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Abstract. Let ϕ be an analytic self-map of the unit disk. The weak
compactness of the composition operators Cϕ : f 7→ f ◦ϕ is characterized
on the vector-valued harmonic Hardy spaces h1(X), and on the spaces
CT (X) of vector-valued Cauchy transforms, for reflexive Banach spaces
X. This provides a vector-valued analogue of results for composition
operators which are due to Sarason, Shapiro and Sundberg, as well as
Cima and Matheson. We also consider the operators Cϕ on certain
spaces wh1(X) and wCT (X) of weak type by extending an alternative
approach due to Bonet, Domański and Lindström. Concrete examples
based on minimal prerequisites highlight the differences between hp(X)
(respectively, CT (X)) and the corresponding weak spaces.

1. Introduction

Let ϕ be an analytic self-map of the unit disk D = {z ∈ C : |z| < 1}.
Properties of the composition operators

Cϕ : f 7→ f ◦ ϕ
induced by ϕ have been intensively studied on various Banach spaces of
analytic functions defined on D. The monographs [CoM] and [Sh2] contain
the basic results related to e.g. the Hardy spaces H p and the (weighted)
Bergman spaces. On the harmonic Hardy spaces hp the operators Cϕ were
first considered by Sarason [S1].

The following omnibus result conveniently recapitulates several charac-
terizations of and facts about the (weak) compactness of Cϕ on h1 and H1.
Here PL1 denotes the image of L1(T) under the Poisson integral, so that
H1 ⊂ PL1 ⊂ h1 as closed subspaces invariant under Cϕ.

Omnibus Theorem. The following conditions are equivalent.

(1) Cϕ is (weakly) compact on h1.
(2) Cϕ is (weakly) compact on PL1.
(3) Cϕ is (weakly) compact on H1.
(4) Cϕ maps h1 into PL1.

(5)
∫

T

1−|ϕ(ξ)|2
|ζ−ϕ(ξ)|2dm(ξ) = <

(ζ+ϕ(0)
ζ−ϕ(0)

)
for all ζ ∈ T.

Here ϕ(ξ) = limr→1 ϕ(rξ) is the a.e. radial limit function of ϕ on T.
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The Omnibus Theorem combines the work of several authors. Sarason
[S2] showed that the weak compactness of Cϕ on H1 implies its compactness
on H1. Shapiro and Sundberg [ShS, p. 445] proved that a compact map
Cϕ on H1 is also compact on h1. This means that (weak) compactness is
equivalent for Cϕ between each of h1, PL1 and H1. The conditions (4) and
(5) characterizing (weakly) compact maps Cϕ on h1 were obtained by Sarason
[S1, Prop. 2-4] (cf. [CM1, p. 61] for (5) in case ϕ(0) 6= 0). Above other
concrete conditions on ϕ could be used instead of (5), such as the earlier
characterization by Shapiro [Sh1] of the compactness of Cϕ on H2 in terms
of the Nevanlinna counting function of ϕ (recall here that the compactness
of Cϕ on Hp is independent of 0 < p <∞ by a result of Shapiro and Taylor,
see [CoM, Thm. 3.12]). Condition (5) was also reformulated by Sarason
in terms of the absolute continuity of certain boundary type measures, cf.
[CM1, p. 61] for a convenient description.

Bourdon and Cima [BC] observed that every composition operator Cϕ
is bounded on CT , the Banach space consisting of the Cauchy transforms
of Borel measures on the unit circle T. Later Cima and Matheson [CM2]
proved that if Cϕ is weakly compact on CT then it is compact, and that the
compactness of Cϕ on CT is equivalent to its compactness on H1.

Currently there is growing interest in the composition operators Cϕ in a
vector-valued setting. For instance, the boundedness and the weak compact-
ness of f 7→ f ◦ ϕ have been studied on various spaces consisting of vector-
valued analytic functions f : D→ X, such as the Hardy spaces H p(X) [LST],
the (weighted) Bergman and Bloch spaces [LST], [BDL], and BMOA(X)
[L]. Here X is a complex infinite-dimensional Banach space. The reference
[BF] discusses a weighted locally convex setting, and other results related to
vector-valued Hardy spaces are found in [HJ] and [SB].

The aim of this paper is to add to the picture from [LST], [BDL] and
[L] by studying composition operators on the harmonic Hardy spaces hp(X)
and the space CT (X) of vector-valued Cauchy transforms. We establish a
version of the Omnibus Theorem for h1(X), and of the results of [CM2] for
CT (X), by showing that Cϕ is weakly compact on h1(X) (respectively, on
CT (X)) if and only if condition (5) holds and X is reflexive. (Note that Cϕ is
never compact on these vector-valued spaces once X is infinite-dimensional,
since Cϕ preserves the constant functions fx(z) ≡ x for x ∈ X.)

A novel feature in the vector-valued setting is that there usually are more
than one canonical X-valued space which correspond to a given classical
scalar-valued space. In section 5 we characterize the weakly compact compo-
sition operators on a class wE(X) of weak spaces of vector-valued harmonic
functions. This complements analogous results by Bonet, Domański and
Lindström [BDL] for weak spaces of analytic functions. Our result applies
for instance to the weak harmonic Hardy space wh1(X) considered by e.g.
Blasco [B1] (a harmonic function f : D→ X belongs to wh1(X) if x∗◦f ∈ h1

for x∗ ∈ X∗). The approach for wE(X) is different from that for spaces such
as h1(X) or CT (X).

The final section exhibits, for any infinite-dimensional X and 1 ≤ p <∞,
concrete functions f : D → X for which f ∈ whp(X)\hp(X). The analogous
question is also addressed for the case CT (X), where the results are less
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complete. Our examples are motivated by the two competing approaches
above, and they simplify and complement earlier ones due to Blasco [B1],
Freniche, Garcia-Vazguez and Rodriguez-Piazza [FGR1], [FGR2], and the
first-named author [L].

2. Preliminaries

In the sequel X = (X, ‖ · ‖X) will always be a complex Banach space. For
1 ≤ p < ∞ let Lp(X) ≡ Lp(T, X) denote the space of Bochner-integrable
functions g : T→ X satisfying

‖g‖Lp(X) =

(∫

T

‖g‖pXdm
)1/p

<∞,

where m is the normalized Lebesgue measure on T.
Recall that f : D→ X is a harmonic function if x∗ ◦f : D→ C is harmonic

for every x∗ ∈ X∗ (that is, f is weakly harmonic). We note that f : D→ X
is harmonic if and only if there is a sequence (an) ⊂ X so that

(2.1) f(z) =

∞∑

n=0

anz
n +

∞∑

n=1

a−nz
n, z ∈ D,

where the series converges absolutely and uniformly on compact subsets of D
(see e.g. [H1, p. 13] or [H2, p. 352] for both these facts). Define fr : T→ X
by fr(ξ) = f(rξ) for maps f : D→ X and 0 < r < 1. The harmonic function
f : D → X belongs to the harmonic Hardy space hp(X) = hp(D, X) for
1 ≤ p <∞ if

‖f‖hp(X) = sup
0<r<1

‖fr‖Lp(X) <∞.

The analytic Hardy space Hp(X) = Hp(D, X) is the closed subspace of
hp(X) consisting of the analytic functions f : D→ X for 1 ≤ p <∞.

Let Σ(T) be the Borel σ-algebra on the unit circle T, and M(X) =
M(T, X) be the Banach space of the countably additive vector measures
µ : Σ(T) → X equipped with the total variation norm ‖µ‖M(X) = |µ|(T).
Here |µ| is the variation of µ. Let P[µ] : D→ X be the function defined by
the Poisson integral

(2.2) P[µ](z) =

∫

T

1 − |z|2
|ζ − z|2 dµ(ζ), z ∈ D.

The integral
∫

T
gdµ of a continuous map g : T→ C with respect to the vector

measure µ ∈ M(X), as in (2.2), is defined via approximation by simple
functions, see [DU, pp. 5-6]. The easy estimate ‖

∫
T
gdµ‖X ≤

∫
T
|g|d|µ| will

be used subsequently. It is not difficult to check that P[µ] admits a harmonic

power series representation (2.1), where an = µ̂n =
∫

T
ζ
n
dµ(ζ) for n ∈ Z.

The coefficients satisfy ‖µ̂n‖X ≤ ‖µ‖M(X) for n ∈ Z.
The following fundamental vector-valued result is less well-known. (The

case X = C is a classical fact, see e.g. [R, Thm. 11.30].)

Theorem 2.1. Let X be an arbitrary complex Banach space. Then the map
µ 7→ P[µ] is an isometric isomorphism from M(X) onto h1(X).
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The preceding theorem is due in varying degrees of generality to Ryan,
Grossetête, Heins and Hensgen. An argument is sketched e.g. on [H3, p.
90] and full details are found in [H1, Satz 1.5] (see also [B2, Thm. 1] for a
related context).

For simplicity we will put h1 = h1(C), L1 = L1(C), H1 = H1(C) etc. in
the scalar-valued case X = C. We refer the reader to e.g. [D], [R] for further
basic facts about the analytic Hardy spaces, and to e.g. [B1], [H1] or [H2]
for vector-valued spaces of harmonic functions.

3. Composition operators on harmonic Hardy spaces

It follows from Littlewood’s subordination principle that any Cϕ is bounded
on hp for 1 ≤ p < ∞, see [S1, Prop. 1] or [ShS, p. 444]. The map Cϕ also
acts boundedly on the subspace PL1, since it preserves the closure of the
harmonic polynomials in h1. Similarly, Cϕ preserves the analytic Hardy
spaces Hp.

In this section we extend the Omnibus Theorem by characterizing the
weakly compact composition operators on h1(X) for reflexive spaces X. Let
X be a complex Banach space. We isometrically identify L1(X) with the
closed subspace {gdm : g ∈ L1(X)} ⊂ M(X), where µ = gdm ∈ M(X) is
defined by µ(E) =

∫
E g(ζ)dm(ζ) for E ∈ Σ(T). We denote by PL1(X) the

image of L1(X) under the Poisson integral. It is not difficult to check that
PL1(X) is the closed subspace of h1(X) spanned by the X-valued harmonic
polynomials

∑m
k=0 xkz

k +
∑n

k=1 x−kz
k (m,n ∈ N), see e.g. [H2, p. 352] and

Theorem 2.1.
The vector-valued setting appears more delicate initially, in part because

of the possible influence of various Radon-Nikodým type properties. We next
recall these facts. For anyX the radial limit function f(ξ) = limr→∞P[f ](rξ)
exists in the norm ofX a.e. on T for f ∈ L1(X), see e.g. [Bu, Thm. 2.5], [H1,
Cor. 1.9] or [H2, p. 353]. By contrast, every f ∈ h1(X) admits a radial limit
function limr→∞ f(rξ) a.e. on T if and only if X has the Radon-Nikodým
property (RNP), see [B3, Thm. 2.2], [H1, Satz 1.12] or [H3, Thm. 2.1]. It is
also relevant to consider the subspace H1(X) ∩ PL1(X) ⊂ h1(X). Here

H1(X) ∩ PL1(X) = PL1
a(X),

where L1
a(X) = {f ∈ L1(X) : f̂n = 0, n < 0}. In fact, PL1

a(X) is the closed
subspace of H1(X) consisting of the functions which admit radial limits a.e.
on T, see e.g. [H1, Satz 2.7] or [H2, p. 355]. Moreover, PL1

a(X) = H1(X)
if and only if X has the analytic Radon-Nikodým property (ARNP), see
[Bu, p. 1055] or [BD, p. 105]. Hence H1(X) and PL1(X) are not always
comparable spaces. We refer to e.g. [Bu], [BD], [B3] or [H3] for the relevant
discussion of the (A)RNP (these properties will not be used explicitly here).
Analogous facts hold for 1 < p <∞, but we will not pursue this case here.

The potential absence of radial limits for f ∈ hp(X) is a technical com-
plication for composition operators on these spaces, which has to be circum-
vented in the arguments. Nevertheless, it is a basic fact that every map Cϕ
is bounded on hp(X) for 1 ≤ p < ∞ and any X. We recall for convenience
an explicit argument, which modifies a well-known scalar proof (cf. [D, p.
29]). The case Hp(X) was treated somewhat differently in [LST, p. 298].
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Proposition 3.1. Let X be a complex Banach space, and ϕ : D → D be an
analytic map. Then Cϕ is bounded hp(X) → hp(X) for 1 ≤ p <∞, and

(3.1) ‖Cϕ‖ ≤
(

1 + |ϕ(0)|
1 − |ϕ(0)|

)1/p

.

The closed subspaces PL1(X), H1(X) and PL1
a(X) of h1(X) are invariant

under Cϕ.

If f : D → X is a harmonic function then the map vf : z 7→ ‖f(z)‖pX
is subharmonic on D, so that ‖f‖hp(X) = limr→1 ‖fr‖Lp(X). The following
facts can be checked just as in the scalar case (cf. [D, Thm. 2.12] or [H3,
p. 92]): A harmonic map f : D→ X belongs to hp(X) if and only if vf has
a harmonic majorant on D. Moreover, for f ∈ hp(X) the least harmonic
majorant hf of vf is given by

hf (z) = lim
r→1

P[‖fr‖pX ](z), z ∈ D.

Proof of Proposition 3.1. Let f ∈ hp(X). Then hf◦ϕ is a harmonic majorant
on D of the subharmonic map vf◦ϕ. The mean value property yields that

∫

T

‖(f ◦ ϕ)(rζ)‖pXdm(ζ) ≤
∫

T

(hf ◦ ϕ)(rζ)dm(ζ)

= hf (ϕ(0)) = lim
r→1

P[‖fr‖pX ](ϕ(0)).

Hence

lim
r→1

‖(f ◦ ϕ)r‖pLp(X) ≤ lim
r→1

P[‖fr‖pX ](ϕ(0)) ≤ 1 + |ϕ(0)|
1 − |ϕ(0)| ‖f‖hp(X),

since 1−|z|2
|ζ−z|2 ≤ 1+|z|

1−|z| for ζ ∈ T.

Clearly Cϕ maps the X-valued harmonic polynomials into the closure
PL1(X) of the harmonic polynomials in h1(X), and preserves the analyticity.
Thus PL1

a(X) = PL1(X) ∩H1(X) is also invariant under Cϕ. �

The main result of this section extends the Omnibus Theorem to the
vector-valued setting. Note that if Cϕ is weakly compact h1(X) → h1(X),
then the closed unit ball BX = {x ∈ X : ‖x‖ ≤ 1} is weakly compact in X,
since Cϕ(fx) = fx for the constants fx(z) ≡ x (where x ∈ X). This means
that X is reflexive. Recall that H1(X) = PL1

a(X) for reflexive X, because
such spaces have the (A)RNP, see [DU, Thm. III.1.6]. Thus the space
PL1

a(X) is also implicit in the conditions below. The argument below also
provides an alternative approach to [LST, Thm. 3.(ii)], where it was shown
that Cϕ is weakly compact on H1(X) if and only if ϕ satisfies Shapiro’s
condition and X is reflexive.

Theorem 3.2. Let X be a reflexive Banach space and ϕ be an analytic
self-map of D. Then the following conditions are equivalent.

(1) Cϕ is weakly compact on h1(X).
(2) Cϕ is weakly compact on PL1(X).
(3) Cϕ is weakly compact on H1(X).
(4) Cϕ maps h1(X) into PL1(X).

(5)
∫

T

1−|ϕ(ξ)|2
|ζ−ϕ(ξ)|2dm(ξ) = <

(ζ+ϕ(0)
ζ−ϕ(0)

)
for all ζ ∈ T.
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Here ϕ denotes the a.e. radial limit function on T.

Proof. It is convenient to use the non-trivial fact that H 1(X) ⊂ PL1(X) ifX
is reflexive (see above). It is then obvious that (1) ⇒ (2) ⇒ (3), since H 1(X)
and PL1(X) are invariant subspaces for Cϕ in h1(X). (The alternative is
to verify separately that (1) ⇒ (2) ⇒ (5) and (1) ⇒ (3) ⇒ (5) by slightly
modifying the ideas below.)

(3) ⇒ (5). Fix x ∈ X and x∗ ∈ X∗ so that x∗(x) = 1, and define the
bounded operators A : H1 → H1(X), B : H1(X) → H1 by Af = xf and
Bg = x∗ ◦ g for f ∈ H1 and g ∈ H1(X). It follows that

(3.2) B ◦ Cϕ ◦ A = C̃ϕ,

where C̃ϕ denotes the corresponding composition map onH 1. If Cϕ is weakly

compact on H1(X), then C̃ϕ is weakly compact on H1, and (5) follows by
appealing to the Omnibus Theorem.

(4) ⇒ (5). The factorization (3.2) remains valid for h1 and h1(X), where
B maps PL1(X) into PL1 since x∗ ◦ P[g] = P[x∗ ◦ g] for g ∈ L1(X). If Cϕ
maps h1(X) into PL1(X), then C̃ϕ maps h1 into PL1 by (3.2) and we may
again apply the Omnibus Theorem.

The argument for the main implications (5) ⇒ (1) and (5) ⇒ (4) will be
based on a suitable vector-valued variant of the ideas of Sarason [S1, Prop.
2 and 4]. We first state a simple auxiliary lemma.

Lemma 3.3. Let X be a reflexive Banach space and ϕ be an analytic self-
map of D satisfying ‖ϕ‖∞ ≡ sup |ϕ(z)| < 1. Then Cϕ is weakly compact
h1(X) → h1(X).

Proof. It suffices to check that the operators Cr : f 7→ f(r·) are weakly
compact on h1(X) for 0 < r < 1, since Cϕ = Cϕ/rCr for ‖ϕ‖∞ < r <
1. We will approximate Cr using the bounded truncation operators Pn on
h1(X), where Pnf(seiθ) =

∑n
k=−n µ̂ks

|k|eikθ for f(seiθ) =
∑∞

k=−∞ µ̂ks
|k|eikθ

in h1(X) and n ≥ 0. Here f = P[µ] for some µ ∈M(X), cf. Theorem 2.1.
Let ε > 0 and fix n0 so that 2

∑∞
k=n0+1 r

n < ε. For any z = seiθ ∈ D and

f ∈ h1(X) with f(seiθ) =
∑∞

k=−∞ µ̂ks
|k|eikθ we get that

‖(Cr − Pn0
Cr)f(z)‖X ≤

∞∑

k=n0+1

‖µ̂k‖Xskrk +

−(n0+1)∑

k=−∞
‖µ̂k‖Xs|k|r|k|

≤ 2‖f‖h1(X)

∞∑

k=n0+1

rn ≤ ε‖f‖h1(X),

because ‖µ̂k‖X ≤ ‖µ‖M(X) = ‖f‖h1(X) for k ∈ Z by Theorem 2.1. Hence
‖(Cr − Pn0

Cr)f‖h1(X) ≤ ε‖f‖h1(X), so that ‖Cr − PnCr‖ → 0 as n → ∞.

The proof is completed by noting that every Pn is weakly compact on h1(X),
since Pn factors through the reflexive direct sum `2n+1

2 (X) (cf. the proof of
[LST, Prop. 2]). �

Proof of (5) ⇒ (1) and (5) ⇒ (4). The operators Crϕ = CϕCr are weakly
compact on h1(X) for 0 < r < 1 by Lemma 3.3. Moreover, Crϕ also maps

h1(X) into PL1(X), since Cr(f) admits a continuous extension to D for
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f ∈ h1(X) and Cϕ(PL1(X)) ⊂ PL1(X). We may assume that ϕ(0) = 0
by composing ϕ with a suitable Möbius transformation ψ of D, since Cψ is
a linear isomorphism of h1(X) that preserves PL1(X). In the case where
ϕ(0) = 0 condition (5) becomes

(3.3)

∫

T

1 − |ϕ(ξ)|2
|ζ − ϕ(ξ)|2 dm(ξ) = 1, ζ ∈ T.

We first observe that to deduce conditions (1) and (4) from (3.3) it will
suffice to show that for every ε > 0 there is r0 ∈ (0, 1) so that

(3.4) ‖(Crϕ − Csϕ)f‖h1(X) ≤ ε‖f‖h1(X)

holds for all s, r ≥ r0 and f ∈ h1(X). Indeed, (3.4) implies that Crϕ con-
verges in the uniform norm to some weakly compact operator S on h1(X)
as r → 1. One must have S = Cϕ. In fact, convergence in ‖ · ‖h1(X) implies
uniform convergence on the compact subsets of D (recall that ‖P[µ](z)‖X ≤
2(1 − |z|)−1‖P[µ]‖h1(X) for z ∈ D by Theorem 2.1), while by continuity

Crϕf → Cϕf uniformly on the compact subsets of D as r → 1 for f ∈ h1(X).
Define the kernel functions Kr on T× T for 0 < r < 1 by

Kr(ξ, ζ) =
1 − |rϕ(ξ)|2
|ζ − rϕ(ξ)|2 .

Here ϕ is the a.e. radial limit function on T, so that Kr is defined a.e. in ξ,
while the maps ζ 7→ Kr(ξ, ζ) are continuous. We recall next from [S1, Prop.
2] (cf. also [CM1, p. 61]) how to deduce from (3.3) that for every ε > 0
there is r0 ∈ (0, 1) so that

(3.5) sup
ζ∈T

∫

T

|Kr(ξ, ζ) −Ks(ξ, ζ)|dm(ξ) < ε

for all r, s ≥ r0. The crux is to verify that

(3.6) ‖Kr(·, ζ) −
1 − |ϕ(·)|2
|ζ − ϕ(·)|2 ‖L1 → 1 as r → 1

for ζ ∈ T. Fix ζ ∈ T and recall that ‖Kr(·, ζ)‖L1 = 1 for 0 < r < 1 (see

[S1, Lemma 3]). Hence ‖Kr(·, ζ)‖L1 →
∫

T

1−|ϕ(ξ)|2
|ζ−ϕ(ξ)|2dm(ξ) as r → 1 by (3.3),

while Kr(ξ, ζ) → 1−|ϕ(ξ)|2
|ζ−ϕ(ξ)|2 a.e. in ξ ∈ T as r → 1. Thus (3.6) follows from

a classical fact due to Dunford and Pettis (cf. [DS, III.3.6]). In particular,
‖Kr(·, ζ) −Ks(·, ζ)‖L1 → 0 as r, s → 1 for each ζ ∈ T, which implies that
(3.5) holds.

To continue the argument let f = P[µ] ∈ h1(X) be arbitrary and take
r, s ≥ r0. Then f ◦ (rϕ) − f ◦ (sϕ) ∈ PL1(X) and

‖(P[µ])(rϕ(ξ)) − (P[µ])(sϕ(ξ))‖X =

∥∥∥∥
∫

T

(Kr(ξ, ζ) −Ks(ξ, ζ)) dµ(ζ)

∥∥∥∥
X

≤
∫

T

|Kr(ξ, ζ) −Ks(ξ, ζ)|d|µ|(ζ),
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for a.e. ξ ∈ T. Since the map f ◦ (rϕ) − f ◦ (sϕ) only involves the values of
f on compact subsets of D one gets from (3.5) and Fubini’s theorem that

‖f ◦ (rϕ) − f ◦ (sϕ)‖h1(X) =

∫

T

‖f(rϕ(ξ)) − f(sϕ(ξ))‖Xdm(ξ)

≤
∫

T

∫

T

|Kr(ξ, ζ) −Ks(ξ, ζ)|dm(ξ)d|µ|(ζ)

≤ ε‖f‖h1(X)

for r, s ≥ r0. Thus (3.4) follows from (3.5), and the proof is complete. �

Remarks. (i) For the implications (5) ⇒ (1) and (5) ⇒ (4) it is also possible
to apply the factorization Cϕr = CrCϕ and the related continuous kernel

functions K̃r(ξ, ζ) = 1−|ϕ(rξ)|2
|ζ−ϕ(rξ)|2 , (ξ, ζ) ∈ T× T and 0 < r < 1. The details of

this variation are left to the reader.
(ii) hp(X) is a reflexive space if X is reflexive and 1 < p <∞ (cf. [BD, Thm.
2 and Prop. 3], [H2, p. 353] and [DU, Cor. IV.1.2]), whence any operator
on hp(X) is weakly compact. This is our reason for not pursuing the case
1 < p <∞ more closely.
(iii) The following general variant of Lemma 3.3 holds with a similar proof
for closed operator ideals I in the sense of Pietsch [P]: if ‖ϕ‖∞ < 1 and the
identity map IX ∈ I(X), then Cϕ ∈ I(h1(X)).

This fact leads to different vector-valued extensions of the Omnibus The-
orem. For instance, recall that S : X → X is a weakly conditionally compact
operator if every sequence (xn) ⊂ BX admits a subsequence (xnk

) so that
(Sxnk

) is weakly Cauchy. By Rosenthal’s `1-theorem one has that IX is not
weakly conditionally compact if and only if X contains a linearly isomor-
phic copy of `1, see [LT, 2.e.5]. By suitable modifications in the proof of
Theorem 3.2 one obtains a version concerning weakly conditionally compact
compositions Cϕ on h1(X), where X does not contain any isomorphic copies
of `1. This class contains spaces X that fail to have the ARNP (such as c0).
One may also add the equivalent condition that Cϕ is weakly conditionally
compact PL1

a(X) → PL1
a(X). We leave the details to the reader (see also

[LST, Thm. 7]).

4. Composition operators on vector-valued Cauchy

transforms

As an application of the preceding section we discuss here composition
operators on the space CT (X) of X-valued Cauchy transforms, and we ex-
tend some basic results of Bourdon, Cima and Matheson [BC],[CM2] from
the scalar-valued case. We begin by recalling the setting.

The Cauchy transform C[µ] of the scalar measure µ ∈ M is the analytic
function D→ C given by

(4.1) C[µ](z) =

∫

T

1

1 − ζz
dµ(ζ) =

∞∑

n=0

µ̂nz
n, z ∈ D.

Let X be a complex Banach space. If µ ∈ M(X) is a vector measure,
then (4.1) defines an analytic function C[µ] : D → X. The vector-valued
extension CT (X) of the Banach space CT is introduced by analogy with the
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scalar-valued case as follows: CT (X) is the linear space {C[µ] : µ ∈M(X)}
equipped with the norm

‖C[µ]‖CT (X) = inf{‖λ‖M(X) : C[µ] = C[λ]}.

Note that C[µ] = C[λ] if and only if µ = λ+ ν for some ν ∈M(X) satisfying
ν̂n = 0 for n ≥ 0. Hence

‖C[µ]‖CT (X) = inf{‖µ+ ν‖M(X) : ν ∈Ma,0(X)},

where Ma,0(X) = {ν ∈ M(X) : ν̂n = 0 for n ≥ 0}, so that CT (X) is iso-

metric to the quotient space M(X)/Ma,0(X). Since the Poisson integral
µ 7→ P[µ] is an isometry from M(X) onto h1(X) for any Banach space X
by Theorem 2.1, we may also isometrically identify

(4.2) CT (X) = h1(X)/H1
0 (X),

where H1
0 (X) = P(Ma,0(X)). Note that here

H1
0 (X) = {f ∈ h1(X) : f is anti-analytic and f(0) = 0},

see e.g. [H1, Lemma 2.2]. The map π : h1(X) → CT (X) defined by

(4.3) π(P[µ]) = C[µ], µ ∈M(X),

satisfies BCT (X) = π(Bh1(X)), because it is essentially the quotient map
M(X) → CT (X). Here BCT (X) = {f ∈ CT (X) : ‖f‖CT (X) ≤ 1} is the
closed unit ball. We refer to the recent survey [CMR] for more information
about the Cauchy transform and the space CT .

It was shown in [BC, Thm. 4.3] that the composition operator Cϕ is
bounded on CT for any analytic self-map ϕ of D. Later Cima and Matheson
[CM2, Thm. 1] established the (sharp) upper bound

(4.4) ‖Cϕ‖ ≤ 1 + 2|ϕ(0)|
1 − |ϕ(0)| .

To study the maps Cϕ on CT (X) it is convenient to introduce a related
composition-type operator Sϕ on M(X) by mimicking Sarason [S1]. (In
fact, Sϕ was the main object of study in [S1].) Let µ ∈M(X). Since P is an
isometric isomorphismM(X) → h1(X) by Theorem 2.1 and P[µ]◦ϕ ∈ h1(X)
by Proposition 3.1, there is a unique ν ∈ M(X) so that P[µ] ◦ ϕ = P[ν].
Thus µ 7→ ν defines a linear operator Sϕ : M(X) →M(X) satisfying

(4.5) P[Sϕ(µ)] = P[µ] ◦ ϕ, µ ∈M(X).

In other words, Sϕ = P−1◦Cϕ◦P, where Cϕ is the corresponding composition
operator on h1(X).

Theorem 4.1. Let X be a complex Banach space and ϕ be an analytic self-
map of D. Then Cϕ is bounded CT (X) → CT (X) and the estimate (4.4)
holds on CT (X).

The argument is based on the following vector-valued modification of
[CM2, Lemma 1], where we have also removed the restriction ϕ(0) = 0.
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Lemma 4.2. Let X be a complex Banach space and ϕ be an analytic self-map
of D. Then

(4.6) C[Sϕ(µ)] = C[µ] ◦ ϕ+

∫

T

ξϕ(0)

1 − ξϕ(0)
dµ(ξ), µ ∈M(X),

where Sϕ : M(X) →M(X) is defined by (4.5). If ϕ(0) = 0, then

(4.7) Cϕ(πf) = π(C̃ϕf), f ∈ h1(X),

where π : h1(X) → CT (X) is defined by (4.3) and C̃ϕ is the corresponding
composition map h1(X) → h1(X).

Proof. Let 0 < r < 1 and z ∈ D. By using the fact that x∗(
∫

T
gdµ) =∫

T
gd(x∗ ◦ µ) whenever g : T → C is a continuous map, µ ∈ M(X) and

x∗ ∈ X∗, we get from the standard Fubini theorem that
∫

T

(P[µ] ◦ ϕ)(rζ)

1 − ζz
dm(ζ) =

∫

T

1

1 − ζz

∫

T

1 − |ϕ(rζ)|2
|1 − ξϕ(rζ)|2

dµ(ξ)dm(ζ)

=

∫

T

∫

T

1 − |ϕ(rζ)|2
(1 − ζz)|1 − ξϕ(rζ)|2

dm(ζ)dµ(ξ).

From Cauchy’s theorem
∫

T

1

(1 − ζz)(1 − ξϕ(rζ))
dm(ζ) =

1

1 − ξϕ(rz)

and (since the integrand is anti-analytic in ζ)
∫

T

ξϕ(rζ)

(1 − ζz)(1 − ξϕ(rζ))
dm(ζ) =

ξϕ(0)

1 − ξϕ(0)

for ξ ∈ T. By substituting 1−|ϕ(rζ)|2
|1−ξϕ(rζ)|2 = 1

1−ξϕ(rζ)
+ ξϕ(rζ)

1−ξϕ(rζ)
above we get

∫

T

(P[µ] ◦ ϕ)(rζ)

1 − ζz
dm(ζ) =

∫

T

1

1 − ξϕ(rz)
dµ(ξ) +

∫

T

ξϕ(0)

1 − ξϕ(0)
dµ(ξ)

= C[µ](ϕ(rz)) +

∫

T

ξϕ(0)

1 − ξϕ(0)
dµ(ξ),

so that

(4.8) lim
r→1

∫

T

(P[µ] ◦ ϕ)(rζ)

1 − ζz
dm(ζ) = C[µ](ϕ(z)) +

∫

T

ξϕ(0)

1 − ξϕ(0)
dµ(ξ).

We next claim that for each x∗ ∈ X∗ and z ∈ D there is a sequence (rn),
depending on x∗ and z, so that limn→∞ rn = 1 and

lim
n→∞

〈x∗,
∫

T

(P[µ] ◦ ϕ)(rnζ)

1 − ζz
dm(ζ)〉 = 〈x∗,

∫

T

1

1 − ζz
d(Sϕ(µ))(ζ)〉

= 〈x∗, C[Sϕ(µ)](z)〉.(4.9)

Clearly we get (4.6) by combining (4.8) and (4.9) for x∗ ∈ X∗.
The argument for (4.9) is suggested by the proof of Theorem 2.1 given in

[H1, p. 17], and we reproduce the details here for completeness. We consider
X as a closed subspace of X∗∗, whence also M(X) ⊂ M(X∗∗). Recall that
M(X∗∗) = C(T, X∗)∗ by Singer’s representation theorem [Si] (see also [H4]),
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where the duality is given by 〈〈g, µ〉〉 =
∫

T
〈g, dµ〉 for g ∈ C(T, X∗) and

µ ∈ M(X∗∗). Here C(T, X∗) is the sup-normed space of the continuous
functions T→ X∗. Above

∫
T
〈h, dµ〉 =

∑m
j=1〈µ(Ej), y

∗
j 〉 for simple functions

h =
∑m

j=1 y
∗
j1Ej

: T → X∗, and this extends by approximation in the sup-

norm to g ∈ C(T, X∗).
Let (νr)0<r<1 be the bounded net in M(X∗∗) given by dνr = (P[µ]◦ϕr)dm

for 0 < r < 1 and µ ∈ M(X). By Alaoglu’s theorem (νr) has a w∗-cluster

point ν ∈ M(X∗∗). Let Pz(ζ) = 1−|z|2
|ζ−z|2 denote the Poisson kernel at z ∈ D.

The map x∗Pz(·) ∈ C(T, X∗) for any fixed x∗ ∈ X∗ and z ∈ D. Hence there
is a sequence (rn) so that rn → 1 as n→ ∞, and

〈〈x∗Pz , νrn〉〉 → 〈〈x∗Pz, ν〉〉 =

∫

T

〈x∗Pz(ζ), dν(ζ)〉 = 〈x∗,P[ν](z)〉

as n→ ∞. On the other hand,

〈〈x∗Pz, νrn〉〉 =

∫

T

〈x∗Pz(ζ), dνrn(ζ)〉 = 〈x∗,
∫

T

Pz(ζ)P[µ](ϕ(rnζ))dm(ζ)〉

= 〈x∗,P[µ](ϕ(rnz)〉 → 〈x∗, (P[µ] ◦ ϕ)(z))〉
as n→ ∞. Thus 〈x∗,P[ν](z)〉 = 〈x∗,P[Sϕ(µ)](z)〉 by (4.5) for every x∗ ∈ X∗

and z ∈ D, so that ν = Sϕ(µ) by uniqueness. This implies that for each
g ∈ C(T, X∗) there is a sequence (rn) as above (depending on g) so that

∫

T

〈g, dνrn〉 →
∫

T

〈g, d(Sϕ(µ))〉

as n → ∞. By applying this fact to the continuous maps ζ 7→ x∗

1−ζz , where

x∗ ∈ X∗ and z ∈ D are arbitrary, we get that

〈x∗,
∫

T

(P[µ] ◦ ϕ)(rnζ)

1 − ζz
dm(ζ)〉 = 〈x∗, C[νrn ](z)〉 =

∫

T

〈 x∗

1 − ζz
, dνrn(ζ)〉

→
∫

T

〈 x∗

1 − ζz
, d(Sϕ(µ))(ζ)〉

as n→ ∞. This completes the proof of (4.9), and thus of (4.6).
If ϕ(0) = 0 then the factorization (4.7) is rather immediate by combining

(4.6), (4.3) and (4.5). �

Proof of Theorem 4.1. Let f = C[µ] ∈ CT (X). We get from (4.6) that

‖C[µ] ◦ ϕ‖CT (X) = ‖C[Sϕ(µ)] −
∫

T

ξϕ(0)

1 − ξϕ(0)
dµ(ξ)‖CT (X)

≤ ‖Sϕ(µ)‖CT (X) +
|ϕ(0)|

1 − |ϕ(0)| |µ|(T)

≤ 1 + 2|ϕ(0)|
1 − |ϕ(0)| ‖µ‖M(X),

because ‖Sϕ(µ)‖M(X) ≤ 1+|ϕ(0)|
1−|ϕ(0)|‖µ‖M(X) by Proposition 3.1 and (4.5). We

obtain the desired estimate

‖Cϕ(f)‖CT (X) ≤
1 + 2|ϕ(0)|
1 − |ϕ(0)| ‖f‖CT (X)
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by taking the infimum over µ ∈M(X) with f = C[µ]. �

Cima and Matheson [CM2, Thm. 2] showed that the equivalent condition

(6) Cϕ is (weakly) compact on CT

can be added to the Omnibus Theorem stated in the Introduction. The
vector-valued version of this result follows now easily. Note that if Cϕ is
weakly compact on CT (X) then X must be a reflexive space, since Cϕ
preserves the constants z 7→ x = C[xdm] for x ∈ X.

Theorem 4.3. Let X be a reflexive Banach space and ϕ be an analytic self-
map of D. Then Cϕ is weakly compact CT (X) → CT (X) if and only if
condition (5) from the Omnibus Theorem holds.

Proof. Suppose that condition (5) holds. We may assume that ϕ(0) = 0,
since by composing with a suitable Möbius transformation ψ we get a linear
isomorphism Cψ on both CT (X) and h1(X). If ϕ(0) = 0 then Cϕ◦π = π◦C̃ϕ
by (4.7), where π is defined by (4.3) and the corresponding composition

operator h1(X) → h1(X) is denoted by C̃ϕ for extra clarity. Theorem 3.2

implies that C̃ϕ is a weakly compact operator on h1(X). Since the map π

satisfies BCT (X) = π(Bh1(X)) we get that

Cϕ(BCT (X)) ⊂ π(C̃ϕ(Bh1(X)),

where the right-hand set is weakly compact.
Conversely, fix x ∈ X and x∗ ∈ X∗ so that x∗(x) = 1. As in the proof of

Theorem 3.2 one has the factorization

(4.10) B ◦ Cϕ ◦ A = C̃ϕ,

where the operators A : CT → CT (X) and B : CT (X) → CT are defined
by A(C[µ]) = xC[µ] = C[xµ] and B(C[ν]) = x∗ ◦ C[µ] = C[x∗ ◦ ν] for µ ∈ M

and ν ∈ M(X). Above C̃ϕ denotes the corresponding composition map

CT → CT . If Cϕ is weakly compact on CT (X), then C̃ϕ is weakly compact

on CT by (4.10). We get from [CM2, Thm. 2] that C̃ϕ is also (weakly)
compact on h1, whence condition (5) holds by the Omnibus Theorem. �

5. Composition operators on weak spaces of vector-valued

harmonic functions

Let X be a complex Banach space. One may introduce another vector-
valued analogue of the harmonic Hardy spaces hp by departing from the fact
that a vector-valued map f : D→ X is harmonic precisely when it is weakly
harmonic. The harmonic function f : D→ X belongs to the weak harmonic
Hardy space whp(X) for 1 ≤ p <∞ if

‖f‖whp(X) = sup{‖x∗ ◦ f‖hp : x∗ ∈ X∗, ‖x∗‖ ≤ 1} <∞.

These spaces were studied e.g. by Blasco [B1], who characterized the bound-
ary values of the functions f ∈ whp(X), as well as in [FGR1], [FGR2].

It follows from Theorem 5.3 below that for any reflexive space X the
composition operator Cϕ is weakly compact on wh1(X) precisely when it is
compact on h1. This provides a counterpart in the harmonic setting of some
of the results and techniques of Bonet, Domański and Lindström [BDL],
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who studied composition operators on weak spaces of vector-valued analytic
functions (see also [BF] for a locally convex variant). Here the tools are quite
different from section 3, and the spaces whp(X) and hp(X) also differ for
any infinite-dimensional space X (see section 6). These techniques actually
apply to a large class of weak spaces of vector-valued harmonic functions.

We first recall and describe the setting. Let (E, ‖ · ‖E) be a Banach space
of harmonic functions D→ C so that

(i) E contains the constants,
(ii) (BE , τ) is compact, where BE = {x ∈ E : ‖x‖E ≤ 1} and τ is the
topology of uniform convergence on compact subsets of D.

The following basic facts, which closely reflect the analytic case, follow
from conditions (i) and (ii).

(iii) Let δz be the point evaluation map given by δz(f) = f(z) for f ∈ E and
z ∈ D. Then δz ∈ E∗, and δz 6= 0, for z ∈ D.

(iv) Recall that τ is the locally convex topology on E generated by the
seminorms supz∈K |f(z)|, where K ⊂ D runs through the family of compact
subsets. Hence the Dixmier-Ng theorem [N, Thm. 1] implies that E is iso-
metrically isomorphic to V ∗, where V = {u ∈ E∗ : u is τ -continuous on BE}
is a closed subspace of E∗. The isometry j : E → V ∗ is defined by (j(f))(v) =
v(f) for v ∈ V and f ∈ E. The predual V has the following explicit form.

Lemma 5.1. V = [δz : z ∈ D], the closed linear span of {δz : z ∈ D} in E∗.

Proof. It is obvious that [δz : z ∈ D] ⊂ V . Conversely, the linear span of
{δz : z ∈ D} is dense in V by the Hahn-Banach theorem: if v∗ = j(f) ∈ V ∗

satisfies 0 = (j(f))(δz) = f(z) for z ∈ D, then v∗ = 0. �

The space

wE(X) = {f : D→ X| f harmonic, x∗ ◦ f ∈ E for every x∗ ∈ X∗}
is the weak space of harmonic functions based on E, which is equipped with
the norm

‖f‖wE(X) = sup
‖x∗‖X∗≤1

‖x∗ ◦ f‖E .

The closed graph theorem and condition (ii) easily yield that x∗ 7→ x∗ ◦ f
defines a bounded operator X∗ → E for f ∈ wE(X), so that ‖f‖wE(X) <∞.
It is a basic fact that wE(X) is isometric to a space of bounded linear
operators (thus wE(X) is always a Banach space). For whp(X) such an
isometry was found directly in [B1, Thm. 9].

Lemma 5.2. Let X be a complex Banach space. Then there is an isometric
isomorphism χ : L(V,X) → wE(X) so that

(5.1) (χ(T ))(z) = T (δz), (χ−1(f))(δz) = f(z)

for T ∈ L(V,X), f ∈ wE(X) and z ∈ D.

Proof. Put ∆(z) = δz for z ∈ D, so that ∆ maps D into V by Lemma 5.1.
Moreover, ∆ is a (weakly) harmonic map D → V , since z 7→ (∆(z))(f) =
f(z) is harmonic for every f ∈ E = V ∗. Clearly

‖∆‖wE(V ) = sup
‖v∗‖V ∗≤1

‖v∗ ◦ ∆‖E = sup
‖g‖E≤1

‖j(g) ◦ ∆‖E = 1,



14 JUSSI LAITILA AND HANS-OLAV TYLLI

since j(g) ◦ ∆ = g.
Put χ(T ) = T ◦ ∆ for T ∈ L(V,X). The composite T ◦ ∆: D → X is

obviously harmonic, and

‖x∗ ◦ T ◦ ∆‖E ≤ ‖T‖ · sup
‖v∗‖V ∗≤1

‖v∗ ◦ ∆‖E = ‖T‖

for x∗ ∈ BX∗ . Hence χ : L(V,X) → wE(X) and ‖χ‖ ≤ 1. Moreover,
(χ(T ))(z) = (T ◦ ∆)(z) = T (δz) for T ∈ L(V,X) and z ∈ D.

Define ψ : wE(X) → L(V,X∗∗) by (ψ(g)(v))(x∗) = (j(x∗ ◦ g))(v) for
g ∈ wE(X), v ∈ V and x∗ ∈ X∗. Thus ψ is a bounded linear map, and
‖ψ‖ ≤ 1, since

|(ψ(g)(v))(x∗)| ≤ ‖j‖‖x∗ ◦ g‖E‖v‖V ≤ ‖x∗‖X∗‖g‖wE(X)‖v‖V .
Moreover, (ψ(g)(δz))(x

∗) = (j(x∗ ◦ g))(δz) = x∗(g(z)) for x∗ ∈ X∗, so that
(ψ(g))(δz) = g(z) ∈ X (here X is considered as the canonical subspace of
X∗∗) for g ∈ wE(X) and z ∈ D. Since V = [δz : z ∈ D] by Lemma 5.1, we
get that ψ(g)(V ) ⊂ X and we may view ψ as a map wE(X) → L(V,X).

It remains to check that ψ ◦χ = IL(V,X) and χ ◦ψ = IwE(X), respectively.
For T ∈ L(V,X) and δz ∈ V one gets from (5.1) that ((ψ ◦ χ)(T ))(δz) =
(χ(T ))(z) = T (δz). Hence (ψ ◦ χ)(T ) = T by Lemma 5.1. Moreover, for
f ∈ wE(X) and z ∈ D one obtains from (5.1) that ((χ ◦ ψ)(f))(z) =
(χ(ψ(f))(z) = (ψ(f))(δz) = f(z), so that (χ ◦ ψ)(f) = f . �

We collect our results about composition operators on wE(X) into the
following theorem, where part (3) is the main result of this section.

Theorem 5.3. Let X be a complex Banach space and ϕ be an analytic self-
map of D.
(1) If Cϕ is bounded E → E, then Cϕ is also bounded wE(X) → wE(X).
(2) If Cϕ is weakly compact wE(X) → wE(X), then X is reflexive and Cϕ
is weakly compact E → E.
(3) Let X be reflexive and suppose that Cϕ is a compact operator E → E.
Then Cϕ is weakly compact wE(X) → wE(X).

Proof. For clarity we again denote the composition operator on E by C̃ϕ.
(1) If f ∈ wE(X) and x∗ ∈ X∗, then x∗ ◦ f ∈ E and

‖x∗ ◦ (Cϕf)‖E = ‖C̃ϕ(x∗ ◦ f)‖E ≤ ‖C̃ϕ‖ · ‖x∗ ◦ f‖E ,

so that ‖Cϕf‖wE(X) ≤ ‖C̃ϕ‖ · ‖f‖wE(X). Hence Cϕ is bounded wE(X) →
wE(X) (and ‖Cϕ‖ ≤ ‖C̃ϕ‖).

(2) Assume that Cϕ is weakly compact wE(X) → wE(X). Similarly as in

(3.2) and (4.10) there is a factorization B◦Cϕ◦A = C̃ϕ, whence C̃ϕ is weakly
compact E → E. Let S : X → wE(X) be the linear map x 7→ fx, where
fx(z) ≡ x for x ∈ X, and let T : wE(X) → X be the evaluation operator
f 7→ f(0). Note that T is bounded, since |x∗(f(0))| ≤ ‖δ0‖·‖x∗ ◦f‖E by (iii)
for f ∈ wE(X) and x∗ ∈ BX∗ , so that ‖f(0)‖X ≤ ‖δ0‖·‖f‖wE(X). Obviously
IX = T ◦ Cϕ ◦ S, whence IX is weakly compact (and X is reflexive).

(3) The adjoint (C̃ϕ)∗ : E∗ → E∗ satisfies (C̃ϕ)∗(δz) = δϕ(z) for z ∈ D,

since 〈f, (C̃ϕ)∗(δz)〉 = 〈f ◦ ϕ, δz〉 = 〈f, δϕ(z)〉 for f ∈ wE(X). Hence
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(C̃ϕ)∗V ⊂ V by Lemma 5.1. We claim that

(5.2) Cϕ = χ ◦Wϕ ◦ ψ,

where Wϕ is the operator composition map

(5.3) T 7→ idX ◦ T ◦ (C̃ϕ)∗|V ; L(V,X) → L(V,X),

and χ : L(V,X) → wE(X), ψ = χ−1 : wE(X) → L(V,X) are the isometries
given by Lemma 5.2. Indeed, by (5.1)

((χ ◦Wϕ ◦ ψ)(f))(z) = χ(ψ(f) ◦ (C̃ϕ)∗|V )(z) = ψ(f)((C̃ϕ)∗|V )(δz)

= ψ(f)(δϕ(z)) = f(ϕ(z))

for f ∈ wE(X) and z ∈ D.

By our assumptions IX is weakly compact and (C̃ϕ)∗ is compact. It follows
from [ST, Thm. 2.9] that the map Wϕ in (5.3) is weakly compact on L(V,X).
Hence Cϕ : wE(X) → wE(X) is weakly compact by (5.2). �

The linearization trick (5.2) for composition operators on wE(X) is due to
Bonet, Domański and Lindström [BDL]. The analytic version [BDL, Prop.
11] of Theorem 5.3 applies to a large number of weak spaces of analytic
functions, including the weak Hardy spaces wHp(X) for 1 ≤ p < ∞, the
weak Bergman spaces wBp(X) for 1 ≤ p < ∞, the weighted weak H∞-
spaces wBv

∞(X) (see [BDL, Cor. 15]), the weak Bloch space wB(X) (see
[BDL, Cor. 12]), and wBMOA(X) (see also [L, Section 5]). In [BDL,
Section 5] the authors only discussed wBv

∞(X) and wB(X) explicitly. In
these cases wE(X) = E(X), where the strong spaces E(X) are defined in a
natural manner. Such an equality is quite exceptional (see section 6).

The following examples were suggested by sections 3 and 4. Recall that h∞

is the Banach space of the bounded harmonic functions f : D→ C equipped
with the supremum norm.

Example 5.4. hp (1 ≤ p ≤ ∞) and CT satisfy conditions (i) and (ii).

Proof. We recall the idea for CT (cf. also [CMR, Section 5]). Suppose that
(fn) ⊂ BCT and pick a bounded sequence (µn) ⊂M , so that fn = C[µn] for
n ∈ N. By w∗-sequential compactness there is a subsequence (µnk

) so that

µnk

w∗

−→ µ in M as k → ∞. Since the Cauchy kernel ζ 7→ 1
1−ζz is continuous

we get that fnk
(z) = C[µnk

](z) → C[µ](z) as k → ∞ for z ∈ D. This implies

that fnk

τ−→ C[µ]. The other cases are easier, since h1 = PM and hp = PLp
for 1 < p ≤ ∞. �

Strictly speaking, composition operators on wCT (X) are covered already
by the analytic case [BDL, Section 5]. Note that if E is a Banach space
consisting of analytic functions D→ C which satisfies conditions (i) and (ii),
then the map ∆: D → V from Lemma 5.2 is (weakly) analytic. This fact
provides the connection between Theorem 5.3 and [BDL, Section 5].

Among other interesting weak spaces wE(X) of harmonic functions one
finds those obtained by taking E as a harmonic Bergman space (see [C, 18.1])
or the harmonic BMO-space P(BMO).
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Remarks. (i) Theorem 5.3 is sharp in the following sense: there are spaces
E satisfying conditions (i) and (ii), and weakly compact maps Cϕ : E → E,
for which Cϕ fails to be weakly compact wE(X) → wE(X). It is enough
to observe that the weak space wh2(`2) is non-reflexive. In fact, wh2(`2) =
L(V, `2) by Lemma 5.2, where V = [δz : z ∈ D] ⊂ (h2)

∗
is isometric to `2.

Hence, if ϕ(z) = z for z ∈ D, then Cϕ = Iwh2(`2) is not weakly compact.

Note that by contrast h2(`2) is a Hilbert space.

(ii) If Cϕ is compact on E and X does not contain any isomorphic copies of
l1, then Cϕ is weakly conditionally compact wE(X) → wE(X). For this fact
one follows the argument in Theorem 5.3, but one applies [LS, Cor. 2.13]
instead of [ST, Thm. 2.9].

Clearly wh∞(X) = h∞(X), with equal norms, for any Banach space X.
This fact leads in tandem with Theorem 5.3 to a straightforward charac-
terization of the weakly compact maps Cϕ on h∞(X), which we include for
completeness. (Alternatively, for the converse implication below one may
also argue directly as in Lemma 3.3.)

Proposition 5.5. Let X be a reflexive space, and ϕ an analytic self-map of
D. Then Cϕ is weakly compact h∞(X) → h∞(X) if and only if ‖ϕ‖∞ < 1.

Proof. If Cϕ is weakly compact h∞(X) → h∞(X), then it is also weakly
compact on h∞ by the familiar argument. It follows that Cϕ is actually
compact on h∞. Indeed, Cϕ is then weakly compact on the invariant sub-
spaceH∞, and hence compact on H∞ (see the proof of [LST, Thm. 6]). This
implies that ‖ϕ‖∞ < 1, see [CoM, Ex. 3.2.2]. Conversely, Cϕ is compact on
h∞ if ‖ϕ‖∞ < 1 (apply the argument of Lemma 3.3 for X = C). Theorem
5.3.(3) and the equality wh∞(X) = h∞(X) imply that Cϕ is weakly compact
h∞(X) → h∞(X). �

6. Strong vs. weak spaces of vector-valued harmonic

functions

In this section we exhibit concrete functions which demonstrate how whp(X)
and hp(X) differ for any complex infinite-dimensional Banach space X and
1 ≤ p < ∞, and how wCT (X) and CT (X) differ e.g. if X is a K-convex
space. Such examples are interesting in themselves, but our principal aim is
to emphasize that the setting of Theorem 5.3 is quite different from those of
sections 3 and 4.

Clearly ‖f‖whp(X) ≤ ‖f‖hp(X) for f ∈ hp(X), so that hp(X) is continu-
ously embedded in whp(X). It will turn out that the norms ‖ · ‖whp(X) and
‖ · ‖hp(X) are never equivalent on hp(X) for 1 ≤ p <∞. Blasco [B1, Cor. 23]

observed that h1(C(T))  wh1(C(T)) and hp(Lp
′

)  whp(Lp
′

) for 1 < p <
∞, where p′ = p

p−1 . Subsequently Freniche, Garcia-Vazguez and Rodriguez-

Piazza exhibited functions f ∈ whp(X) \ hp(X) and g ∈ wHp(X) \ Hp(X)
for 1 ≤ p <∞ and any X, see [FGR1, Prop. 4] and [FGR2, Cor. 9 and Cor.
12]. The first author computed [L, Example 5.1] by different means that

‖fn‖wBMOA(X) ≤ 1, ‖fn‖BMOA(X) ≥ C(log n)1/2, n ∈ N,
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where fn(z) =
∑n

k=1
zk√
k
x

(n)
k (z ∈ D) are concrete analytic polynomials, and

x
(n)
1 , . . . , x

(n)
n ∈ X are chosen as in Example 6.1 below. These estimates

extend to the Hp-norms by appealing to the John-Nirenberg theorem (see
[L, Example 5.1]).

The examples in [FGR1] and [FGR2] depend on several non-trivial facts,
but we will here see the difference between hp(X) and whp(X) (respectively,
Hp(X) and wHp(X)) using fairly minimal tools. We first compute these
norms for certain vector-valued lacunary polynomials. Similar ideas will
also be useful for the CT -norms.

Example 6.1. Let X be a complex infinite-dimensional Banach space, 1 ≤
p < ∞, and n ∈ N. Fix a linear isomorphism Tn : `n2 → [x

(n)
1 , . . . , x

(n)
n ],

where [x
(n)
1 , . . . , x

(n)
n ] ⊂ X, so that ‖Tn‖ = 1 and ‖T−1

n ‖ ≤ 2 (this is possible

by Dvoretzky’s theorem, see e.g. [DJT, Thm. 19.1]). Here x
(n)
k = Tnek for

k = 1, . . . , n, where (e1, . . . , en) is an orthonormal basis of `n2 . Put fn(z) =∑n
k=1 x

(n)
k z2k

for z ∈ D. Then

(6.1) ap ≤ ‖fn‖wHp(X) ≤ bp,

(6.2) ‖fn‖Hp(X) ≥
1

2
n1/2,

where the constants ap, bp > 0 are independent of X and n.

Proof. Our starting point is the following fact about lacunary series (see [Z,
Thm. I.V.8.20]): For 0 < p <∞ there are constants ap, bp > 0 so that

(6.3) ap(

n∑

k=1

|ck|2)1/2 ≤ ‖
n∑

k=1

ckz
2k‖Hp ≤ bp(

n∑

k=1

|ck|2)1/2

for all scalars c1, . . . , cn and all n ∈ N.
If x∗ ∈ BX∗ , then by (6.3) one has that

‖x∗ ◦ fn‖Hp = ‖
n∑

k=1

x∗(x(n)
k )z2k‖Hp ≤ bp(

n∑

k=1

|x∗(x(n)
k )|2)1/2

= bp(
n∑

k=1

|T ∗
ny

∗(ek)|2)1/2 = bp‖T ∗
ny

∗‖ ≤ bp,

where y∗ is x∗ restricted to [x
(n)
1 , . . . , x

(n)
n ]. Thus ‖fn‖whp(X) ≤ bp. For

the converse estimate pick a norm-1 functional y∗ ∈ [x
(n)
1 , . . . , x

(n)
n ]∗ so that

‖T ∗
ny

∗‖ = ‖Tn‖. One gets as above from (6.3) that

ap‖Tn‖ = ap(

n∑

k=1

|y∗(x(n)
k )|2)1/2 ≤ ‖x∗ ◦ fn‖Hp ≤ ‖fn‖wHp(X),

where x∗ ∈ X∗ is a norm-1 extension of y∗.
Let 0 < r < 1. Since the linear isomorphism Tn : `n2 → [x

(n)
1 , . . . , x

(n)
n ]

satisfies ‖T−1
n ‖ ≤ 2 one obtains that

‖(fn)r‖
p
Lp(X) =

∫

T

‖
n∑

k=1

x
(n)
k r2

k

ζ2k‖pXdm(ζ) ≥ 1

2p
(

n∑

k=1

r2·2
k

)p/2,
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whence ‖fn‖Hp(X) ≥ 1
2n

1/2 by letting r → 1. �

Remarks. (i) Note that lacunarity is not used for the estimate (6.2). If
1 ≤ p ≤ 2 then lacunarity is not needed for the upper estimate in (6.1), since

‖∑n
k=1 ckz

k‖Hp ≤ (
∑n

k=1 |ck|2)1/2 for any c1, . . . , cn by Hölder’s inequality.

(ii) The lacunary polynomials from Example 6.1 can also be used to recover
[L, Example 5.1] by following that argument.

We next use Example 6.1 to exhibit a concrete analytic function f : D→ X
for any given X and p ∈ [1,∞), so that f ∈ whp(X) \ hp(X). The trick of
blocking a sequence of euclidean copies is familiar from e.g. [DG, Example
4] and [FGR1], [FGR2, Thm. 11] in somewhat similar contexts.

Example 6.2. Let X be any complex infinite-dimensional Banach space,
and 1 ≤ p < ∞. Then there is an analytic map f : D → X for which
f ∈ wHp(X) \Hp(X) (and consequently also f ∈ whp(X) \ hp(X)).

Proof. Fix a normalized basic sequence (vn) in X, see [LT, 1.a.5]. Pick
an increasing sequence (mn) ⊂ N, so that mn+1 − mn is big enough to
ensure that Fn = [vmn+1, . . . , vmn+1

] contains a 2-isomorphic copy of `2
n

2
for each n ∈ N. This is again possible by Dvoretzky’s theorem. Let En =

[y
(n)
1 , . . . , y

(n)
2n ] ⊂ Fn be the resulting `2

n

2 -copy, normalized as in Example 6.1,
and put

fn(z) =
2n∑

k=1

y
(n)
k z2k

, z ∈ D,

for n ∈ N. Thus

‖fn‖wHp(X) ≤ bp, ‖fn‖Hp(X) ≥ 2n/2−1,

by (6.1) and (6.2), where bp > 0 is independent of n ∈ N.
Fix α ∈ (0, 1

2), and consider the map f : D → X defined by f(z) =∑∞
n=1 2−αnfn(z) for z ∈ D. Recall that ‖g(z)‖X ≤ 1

1−|z|‖g‖wHp(X) holds for

any maps g ∈ wHp(X), z ∈ D and 1 ≤ p < ∞, cf. [CoM, p. 11]. Since∑∞
n=1 2−αn‖fn‖wHp(X) < ∞ we get that

∑m
n=1 2−αnfn → f uniformly on

the compact subsets of D as m→ ∞. Hence f is analytic and f ∈ wH p(X).
Note further that ‖f‖wHp(X) = ‖f‖whp(X).

Consider the closed linear span M = [∪∞
n=1En] ⊂ X, and observe that

(En) is a finite-dimensional Schauder decomposition for M , see [LT, 1.g].
Thus there is a constant c > 0 so that

(6.4) ‖x‖ ≥ c sup
n∈N

‖xn‖

holds for every x =
∑∞

n=1 xn ∈ M , where xn ∈ En for n ∈ N. Note
next that ‖∑m

n=1 2−αnfn‖Hp(X) = ‖∑m
n=1 2−αnfn‖Hp(M) for m ∈ N, since∑m

n=1 2−αnfn(z) ∈M for z ∈ D. Hence we get from (6.4) that

‖
m∑

n=1

2−αnfn‖pHp(X) = lim
r→1

∫

T

‖
m∑

n=1

2−αnfn(rζ)‖pMdm(ζ)

≥ cp2−αmp lim
r→1

∫

T

‖fm(rζ)‖pMdm(ζ)

≥ cp2−p2pm( 1

2
−α)
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for m ∈ N. Since 0 < α < 1
2 we deduce that ‖∑m

n=1 2−αnfn‖Hp(M) → ∞ as
m→ ∞. This means that f /∈ Hp(X) (and f /∈ hp(X) as well). �

We next discuss how the quotient norms ‖ · ‖CT (X) and ‖ · ‖wCT (X) differ,
where it is harder to estimate ‖ ·‖CT (X) from below. We will use the formula

(6.5) ‖C[µ]‖CT (X∗) = sup{|
∫

T

〈g, µ〉| : g ∈ A0(X), ‖g‖C(T,X) ≤ 1},

which holds for any µ ∈ M(X∗) and any Banach space X. Here A0(X) =
{g ∈ C(T, X) : ĝn = 0 for n > 0}. The identity (6.5) follows from Singer’s
representation theorem and Theorem 2.1. In fact, the annihilator

A0(X)⊥ = Ma,0(X
∗) ≡ {µ ∈M(X∗) : µ̂n = 0 for n ≤ 0},

see e.g. [H1, p. 56]. Thus A0(X)∗ = C(T, X)∗/A0(X)⊥ = M(X∗)/Ma,0(X
∗)

isometrically in terms of the duality pairing 〈〈g, µ〉〉 =
∫

T
〈g, µ〉 from Singer’s

theorem. By applying the isometric isomorphism P we get the isometric
identification CT (X∗) = M(X∗)/Ma,0(X

∗) = A0(X)∗, where the pairing is

given by 〈g, C[µ]〉 =
∫

T
〈g, µ〉 for µ ∈ M(X∗) and g ∈ A0(X)∗. Thus (6.5) is

essentially the well-known duality formula.
As an application of (6.5) we compute the asymptotic behaviour of the

wCT - and the CT -norms for certain `np -valued polynomials.

Example 6.3. Let 1 ≤ p < ∞ and n ∈ N. Put fn(z) =
∑n

k=1 ekz
k for

z ∈ D, where (e1, . . . , en) is the unit vector basis in `np . Then

(6.6) ‖fn‖wCT (`np ) ≤ 1, 2 ≤ p <∞,

(6.7) ‖fn‖wCT (`np ) ≤ n1/s, 1 ≤ p < 2,

where 1
s = 1

p − 1
2 , and

(6.8) ‖fn‖CT (`np ) ≥ n1/p.

Proof. Suppose that x∗ =
∑n

k=1 x
∗(ek)ek ∈ `np′ , where p′ = p

p−1 and (e1, . . . , en)

also denotes the unit vector basis in `np′ . By arguing as in Example 6.1, and

taking into account remark (i) following that example, we get that

‖x∗ ◦ fn‖h1 = ‖
n∑

k=1

x∗(ek)z
k‖H1 ≤ (

n∑

k=1

|x∗(ek)|2)1/2.

If 2 ≤ p < ∞, then (
∑n

k=1 |x∗(ek)|2)1/2 ≤ (
∑n

k=1 |x∗(ek)|p
′

)1/p
′

= ‖x∗‖, so
that ‖fn‖wCT (`np ) ≤ ‖fn‖wh1(`np ) ≤ 1. If 1 < p < 2, then ‖x∗ ◦ fn‖h1 ≤
n1/s‖x∗‖ by Hölder’s inequality, where 1

2 = 1
p′ + 1

s (and hence 1
s = 1

p − 1
2).

This yields (6.7). The case p = 1 is similar (here s = 1
2).

Consider the map g : T→ `np′ defined by g(ζ) =
∑n

k=1 ζ
k
ek, for which

‖g‖C(T,`n
p′

) = sup
|ζ|=1

‖
n∑

k=1

ζ
k
ek‖`n

p′
= n1/p′ .
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Thus n−1/p′g ∈ BA0(`np′ )
. Note that fn = P[µn], where µn ∈ M(`np ) is the

absolutely continuous measure dµn = (
∑n

s=1 ζ
ses)dm on T. Hence we get

from (6.5) that

‖fn‖CT (`np ) ≥ 〈〈n−1/p′g, µn〉〉

= n−1/p′
∫

T

n∑

k,s=1

〈ek, es〉ζsζ
k
dm(ζ) = n1/p.

�

We refer to [DJT, Chapter 13] for the definition and a discussion of K-
convex Banach spaces. We only recall here that Lp (and its subspaces) is
K-convex for 1 < p < ∞, while L1 and L∞ are not K-convex. We will
need the following result due to Figiel and Tomczak-Jaegermann: if X is
a K-convex space, then there is a constant C < ∞ so that for each n ∈ N
there is a subspace Mn ⊂ X so that Mn is 2-isomorphic to `n2 and Mn is
C-complemented in X (see e.g. [DJT, Thm. 19.3]).

Example 6.4. Suppose that X is an infinite-dimensional complex Banach
space, for which there is p ∈ [1,∞) and a constant C <∞ so that X contains
C-isomorphic copies of `np which are C-complemented in X for all n ∈ N.
Then there are polynomials gn ∈ CT (X) such that

(6.9) ‖gn‖wCT (X) ≤ 1, n ∈ N, ‖gn‖CT (X) → ∞ as n→ ∞.

The above holds if X is K-convex.

Proof. Let Mn ⊂ X be the subspaces guaranteed by the assumptions. Fix
linear isomorphisms Sn : `np → Mn and projections Pn : X → Mn so that

‖Sn‖ = 1, ‖S−1
n ‖ ≤ C and ‖Pn‖ ≤ C for n ∈ N.

Let 2 ≤ p <∞. Consider gn(z) = Sn(fn(z)) for n ∈ N, where fn : D→ `np
is the polynomial from Example 6.3. Let x∗ ∈ BM∗

n
. Then

‖x∗ ◦ gn‖CT = ‖(x∗ ◦ Sn) ◦ fn‖CT ≤ ‖fn‖wCT (`np ) ≤ 1

by (6.6), so that ‖gn‖wCT (X) ≤ ‖gn‖wCT (Mn) ≤ 1. Recall next that

(6.10) ‖gn‖CT (X) = inf{‖gn − h‖h1(X) : h ∈ H1
0 (X)}

in view of (4.2). Suppose that h ∈ H1
0 (X). Since S−1

n ◦ Pn ◦ h ∈ H1
0 (`np ) and

gn(z) ∈Mn for each z ∈ D, we get from (6.8) that

n1/p ≤ ‖fn‖CT (`np ) ≤ ‖fn − S−1
n ◦ Pn ◦ h‖h1(`np )

≤ ‖S−1
n ‖ · ‖gn − Pn ◦ h‖h1(Mn) ≤ C‖Pn‖ · ‖gn − h‖h1(X).

(6.11)

Hence ‖gn‖CT (X) ≥ C−2n1/p follows from (6.10).
Let 1 ≤ p < 2. By using instead the estimate (6.7) and arguing as above

we obtain polynomials gn : D →Mn so that

‖gn‖wCT (X) ≤ n1/s, ‖gn‖CT (X) ≥ C−2n1/p, n ∈ N,
where 1

s = 1
p − 1

2 . Since 1
s <

1
p the normalized polynomials hn = n−1/sgn

satisfy the requirements for n ∈ N.
IfX is K-convex, then the assumptions are satisfied for p = 2 by the result

cited above. �
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Remarks. (i) If X contains a complemented copy of `p for some 1 ≤ p <∞,
then one obtains concrete maps g ∈ wCT (X) \ CT (X) by starting from
Example 6.4 and suitably modifying the argument of Example 6.2. The
technical details are left to the reader.

(ii) One is tempted to conjecture that Example 6.4 should hold for any
infinite-dimensional X. Unfortunately, the argument of Example 6.4 does
not even apply to the case X = `∞. The reason is that there is a constant
c > 0 so that ‖Pn‖ ≥ c

√
n for n ∈ N whenever M ⊂ `∞ is 2-isomorphic to `n2

and Pn is a projection of `∞ onto M , see [Ru, Thm. II and p. 245]. Recall
also that Pisier has constructed a Banach space X having the following
property: there is a constant c > 0 so that ‖P‖ ≥ c ·

√
dim(M) for any

finite-dimensional subspaces M ⊂ X and linear projections P : X →M (see
[Pi, Section 10]). Roughly speaking, the obstruction above is the term ‖Pn‖
in estimates such as (6.11).
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