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Abstract

Jacobi’s elliptic integrals and elliptic functions arise naturally from the Schwarz-
Christoffel conformal transformation of the upper half plane onto a rectangle. In
this paper we study generalized elliptic integrals which arise from the analogous
mapping of the upper half plane onto a quadrilateral and obtain sharp mono-
tonicity and convexity properties for certain combinations of these integrals, thus
generalizing analogous well-known results for classical conformal capacity and qua-
siconformal distortion functions.

1 Introduction

Given complex numbers a, b, and ¢ with ¢ # 0, —1, =2, ..., the Gaussian hypergeometric
function is the analytic continuation to the slit plane C \ [1, 00) of the series

(a,n)(b,n) 2"

(1.1) F(a,b;c;2) = oF1(a,b;c;2) = Z cn) nl’ |z| < 1.

n=0

Here (a,0) =1 for a # 0, and (a,n) is the shifted factorial function or the Appell symbol
(a,n)=ala+1)(a+2)---(a+n—1)

for n € N\ {0}, where N={0,1,2,...}.
A generalized modular equation of order (or degree) p > 0 is
F(a,b;c;1 — s?) F(a,b;c;1 —1?)

1.2 — 0<r<l.
(1-2) F(a,b;c; s?) P Flabier?y '

Sometimes we just call this an (a, b, ¢)-modular equation of order p and we usually assume
that a,b,c > 0 with a + b > ¢, in which case this equation uniquely defines s, see Lemma
4.5.
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Many particular cases of (1.2) have been studied in the literature on both analytic
number theory and geometric function theory, [Be|, [BB|, [BBG], [AVV], [AQVV], [LV].
The classical case (a, b, ¢) = (3, 3, 1) was studied already by Jacobi and many others in the
nineteenth century, see [Be]. In 1995 B. Berndt, S. Bhargava, and F. Garvan published
an important paper [BBG] in which they studied the case (a,b,¢) = (a,1 — a,1) and
p an integer. For several rational values of a such as a = %, i,% and integers p (e.g.
p=2,3,5,7,11,...) they were able to give proofs for numerous algebraic identities stated
by Ramanujan in his unpublished notebooks. These identities involve r and s from (1.2).
After the publication of [BBG] many papers have appeared on modular equations, see
e.g. [AQVV], [Be], [BCKZ], [CLT], [Q], and [S].

To rewrite (1.2) in a slightly shorter form, we use the decreasing homeomorphism
Hab,e <O7 1) - (07 OO), defined by

B(a,b) F(a,b;c;r')

1. =
( 3) Ma,b,c(r) 2 F(a, b; ¢ TQ)

, 7€ (0,1)

for a,b,c > 0, a+ b > ¢, where B is the beta function, see (3.5) below. We call pi4 . the
generalized modulus, cf. [LV, (2.2)]. We can now write (1.2) as
(1.4) Habe(S) =D pape(r), 0 <r<1.

With p = 1/K, K > 0, the solution of (1.2) is then given by
(1.5) 5= 9R(1) = tapo(Hape(r) /).

We call %" the (a,b, ¢)-modular function with degree p = 1/K [BBG], [AQVV, (1.5)].
In the case a < ¢ we also use the notation
Ha,c = Ha,c—a,c SO(;(’c - SO(;(’C_a’C
For 0 < a < min{c, 1} and 0 < b < ¢ < a + b, define the generalized complete elliptic
integrals of the first and second kinds (cf. [AQVV, (1.9), (1.10), (1.3), and (1.5)]) on [0, 1]

by
B(a,b)

(1.6) K =Kape=Kapelr) = 5 F(a,b;c; ’r2) ,
Bl(a.b

(1.7) € =Eape = Eapelr) = (, )F(a —1bier?),

(1.8) K = fhb’c = Kaupe(r'), and & = 8;,17,@ = Eape(r’)

for r € (0,1), " = v/1 —r2. The end values are defined by limits as r tends to 0+ and
1—, respectively. In particular, we denote K, ., = Kyc—q. and €, = €4c—a,. Thus, by
(3.9) below,

B(a,b)

xa,b,c(o) = 8a,b,c(o) = 9

and
1B(a,b)B(c,c+1—a—b)

1) =
8a,b,c( ) 2 B(c +1 - a,c — b)

’ :K:a,b,c ( 1)

I
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Note that the restrictions on a,b and c ensure that the function X, . is increasing and
unbounded whereas €, is decreasing and bounded, as in the classical case a = b =
%,c = 1. Note also that our terminology differs from that of [BB, Section 5.5], where
generalized elliptic integrals refer to the particular case ¢ = 1.

In this paper we study the modular function go%’b’c and the generalized modulus fi,p, .
as well as the generalized elliptic integrals K, . and €,p.. In the case b=1—a, c =1,
these functions coincide with the special cases ¢%, 14, K4, and €, which were studied in
[AQVV].

In Section 2 we construct a conformal mapping from a quadrilateral with internal
angles brr, (¢ — b)m, (1 — a)m, and (1 — ¢+ a)m onto the upper half plane. We denote
this mapping by sn,p.. If b =1—a and ¢ = 1, this mapping reduces to the generalized
elliptic sine function sn, in [AQVV, 2.1].

In Section 3 we recall some basic properties of the hypergeometric, gamma, and beta
functions, that are used in the sequel.

Section 4 contains our main results: differentiation formulas and monotone properties
of the generalized elliptic integrals and of several combinations of these functions.

Throughout this paper we denote " = /1 — r2 whenever r € (0,1). The standard
symbols C, R, Z, and N denote the sets of complex numbers, real numbers, integers, and
natural numbers (with zero included), respectively.

2 The Schwarz-Christoffel map onto a quadrilateral

For 0 < a,b < 1,max{a + b,1} < ¢ < min{a,b} +1, r € (0,1), let g,(t) = t*"1(1 —
)11 —r?t)=@, t € C, Imt > 0, denote the analytic branch for which the argument
of each of the factors ¢, 1 — ¢, and 1 — r?t is m whenever it is real and negative. Denote
C =C(b,c) =1/B(b,c —b). We define the generalized Jacobi sine function sng.(w) =
shgp(w,r) as the inverse of the function f given on the closed upper half plane by

w=1(:) = fuse®) = C [ a0t
(2.1) = C/z 71— )TN (1 — %)t

— ei(aerJrlfc)ﬂCTan /Z tbil(t . 1>cfb71<t . 1/7,2>(17a)71dt )
0

Recall the Euler integral representation [AAR, Theorem 2.2.1] [AS, 15.3.1]

—F(b)f“((?— 3 /O (1 — 1)t (1 — o)t

for Rec>Reb>0and z€ C\ {ueR|u>1}.

(2.2) F(a,b;¢;2) =

2.3. Theorem. Let H denote the closed upper half-plane {z € C|Imz > 0} and let
0<a,b<lymax{a+0b,1} <c <1+ min{a,b}, r € (0,1). Then the function f in (2.1)
is a homeomorphism of H onto the quadrilateral () with vertices

f(0)=0, f(1) = F(a,b;c;7%),
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Figure 1: The image quadrilateral and the image of a grid under the mapping f, ;. with
a=02b=03,c=10,r=0.7

B(c—0b,1—- ’ Cae
FA/%) = F(1) + (Ea) ’ b)a)e““c””’z“ “PFe—ac—be+l—a—br"?),
, C—

and

B(1 - 1—0) a
( B(Z:Zj b) ) glasbrioom 200, 20D p(] 12— %),

floo) = f(1/r%) +

and interior angles b, (¢ — b)w, (1 — a)m and (a + 1 — ¢)m, respectively, at these vertices.
It is conformal in the interior of H.

Proof. It is clear that f(0) = 0 and by (2.2) f(1) = F(a, b; c;7?). Next we evaluate
1/r2
fa/rm? = C/ g-(t)dt
0
1 1/r2
= C/ gr(t)dt + C/ g-(t)dt
0 1
1/r2
= F(a,b;c;r?) +C’/ g-(t)dt .
1

To evaluate the second integral above, we make the change of variable t = 1/(1 — "*u)
for which dt = (1 — r®u)~2r"*du. We observe that this change of variable is simply the
restriction to reals of the plane Mobius transformation taking the ordered triple (1,1/r2,0)
onto the ordered triple (0,1, 00). Then

c—b—1 2 —a
gr(t)dt = (1—r"u)'"’ <1 - 7,2) (1 - Ti,z) (1= r"u) " du



_ (_1)b+1—c (T/)Q(c—a—b) uc—b—1<1 . u)—a<1 . r/2u>a—cdu

e(b-l—l—c)iTr (T/)2(C*a*b) uc—b—l(l o u)—a(l . T/2u)a—cdu

and by (2.2) we get

)

1/ ; 2(c—a—b) I'(c) ' 2
C/ gr(t)dt = e(b-l—l—c)wr (T’) c—a ( b) / uc—b—l(l . u)_“(l ! u)a—cdu
1 - 0

INEINCE
o(b+1-cim (T/)Q(c—a—b) ING) Flc=0I'(1—a)
F')re—bTI(c+1—a—>b)
Flc—a,c—bc+1—a—br?)
Bc=b1l-a)

H=e)im (N2 P g e —bie+1—a—byr'?)

B(b,c—b)
_ B(C - b7 I- CL) 6(b—&—l—c)i7r7,,2(1—c) (T/)Q(C_a_b) 3
B(b,c—b)

-F(l—a,l—b;c—l—l—a—b;'r"Q),

where the last expression follows from (3.9) below. Hence f(1/r?) has the value claimed.
We proceed to evaluate the remaining value, namely

00 1/r2 00
f(o0)=C / g, (t)dt = C / g, (t)dt + C / o

The first integral above equals f(1/r?). To compute the second one, we apply the change
of variable t = (1 — 7?v)/(r*(1 — v)). We observe that this change of variable is simply
the restriction to reals of the plane Mobius transformation taking the ordered triple
(1/r% 00, 1) onto the ordered triple (0,1, 00). Then dt = (1 —7r?)/(r*(1—v)?)dv, t = 1/r?
gives v = 0, and t = oo gives v = 1. We get

g (t)dt = (#%%?%)bl(l_#%%?%)cb{
(-55) (m)e

2(1+a7b+b+1)<1 . v)aﬂ:(l . 7ﬁ2v)b71<7,2 . 1)c7b71 7,2(,,,2 . 1)1})7%1 . r2)dv

r
(_1)a+b+1—c(r/)Q(c—a—b)T,Q(l—c)v—a(1 . U)a—c(l . T‘QU)b_ldU
so that

oo 1

C/ gr(t)dt — (—1>a+b+1_c(T‘/)Q(C_a_b)T‘Q(l_c)C/ 'U_a(]_ o U)a—c(l o TZ,U)b—ldU
1/r2 0

9Bl —-al+a—c)

B(b,c—b)

_ (_ 1)a+b+1—c(r/)2(c—a—b)r2(
F(1—b,1—a;2—c;r?).

The claimed value for f(oo) follows.



It follows form the formula (2.1) that (see e.g. [M, pp. 128-134]) f is a Schwarz-
Christoffel transformation which maps H onto a quadrilateral ) with vertices f(0), f(1),
f(1/r?), and f(oo) and interior angles b, (¢ — b)w, (1 — a)m, and (1 — ¢+ a)7 in coun-
terclockwise order. Since the boundary of () is a Jordan curve (none of its sides intersect
except at the end points), f is univalent and hence a homeomorphism. O

2.4. Remark. The quadrilateral ) reduces to a trapezoid if and only if ¢ = 1 or
¢ = a+b, to a parallelogram if and only if c = 1 = a+ b, [AQVV] and to a rectangle (the
1

classical case) if and only if a = b = 5 and ¢ = 1, [Bo.

2.5. Corollary. Let 0 < a,b < 1,max{a + b,1} < ¢ < 1+ min{a,b}, and let Q
be a quadrilateral in the upper half plane with vertices 0,1, A and B, the interior angles
at which are, respectively, br,(c — b)w, (1 — a)m and (1 + a — ¢)w. Then the conformal

modulus of Q (cf. [LV]) is given by
mod(Q) = K(r')/X(r),
where r € (0,1) satisfies the equation

L’r’Z(C_a_b)F(c —a,c—bc+1—a—b; 7"2)
F(a,b;c;r?)

(2.6) A=1+ =G(r),

say, and

I = B(c—b,1—a) (b+1—c)im
B(b,c —b)

Proof. Clearly, arg(A—1) = (b+1—c¢)m = arg(L). Since G(0) = oo and G(1) = 0,
it follows that a unique solution r € (0,1) of equation (2.6) exists. Let f be as in
Theorem 2.3 and let ¢ = f/f(1). Then g maps the upper half plane H onto @, with
g(0) =0, g(1) =1, g(1/r*) = A, and g(cc) = B. The function h = sn~! maps the first
quadrant conformally [Bo] onto the standard rectangle R, with h(0) = 0, h(1) = K(r),
h(1/r) = X(r) +iX(r'), and h(co) = iX(r'). Hence the function k = h(,/) maps H
conformally onto R. Thus, by conformal invariance, mod(Q) = X(r")/XK(r). O

2.7. Remark. Bowman [Bo, pp. 103-104] gives a formula for the conformal modulus
of the quadrilateral with vertices 0, 1, 1+ hi, and (h—1)i when h > 1 as ¢ = K(r)/XK(r")

where
-ty

™ e
_ ot = 71<_), ty = *1<_), —2h—1.
" t1+t2 ! a 2c 2 H 2 ¢

Therefore, the quadrilateral can be conformally mapped onto the rectangle 0, 1, 1 + qi,
qi with vertices corresponding.




2.8. Computational discovery. We have written a Mathematica® function that
computes the modulus of the quadrilateral with vertices at 0,1, A, B where Im A >
0,Im B > 0. This led to the following discovery for symmetric quadrilaterals:

If |B| =1 and 2argA = argB, then the modulus is equal to 1.

It is not difficult to prove this analytically. The following figure illuminates the variation
of the modulus of the quadrilateral with vertices 0,1,z 4 2y, ¢ in the first quadrant.

Figure 2: Modulus of the quadrilateral with vertices 0,1,z + iy, ¢ and the line (z,x,1).

3 Hypergeometric functions

Let ' denote Euler’s gamma function and let W be its logarithmic derivative (also called
the digamma function), ¥(z) = I"(z)/T'(z). By [Ah, p. 198] the function ¥ and its
derivative have the series expansions

(3.1) ‘1’(2)2—7—§+Zﬁ, wz):zjﬁ,

where v = —W(1) = lim, (> ;_, 1/k —logn) = 0.57721 ... is the Euler-Mascheroni
constant. From (3.1) it is seen that ¥ is strictly increasing on (0,00) and that ¥’ is
strictly decreasing there, so that W is concave. Moreover, ¥(z 4+ 1) = W(z) 4+ 1/z and
V(1) = —v —2log2, see [AS, Ch. €].

For all z € C\ {0,—1,—2,...} and for all n € N we have

(3.2) I'(z4+n) = (z,n)I(z),



a fact which follows by induction [WW, 12.12]. This enables us to extend the Appell
symbol for all complex values of a and a + ¢, except for non-positive integer values, by
I(a+1)

['(a)

(3.3) (a,t) =

Furthermore, the gamma function satisfies the reflection formula [WW, 12.14]

T

(3.4) L)1 —2) =

sin(7z)

for all z ¢ Z. In particular, ['(3) = /7.
The beta function is defined for Rexz > 0, Rey > 0 by

L(2)C(y)

(3.5) B(z,y) = /0 " N1 — ) tdt = Tty

We use the standard notation for contiguous hypergeometric functions (cf. [R])
F =F(a,b;c;z), F(a+)=F(a+1,b;¢;2), Fla—)=F(a—1,b;¢;2),
etc. We also let
v=uv(z)=F, u=u(z) = F(a—), vy =vi(2) =v(l —2), and u; = uy(z) = u(l — 2).

The derivative of F' can be written in the following several different forms which will be
useful in deriving the fifteen important Gauss contiguous relations [R]

dv_dF a b c—1

WA wat) - = e - ) = e - P
(3.6) = %bF(a—l—, b+;c+) = T ((a +b—c)F + WF(&F))
_ (c—a)u+ (a —c+bz)v
z(1—2)
and
(3.7) Z_Z:ch(zz_) = (a—1) (F+b;CF(c+)):a;1(v—u).
In particular, from (3.6) it follows that (cf. [AQVV, Theorem 3.12 (3)])
(3.8) %bz(l —2)F(a+1,b+ 1;¢+1;2) = (¢ —a)u(z) + (a — c + bz)v(z) .

The behavior of the hypergeometric function near z = 1 in the three cases Re (a4 b—
¢) <0,a+b=c,and Re(a+b—c) > 0, respectively, is given by

F(a,b; ;1) = fteed,
(39) < Bla,b)F(a,b;a+ b z) +log(1 — 2) = R(a,b) + O((1 — 2) log(1 — 2)) .
Fla,bie:2) = (1— 2) " F(c—a,c — b ¢ 2),

8



where R(a,b) = —¥(a) — V(b) — 2. The above asymptotic formula for the zero-balanced
case a + b = ¢ is due to Ramanujan (see [Ask], [Be]). This formula is implied by [AS,
15.3.10]. Note that R(%, 1) =log 16.

202
For complex a,b, ¢, and z, with |z| < 1, we let

(3.10) M(z) = M(a,b,c,z) = 2(1 — 2) (vl(z)% — v(z)%) :

From (3.6) it is easy to see that
(3.11) M = (c—a)(uvy +uv) + (2(a — ¢) + b)vy
(¢ —a)(uvy + ugv —vvy) + (a + b — c)voy.
It follows from [AQVV, Corollary 3.13(5)] and (3.4) that
l—a _ sin(ma)
Ma)l(2—a)

for 0 <a < 1and 0 <r < 1. In particular, we get the classical Legendre relation ([AAR],
[BF])

(3.13) M(1/2,1/2,1,7) = %

(312) M(a'71 —CL,].,T) -

The next result generalizes [AQVV, Theorem 3.9].

3.14. Theorem. For0 < a,b < ¢, let the function f be defined on [0,00) by f(x) =
F(a,b;c;1 —e™®) and let g(z) = f(z)exp(—(a+b—c)x). Then f and g are increasing,
with f(0) = g(0) = 1. Ifa+b > ¢, then f(oco) = 00. Ifa+b=c, then f(oc0) = g(00) = 0.
If a+0b < ¢, then f(oco) = B(c,c —a —b)/B(c —a,c—b) and g(co) = oco. Moreover,
h(z) = f'(z)e~*@*=<) js also increasing, with h(0) = ab/c and h(oco) = T'(c)['(a+b+1—
c)/(I'(a)L'(b)) or h(oo) = 0o according asa+b+1>cora+b+1<c.

Proof. The assertions f(0) = ¢g(0) = 1 and that f is increasing, so that if a+b < ¢,
then g is increasing, are all clear. In the three cases, a+b < c,a+b = cand a+b > ¢, the
limiting values at oo are clear by (3.9). Next, by (3.9), g(z) = F(c —a,c —b;c; 1 —e™®),
which is clearly increasing. Next, by differentiation,

c/(ab)f'(r) =e "F(a+1,b+1;c+1;1—e7").
Hence, by (3.9)
c/(ab)f'(w) = (e ) (e ™) F(c—a,c—bie+1;1—e)
PO (c—a,c—bie+1;1 —e ™),

so that h(z) = (ab/c)F(c — a,c — b;c + 1;1 — e™®), which is increasing, with boundary
values h(0) = ab/c, and by (3.9) and (3.2),

B Ilc+1DI(a+b+1-¢c) T(c)T(a+b+1-c)
hoe) = o/ ) = ore s T(a)0(b) ’

ifa+b+1>c,and =ccifa+b+1<c. [




3.15. Theorem. For a,b,c,d > 0, with a +b > ¢ > max{a, b}, let the function f
be defined on [0,00) by f(x) = F(a,b;c;1— (1 +2)~Y), and let

g(l‘) _ (1 + x)((c+d)f(a+b))/df/<x).
Then g is increasing, with

ab (a+b—c)l'(c)l'(a+b—rc) .

9(0) = 5 and g(o0) = dT(a)T(b)

Proof. Withu=1— (1+2)""? by (3.6) and (3.9),
ab

f(z) = a(l+x)’1’(1/d)F(a+1,b+1;c+1;u)
b
= a—d(l—i—;z:)(l/d)(“*b’c’d)F(c—a,c—b;c+1;u),
¢

so that g(x) = (ab/(cd))
The boundary value g(0
0

F(c—a,c—b;c+ 1;u), which is clearly positive and increasing.
) = ab/(cd) is clear, while the value of g(oco) follows from (3.9).

3.16. Remark. (1) With ¢ = a+b, Theorem 3.14 reduces to [AQVV, Theorem 3.9].
(2) For a + b = ¢+ d, Theorem 3.15 reduces to [AQVV, Theorem 3.10.].

0.3 (1) 0.6 (2 6 @

0.5 0.4 0.5 ] 0.5

Figure 3: (1) M(0.5,1.0,2.0,-), (2) M(0.5,1.0,1.5,-), (3) M(0.5,1.0,1.0,")

3.17. Theorem. For positive constants a, b, ¢, the restriction to (0,1) of the contin-
uous function M in (3.10) has the following properties. Denote M(x) = M(a,b,c,x).

(1) M(z) = M(1—2z) >0 for all x € (0,1).

(2) If a+b < ¢, then M(x) is bounded and extends continuously to [0,1]. In particular,
if a+b=c=1, then M(x) equals the constant sin(wa)/x.

10



(3) If a + b > ¢, then M is unbounded on (0,1), with M(0+) = M(1-) = co.

(4) Ifa+b<c<a+b+1, then

mli%l+ ;L"H_b_c,/\/l(l‘) _ xliqli(l . l‘)a+b_cM(l‘) _ F<C)F§fl(6—l|—)1{)‘(—|b—)1 — C)

(5) Ifa+b+1=c, then
M(x) . M(x) a+b

= lim =

A Tos(1/z) — e T ) Tos(1/(1=2)) _ Bla,h)

(6) Ifa+b+1<c, then

lim M(x) ~ fim M(x) _ ab(2¢c —a—b—1)B(¢c,c—a — )
20+ T a—-l- 11—z clc—a—b—1)B(c—a,c—0)
(7) If a+b > ¢, then
. a+b—c IERT . at+b—c o (a+b— C)B(C7a+b_ C)
wlir&:p M(x) = xlg{l_(l x) M(x) = Ba.b) :

Proof. (1) From (3.8) and (3.10), we get
br(l —
M(z) = M(F(a—i— L,b+ ¢+ L;z)v(l — x)
c

+F(a+1,b+1L;c+ 1,1 —2)v(z))
= G(z)+ H(x)>0.

br(l —
G(z) = MF(&+1,Z7+1;0+ Lz)v(l —x)
c
~abx(l —x)
B c
(2) First, if a + b < ¢, then from (3.9) and (3.10),

H(x) Fla+1,b+ Lc+1;1 —2)v(z) =G(1l —x).
MO+)=M1-)=(c—a)u(l)+ (a+b—c)v(l)=0.
Next, if a + b = ¢, then from (3.9), G(0+) = 0 and

H(z) = MF(@, ba+b+1;1—z)v(z),

so that H(0+) = (ab/c)F(a,b;a+ b+ 1;1). Next, H(1—) =0 and
G(z) = %F(a, bia+b+1;z)v(l — ),
so that G(1—) = (ab/c)F(a,b;a + b+ 1;1). Thus,
M(0+) = M(1-) = (ab/c)F(a,b;a+ b+ 1;1) = 1/B(a,b) .

11



(3) Let a4+ b > ¢. Then
ab

H(z) = . (1—2)2 " "F(c—a,c—byc+1;1—2)v(x),

so that H(0+4) = oco. Similarly, G(1—) = oc.
(4) By (3.9),

%M(az) = z(1—2)F(a+1,b+ 1l;c+ L;z)F(a,b;c;1 — x3)
a

427 (1 —2)F(c —a,c— b;c+ 1;1 — 2)F(a, b c; ),
so that the result follows by (1).

(5) By (3.9),
cM(x)
SN sl -2 Fla+1,b+ 1+ 1:2)F(a,be: 1 —
abx log(1/x) (1 =2)Fla+1,0+ Le+ La)F(a,biel — )
1—=z
F 1.,b+1; 1:1 — 2)F(a.b: c:
gl @ L+ et Ll n)F(abea),
so that the result follows from (1) and (3.9).
(6) By (3.9),
cM(z)

= (1—x)Fla+1,b+1;c+ 1;2)F(a,b;c; 1 — x)
+(1—2)F(a+ 1,0+ 1;¢+ 1;2),
so that by (1) and (3.9),
M(z)

L s A
_ab B(c,c—a—b)+B(c—|—1,c—a—b—1)
¢ \B(c—a,c—0b) B(¢c—a,c—10)

ab(2c—a—b—1) B(¢c,c—a—10)
(c(c—a—b—1) B(c—a,c—b)

(7) By (3.9),

%x“*b*/\/l(x) = z2(l—2)F(a+1,b+ 1;¢c+ 1;2)F(a,b;c;1 — )
+(1—2)F(c—a,c—bjc+1;1—2)F(a,b;c;2),

so that by (1) and (3.9),

liIglJr 2T M(z) = lir{li(l —2)" 7 M ()
= a—bF(c—a,c—b;c+1;1)
c

abB(c+1,a+b+1—c¢)

¢ Bla+1,0+1)

(a+b—c)B(c,a+b—c)
B(a,b) '

12



3.18. Lemma. The function M in (3.10) satisfies the differentiation formula

W - 5 L 5 ((c=a)l(1 =+ (a+b—1D)2)u(=)ui(2)
+(—a—b+c+ (a+b—1)2)ui(2)v(2)]

(1 —22)[(c—a)(a+2b—1) — bQ]U(z)vl(z)> .

Proof. Denote D = d/dz. Then, by (3.6), (3.7), and the chain rule, we get
zDu=(a—1)(v—u), 2(1 —2)Dv=(c—a)u+ (a—c+bz)v
(1—2)Du; = (1 —a)(vy —uy), 2(1 —2)Dvy = —((c—a)u; + (a — c+b(1 — 2))vy).
Hence, by the product rule, after simplification, we get
2(1—=2)D(uvy) = —(c—a)uu; + (a—1)(1 —2)vo; + (1 —a)(1 —2) + (c—a—b(1 — 2)) )uvy,

2(1 — 2)D(uyv) = (¢ — a)uuy + (1 — a)zvvy + (a — ¢+ (a + b — 1)z)uqv,

and
2(1 = 2)D(vvy) = (c — a)(uvy — ugv) + b(2z — 1)vwvy.

Substituting these we get
z2(1 = 2)DM(a,b,c,z) = (c—a)[(l—=c+ (a+b—1)z)uv

+(—a—b+c+ (a+b—1)2)urv]
+(1 = 22)[(c — a)(a + 2b — 1) — b*]vv;. O

3.19. Remark. If we put ¢ = a4+ b = 1 in Lemma 3.18 above, then we get the
familiar fact that

d
%M(a, l—a,1,2)=0.
We also observe that DM (a, b, ¢, 1/2) = 0.

4 Generalized elliptic integrals

The following two important Theorems, 4.1 and 4.3, are indispensable in simplified proofs
for monotonicity of the quotient of two functions. The first one, called L’Hopital’s Mono-
tone Rule, appears in [AVV, Theorem 1.25], while a more general version of the second
one appears in [BK] and [PV, Lemma 2.1].
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4.1. Theorem. Let —co < a < b < oo, and let f, g : [a,b] — R be continuous
n la,b], differentiable on (a,b). Let ¢'(x) # 0 on (a,b). If f'(x)/¢'(x) is increasing
(decreasing) on (a,b), then so are

f@) = fl@) o f@) = f0)
9(z) = g(a) g(z) = g(b)

If f'(z)/¢'(x) is strictly monotone, then the monotoneity in the conclusion is also strict.

4.2. Lemma. Let {a,} and {b,} be real sequences with b, > 0 for all n. If the
sequence {a,/b,} is increasing (decreasing), then

n

Tn = Z(n — /i?) (an,kbk - akbn,k)
k=0

is positive (negative) formn =1,2,....

Proof. It is enough to prove the case {a,/b,} is increasing, since the other one is
similar. Clearly

T1 = CleQ — Clobl b(]bl <b_ - %) > 0.
1 0

Let n > 2. First let n = 2m be even. Then

2m
Tn = T2m = Z(Qm - k) (a2m7kbk - akb2m7k)
k=0
2m—1
= Z (2m — k) (aom—1rbe — arbom—r)
k=0
m—1
= (2m — k’) (agm,kbk — akbgmfk) +0
ke

o

2m—1
+ Z (2m — k)(agm—1rbr — axbam—r)
k=m-+1
m—1
= (2m — k)(a2m—rbr — arbam—r)
k=0
m—1
Z k}(akbgm—k - a2m—kbk)

k=1

+

m—1
= 2m(azmbo — aobam) + Z 2m — 2k)(azm—rbr — arbam—r)
1

m—1
= 2mbobn, (b m ) + 3" (2m — 28)bybam, (‘b’?m: — Z—:) > 0.
2m =1 2m—

14



Next, let n = 2m + 1 be odd. Then
2m+1

T, = Z (2m + 1 — k) (agms1-£bk — arbami1—)
k=0
2m

= Z(Qm + 1 — k) (a2ms1-kbr — arbomy1-r)
k=0

NE

= (2m+ 1)(a2m+1bo — aobom+1) + Y (2m+ 1 — k)(agmi1-1br — arbami1—k)

b
Il
—

2m
+ Z (2m + 1 — k) (a2m+1-£br — arbomi1—k)
k=m+1

NE

= (2m+ 1)(a2ms1bo — aobomy1) + > (2m + 1 — k) (azm+1-kbr — axbams1—k)

k=1
+ Z k(agbam+1—k — G2m41—kbi)
k=1
= (2m+ 1)(a2m+1b0 — aobami1) + Z(Qm + 1 — 2k)(a2ms1-1be — arbomy1-k)
k=1
= (2m+ 1)(boboam+1) (anH —
b2m+1 bO

+3°@m 1= 20 by | 2 M) S0 O
1 b2m+17k bk

4.3. Theorem. Let Y~ a,z™ and Y~ b,a" be two real power series converging
on the interval (—R, R). If the sequence {a,/b,} is increasing (decreasing), and b, > 0
for all n, then the function
D ng "

f(l‘) = ZZO:O bnfL'n
is also increasing (decreasing) on (0, R). In fact, the function f'(x) (> ., boz™)’ has

positive Maclaurin coefficients.

Proof.

o0 o0

f'() <Z bnx"> = Z b,x" Z na,r" " — Z anxr" Z nbpa™ !
= (1/$) Z <Z(n — k‘)(an_kbk — akbn_k)> x".

n=0 \k=0

The result follows from Lemma 4.2. O

The following theorem solves the corresponding problem in the case where we have a
quotient of two polynomials instead of two power series.
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4.4. Theorem. Let f,(z) = > )_,axz® and g,(x) = D"}, bxa® be real polynomials,
with by > 0 for all k. If the sequence {ay/by} is increasing (decreasing), then so is the
function f,(x)/gn(x) for allz > 0. In fact, g, f, — fng., has positive (negative) coefficients.

Proof. We prove the increasing case by induction on n. The proof of the decreasing
case is similar. Let first n = 1. Then

filx)  ag+ayz

gl(l‘) N bo + blfL' ’

Hence

afi — iy = (bo+bix)ay — (ap + ar2)by
= aiby — apb

a Qo
= boby | — — — 0.
o1<b1 b0)>

Next, assume that the claim holds for all £ < n. Now

fn-l—l(x) . fn(x) + an-‘rlanrl

gn-l—l(x) gn(x) + bn+1xn+1 .

We get
gn+1frlz+1 - fn+19;z+1 = (gn + bn+1$n+1)(ﬂl + (n + 1)an+19€n)
—(fa + anJrlanrl)(g;z + (n+ 1)byy12")
= (gnfn — fogn) + (0 + 1)2"(gn@ns1 — fubns1)
+2"  (bns1 fy, = anrrgy)
= (gufy = fagh) + (04 D" Y (ans1by = boyray)z”
k=0
gt Z E(agbny1 — bplpyr) "
k=1
= (gnfps = Fagn) + D _(n+ 1= k)(@nsaby — boyrag)a™"
k=0
/ / - QAp1 ag n+k
k=0 bn+1 bk
Hence each coefficient is positive. O

4.5. Lemma. Let a,b,c, K > 0.

(1) If a+b> ¢, then figp. : (0,1) — (0,00) and @37 : (0,1) — (0,1) are decreasing
and increasing homeomorphisms, respectively.

(2) If a +b > ¢, then the function f(r) = (r/r")2@+=y,, (r) is decreasing from
(0,1) onto ((B(a,b)?)/(2B(c,a+b—c)), B(c,a+b—c)/2).
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(3) Ifa+b>c and K > 1, then

r < uP(r) < KYGatb=o),

)

for all r € (0,1).

(4) If a+b < ¢, then piap.e : [0,1] — [B(a,b)/(2d), B(a,b)d/2], is a decreasing home-
omorphism, where d = F(a,b;c;1) is given by (3.9). In this case, @“bc is defined if and
only if K> 1. If K > 1, then goi(bc maps [0, 1] onto a proper subset of [0, 1].

Proof. (1) Since a,b,c > 0 and a+ b > ¢, it follows from (3.9) that the function
F(a,b;c;r) is an increasing homeomorphism of [0,1) onto [1,00). Hence the function
[ab.e 18 a strictly decreasing homeomorphism (0,1) — (0, 00). The assertion about @3
follows from these facts.

(2) From (3.9),

_ B(a,b) F(c—a,c—b;c; r'%)
fr) = 2 Fle—a,c—byc;r?)’”’
which is decreasing with required limiting values at 0 and 1.
(3) With s = ©%"°(r) > r, from (2) we get

F(s) = (s/8) " pape(s) = (s/8) 0 pape(r) | K
< f( ) (7’/7”) (atb—e Na,b,c('r)7

so that
(8/8 )2(a+b ) < K(T/T ) (a+b—c) :

which gives s/s' < K'/(2@a+0=e)y /3! Hence
r<s< Kl/(2(a+b c)) ( /T‘) < Kl/(Z(a—&-b—c))T,'
(4) For a,b,c > 0 and a +b < ¢, (3.9) implies that F(a,b;c;r) is an increasing

homeomorphism [0,1] — [1, F(a,b;c;1)]. Now the claim follows from (1.3) and (1.5).
0

The function jiap. is a natural generalization for the function y, in [AQVV, (1.3)].
Namely,

(46) Na,lfaJ(T) =

since by (3.4) and (3.5),

B(a,1—a) F(a,1—a;1;7")
2 F(a,1—a;1;r?)

= Ma(r> )

['(a)l'(1—a) T
Bla,1-a) = (1) ~ sin(ra)

Clearly (1.3) and (1.5) imply the identities (cf. [AQVV, (4.8), (4.9)]),

(47) /"La7b,C(r)/J/a7b,C(r/) = (B(;, b)) y T € (07 1) )
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Figure 4: (1) 10.5,0.5,15 (2) M0111 1, (3) H2.51.52; (4) Maé,o.s),h (5) No%np

(6) Nié,1.5,27 (7) 80220517 (8) 9025 117 (9) 90:%,2152-

(48) Hap (@) + g oy)* =1,
where z,y > 0 with zy = (B(a,b)/2)?, and
(4.9) P () + i) =1,

Moreover, from (1.3) and (3.9) we get, for ¢ < a + b,

(4.10) P20 () =2y (), e (0,1)

4.11. Lemma. Let f be a bijection from a real interval I onto (0,00) and let g be
defined on I by g(x) = af(x), where a > 0 is a constant. Then for each constant K > 0,

we have
fTUEf(x) = g (Kg(x)).

Proof. Letu = f~'(Kf(z)). Then f(u) = K f(z), so that af(u) = aK f(x), that
is, g(u) = Kg(). Hence u=g ' (Kg(z)). O
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4.12. Remark. For a,b,c>0witha+b>c¢, K >0, and r € (0,1) denote

. F(a,b;¢;")
o) = )

and
~a,b,c ~_ ~
PK (T) = Ma,é,c(“a,b,t:(rr)/K) ’
By Lemma 4.11 we see that
~a,b,c a,b,c
O (r) = % (r).

4.13. Remark. Observe first that lim. ., B(a,c—a) = oo and I'(c—a)(c—a,n) =
['(¢c — a+ n), which tends to I'(n) = (n — 1), as ¢ — a+.

(1) lime— ot (Koe(r) — (B(a,c —a)/2)) = log(1/1").

(2) lim s (Eqelr) = (Bla,c — a)/2)) =log(1/r") — (1 202, 75 ).

In particular, for each fixed r € (0,1) all the three functions K, .(r), Eac(r), and
Eac(r) — * Ky o(r) tend to oo as ¢ — a+.

4.14. Theorem. The following differentiation formulae hold:
dgca,b,c 2

(4.15) o ((c —a)€ape+ (rP+a— c)meb’c) ,
d€upe 2(a—1
(416) d'f,’b’ = ( r ) (:Ka,b,c - 8a,b,C) )
d 2
(4.17) = (Kape = Eand) = —z ((e=a) = (L= a))E0p,
—((a+b)r* —c+ 7“,2)3<a7b’c) :
d /2 2 9
(418)  —(Cape =1 Kape) = (L= c)€ape+ (=1 = (0= 1)r7)Kape)
d B(a,b)M(a,b, c,1?) B(a,b)>M(r?)
4.1 @ (1) = — _ |
(4.19) art' b (r) /20 (r2)2 42X
M(a,b,c,s?)ds 1 ss”v(s?)? 1 58°K(s)? b
42 M065 )8 1 _ L ot
(4:20) M(a,b,c,r?)dr  Krr?o(r2)2  Krr?K(r)?2’ s=¢k (1)

Proof. From (3.6)

dFF (c—a)u+(a—c+bz)v
dz z(1—2) '

Put z = r? and multiply both sides by B(a,b)/2. This gives (4.15).
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For (4.16) recall that by (3.7)
du_ (a—1)
dz 2
Put z = r? and multiply both sides by B(a,b)/2. This gives (4.16).

The formulae (4.17) and (4.18) follow from (4.15) and (4.16).
From (3.10), putting 2z = 72, we get

2__2/2d_/~b 2 ’ 2 i
M) = =17 dr \ B(a,b) X 2r )’

dp _ B(a,b)’M(r?)
dr 4rr? K>
Denote s = ©3"°(r). Then by (1.5)

(v—u).

so that

1
Habe(5) = ?Ma,b,C(r)
so that
@ )5 = )
dslua,b,c S dr - Kdr/ia,b,c r).
Now (4.20) follows from (4.19). O

4.21. Lemma. (c¢f. [AQVV, Lemmas 5.2 and 5.4]) For 0 < a,b < min{c,1} and
c<a+b, denote X =Kyp. and € = E,p .. Then the function
(1) fi(r) = (X—=8&)/(r*XK) is strictly increasing from (0,1) onto (b/c,1). In particular,

we have the sharp inequality,
b X-2¢&

< <1
c r2K

for all r € (0,1).
(2) fo(r) = (& — 1K) /r? has positive Maclaurin coefficients and maps (0,1) onto
(B(a,b)(c —b)/(2c),C), where

B(a,b)B(c,c+1—a—Db)

¢= 2B(c+1—a,c—b)

(3) fs(r) =270V e hag positive Maclaurin coefficients and maps [0,1) onto
(B(a,b)/2,00).

(4) f1(r) = 127K has positive Maclaurin coefficients and maps [0,1) onto
[B(a,b)/2,B(c,a+b—c)/2).

(5) fs(r) = 7"*& has positive Maclaurin coefficients and maps [0,1) onto

(6) fs(r) = XK has negative Maclaurin coefficients, except for the constant term,
and maps [0,1) onto (0, B(a,b)/2].

(7) fz(r) = K has positive Maclaurin coefficients and is log-convex from [0,1) onto
[B(a,b)/2,00). In fact, (d/dr)(logX) also has positive Maclaurin coefficients.
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(8) fa(r) = (& — 1K)/ (r*K) is strictly decreasing from (0,1) onto (0,1 — (b/c)).

(9) fo(r) = (K — &)/(& — 1K) is strictly increasing from (0,1) onto (b/(c — b), 00).

(10) fio(r) = (KX — B(a,b)/2)/log(1/1") is strictly increasing from (0,1) onto
(abB(a,b)/c, D), where D =1 ifc=a+b and D = o0 if c < a+b.

(11) fi1(r) = (B(a, b)/2—1"*K) /1% has positive Maclaurin coefficients and maps (0,1)
onto (B(a,b)(c —ab)/(2¢), B(a,b)/2).

(12) f12(r) = (K = B(a,b)/2)/ (" —1), for a+b > ¢, is strictly increasing from
(0,1) onto (abB(a,b)/(2¢(a+b—c)),B(c,a+b—c)/2).

(13) f13(r) = (1—a—(b—c)r*)E—(1—a)r*K) /r® has negative Maclaurin coefficients,
except for the constant term, with

f13(0+) = (¢ +1 —a)(c — b)B(a, b) /(2¢)

and fi3(1—=) = (c+1—a—b)E(1).
(14) fuu(r) = (¢ — a)& — (b — a)r*K has negative Maclaurin coefficients, except for
the constant term, and maps [0,1] onto [C, D], where

C=(c—a)€(l) and D = (¢ —b)B(a,b)/2.

Proof. (1) From (3.6)

dF(a™) _ (a—1) (F - F(a)) = (a—1)b

dz z c

F(a,b+1;¢+1;2).

Putting z = 7? and multiplying by B(a,b)/2, we get
K—€&  bB(a,b)

. .2
- oy F(a,b+1;¢4 1;r7).

Hence
bF(a,b+1;c+ 1;7?)

hilr) = c F(a,b;c;7?)

Thus f1(0) = b/c. The ratio of the coefficients of the numerator and denominator equals

ba,n)(b+1,n)(c,n) bb+n ¢ b+4n . c—b

cle+1,n)(a,n)b,n) ¢ b c+n c+n  c+n’
which is increasing in n. Hence the result follows from Theorem 4.3. The limit f;(1—) =1
follows from (3.9).
(2) From (3.6) and (3.7), we get

dF(a—) (a—1) (F— F(a—)) = (a — 1)(F + uF(CJr)) -

dz z c
Hence putting z = r2, we get
JCT—QE =K+ WF(a,b;chl;rQ).
Thus,
falr) = EZ DB e 1i2),

2c
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which proves the assertion. The limiting values follow from (3.9).

(3) By (3.9),
firy = B@DFCLhar)
= B(;’ b>F(c+ 1 —a,c—bc;r?),
and the result follows.
(4) By (3.9),
o) = Dot
= B(;’ b)F(c —a,c—b;c;r?),
and the result follows.
(5) By (3.9)
o) = 2D pa 1) = 20D e pe 1 g e — ).

which is a product of two Maclaurin series with positive coefficients, hence the result.
(6) We have that

fo(r) = &(r) = (&(r) = r"°K(r)).
Hence, by (2), fs(r) — B(a,b)/2 has all Maclaurin coefficients negative.
(7) The positivity of Maclaurin coefficients and the limiting values are clear. Next,
by (4.15), after simplification, we get
d 2r

iy | —
ar 8% = Ty

((Hb_ o4 (= 0E —r’QJC)) |

r2

which has positive Maclaurin coefficients by (2) and (6).
(8) fs(r) =1 — fi(r), so that the result follows from (1).
(9) fo(r) = fi(r)/ fs(r), hence the result follows from (1) and (8).
(10) The ratio of the coefficients equals

B(a,b)(a,n)(b,n)

(c,n)(n —1)! "
say. Then
Twi1  (a+n)(b+n)
= >1,
T, (C + n)n
so that the monotonicity follows from 4.3. The limiting values follow from (3.9).
(11)
KX —-DB/2
fulr) = > /
,
— E 1_a_b Z (a7n)(b’n)(1_ (a+n)(b+ ))T2n :
2 c =\ (¢n)nl (c+mn)(n+1)



which has all coefficients positive. The limiting values are obvious.
(12) The ratio has the indeterminate form 0/0 at » = 0. The derivative ratio equals

abB(a,b) F(a+1,b+1;c+1;r?%) abB(a, b) )
20(& +b— C) pr2(c—a—b-1) 20(a +b— C) (C a,c e+ Lir )7

by (3.9), and so the result follows by Lemma 4.1.
(13) From (3.6) and (3.7)

ch(zz_) - — ((a C14b-F(a) + ! _Ca)(c - b)F(a—,c+))
G . Y (p ~ Fla-)).
Multiplying by z(1 — z)B(a,b)/2, we get
z2la—1+b—c)E+ (c+1 —Ca)(c —b) zF(a—,c+)B(62l’ ) =a—1)1=-2)(K-¢).

With z = r? this yields the result.

(14) In the Gauss contiguous relation in [R, Exercise 21(9), p. 71|, if we change z to
r? and multiply by B(a,b)/2, then we get fi4(r) = ((¢ — b)B(a,b)/2)F(a,b— 1;¢;7?), so
that the assertions on the coefficients follow. The limiting values are clear. 0

4.22. Remark. In the classical case, @ = b = 1/2 and ¢ = 1, the boundary values
in the above result 4.21 (13) reduce to f13(0+) = 37/8 and fi3(1—) = 1, showing that
the above result is quite sharp.

4.23. Theorem. Let0<a<c,b=c—a, R=R(a,c—a)=—Y(a)—V(c—a)—27,
and B = B(a,c—a). Then

(1) The function f(r) = Ka.(r) + logr’ has negative Maclaurin coefficients, except
for the constant term, and maps [0,1) onto (R/2, B/2].

(2) The function g(r) = Ka.(r) + (1/r*)logr’ has positive Maclaurin coefficients
and maps (0,1) onto ((B —1)/2,R/2) if a,b € (0,1), while it has negative Maclaurin
coefficients and maps (0,1) onto (R/2,(B —1)/2) if a,b € (1,00).

(3) The function h(r) = r?K,.(r)/log(1/r') is strictly decreasing (respectively, in-
creasing) from (0,1) onto (1, B) ifa,b € (0,1) (respectively, onto (B, 1), if a,b € (1,00)).

(4) The function k(r) = Ko.(r)/log((ef/?)/r") is strictly decreasing from (0,1) onto
(1, B/R).

Proof. (1) That f(0+) = B(a,c—a)/2 is clear and f(1—) = R(a,c — a)/2 follows
from [AVV, Theorem 1.52 (2)]. Next,

-+ 535 (122 1) e

(¢,n)n! n
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Thus, we need to show that 7, = (a,n)(b,n)/((c,n)(n —1)!) < 1. Now

Toe1  (a+n)(b+n) (a+bn+n®+ab
T,  (c+n)n  (a+Db)n+n?

> 1,

and lim,, ., 7, = 1 by Stirling’s formula. Hence T,, < 1 for alln =1,2,3,....

(2)

B .. logr' B 1
o0 =5 T =5y
)

Next, g(r) = f(r) + (1/r? — 1)logr’, so that g(1—) = f(1-) = R/2, from (1). Next,

1
29(r) = BF(a,b;c;r?) — r—log1

S E

Let

Then
Tt (atn)(b+n)(n+2)

T,  (c+n)(n+1)?
Now (a+n)(b+n)(n+2)—(c+n)(n+1)?> = —(1 —ab)n— (a+b—2ab), which is negative
(positive) if a,b € (0,1) (a,b € (1,00)). By Stirling’s formula, lim,, .., 7,, = 1. Hence the
result follows.

(3)

-7

so that h(0+) = B and h(1—) = 1 are clear. Next,

+1,

(a,n)(b,n) . 2n
an 0 (e,m)n! r

h(r) =

so that the coefficient ratio equals (a,n)(b,n)(n + 1)/((c,n)n!), which is decreasing if
a,b € (0,1) and increasing if a,b € (1,00). Hence the result follows from [PV, Lemma
2.1].

(4) We have k(r) = 1+ (f(r) — R/2)/log(ef*/? /r"). Hence the result follows from (1).
U

4.24. Theorem. (1) Let0 < a,b < c and2ab < c < a+0b< c+1/2. Then the
function f(r) =r'"K(r) is strictly decreasing from [0,1) onto (0, B(a,b)/2].

(2) Let 0 < a,b < ¢ < a+b. Then the function g(r) = r"**7=)(K — &)/r? has
positive Maclaurin coefficients and maps (0,1) onto (bB(a,b)/(2¢), B(c,a+b—c)/2).

(8) Let 0 < a,b < 1,c=a+b, and a(20+ 1) < b+ 1 < 1/a. Then the function
h(r) = (X — &€)/log(1/r") is decreasing from (0,1) onto (1,0B(a,b)/c).
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Proof. (1) Clearly f(0) = B(a,b)/2 and by (3.9), f(1) = 0. We have f(r) =
g(r)/h(r), where

c,n)n!

= (a,n)(b,n) o,
o(r) = Bla.p) ) B0
(o)
and .
h(r) =2 Z dnr®
0
withdy=1landd,=(1-3-...-(2n—1))/(2-4-...-(2n)) for n =1,2,3,.... Hence, the

coefficient ratio equals

B(a,b)(a,n)(b,n)2"

=)t 3 . n-1)
Then
Toyr  2(n+1)(n+0b)
T, 2n+1)(n+c)’
Now

2n+1)(n+c)—2(n+a)(n+b) =n(2c+1—2a—2b)+c—2ab>0,

so that T, is decreasing and hence by Theorem 4.3, f is also decreasing.
(2) From (3.6), (3.9) and (4.16), we get

B _
f(T) _ b ;CL, b) 7,,IQ(CL-H) C)F(a,b+ 1’ c+ 1;7"2) _
C

bB(a,b)
2c

Flc+1—a,c—bjc+1;7r%).

Hence the assertion follows from (3.9).
(3) As in (2), from (3.6), (3.9) and (4.16), we get

bB(a,b) r*F(a,b+ 1;¢c+ 1;7?)

hr) = c 2log(1/r")

Writing the Maclaurin series expansion of both the numerator and the denominator, the
ratio of coefficients equals

bB(a,b) (a,n)(b+1,n)(n+1)  B(a,b)(a,n)(b,n+1)(n+ 1).

Tn — =
c (c+1,n)n! (c,n+ 1)n!
Hence
Tin _ (a+m)b+n+n+2)
T,  (c+tn+)n+1)2
Then,

(c+n+1)n+1)2—(a+n)b+n+1)(n+2)=n(l—-a—ab)+ (1+b—2ab—a) > 0.

Hence, T), is decreasing, so that the result follows by (3.9) and Theorem 4.3. 0

4.25. Remark. Theorem 4.24(3) generalizes [AQVV, Lemma 5.2 (12)]. The latter
follows if we put ¢ = 1 in Theorem 4.24(3).
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4.26. Differential equations.  The hypergeometric function w = F'(a, b;c; z) sat-
isfies the differential equation [R, p. 54]

2(1—2)w" + (c— (a+ b+ 1)z)w' —abw = 0.
Changing the variable z to 22, this reduces to
2(1 = 22)w" 4+ (2¢ — 1 — (2a + 2b + 1)2*)w’ — 4abzw = 0.

In particular, the generalized elliptic integrals, w = K,.(r) and w = X, (r), satisfy,
respectively, the differential equations

(4.27) rr?w” + (2¢ — 1 — (2¢ + 1)r?)w’ — da(c — a)rw =0,
and
(4.28) rr?w” — (1= (2c+ DrP)w’ — 4alc — a)rw = 0.

In the special case ¢ = 1 the above two equations coincide (cf. [AQVV, (4.3)], [L, 3.8.19,
p. 75]). Next, the generalized elliptic integrals w = E,c(r) and w = &, (r) satisfy,
respectively, the differential equations

(4.29) rrw"” — (2¢ — 1)r"w' 4+ 4(1 — a)(c — a)rw =0,
and
(4.30) rr?uw” — (14 (2¢ — 1)r2)w’ +4(1 —a)(c — a)rw = 0.

In the special case ¢ = 1 the equations (4.29) and (4.30) are still different unlike in the
case of (4.27) and (4.28) (cf. [L, 3.8.17, p. 74 and 3.8.23, p. 75]).

4.31. Correction. In [AQVV, (4.3), p. 14] the first differential equation has a
symmetry property, namely, it is satisfied both by X, and X,. However, the second
differential equation is satisfied only by &,, and not by &/. The differential equation
satisfied by w = &/, is obtained by putting ¢ = 1 in (4.30). Thus it is

rr?w" — (142w’ +4(1 — a)?*rw = 0.

We use the notation

for the Schwarzian derivative.

4.32. Lemma. [R2, p. 9] Let wy,wy be linearly independent solutions of the differ-
ential equation w" + p(z)w’ + q(z)w = 0. Then W = wy/wy satisfies the differential
equation
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4.33. Theorem. Let0 < a,b<1 and2c=a-+0b+ 1. Then the modulus pt = figp.c
satisfies the differential equation

where 21— (4 — 1)r? dab
c—1—(4c—1)r a
p(r) = v c oA =-—5
Proof. Follows immediately from Lemma 4.32 and (4.27). O

4.34. Theorem. Let 0 < a,b < 1 and 2c = a +b. Then the function v = &'/€
satisfies the differential equation

where 2 —1— (de — 1) Aa—1)b
c—1—(4c—=1)r a—
pr) = 2T Qe T gy e D
Proof. Follows immediately from Lemma 4.32 and (4.29). O

The classical Landen identities [WW, p. 507], [R, Theorem 23] for the case a = b =
1/2, ¢ = 1, state that

(4.35) 5% ( Zﬁ) — (14K, X <1 - ”) SRS

147 147 2

for all » € (0,1). The next pair of inequalities generalize these formulas, see [QV2].

4.36. Theorem. Let 0 < a < min{c,1}, r € (0,1), s = 24/r/(1 +71), and t =
(1—=r)/(1+7). Let B= B(a,c—a) and R=—%¥(a) — V(c—a) — 2v. Then

(1) Koels) < (14 1)K (1) < Koels) + (R — log 16)/2,

(2) Konlr) < (2/(1+ 1) Kornlt) < Koolr) + (R — log 16)/2
with equality in each case if and only if a =1/2 and ¢ = 1.

4.37. Theorem. Fora >0, r € [0,1], and t = 2/r/(1 4+ r), the following general-
izations of Landen identities (4.35) hold:

(1) Ka2a(t) = (1 + T)2ag§a,a+(1/2) (1),
(2) jc:z,aJr(l/Q)(t) = (%) K;,Qa(r)'

Proof. Assertion (1) follows from [R, Theorem 23] by putting a = b. Assertion (2)
follows from (1), by changing r to 7. O
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4.38. Lemma. [If0 < a < min{c, 1} and ¢ < a+ (1/2), then the function f(r) =
1Ko c(r)/arthr is strictly decreasing from (0,1) onto (1, B/2), where B = B(a,c — a).

Proof. Let f(r) = g(r)/h(r), where g(r) = rK,.(r) and h(r) = arthr. Then
g(0) = h(0) =0 and

g'(r)/H(r) = 2(c = a)€ac(r) + (1 = 2(c = a))(r"*)Koelr)

which, by Lemma 4.21 (6), being a sum of two strictly decreasing functions, is also so.
Hence, the monotonicity follows from L’Hopital’s Monotone Rule, Lemma 4.1. Finally,
f(0+) = B/2 by L'Hopital’s Rule and f(1—) = ¢'(1—)/h'(1—) = 1, again by L’Hopital’s
Rule. OJ

4.39. Conjecture. Based on experimental evidence, we make the following conjec-
tures. For the special case ¢ = 1, these are proved in [AQVV, Theorems 5.5 and 6.7]. Let
a € (0,1) and let ¢ € [1,00). Then

(1) The function f(r) = puac(r)/log(1/r) is strictly increasing from (0,1) onto ((c +
a—1)B(a,c),oc0).

(2) For each K > 1, the function g(r) = p3°(r)/rY¥ is strictly decreasing from (0, 1]
onto [1,e?), d = (1 — (1/K))R(a,c — a)/2. In particular,

K < o (r) < eV K

(3) The function h(r) = pa.(r)+logr is strictly decreasing from (0, 1] onto [0, R(a, c—
a)/2).
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