TO THE THEORY OF MAPPINGS WITH FINITE AREA DISTORTION

D. Kovtonyuk and V. Ryazanov

November 17, 2004 (helsinki.tex)

Abstract

In all dimensions k = 1, ..., n - 1, we show that mappings f in \mathbb{R}^n with finite distortion of hyperarea satisfy certain modulus inequalities in terms of inner and outer dilatation of the mappings.

1 Introduction

Quasiconformal and quasiregular mappings have been recently generalized to several directions, see e.g. [AIKM], [GI], [HK], [IKO₁], [IKO₂], [IM], [IR], [IS], [KKM₁], [KKM₂], [KO], [MRSY₁], [MRSY₂], [MV₁], [MV₂], [RSY₁] - [RSY₃]. In all those generalizations the modulus techniques play a key role. The following concept was proposed in [MRSY₁]. Let D be a domain in \mathbb{R}^n , $n \geq 2$, and let $Q: D \to [1, \infty]$ be a measurable function. A homeomorphism $f: D \to \overline{\mathbb{R}^n} = \mathbb{R}^n \bigcup \{\infty\}$ is called a **Q-homeomorphism** if

(1.1)
$$M(f\Gamma) \leq \int_{D} Q(x) \cdot \rho^{n}(x) \ dm(x)$$

for every family Γ of paths in D and every admissible function ρ for Γ .

Recall that, given a family of paths Γ in \mathbb{R}^n , a Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called **admissible** for Γ , abbr. $\rho \in adm \Gamma$, if

(1.2)
$$\int_{\gamma} \rho \, ds \geq 1$$

for each $\gamma \in \Gamma$. The (conformal) **modulus** of Γ is the quantity

(1.3)
$$M(\Gamma) = \inf_{\rho \in adm \, \Gamma} \int_{D} \rho^{n}(x) \, dm(x)$$

with the measure and the integral by Lebesgue.

In the work [MRSY₂], the concept has been extended to mappings with branching. Note that the modulus inequality (1.1) in the definition of a Q-homeomorphism has first appeared for n = 2 in connection with the so-called BMO-quasiconformal mappings, see [RSY₁] - [RSY₃], cf. also V(6.6) in [LV] in the theory of quasiconformal mappings. In this paper, we consider the modulus of families of surfaces of various dimensions in \mathbb{R}^n and introduce the notation of (k, Q)-mappings.

Below we assume that Ω is an open set in \mathbb{R}^n , $n \geq 2$, and that all mappings $f : \Omega \to \mathbb{R}^n$ are continuous. Similarly [MRSY₂], given a pair $Q(x, y) = (Q_1(x), Q_2(y))$ of measurable functions $Q_1 : \Omega \to [1, \infty]$ and $Q_2 : \Omega_* \to [1, \infty]$ and k = 1, ..., n-1, we say that a mapping $f : \Omega \to \mathbb{R}^n$, $f(\Omega) = \Omega_*$, is a (\mathbf{k}, \mathbf{Q}) -mapping if

(1.4)
$$M(f\Gamma) \leq \int_{\Omega} Q_1(x) \cdot \rho^n(x) \ dm(x)$$

and

(1.5)
$$M(\Gamma) \leq \int_{\Omega_*} Q_2(y) \cdot \rho_*^n(y) \ dm(y)$$

for every family Γ of k-dimensional surfaces S in Ω and all $\rho \in adm \Gamma$ and $\rho_* \in adm f\Gamma$.

Given a mapping $\varphi: E \to \mathbb{R}^n$ and a point $x \in E \subseteq \mathbb{R}^n$, let

(1.6)
$$L(x,\varphi) = \limsup_{y \to x} \sup_{y \in E} \frac{|\varphi(y) - \varphi(x)|}{|y - x|},$$

and

(1.7)
$$l(x,\varphi) = \liminf_{y \to x} \inf_{y \in E} \frac{|\varphi(y) - \varphi(x)|}{|y - x|}.$$

A mapping $f : \Omega \to \mathbb{R}^n$ is said to be of **finite metric distortion**, abbr. $f \in FMD$, if f has (N)-property and

$$(1.8) 0 < l(x,f) \leq L(x,f) < \infty a.e.$$

Note that a mapping $f: \Omega \to \mathbb{R}^n$ is of FMD if and only if f is differentiable a.e. and has (N)- and (N^{-1}) -properties, see Corollary 3.4 in [MRSY₂]. Recall that a mapping $f: X \to Y$ between measurable spaces (X, Σ, μ) and (X', Σ', μ') is said to have (\mathbf{N}) -property if $\mu'(f(E)) = 0$ whenever $\mu(E) = 0$. Similarly, fhas the (\mathbf{N}^{-1}) -property if $\mu(E) = 0$ whenever $\mu'(f(E)) = 0$.

We say that a mapping $f : \Omega \to \mathbb{R}^n$ has (\mathbf{A}_k) -property if the two conditions hold:

 $(A_k^{(1)})$: for a.e. k-dimensional surface S in Ω the restriction $f|_S$ has (N)-property;

 $(A_k^{(2)})$: for a.e. k-dimensional surface S_* in $\Omega_* = f(\Omega)$ the restriction $f|_S$ has (N^{-1}) -property for each lifting S of S_* .

Here a surface S in Ω is a **lifting** of a surface S_* in \mathbb{R}^n under a mapping $f : \Omega \to \mathbb{R}^n$ if $S_* = f \circ S$. We also say that a mapping $f : \Omega \to \mathbb{R}^n$ is **of finite distortion of area in dimension** k = 1, ..., n-1, abbr. $f \in FAD_k$, if $f \in FMD$ and has the (A_k) -property. Note that analogues of (A_k) -properties and the classes FAD_k have been first formulated in the mentioned work [MRSY₂] for k = 1 where it is additionally requested local rectifiability of S_* and S in $(A_k^{(1)})$ - and $(A_k^{(2)})$ -properties, respectively. Thus, the mapping class FLD (finite length distortion) in [MRSY₂] is a subclass of FAD_1 . Finally, we say that a mapping $f: \Omega \to \mathbb{R}^n$ is of **finite area distortion**, abbr. $f \in FAD$, if $f \in FAD_k$ for every k = 1, ..., n - 1.

We show that every mapping f with finite area distortion is a (k, Q)-mapping for every k = 1, ..., n - 1 with

(1.9)
$$Q(x,y) = \left(K_I(x), \sum_{z \in f^{-1}(y)} K_O(z)\right)$$

where

(1.10)
$$K_{I}(x) = K_{I}(x, f) = \begin{cases} \frac{|J(x, f)|}{l(f'(x))^{n}}, & \text{if } J(x, f) \neq 0\\ 1, & \text{if } f'(x) = 0 \end{cases}$$

(1.11)
$$K_O(x) = K_O(x, f) = \begin{cases} \frac{||f'(x)||^n}{|J(x, f)|}, & \text{if } J(x, f) \neq 0\\ 1, & \text{if } f'(x) = 0 \end{cases}$$

and $K_I(x, f) = \infty = K_O(x, f)$ otherwise. As usual, here f'(x) denotes the Jacobian matrix of f at the point of differentiability x, $J(x, f) = \det f'(x)$ is its determinant and

(1.12)
$$l(f'(x)) = \min\{|f'(x)h|: h \in \mathbb{R}^n, |h| = 1\}$$

and

(1.13)
$$||f'(x)|| = \max\{|f'(x)h|: h \in \mathbb{R}^n, |h| = 1\}$$

The quantity $K_I(x, f)$ is called the inner dilatation and $K_O(x, f)$ the outer dilatation of the mapping f.

2 Preliminaries

Below H^k , k = 1, ..., n - 1 denotes the **k**-dimensional Hausdorff measure in \mathbb{R}^n , $n \ge 2$. More precisely, if A is a set in \mathbb{R}^n , then

(2.1)
$$H^k(A) = \sup_{\varepsilon > 0} H^k_{\varepsilon}(A),$$

(2.2)
$$H_{\varepsilon}^{k}(A) = V_{k} \inf \sum_{i=1}^{\infty} \left(\frac{\delta_{i}}{2}\right)^{k}$$

where the infimum is taken over all countable collections of numbers $\delta_i \in (0, \varepsilon)$ such that some sets A_i in \mathbb{R}^n with diameters δ_i cover A. Here V_k denotes the volume of the unit ball in \mathbb{R}^k . H^k is an outer measure in the sense of **Caratheodory**, i.e.,

- 1) $H^{k}(X) \leq H^{k}(Y)$ whenever $X \subseteq Y$; 2) $H^{k}(\Sigma X_{i}) \leq \Sigma H^{k}(X_{i})$ for each sequence X_{i} of sets; 2) $H^{k}(X \cup U) = H^{k}(U) = H^{k}(U)$
- 3) $H^k(X \cup Y) = H^k(X) + H^k(Y)$ whenever dist(X, Y) > 0.

A set $E \subset \mathbb{R}^n$ is called **measurable** with respect to H^k if $H^k(X) = H^k(X \cap E) + H^k(X \setminus E)$ for every set $X \subset \mathbb{R}^n$. It is well-known that every Borel set is measurable with respect to any outer measure in the sense of Caratheodory, see e.g. [Sa], p. 52. Moreover, H^k is Borel regular, i.e., for every set $X \subset \mathbb{R}^n$ there is a Borel set $B \subset \mathbb{R}^n$ such that $X \subset B$ and $H^k(X) = H^k(B)$, see e.g. [Sa], p. 53, and 2.10.1 in [Fe]. The latter implies that, for every measurable set $E \subset \mathbb{R}^n$, there exist Borel sets B_* and $B^* \subset \mathbb{R}^n$ such that $B_* \subset E \subset B^*$ and $H^k(B^* \setminus B_*) = 0$, see e.g. 2.2.3 in [Fe]. In particular, $H^k(B^*) = H^k(E) = H^k(B_*)$.

Let ω be an open set in \mathbb{R}^k , k = 1, ..., n-1. A (continuous) mapping $S : \omega \to \mathbb{R}^n$ is called a k-dimensional surface S in \mathbb{R}^n . Sometimes we call the image $S(\omega) \subseteq \mathbb{R}^n$ by the surface S, too. The number of preimages

(2.3)
$$N(S,y) = N(S,y,\omega) = card S^{-1}(y) = card \{x \in \omega : S(x) = y\}$$

is said to be a **multiplicity function** of the surface S at a point $y \in \mathbb{R}^n$. In the other words, N(S, y) means the multiplicity of covering of the point y by the surface S. It is known that multiplicity function is lower semi-continuous, i.e.,

$$N(S,y) \geq \liminf_{m \to \infty} N(S,y_m)$$

for every sequence $y_m \in \mathbb{R}^n$, m = 1, 2, ... such that $y_m \to y \in \mathbb{R}^n$ as $m \to \infty$, see e.g. [RR], p. 160. Thus, the function N(S, y) is Borel measurable and hence measurable with respect to every Hausdorff measure H^k , see e.g. [Sa], p. 52.

The k-dimensional Hausdorff area in \mathbb{R}^n (or simply **area**) associated with a surface $S: \omega \to \mathbb{R}^n$ is given by

(2.4)
$$S(B) = \int_{B} N(S,y) \ dH^{k}y$$

for every Borel set B and, more generally, for an arbitrary set which is measurable with respect to H^k in \mathbb{R}^n . The surface S is **rectifiable** if $S(\mathbb{R}^n) < \infty$.

If $\rho : \mathbb{R}^n \to [0, \infty]$ is a Borel function, then its **integral over** S is defined by the equality

(2.5)
$$\int_{S} \rho \ dS = \int_{\mathbb{R}^{n}} \rho(y) \ N(S,y) \ dH^{k}y \ .$$

Given a family Γ of k-dimensional surfaces S, a Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called **admissible** for Γ , abbr. $\rho \in adm \Gamma$, if

(2.6)
$$\int_{S} \rho^k \, dS \geq 1$$

for every $S \in \Gamma$. Given $p \in (0, \infty)$, the **p**-modulus of Γ is the quantity

(2.7)
$$M_p(\Gamma) = \inf_{\rho \in adm\Gamma} \int_{\mathbb{R}^n} \rho^p(x) \ dm(x) \ .$$

The modulus is itself an outer measure on the set of families of surfaces.

We say that Γ_2 is **minorized** by Γ_1 and write $\Gamma_2 > \Gamma_1$ if every $S \subset \Gamma_2$ has a subsurface which belongs to Γ_1 . It is known that $M_p(\Gamma_1) \ge M_p(\Gamma_2)$, see [Fu], p. 176-178. We also say that a property P holds for **p**-**a.e.** (almost every) k-dimensional surface S in a family Γ if a subfamily of all surfaces of Γ for which P fails has the p-modulus zero. If 0 < q < p, then P also holds for q-a.e. S, see Theorem 3 in [Fu]. In the case p = n, we write simply a.e.

2.8. Remark. The definition of the modulus immediately implies that, for every $p \in (0, \infty)$ and k = 1, ..., n - 1

- 1) *p*-a.e. *k*-dimensional surface in \mathbb{R}^n is rectifiable;
- 2) given a Borel set B in \mathbb{R}^n of (Lebesgue) measure zero,

$$(2.9) S(B) = 0$$

for p-a.e. k-dimensional surface S in \mathbb{R}^n .

2.10. Lemma. Let k = 1, ..., n - 1, $p \in [k, \infty)$ and let C be an open cube in \mathbb{R}^n , $n \ge 2$, whose edges are parallel to coordinate axes. If a property P holds for p-a.e. k-dimensional surface S in C, then P also holds for a.e. k-dimensional plane in C which is parallel to a k-dimensional coordinate plane H.

The latter a.e. is related to the Lebesgue measure in the corresponding (n-k)-dimensional coordinate plane H^{\perp} which is perpendicular to H.

Proof. Let us assume that the conclusion is not true. Then by regularity of the Lebesgue measure m_{n-k} in H^{\perp} there is a Borel set B such that $m_{n-k}(B) > 0$ and P fails for a.e. k-dimensional plane S in C which is parallel to H and intersects B. If a Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is admissible for the given family Γ of surfaces S such that $\rho \equiv 0$ outside of $C_0 \times B$ where C_0 is the projection of C on H, then by the Hölder inequality

$$\int_{C_0 \times B} \rho^k(x) \ dm(x) \ \le \ \left(\int_{C_0 \times B} \rho^p(x) \ dm(x) \right)^{\frac{k}{p}} \left(\int_{C_0 \times B} \ dm(x) \right)^{\frac{p-k}{p}}$$

and hence by the Fubini theorem

$$\int_{\mathbb{R}^n} \rho^p(x) \ dm(x) \ge \frac{\left(\int_{C_0 \times B} \rho^k(x) \ dm(x)\right)^{\frac{p}{k}}}{\left(\int_{C_0 \times B} \ dm(x)\right)^{\frac{p-k}{k}}} \ge \frac{(m_{n-k}(B))^{\frac{p}{k}}}{(h^k \cdot m_{n-k}(B))^{\frac{p-k}{k}}}$$

i.e.,

$$M_p(\Gamma) \geq \frac{m_{n-k}(B)}{h^{p-k}}$$

where h is the length of the edge of the cube C. Thus, $M_p(\Gamma) > 0$ that contradicts the hypothesis of the lemma.

The following statement is an analogue of the Fubini theorem, cf. e.g. [Sa], p. 77. It extends Theorem 33.1 in [Va], cf. also Theorem 3 in [Fu] and Lemma 2.13 in [MRSY₂].

2.11. Theorem. Let k = 1, ..., n - 1, $p \in [k, \infty)$ and let E be a subset in open set $\Omega \subset \mathbb{R}^n$, $n \geq 2$. Then E is measurable by Lebesgue in \mathbb{R}^n if and only if E is measurable with respect to area on p-a.e. k-dimensional surface S in Ω . Moreover, |E| = 0 if and only if

$$(2.12) S(E) = 0$$

on p-a.e. k-dimensional surface S in Ω .

Proof. By the Lindelöf property in \mathbb{R}^n and the minorant property of M_p , we may assume without loss of generality that Ω is an open cube C in \mathbb{R}^n whose edges are parallel to the coordinate axes.

Suppose first that E is Lebesgue measurable in \mathbb{R}^n . Then by the regularity of the Lebesgue measure there exist Borel sets B_* and B^* in \mathbb{R}^n such that $B_* \subset E \subset$ B^* and $|B^* \setminus B_*| = 0$. Thus, by 2) in Remark 2.8 $S(B^* \setminus B_*) = 0$ and hence E is measurable by area on p-a.e. k-dimensional surface S in C. Conversely, if the latter is true, then E is measurable by area on a.e. k-dimensional plane H in Cwhich is parallel to a k-dimensional coordinate plane, see Lemma 2.10. Thus, Eis measurable by the Fubini theorem.

Now, suppose that |E| = 0. Then there is a Borel set B such that |B| = 0and $E \subset B$. Then by 2) in Remark 2.8 the relation (2.12) holds for p-a.e. k-dimensional surface S in C. Conversely, if the latter is true, then, in particular, S(E) = 0 on a.e. k-dimensional plane H in C which is parallel to a k-dimensional coordinate plane, see Lemma 2.10. Thus, |E| = 0 again by the Fubini theorem.

2.13. Remark. Say by the Lusin theorem, see e.g. 2.3.5 in [Fe], for every measurable function $\rho : \mathbb{R}^n \to [0, \infty]$, there is a Borel function $\rho^* : \mathbb{R}^n \to [0, \infty]$ such that $\rho^* = \rho$ a.e. in \mathbb{R}^n . Thus, by Theorem 2.11 ρ is measurable on p-a.e. k-dimensional surface S in \mathbb{R}^n for every $p \in (0, \infty)$ and k = 1, ..., n - 1.

A Lebesgue measurable function $\rho : \mathbb{R}^n \to [0, \infty]$ is said to be **p**-extensively admissible for a family Γ of k-dimensional surfaces S in \mathbb{R}^n , abbr. $\rho \in ext_p adm\Gamma$, if

(2.14)
$$\int_{S} \rho^k \, dS \ge 1$$

for p-a.e. $S \in \Gamma$. The **p**-extensive modulus $\overline{M}_p(\Gamma)$ of Γ is the quantity

(2.15)
$$\overline{M}_p(\Gamma) = \inf_{\mathbb{R}^n} \int_{\mathbb{R}^n} \rho^p(x) \, dm(x)$$

where the infimum is taken over all $\rho \in ext_p adm \Gamma$. In the case p = n, we use notations $\overline{M}(\Gamma)$ and $\rho \in ext adm \Gamma$, respectively.

2.16. Corollary. For every $p \in (0, \infty)$, k = 1, ..., n - 1, and every family Γ of k-dimensional surfaces in \mathbb{R}^n ,

(2.17)
$$\overline{M}_p(\Gamma) = M_p(\Gamma).$$

Indeed, $\overline{M}_p(\Gamma) \leq M_p(\Gamma)$ by definition and $\overline{M}_p(\Gamma) \geq M_p(\Gamma)$ by Remark 2.13.

3 Modulus inequalities

The following lemma makes possible to extend the so-called K_0 -inequality from the theory of quasiregular mappings to FAD mappings, see e.g. [MRV], p. 16, [Ri], p. 31, [Vu], p. 130, cf. also [KO] and [MRSY₂].

3.1. Lemma. Let a mapping $f : \Omega \to \mathbb{R}^n$ be of finite metric distortion with $(A_k^{(1)}-)$ property for some k = 1, ..., n-1 and let a set $E \subset \Omega$ be measurable by Lebesgue. Then

(3.2)
$$M(\Gamma) \leq \int_{f(E)} K_I(y, f^{-1}, E) \cdot \rho_*^n(y) \, dm(y)$$

for every family Γ of k-dimensional surfaces S in E and $\rho_* \in ext \ adm \ f\Gamma$ where

(3.3)
$$K_I(y, f^{-1}, E) = \sum_{x \in E \cap f^{-1}(y)} K_O(x, f) .$$

In particular, here we have in the case $E = \Omega$

(3.4)
$$K_I(y, f^{-1}, D) = K_I(y, f^{-1}) := \sum_{x \in f^{-1}(y)} K_O(x, f) .$$

Proof. Let B be a (Borel) set of all points x in Ω where f has a differential f'(x) and $J(x, f) = \det f'(x) \neq 0$. Then $B_0 = \Omega \setminus B$ has the Lebesgue measure zero in \mathbb{R}^n because $f \in FMD$. It is known that B is the union of a countable collection of Borel sets B_l , l = 1, 2, ... such that $f_l = f|_{B_l}$ is a homeomorphism which is bi–Lipschitz, see e.g. 3.2.2 in [Fe]. Setting $B_1^* = B_1$, $B_2^* = B_2 \setminus B_1$ and

$$B_l^* = B_l \setminus \bigcup_{m=1}^{l-1} B_m$$

we may assume that B_l are mutually disjoint. Note that by 2) in Remark 2.8 $S(B_0) = 0$ for a.e. k-dimensional surface S in Ω and by $(A_k^{(1)})$ -property $S_*(f(B_0)) = 0$ where $S_* = f \circ S$ also for a.e. k-dimensional surface S.

Given $\rho_* \in ext \ adm \ f\Gamma$, set

(3.5)
$$\rho(x) = \begin{cases} \rho_*(f(x))||f'(x)||, & \text{for } x \in \Omega \setminus B_0, \\ 0, & \text{otherwise.} \end{cases}$$

We may assume without loss of generality that $\rho_* \equiv 0$ outside of f(E). Arguing piecewise on B_l , we have by 3.2.20 and 1.7.6 in [Fe] and Theorem 2.11, see also Remark 2.13, that

(3.6)
$$\int_{S} \rho^k \, dS \geq \int_{S_*} \rho^k_* \, dS \geq 1$$

for a.e. $S \in \Gamma$, i.e., $\rho \in ext \ adm \ \Gamma$. Hence by (2.17)

(3.7)
$$M(\Gamma) \le \int_{\Omega} \rho^{n}(x) \, dm(x) \, .$$

Now, the change of variables, see e.g. [Mu], p. 31, we obtain that

(3.8)
$$\int_{f(B_l \cap E)} K_O(f_l^{-1}(y), f) \cdot \rho_*^n(y) \, dm(y) = \int_{\Omega} \rho_l^n(x) \, dm(x)$$

where $\rho_l = \rho \cdot \chi_{B_l}$ and every $f_l = f|_{B_l}$, l = 1, 2, ... is injective by the construction.

Thus, by the Lebesgue monotone convergence theorem, see e.g. [Sa], p. 27,

(3.9)
$$\int_{f(E)} K_I(y, f^{-1}, E) \cdot \rho_*^n(y) \, dm(y) = \int_{\Omega} \sum_{l=1}^{\infty} \rho_l^n(x) \, dm(x) \geq M(\Gamma) \, .$$

The next inequality is a generalized form of the K_I -inequality which is also known as Poletskii's inequality, see [Pol], [Ri], p. 49–51, and [Vu], p. 131, cf. [MRSY₂].

3.10. Lemma. Let $f : \Omega \to \mathbb{R}^n$ be an *FMD* mapping with $(A_k^{(2)})$ -property for some k = 1, ..., n - 1. Then

(3.11)
$$M(f\Gamma) \leq \int_{\Omega} K_I(x, f) \cdot \rho^n(x) \, dm(x)$$

for every family Γ of k-dimensional surface S in Ω and $\rho \in ext adm \Gamma$.

Proof. Let B_l , l = 0, 1, 2, ..., be given as above in the proof of Lemma 3.1. By the construction and (N)-property $|f(B_0)| = 0$. Thus, by Theorem 2.11 $S_*(f(B_0)) = 0$ for a.e. $S_* \in f\Gamma$ and hence by $(A_k^{(2)})$ -property $S(B_0) = 0$ for a.e. $S_* \in f\Gamma$ where S is an arbitrary lifting of S_* under the mapping f, i.e., $S_* = f \circ S$.

Let $\rho \in ext \ adm \ \Gamma$ and

(3.12)
$$\tilde{\rho}(y) = \sup_{x \in f^{-1}(y) \cap \Omega \setminus B_0} \rho_*(x)$$

where

(3.13)
$$\rho_*(x) = \begin{cases} \rho(x)/l(f'(x)), & \text{for } x \in \Omega \setminus B_0, \\ 0, & \text{otherwise.} \end{cases}$$

.

Note that $\tilde{\rho} = \sup \rho_l$ where

(3.14)
$$\rho_l(y) = \begin{cases} \rho_*(f_l^{-1}(y)), & \text{for } y \in f(B_l), \\ 0, & \text{otherwise,} \end{cases}$$

and every $f_l = f|_{B_l}$, l = 1, 2, ... is injective. Thus, the function $\tilde{\rho}$ is measurable, see e.g. [Sa], p. 15.

Arguing as in (3.6) we obtain that

(3.15)
$$\int_{S_*} \tilde{\rho}^k \, dS_* \geq \int_S \rho^k \, dS \geq 1$$

for a.e. $S_* = f \circ S \in f\Gamma$ and, thus, $\tilde{\rho} \in ext \ adm \ f\Gamma$. Hence (2.17) yields

(3.16)
$$M(f\Gamma) \leq \int_{f(\Omega)} \tilde{\rho}^n(y) \, dm(y)$$

Further, by the change of variables we have that

(3.17)
$$\int_{B_l} K_I(x,f) \cdot \rho^n(x) \ dm(x) = \int_{f(\Omega)} \rho_l(y) \ dm(y) \ dm(y) = \int_{f(\Omega)} \rho_l(y) \ dm(y) \ dm(y) \ dm(y) = \int_{f(\Omega)} \rho_l(y) \ dm(y) \ dm(y) \ dm(y) \ dm(y) = \int_{f(\Omega)} \rho_l(y) \ dm(y) \ d$$

Finally, by Lebesgue's theorem we obtain the desired inequality

$$\int_{\Omega} K_I(x,f) \cdot \rho^n(x) \, dm(x) = \sum_{l=1}^{\infty} \int_{f(\Omega)} \rho_l(y) \, dm(y) = \int_{f(\Omega)} \sum_{l=1}^{\infty} \rho_l(y) \, dm(y) \ge M(f\Gamma) \, .$$

Combining Lemmas 3.1 and 3.10 we come to the main result.

3.18. Theorem. Let a mapping $f : \Omega \to \mathbb{R}^n$ belong to the class FAD_k for some k = 1, ..., n - 1. Then f is a (k, Q)-mapping in the dimension k with

(3.19)
$$Q(x,y) = (K_I(x,f), K_I(y,f^{-1}))$$

3.20. Corollary. Every FAD mapping f is a (k, Q)-mapping for each k = 1, ..., n - 1 with Q given in (3.19).

3.21. Remark. If $K_I(f) = \operatorname{ess} \sup K_I(x, f) < \infty$, then (3.11) for k = 1 yields the Poletskii inequality:

$$(3.22) M(f\Gamma) \leq K_I(f) M(\Gamma)$$

for every path family in Ω . If $K_O(f) = \operatorname{ess} \sup K_O(x, f) < \infty$ and E is a Borel set with $N(f, E) < \infty$, then we have from (3.2) the usual form of the K_O -inequality:

$$(3.23) M(\Gamma) \leq N(f, E) K_O(f) M(f\Gamma)$$

for every path family in E.

Acknowledgements. The research has been partially supported by the Fund of Fundamental Investigations of Ukraine, Grant 01.07/00241.

References

- [AIKM] ASTALA K., IWANIEC T., KOSKELA P. AND MARTIN G., Mappings of BMO-bounded distortion, Math. Annalen 317 (2000), 703–726.
- [EG] EVANS L.C. AND GAPIERY R.F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
- [Fe] FEDERER H., Geometric Measure Theory, Springer, Berlin etc., 1969.
- [Fu] FUGLEDE B., Extremal length and functional completion, Acta Math. 98 (1957), 171–219.
- [GI] GEHRING F.W. AND IWANIEC T., The limit of mappings with finite distortion, Ann. Acad. Sci. Fenn. Math. 24 (1999), 253–264.
- [HK] HEINONEN J. AND KOSKELA P., Sobolev mappings with integrable dilatations, Arch. Rational Mech. Anal. 125 (1993), 81–97.
- [IKO₁] IWANIEC T., KOSKELA P, AND ONNINEN J., Mappings of finite distortion: compactness, Ann. Acad. Sci. Fenn. Math. 27, no. 2 (2002), 391–417.
- [IKO₂] IWANIEC T., KOSKELA P, AND ONNINEN J., Mappings of finite distortion: monotonicity and continuity, Invent. Math. 144, no. 3 (2001), 507–531.
- [IM] IWANIEC T. AND MARTIN G., Geometrical Function Theory and Non-linear Analysis, Clarendon Press, Oxford, 2001.
- [IR] IGNAT'EV A. AND RYAZANOV V., To the theory of removable singularities of space mappings, Proc. of Inst. Appl. Math. & Mech. 8 (2003), 25–38.
- [IS] IWANIEC T. AND ŠVERÁK V., On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181–188.
- [KKM₁] KAUHANEN J., KOSKELA P. AND MALY J., Mappings of finite distortion: discreteness and openness, Arch. Rational Mech. Anal. 160 (2001), 135–151.
- [KKM₂] KAUHANEN J., KOSKELA P. AND MALY J., Mappings of finite distortion: condition N, Michigan Math. J. 49 (2001), 169–181.
- [KO] KOSKELA P. AND ONNINEN J., Mappings of finite distortion: capacity and modulus inequalities, Dept. Math. Stat., University of Jyväskylä, Preprint 257 (2002), 1–32.
- [LV] LEHTO O. AND VIRTANEN K., Quasiconformal Mappings in the Plane, Springer, New York etc., 1973.
- [MRV] MARTIO O., RICKMAN S., VÄISÄLÄ J., Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I. Math. 448 (1969), 1-40.
- [MRSY₁] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E., On *Q*-homeomorphisms (to appear)
- [MRSY₂] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E., Mappings with finite length distortion (to appear)
- [Mu] MULLER S., Higher integrability of determinants and weak convergence in L¹, J. Reine Angew. Math. 412 (1990), 20-34.
- [MV₁] MANFREDI J.J. AND VILLAMOR E., Mappings with integrable dilatation in higher dimensions, Bull. Amer. Math. Soc. 32, no. 2 (1995), 235-240.
- [MV₂] MANFREDI J.J. AND VILLAMOR E., An extension of Reshetnyak's theorem, Indiana Univ. Math. J. 47, no. 3 (1998), 1131-1145.
- [Pol] POLETSKII, The modulus method for non-homeomorphic quasiconformal mappings, Mat. Sb. 83 (125) (1970) 261–272.

- [Ri] RICKMAN S., Quasiregular Mappings, Springer, Berlin etc., 1993.
- [RR] REIMANN H.M. AND RYCHENER T., Funktionen Beschrankter Mittlerer Oscillation, Springer, Berlin etc., 1975.
- [RSY₁] RYAZANOV V., SREBRO U. AND YAKUBOV E., To the theory of BMO-quasiregular mappings, Dokl. Akad. Nauk Rossii 369, no 1 (1999), 13–15.
- [RSY₂] RYAZANOV V., SREBRO U. AND YAKUBOV E., BMO-quasiconformal mappings, J. d'Analyse Math. 83 (2001), 1–20.
- [RSY₃] RYAZANOV V., SREBRO U. AND YAKUBOV E., Plane mappings with dilatation dominated by functions of bounded mean oscillation, Sib. Adv. in Math. 11, No. 2 (2001), 94–130.
- [Sa] SAKS S., Theory of the Integral, New York, Dover Publ. Inc., 1964.
- [Va] VÄISÄLÄ J., Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Berlin etc., Springer-Verlag, 1971.
- [Vu] VUORINEN M., Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math. 1319, Berlin etc., Springer-Verlag, 1988.

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine