty piecewise smooth boundary, $\operatorname{dim} \mathcal{A}=k \geq 1$, and let $\mathcal{M}=\mathcal{A} \times \mathbf{R}^{n}$, $n \geq 1$. Choosing as a special exhaustion function of $\mathcal{M}$ the function $h(a, x)$, defined in Example 4.20 we have

$$
\Sigma_{h}(t)=\mathcal{A} \times S^{n-1}(t)
$$

Then using the fact that $\left.h(a, x)\right|_{\Sigma_{h}(t)}=t$ we find

$$
|\nabla h(a, x)|_{\Sigma_{h}(t)}=h^{\prime}(t)=\left\{\begin{array}{cl}
e^{-t} & \text { for } p=n \\
\frac{p-n}{p-1} t^{(1-n) /(p-n)} & \text { for } p \neq n
\end{array}\right.
$$

Therefore on the basis of (5.2) we get

$$
\lambda_{p}\left(\Sigma_{h}(t)\right)=\frac{1}{h^{\prime}(t)} \inf \frac{\left(\int_{\mathcal{A} \times S^{n-1}(t)}\left|\nabla_{2} \phi\right|^{p} d \mathcal{H}_{\mathcal{M}}^{n-1}\right)^{1 / p}}{\left(\int_{\mathcal{A} \times \mathbf{R}^{n}}|\phi|^{p} d \mathcal{H}_{\mathcal{M}}^{n-1}\right)^{1 / p}}
$$

Computation yields

$$
\begin{aligned}
\left|\nabla_{2} \phi(a, x)\right|^{2} & =\left|\nabla_{\mathcal{A}} \phi(a, x)\right|^{2}+\left|\nabla_{S^{n-1}(t)} \phi(a, x)\right|^{2}= \\
& =\left|\nabla_{\mathcal{A}} \phi(a, x)\right|^{2}+\frac{1}{t^{2}}\left|\nabla_{S^{n-1}(1)} \phi\left(a, \frac{x}{|x|}\right)\right|^{2}
\end{aligned}
$$

and

$$
d \mathcal{H}_{\mathcal{M}}^{n-1}=d \sigma_{\mathcal{A}} d S^{n-1}(t)
$$

where $d \sigma_{\mathcal{A}}$ is an element of $k$-dimensional area on $\mathcal{A}$. Therefore

$$
\begin{aligned}
& \lambda_{p}\left(\Sigma_{h}(t)\right)= \\
& =\frac{1}{h^{\prime}(t)} \inf \frac{\left(\int_{\mathcal{A}} d \sigma_{\mathcal{A}} \int_{S^{n-1}(t)}\left(\left|\nabla_{\mathcal{A}} \phi(a, x)\right|^{2}+\left|\nabla_{S^{n-1}(t)} \phi(a, x)\right|^{2}\right)^{p / 2} d S^{n-1}(t)\right)^{1 / p}}{\left(\int_{\mathcal{A}} d \sigma_{\mathcal{A}} \int_{S^{n-1}(t)} \phi^{p}(a, x) d S^{n-1}(t)\right)^{1 / p}}= \\
& =\frac{1}{h^{\prime}(t)} \inf \frac{\left(\int_{\mathcal{A}} d \sigma_{\mathcal{A}} \int_{S^{n-1}(1)}\left(\left.\left|\nabla_{\mathcal{A}} \phi\left(a, \frac{x}{|x|}\right)\right|^{2}+\frac{1}{t^{2}} \right\rvert\, \nabla_{S^{n-1}(t)} \phi\left(a, \frac{x}{|x|}\right)^{2}\right)^{p / 2} d S^{n-1}(1)\right)^{1 / p}}{\left(\int_{\mathcal{A}} d \sigma_{\mathcal{A}} \int_{S^{n-1}(1)} \phi^{p}\left(a, \frac{x}{|x|}\right) d S^{n-1}(1)\right)^{1 / p}}
\end{aligned}
$$

and we obtain

$$
\begin{align*}
& \lambda_{p}\left(\Sigma_{h}(t)\right)= \\
& =\frac{1}{h^{\prime}(t)} \inf \frac{\left(\int_{\mathcal{A}} d \sigma_{\mathcal{A}} \int_{S^{n-1}(1)}\left(\left|\nabla_{\mathcal{A}} \psi\right|^{2}+\frac{1}{t^{2}}\left|\nabla_{S^{n-1}(1)} \psi\right|^{2}\right)^{p / 2} d S^{n-1}(1)\right)^{1 / p}}{\left(\int_{\mathcal{A}} d \sigma_{\mathcal{A}} \int_{S^{n-1}(1)} \psi^{p} d S^{n-1}(1)\right)^{1 / p}} \tag{5.13}
\end{align*}
$$

where the infimum is taken over all functions $\psi=\psi(a, x)$ with

$$
\psi(a, x) \in W_{p}^{1}\left(\mathcal{A} \times S^{n-1}(1)\right),\left.\quad \psi(a, x)\right|_{a \in \partial \mathcal{A}}=0, \quad \text { for all } x \in S^{n-1}(1)
$$

In the particular case $n=1$ Theorem 5.6 has a particularly simple content. Here $h(x)$ is a function of one variable, $\Sigma_{h}(t)=\mathcal{A} \times S^{0}(t)$ is isometric to $\Sigma_{h}(1)$. Therefore $h^{\prime}(t) \equiv 1$ and by (5.13) we have

$$
\begin{equation*}
\lambda_{p}\left(\Sigma_{h}(t)\right) \equiv \lambda_{p}\left(\Sigma_{h}(1)\right) \equiv \lambda_{p}(\mathcal{A}) \quad \text { for all } t \in R^{1} \tag{5.14}
\end{equation*}
$$

In the same way (5.11) can be written in the form

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \max _{|x|=t}|f(a, x)| \exp \left\{-\frac{c_{3}}{p} \lambda_{n}(\mathcal{A})\right\}>0 \tag{5.15}
\end{equation*}
$$

Let $n \geq 2$. We do not know of examples where the quantity (5.13) had been exactly computed. Some idea about the rate of growth of the quantity $M(\tau)$ in the Phragmén-Lindelöf alternative can be obtained from the following arguments. Simplifying the numerator of (5.13) by ignoring the second summand we get the estimate

$$
\lambda_{p}\left(\Sigma_{h}(t)\right) \geq \frac{1}{h^{\prime}(t)} \inf _{\psi} \frac{\left(\int_{\mathcal{A}} d \sigma_{\mathcal{A}} \int_{S^{n-1}(1)}\left|\nabla_{\mathcal{A}} \psi(a, x)\right|^{p} d S^{n-1}(1)\right)^{1 / p}}{\left(\int_{\mathcal{A}} d \sigma_{\mathcal{A}} \int_{S^{n-1}(1)} \psi^{p}(a, x) d S^{n-1}(1)\right)^{1 / p}} .
$$

For each fixed $x \in S^{n-1}(1)$ the function $\psi(a, x)$ is finite on $\mathcal{A}$, because from the definition of the fundamental frequency it follows that

$$
\left(\int_{\mathcal{A}}\left|\nabla_{\mathcal{A}} \psi(a, x)\right|^{p} d \sigma_{\mathcal{A}}\right)^{1 / p} \geq \lambda_{p}(\mathcal{A})\left(\int_{\mathcal{A}} \psi^{p}(a, x) d \sigma_{\mathcal{A}}\right)^{1 / p} .
$$

From this we get

$$
\begin{equation*}
\lambda_{p}\left(\Sigma_{h}(t)\right) \geq \frac{1}{h^{\prime}(t)} \lambda_{p}(\mathcal{A}) . \tag{5.16}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\int_{\tau_{0}}^{\tau} \lambda_{p}\left(\Sigma_{h}(r)\right) d r & \geq \int_{\tau_{0}}^{\tau} \lambda_{p}(\mathcal{A}) \frac{d h(r)}{h^{\prime}(r)}=\lambda_{p}(\mathcal{A}) \int_{\tau_{0}}^{\tau} r^{\prime}(h) d h= \\
& =\lambda_{p}(\mathcal{A})\left(r(\tau)-r\left(\tau_{0}\right)\right)
\end{aligned}
$$

Here $r(h)$ is the inverse function of $h(r)$. Because

$$
\max _{h(|x|)=\tau}|f(a, x)| \exp \left\{-\frac{c_{3}}{p} \lambda_{p}(\mathcal{A}) r(\tau)\right\}=\max _{|x|=r(\tau)}|f(a, x)| \exp \left\{-\frac{c_{3}}{p} \lambda_{p}(\mathcal{A}) r(\tau)\right\}
$$

the relation (5.11) can be written in the form (5.15).
5.17. Example. Let $U \subset S^{n-1}$ be an arbitrary domain with nonempty boundary. We consider a warped Riemannian product $\mathcal{M}=\left(r_{1}, r_{2}\right) \times U$ equipped with the metric (4.22) of the domain $D$. We now analyze Theorem 5.6 in this case.

The function $h(r)$, given by the equation (4.24) under the requirement (4.23) is a special exhaustion function on $\mathcal{M}$. We compute the quantity $\lambda_{p}\left(\Sigma_{h}(\tau)\right)$ as follows

$$
\begin{aligned}
& |\nabla h(|x|)|_{\Sigma_{h}(\tau)}=h^{\prime}(r(\tau))=\alpha(r(\tau)) / \beta^{n-1}(r(\tau)) \\
& \left|\nabla_{2} \phi\right|_{\Sigma_{h}(\tau)}=\left|\nabla_{S^{n-1}(1)} \phi\right| / \beta(r(\tau))
\end{aligned}
$$

and

$$
d \mathcal{H}_{\mathcal{M}}^{n-1}=\beta^{n-1}(r(\tau)) d S^{n-1}(1), \quad r(\tau)=h^{-1}(\tau)
$$

Therefore, observing that

$$
\frac{1}{h^{\prime}(r(\tau))}=r^{\prime}(\tau)
$$

we have

$$
\begin{aligned}
\lambda_{p}\left(\Sigma_{h}(\tau)\right)= & \frac{1}{h^{\prime}(r(\tau))} \inf _{\phi} \frac{\left(\int_{\Sigma_{h}(\tau)}\left|\nabla_{2} \phi\right|^{p} d \mathcal{H}_{\mathcal{M}}^{n-1}\right)^{1 / p}}{\left(\int_{\Sigma_{h}(\tau)} \phi^{p} d \mathcal{H}_{\mathcal{M}}^{n-1}\right)^{1 / p}}= \\
= & \frac{r^{\prime}(\tau)}{\beta(r(\tau))} \inf \frac{\left(\int_{U}\left|\nabla_{S^{n-1}(1)} \phi\right|^{p} d S^{n-1}(1)\right)^{1 / p}}{\left(\int_{U} \phi^{p} d S^{n-1}(1)\right)^{1 / p}} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\lambda_{p}\left(\Sigma_{h}(\tau)\right)=\frac{r^{\prime}(\tau)}{\beta(r(\tau))} \lambda_{p}(U) . \tag{5.18}
\end{equation*}
$$

Further we get

$$
\int_{\tau_{0}}^{\tau} \lambda_{h}\left(\Sigma_{h}(\tau)\right) d \tau=\lambda_{p}(U) \int_{r\left(\tau_{0}\right)}^{r(\tau)} \frac{d r}{\beta(r)}
$$

and

$$
\max _{h(|x|)=\tau}|f(x)| \exp \left\{-\frac{c_{3}}{p} \lambda_{p}(U) \int^{r(\tau)} \frac{d r}{\beta(r)}\right\}=\max _{|x|=r(\tau)}|f(x)| \exp \left\{-\frac{c_{3}}{p} \lambda_{p}(U) \int^{r(\tau)} \frac{d r}{\beta(r)}\right\}
$$

Thus the relation (5.11) attains the form

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \max _{|x|=r}|f(x)| \exp \left\{-\frac{c_{3}}{p} \lambda_{p}(U) \int^{r} \frac{d r}{\beta(r)}\right\}>0 \tag{5.19}
\end{equation*}
$$

5.20. Proof of Theorem 1.1. We assume that

$$
\limsup _{\tau \rightarrow \infty} \min _{m \in \Sigma_{h}(\tau)} u(f(m))=K<\infty .
$$

Consider the set

$$
\mathcal{O}=\{m \in \mathcal{X}: u(f(m))>q K\}, q<1
$$

It is clear that for a suitable choice of $q$ the set $\mathcal{O}$ is not empty.
By assumptions the function $u$ satisfies (3.3) with (3.1), (3.2) and structure constants $p=n, \nu_{1}, \nu_{2}$. Since $f$ is quasiregular, by Lemma 14.38 of [8] the function $u(f(m))$ is a subsolution of another equation of the form (3.3) with structure constants $\nu_{1}^{\prime}=\nu_{1} / K_{O}, \nu_{2}^{\prime}=\nu_{2} K_{I}$ where $K_{O}, K_{I}$ are outer and inner dilatations of $f$. In view of the maximum principle for subsolutions the set $\mathcal{O}$ does not have relatively compact components. Without restricting generality we may assume that $\mathcal{O}$ is connected. Because for sufficiently large $\tau$ the condition

$$
\mathcal{O} \cap \Sigma_{h}(\tau) \neq \emptyset
$$

holds, we see that

$$
\lambda_{n}\left(\mathcal{O} \cap \Sigma_{h}(\tau)\right) \geq \lambda_{n}\left(\Sigma_{h}(\tau) ; 1\right)
$$

Therefore the condition (1.2) on the manifold $\mathcal{X}$ implies the following property

$$
\int^{\infty} \lambda_{n}\left(\mathcal{O} \cap \Sigma_{h}(\tau)\right) d \tau=\infty
$$

Observing that

$$
\max _{m \in \Sigma_{h}(\tau)} u(f(m)) \geq \max _{m \in \Sigma_{h}(\tau) \cap \mathcal{O}} u(f(m))
$$

we see that by (1.3)

$$
\liminf _{\tau \rightarrow \infty} \max _{\Sigma_{h}(\tau) \cap \mathcal{O}} u(f(m)) \exp \left\{-C \int^{\tau} \lambda_{n}\left(\mathcal{O} \cap \Sigma_{h}(t)\right) d t\right\}=0
$$

with the constant $C$ of Theorem 1.1.
It is easy to see that $C=c_{3} / n$. Using (5.11) with $p=n$ for the function $u(f(m))$ in the domain $\mathcal{O}$ we see that $u(f(m)) \equiv q K$ on $\mathcal{O}$. This contradicts with the definition of the domain $\mathcal{O}$.
5.21. Example. As the first corollary we shall now prove a generalization of Wiman's theorem for the case of quasiregular mappings $f: \mathcal{M} \rightarrow \mathbf{R}^{n}$ where $\mathcal{M}$ is a warped Riemannian product.

For $0 \leq r_{1}<r_{2} \leq \infty$ let

$$
D=\left\{m=(r, \theta) \in \mathbf{R}^{n}: r_{1}<r<r_{2}, \theta \in S^{n-1}(1)\right\}
$$

be a ring domain in $\mathbf{R}^{n}$ and let $\mathcal{M}=\left(r_{1}, r_{2}\right) \times S^{n-1}(1)$ be an $n$-dimensional Riemannian manifold on $D$ with the metric

$$
d s_{\mathcal{M}}^{2}=\alpha^{2}(r) d r^{2}+\beta^{2}(r) d l_{n-1}^{2}
$$

where $\alpha(r), \beta(r)>0$ are continuously differentiable on $\left[r_{1}, r_{2}\right)$ and $d l_{n-1}$ is an element of length on $S^{n-1}(1)$.

As we have proved in Example 4.21, under condition (4.23), the function

$$
h(r)=\int_{r_{1}}^{r} \frac{\alpha(t)}{\beta(t)} d t
$$

is a special exhaustion function on $\mathcal{M}$.
Let $f: \mathcal{M} \rightarrow \mathbf{R}^{n}$ be a quasiregular mapping. We set $u(y)=\log ^{+}|y|$. This function is a subsolution of the equation (3.3) with $p=n$ and also satisfies all the other requirements imposed on a growth function.

We find

$$
\lambda_{n}\left(S^{n-1}(\tau) ; 1\right)=\frac{1}{\beta(r(\tau))} \lambda_{n}\left(S^{n-1}(1) ; 1\right)
$$

and further

$$
\lambda_{n}\left(\Sigma_{h}(\tau) ; 1\right)=\frac{\lambda_{n}\left(S^{n-1}(1) ; 1\right)}{\beta(r(\tau)) h^{\prime}(r(\tau))}
$$

Therefore the requirement (1.2) on the manifold will be fullfilled, if

$$
\begin{equation*}
\int^{r_{2}} \frac{d r}{\beta(r)}=\infty \tag{5.22}
\end{equation*}
$$

holds.
Because

$$
\begin{align*}
& \max _{\Sigma_{h}(\tau)=\tau} \log ^{+}|f(r, \theta)| \exp \left\{-C \int^{\tau} \lambda_{n}\left(\Sigma_{h}(t) ; 1\right) d t\right\} \leq \\
& \leq \max _{r=h^{-1}(\tau)} \log ^{+}|f(r, \theta)| \exp \left\{-C \lambda_{n}\left(S^{n-1}(1) ; 1\right) \int^{h^{-1}(\tau)} \frac{d r}{\beta(r)}\right\}, \tag{5.23}
\end{align*}
$$

we see that, in view of (1.3), it suffices that

$$
\begin{equation*}
\liminf _{\tau \rightarrow r_{2}} \max _{\Sigma_{h}(\tau)} \log ^{+}|f(r, \theta)| \exp \left\{-C \lambda_{n}\left(S^{n-1}(1) ; 1\right) \int^{\tau} \frac{d t}{\beta(t)}\right\}=0 \tag{5.24}
\end{equation*}
$$

In this way we get
5.25. Corollary. Let $f: \mathcal{M} \rightarrow \mathbf{R}^{n}$ be a non-constant quasiregular mapping from the warped Riemannian product $\mathcal{M}=\left(r_{1}, r_{2}\right) \times S^{n-1}(1)$ and $h$ a special exhaustion function of $\mathcal{M}$. If the manifold $\mathcal{M}$ has property (5.22) and the mapping $f$ has property (5.24), then

$$
\limsup _{\tau \rightarrow r_{2}} \min _{\Sigma_{h}(\tau)}|f(r, \theta)|=\infty .
$$

5.26. Example. Suppose that under the assumptions of Example 5.21 we have (in addition) $r_{1}=0, r_{2}=\infty$, and the functions $\alpha(r)=\beta(r) \equiv 1$, that is, $\mathcal{M}=(0, \infty) \times S^{n-1}(1)$ with the metric $d s_{\mathcal{M}}^{2}=d r^{2}+d l_{n-1}^{2}$ is an $n$-dimensional halfcylinder. As the special exhaustion function of the manifold $\mathcal{M}$ we can take $h \equiv r$. The condition (5.22) is obviously fullfilled for the manifold.

The condition (5.24) for the mapping $f$ attains the form

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \max _{\theta \in S^{n-1}(1)} \log ^{+}|f(r, \theta)| e^{-C \lambda_{n}\left(S^{n-1}(1) ; 1\right) r}=0 \tag{5.27}
\end{equation*}
$$

5.28. Corollary. If $\mathcal{M}=(0, \infty) \times S^{n-1}(1)$ is a half-cylinder and $f: \mathcal{M} \rightarrow$ $\mathbf{R}^{n}$ is a non-constant quasiregular mapping satisfying (5.27), then

$$
\limsup _{r \rightarrow \infty} \min _{\theta \in S^{n-1}(1)}|f(r, \theta)|=\infty
$$

We assume that in Example 5.26 the quantities $r_{1}=0, r_{2}=\infty$, and the functions $\alpha(r) \equiv 1, \beta(r)=r$, that is, the manifold is $\mathbf{R}^{n}$. As the special exhaustion function we choose $h=\log |x|$. This function satisfies (3.5) with $p=n$ and $\nu_{1}=$ $\nu_{2}=1$. The condition (5.22) for the manifold is obviously fullfilled.

The condition (5.27) attains the form

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \max _{|x|=r} \log ^{+}|f(x)| r^{-C^{\prime} \lambda_{n}\left(S^{n-1}(1) ; 1\right)}=0 \tag{5.29}
\end{equation*}
$$

where

$$
C^{\prime}=\left(n-1+n\left(K^{2}(f)-1\right)^{1 / 2}\right)^{-1}
$$

We have
5.30. Corollary. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a non-constant quasiregular mapping satisfying (5.29). Then

$$
\limsup _{r \rightarrow \infty} \min _{|x|=r}|f(x)|=\infty
$$

## 6 Asymptotic tracts and their sizes

Wiman's theorem for the quasiregular mappings $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ asserts the existence of a sequence of spheres $S^{n-1}\left(r_{k}\right), r_{k} \rightarrow \infty$, along which the mapping $f(x)$ tends to $\infty$. It is possible to further strengthen the theorem and to specify the sizes of the sets along which such a convergence takes place. For the formulation of this result it is convenient to use the language of asymptotic tracts discussed by MacLane [11].
6.1. Tracts. Let $D$ be a domain in the complex plane $C$ and let $f$ be a holomorphic function on $D$. A collection of domains $\{\mathcal{D}(s): s>0\}$ is called an asymptotic tract of $f$ if
a) each of the sets $\mathcal{D}(s)$ is a component of the set

$$
\{z \in D:|f(z)|>s>0\}
$$

b) for all $s_{2}>s_{1}>0$ we have $\mathcal{D}\left(s_{2}\right) \subset \mathcal{D}\left(s_{1}\right)$ and $\cap_{s>0} \overline{\mathcal{D}}(s)=\emptyset$.

Two asymptotic tracts $\left\{\mathcal{D}^{\prime}(s)\right\}$ and $\{\mathcal{D} "(s)\}$ are considered to be different if for some $s>0$ we have $\mathcal{D}^{\prime}(s) \cap \mathcal{D} "(s)=\emptyset$.

Below we shall extend this notion to quasiregular mappings $f: \mathcal{M} \rightarrow \mathcal{N}$ of Riemannian manifolds. We study the existence of an asymptotic tract and its size.

Let $\mathcal{M}, \mathcal{N}$ be $n$-dimensional connected noncompact Riemannian manifolds and let $u=u(y)$ be a growth function on $\mathcal{N}$, which is a positive subsolution of the equation (3.3) with structure constants $p=n, \nu_{1}, \nu_{2}$.

A family $\{\mathcal{M}(s)\}$ is called an asymptotic tract of a quasiregular mapping $f: \mathcal{M} \rightarrow \mathcal{N}$ if
a) each of the sets $\{\mathcal{M}(s)\}$ is a component of the set

$$
\{m \in \mathcal{M}: u(f(m))>s>0\}
$$

b) for all $s_{2}>s_{1}>0$ we have $\mathcal{M}\left(s_{2}\right) \subset \mathcal{M}\left(s_{1}\right)$ and $\cap_{s>0} \overline{\mathcal{M}}(s)=\emptyset$.

Let $f: \mathcal{M} \rightarrow \mathbf{R}^{n}$ be a quasiregular mapping having a point $a \in \mathbf{R}^{n}$ as a Picard exceptional value, that is $f(m) \neq a$ and $f(m)$ attains on $\mathcal{M}$ all values of $B(a, r) \backslash\{a\}$ for some $r>0$.

The set $\{\infty\} \cup\{a\}$ has $n$-capacity zero in $\mathbf{R}^{n}$ and there is a solution $g(y)$ in $\mathbf{R}^{n} \backslash\{a\}$ of the equation (3.3) such that $g(y) \rightarrow \infty$ as $y \rightarrow a$ or $y \rightarrow \infty$ (cf. [8, Ch. 10, polar sets]). As the growth function on $\mathbf{R}^{n} \backslash\{a\}$ we choose the function $u(y)=\max (0, g(y))$. It is clear that this function is a subsolution of the equation (3.3) in $\mathbf{R}^{n} \backslash\{a\}$.

The function $u(f(m))$ also is a subsolution of an equation of the form (3.3) on $\mathcal{M}$. Because the mapping $f(m)$ attains all values in the punctured ball $B(a, r)$, then among the components of the set

$$
\{m \in \mathcal{M}: u(f(m))>s\}
$$

there exists at least one $\mathcal{M}(s)$ having a nonempty intersection with $f^{-1}(B(a, r))$. Then by the maximum principle for subsolutions such a component cannot be relatively compact.

Letting $s \rightarrow \infty$ we find an asymptotic tract $\{\mathcal{M}(s)\}$, along which a quasiregular mapping tends to a Picard exceptional value $a \in \mathbf{R}^{n}$.

Because one can find in every asymptotic tract a curve $\Gamma$ along which $u(f(m)) \rightarrow$ $\infty$, we obtain the following generalization of Iversen's theorem [9].
6.2. Theorem. Every Picard exceptional value of a quasiregular mapping $f: \mathcal{M} \rightarrow \mathbf{R}^{n}$ is an asymptotic value.

The classical form of Iversen's theorem asserts that if $f$ is an entire holomorphic function of the plane, then there exists a curve $\Gamma$ tending to infinity such that

$$
f(z) \rightarrow \infty \quad \text { as } z \rightarrow \infty \quad \text { on } \Gamma
$$

We prove a generalization of this theorem for quasiregular mappings $f: \mathcal{M} \rightarrow \mathcal{N}$ of Riemannian manifolds.

The following result holds.
6.3. Theorem. Let $f: \mathcal{M} \rightarrow \mathcal{N}$ be a non-constant quasiregular mapping between $n$-dimensional noncompact Riemannian manifolds without boundaries. If there exists a growth function $u$ on $\mathcal{N}$ which is a positive subsolution of the equation (3.3) with $p=n$ and on $\mathcal{M}$ a special exhaustion function, then the mapping $f$ has at least one asymptotic tract and, in particular, at least one curve $\Gamma$ on $\mathcal{M}$ along which $u(f(m)) \rightarrow \infty$.

Proof. Let $h: \mathcal{M} \rightarrow(0, \infty)$ be a special exhaustion function of the manifold $\mathcal{M}$. Set

$$
\begin{equation*}
\liminf _{\tau \rightarrow \infty} \min _{h(m)=\tau} u(f(m))=K \tag{6.4}
\end{equation*}
$$

If $K=\infty$, then $u(f(m))$ tends uniformly on $\mathcal{M}$ to $\infty$ for $h(m) \rightarrow \infty$. The asymptotic tract $\{\mathcal{M}(s)\}$ generates mutual inclusion of the components of the set $\{m \in \mathcal{M}: h(m)>s\}$.

Let $K<\infty$. For an arbitrary $s>K$ we consider the set

$$
\mathcal{O}(s)=\{m \in \mathcal{M}: u(f(m))>s\} .
$$

Because $u(f(m))$ is a subsolution, the non-empty set $\mathcal{O}(s)$ does not have relatively compact components. By a standard argument we choose for each $s>K$, as $\mathcal{M}(s)$ a component of the set $\mathcal{O}(s)$ having property b) of the definition of an asymptotic tract. We now easily complete the proof for the theorem.
6.5. Proof of Theorem 1.4. We fix a growth function $u$ and a spectial exhaustion function $h$ as in Section 4. Let $f: \mathcal{M} \rightarrow \mathcal{N}$ be a non-constant quasiregular mapping. We set

$$
M(\tau)=\max _{h(m)=\tau} u(f(m))
$$

Let $K$ be the quantity defined in (6.4). The case $K=\infty$ is degenerate and has no interest in the present case.

Suppose now that $K<\infty$. For $s>K$ we consider the set $\mathcal{M}(s)$, defined in the proof of the preceding theorem. Define

$$
\tau_{0}=\tau_{0}(s)>\inf _{m \in \mathcal{M}(s)} h(m) .
$$

Because $u(f(m))$ is a subsolution of an equation of the form (3.3) on $\mathcal{M}$ by Theorem [16, 5.59] we have for an arbitrary $\tau>\tau_{0}$

$$
\int_{B_{h}\left(\tau_{0}\right) \cap \mathcal{M}(s)}|\nabla u(f(m))|^{n} * \mathbb{1} \leq \exp \left\{-\nu_{1} \int_{\tau_{0}}^{\tau} \varepsilon(t) d t\right\} \int_{B_{h}(\tau) \cap \mathcal{M}(s)}|\nabla u(f(m))|^{n} * \mathbb{1}
$$

Using the inequality (4.5) of [14] for the quantity $\varepsilon(t)$ we get

$$
\begin{aligned}
& \int_{B_{h}\left(\tau_{0}\right) \cap \mathcal{M}(s)}|\nabla u(f(m))|^{n} * \mathbb{1} \leq \\
& \leq \exp \left\{-\frac{\nu_{1}}{c} \int_{\tau_{0}}^{\tau} \lambda_{n}\left(\Sigma_{h}(t) \cap \mathcal{M}(s)\right) d t\right\} \int_{B_{h}(\tau) \cap \mathcal{M}(s)}|\nabla u(f(m))|^{n} * \mathbb{1},
\end{aligned}
$$

where

$$
c=\sqrt{\nu_{2}^{-2}-\nu_{1}^{-2}}+\frac{n-1}{n} \nu_{1} .
$$

By $[16,5.71]$ we have

$$
\begin{align*}
\left(\frac{\nu_{1}}{\nu_{2}}\right)^{n} \int_{B_{h}(\tau)}|\nabla u(f(m))|^{n} * \mathbb{1} & \leq n^{n} \int_{B_{h}(\tau+1) \backslash B_{h}(\tau)}|\nabla h|^{n}|u(f(m))|^{n} * \mathbb{1} \leq  \tag{6.6}\\
& \leq n^{n} M^{n}(\tau+1) V(\tau),
\end{align*}
$$

where

$$
V(\tau)=\int_{B_{h}(\tau+1) \backslash B_{h}(\tau)}\left|\nabla_{\mathcal{M}} h\right|^{n} * \mathbb{1} .
$$

But $h$ is a special exhaustion function and as in the proof of (4.26) we get

$$
V(\tau) \leq J \equiv \mathrm{const}
$$

for all sufficiently large $\tau$. Hence

$$
\int_{B_{h}(\tau)}|\nabla u(f(m))|^{n} * \mathbb{1} \leq J M^{n}(\tau+1)
$$

and further

$$
\int_{B_{h}\left(\tau_{0}\right) \cap \mathcal{M}(s)}|\nabla u(f(m))|^{n} * \mathbb{1} \leq J M^{n}(\tau+1) \exp \left\{-C \int_{\tau_{0}}^{\tau} \lambda_{n}\left(\Sigma_{h}(t) \cap \mathcal{M}(s)\right) d t\right\}
$$

where $C=\nu_{1} / c$ and $c$ is defined in Lemma 5.4.
Under these circumstances, from the condition (1.5) for the growth of $M(\tau)$ it follows that for all $\varepsilon>0$ and for all sufficiently large $\tau$ we have
$\int_{\mathcal{M}(s)}|\nabla u(f(m))|^{n} * \mathbb{1} \leq J \varepsilon \exp \left\{\int_{\tau_{0}}^{\tau}\left(n \gamma \lambda_{n}\left(\Sigma_{h}(t) ; 1\right)-C \lambda_{n}\left(\Sigma_{h}(t) \cap \mathcal{M}(s)\right)\right) d t\right\}$.
If we assume that for all $\tau>\tau_{0}$

$$
\int_{\tau_{0}}^{\tau}\left(n \gamma \lambda_{n}\left(\Sigma_{h}(t) ; 1\right)-C \lambda_{n}\left(\Sigma_{h}(t) \cap \mathcal{M}(s)\right)\right) d t \leq 0
$$

then because $\varepsilon>0$ was arbitrary, it would follow from (6.7) that $|\nabla u(f(m))| \equiv 0$ on $B_{h}\left(\tau_{0}\right) \cap \mathcal{M}(s)$ which is impossible.

Hence there exists $\tau=\tau(K)>\tau_{0}(K)$ for which

$$
\begin{equation*}
\lambda_{n}\left(\Sigma_{h}(\tau) \cap \mathcal{M}(s)\right)<\frac{n \gamma}{C} \lambda_{n}\left(\Sigma_{h}(\tau) ; 1\right) \tag{6.8}
\end{equation*}
$$

Letting $K \rightarrow \infty$ we see that $\tau_{0} \rightarrow \infty$. Using each time the relation (6.7) we get Theorem 1.4.

In the formulation of the theorem we used only a part of the information about the sizes of the sets $\mathcal{M}(s)$ which is contained in (6.7). In particular, the relation (6.7) to some extent characterizes also the linear measure of those $t>\tau_{0}$ for which the intersection of the sets $\mathcal{M}(s)$ with the $h$-spheres $\Sigma_{h}(t)$ is not too narrow.

We consider the case of warped Riemannian product $\mathcal{M}=\left(r_{1}, r_{2}\right) \times S^{n-1}(1)$ with the metric $d s_{\mathcal{M}}^{2}$ described in Example 5.21. Let $h$ be a special exhaustion function of the manifold $\mathcal{M}$ of the type (4.24) with $p=n$, satisfying condition (4.23).

Here, as in Example 5.21,

$$
\begin{equation*}
\lambda_{n}\left(\Sigma_{h}(\tau) ; 1\right)=\frac{\lambda_{n}\left(S^{n-1}(1) ; 1\right)}{\beta(r(\tau)) h^{\prime}(r(\tau))}, \quad \lambda_{n}(U)=\frac{\lambda_{n}\left(U^{*}\right)}{\beta(r(\tau)) h^{\prime}(r(\tau))}, \tag{6.9}
\end{equation*}
$$

where $r(\tau)=h^{-1}(\tau)$ and $U^{*} \subset S^{n-1}(1)$ is the image of the set $U$ under the similarity mapping

$$
x \mapsto \frac{x}{\beta(r(\tau))}
$$

of $\mathbf{R}^{n}$.
Let $f: \mathcal{M} \rightarrow \mathbf{R}^{n}$ be a non-constant quasiregular mapping. We choose as a growth function $u$ the function $u=\log ^{+}|y|$. This function satisfies (3.5) with $p=n$ and $\nu_{1}=\nu_{2}=1$. The condition (1.5) can be written as follows

$$
\begin{equation*}
\liminf _{\tau \rightarrow r_{2}} \max _{r=\tau} \log ^{+}|f(r, \theta)| \exp \left\{-\gamma \lambda_{n}\left(S^{n-1}(1) ; 1\right) \int^{r} \frac{d t}{\beta(t)}\right\}=0 . \tag{6.10}
\end{equation*}
$$

Hence we obtain
6.11. Corollary. If a quasiregular mapping $f: \mathcal{M} \rightarrow \mathbf{R}^{n}$ has the property (6.10) for some $\gamma>0$, then for each $k=1,2, \ldots$ there are spheres $S^{n-1}\left(t_{k}\right), t_{k} \in$ $\left(r_{1}, r_{2}\right), t_{k} \rightarrow r_{2}$, and open sets $U \subset S^{n-1}\left(t_{k}\right)$ for which

$$
|f(m)|>k \quad \text { for all } m \in U \quad \text { and } \quad \lambda_{n}(U)<\frac{n \gamma}{C^{\prime}} \lambda_{n}\left(S^{n-1}(1) ; 1\right)
$$

where as above

$$
C^{\prime}=\left(n-1+n\left(K^{2}(f)-1\right)^{1 / 2}\right)^{-1}
$$

Corresponding estimates of the quantities $\lambda_{n}\left(U^{*}\right)$ and $\lambda_{n}\left(S^{n-1}(1) ; 1\right)$ were given in [17] in terms of the ( $n-1$ )-dimensional surface area and in terms of the best constant in the embedding theorem of the Sobolev space $W_{n}^{1}$ into the space $C$ on open subsets of the sphere. This last constant can be estimated without difficulties in terms of the maximal radius of balls contained in the given subset.

## Martio :

Department of Mathematics and Statistics
University of Helsinki
00014 Helsinki
FINLAND
Email: martio@cc.helsinki.fi

## Miklyukov:

Mathematics Department
Volgograd State University
2 Prodolnaya 30
Volgograd 400062
RUSSIA
E-mail:miklyuk@hotmail.com

## Vuorinen :

Department of Mathematics
FIN-20014 University of Turku FINLAND
E-mail: vuorinen@users.csc.fi

## References

[1] K. Arima: On maximum modulus of integral functions.- J. Math. Soc. Japan, 1952, v. 5, 62-66.
[2] V.A. Botvinnik, V.M. Miklyukov: Phragmén-Lindelöf's theorems for $n$ dimensional mappings with bounded distortion. (Russian) - Sibirsk. Math. Zh., v. 21, n. 2, 1980, 232-235.
[3] H. Federer: Geometric measure theory. - Die Grundlehren der math. Wiss. Vol. 153, Springer-Verlag, Berlin-Heidelberg-New York, 1969
[4] D. Franke, O. Martio, V. M. Miklyukov, M. Vuorinen, and R. Wisk: Quasiregular mappings and $\mathcal{W} \mathcal{T}$-classes of differential forms on Riemannian manifolds. - Pacific J. Math., v. 202, n. 1, 2002, 73-92.
[5] V.M. Gol'dstein and Yu.G. Reshetnyak: Introduction to the theory of functions with generalized derivatives and quasiconformal mappings. (Russian) - Izdat. "Nauka", Moscow, 1983.
[6] S. Granlund, P. Lindqvist, and O. Martio: Phragmén-Lindelöf's and Lindelöf's theorem. - Ark. Mat. 23 (1985), 103-128.
[7] G.H. Hardy, J.E. Littlewood and G. Polya: Inequalities. - 1934.
[8] J. Heinonen, T. Kilpeläinen, and O. Martio: Nonlinear potential theory of degenerate elliptic equations. - Clarendon Press, 1993.
[9] F. Iversen: Recherches sur les fonctions inverses des fonctions meromorphes. - Thesis Helsinki 1914.
[10] V.M. Kesel'man: On Riemannian manifolds of $\alpha$-parabolic type. (Russian) - Izv. vuzov Mat. 4 (1984), 81-83.
[11] G.R. MacLane: Asymptotic values of holomorphic functions. - Rice Univ. Studies 49 (1963), 1-83.
[12] O. Martio, V. Miklyukov and M. Vuorinen: Phragmén - Lindelöf's principle for quasiregular mappings and isoperimetry. (in Russian) - Dokl. Akad. Nauk v. 347 n. 3, ( 1996), 303-305.
[13] O. Martio, V.M. Miklyukov, and M. Vuorinen: Morrey's lemma on Riemannian manifolds, Collection of papers in memory of Martin Jurchescu, Rev. Roumaine Math. Pures Appl. 43 (1998), no. 1-2, 183-210.
[14] O. Martio, V.M. Miklyukov, and M. Vuorinen: Critical points of $A$-solutions of quasilinear elliptic equations, Houston Math. J., v. 25, n. 3, 1999, p. 583-601.
[15] O. Martio, V. Miklyukov, and M. Vuorinen: Generalized Wiman and Arima theorems for $n$-subharmonic functions on cones, J. Geom. Anal. 13 (2003), 605-630.
[16] O. Martio, V. Miklyukov and M. Vuorinen: Ahlfors theorems for differential forms, Reports of the Dep. of Math., University of Helsinki, 2005.
[17] V.M. Miklyukov: Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. (Russian) - Mat. Sb. 11 (1980), 42-66; English transl. Math. USSR Sb. v. 39, 37-60, 1981.
[18] E. Phragmén and E. Lindelöf: Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogenènes dans le voisinage d'un point singulier. - Acta Math. 31 (1908), 381-406.
[19] G. Pôlya and G. Szegö: Isoperimetric inequalities in mathematical physics. - Princeton, Princeton University Press, 1951.
[20] Yu.G. Reshetnyak: Spatial mappings with bounded distortion. (Russian) Izdat. "Nauka", Sibirsk. Otdelenie, Novosibirsk, 1982.
[21] S. Rickman and M. Vuorinen: On the order of quasiregular mappings. Ann. Acad. Sci. Fenn. Math. 7 (1982), 221-231.
[22] A. Wiman: Sur une extension d'un théoréme de M. Hadamard. - Arkiv för Math., Astr. och Fys., 1905, v. 2, n. 14, p. 1-5.


[^0]:    ${ }^{1}$ By the definition, $\varphi$ is a $W_{p}^{1}$-function on an open set $U$, if $f$ belongs to this class on every component of $U$.

