Some elementary inequalities in gas dynamics equation

V.A. Klyachin, A.V. Kochetov, V.M. Miklyukov

ngasd4.tex Sept. 182004
2000 Mathematics Subject Classification: Primary 35J60, Secondary 35Q35.
Key words and phrases: Gas dynamics equation, σ-harmonic functions.

Abstract

We describe sets on which differences of solutions of the gas dynamics equation satisfies some special conditions.

1 Main Results

Consider the gas dynamics equation

$$
\begin{equation*}
\operatorname{div}(\sigma(|\nabla f|) \nabla f(x))=0, \tag{1.1}
\end{equation*}
$$

where

$$
\sigma(t)=\left(1-\frac{\gamma-1}{2} t^{2}\right)^{\frac{1}{\gamma-1}}
$$

Here γ is a constant, $-\infty<\gamma<+\infty$, characterizing the flow of substance. For different values γ it can be a flow of gas, fluid, plastic, electric or chemical field in different mediums, etc. (see, for example, $[1, \S 2],[2, \S 15$, Chapter IV]).

For $\gamma=-1$ the equation (1.1) is known as the minimal surfaces equation

$$
\operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}\right)=0
$$

(Chaplygin's gas).
For $\gamma=1 \pm 0$ we have

$$
\operatorname{div}\left(\exp \left\{-\frac{1}{2}|\nabla f|^{2}\right\} \nabla f\right)=0
$$

For $\gamma=-\infty$ the equation (1.1) becomes the Laplace equation.
The solution of the equation (1.1), in which the weight function σ is a function of the variable $\left(x_{1}, \ldots, x_{n}\right)$, is called σ-harmonic functions. To learning this kind of functions devoted a large quantity of works (see., e.g., [3], [4] and quoted there literature).

Let $n \geq 2$. We set $\Omega_{\gamma}=\mathbf{R}^{n}$ for $\gamma \leq 1$ and

$$
\Omega_{\gamma}=\left\{\xi \in \mathbf{R}^{n}:|\xi|<\sqrt{\frac{2}{\gamma-1}}\right\}
$$

for $\gamma>1$.
Let $\xi, \eta \in \mathbf{R}^{n}$. The following inequalities are very important in work with the equation (1.1):

$$
\begin{align*}
c_{1} \sum_{i=1}^{n}\left(\xi_{i}-\eta_{i}\right)^{2} & \leq \sum_{i=1}^{n}\left(\sigma(|\xi|) \xi_{i}-\sigma(|\eta|) \eta_{i}\right)\left(\xi_{i}-\eta_{i}\right), \tag{1.2}\\
\sum_{i=1}^{n}\left(\sigma(|\xi|) \xi_{i}-\sigma(|\eta|) \eta_{i}\right)^{2} & \leq c_{2} \sum_{i=1}^{n}\left(\sigma(|\xi|) \xi_{i}-\sigma(|\eta|) \eta_{i}\right)\left(\xi_{i}-\eta_{i}\right), \tag{1.3}
\end{align*}
$$

where $c_{1}, c_{2}>0$ are some constants.
In the general case the inequalities (1.2) and (1.3) are valid only for the subsets of the set $\Omega_{\gamma} \times \Omega_{\gamma}$ with constants c_{1} and c_{2} depending on these subsets. The purpose of the given paper is a description of such dependence.

We fix $c_{1}>0, c_{2}>0$ and γ. Introduce the sets

$$
\begin{array}{lll}
\mathcal{A}_{\gamma}\left(c_{1}\right)=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma}\right. & \text { satisfy } \quad(1.2)\}, \\
\mathcal{B}_{\gamma}\left(c_{2}\right)=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma} \quad \text { satisfy } \quad(1.3)\right\} .
\end{array}
$$

We set $\Sigma_{\gamma}=\{x \in \mathbf{R}: x \geq 0\}$ for $\gamma \leq 1$ and

$$
\Sigma_{\gamma}=\left\{x \in \mathbf{R}: 0 \leq x<\sqrt{\frac{2}{\gamma-1}}\right\}
$$

for $\gamma>1$.
Further, we will need the functions defined on the set $\Sigma_{\gamma} \times \Sigma_{\gamma}$ and prescribed by the relations

$$
\begin{array}{cc}
I_{\gamma}^{-}(x, y)=\frac{x \sigma(x)-y \sigma(y)}{x-y} & \text { for } x \neq y \\
I_{\gamma}^{-}(x, y)=\sigma(x)+\sigma^{\prime}(x) x & \text { for } x=y
\end{array}
$$

and

$$
\begin{gathered}
I_{\gamma}^{+}(x, y)=\frac{x \sigma(x)+y \sigma(y)}{x+y} \text { for } x^{2}+y^{2}>0, \\
I_{\gamma}^{+}(0,0)=1 .
\end{gathered}
$$

Note that the functions $I_{\gamma}^{-}(x, y)$ and $I_{\gamma}^{+}(x, y)$ are continuous in the closing of the set $\Sigma_{\gamma} \times \Sigma_{\gamma}$ and they are C^{∞}-differentiable in the each inner points of this set.

Generally, the sets $\mathcal{A}_{\gamma}\left(c_{1}\right)$ and $\mathcal{B}_{\gamma}\left(c_{2}\right)$ have a complicated structure. We shall describe them by comparing with canonical sets of the "simplest form". For arbitrary $\varepsilon \geq 0$ we put

$$
\begin{array}{ll}
W_{\gamma}^{-}(\varepsilon)=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma},\right. & \left.I_{\gamma}^{-}(|\xi|,|\eta|) \geq \varepsilon\right\}, \\
W_{\gamma}^{+}(\varepsilon)=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma},\right. & \left.I_{\gamma}^{+}(|\xi|,|\eta|) \geq \varepsilon\right\}, \\
V_{\gamma}^{-}(\varepsilon)=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma},\right. & \left.I_{\gamma}^{-}(|\xi|,|\eta|) \leq \varepsilon\right\}, \\
V_{\gamma}^{+}(\varepsilon)=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma},\right. & \left.I_{\gamma}^{+}(|\xi|,|\eta|) \leq \varepsilon\right\} .
\end{array}
$$

Also we will need the sets

$$
\begin{aligned}
& D_{\gamma}=\left\{(\xi, \xi): \xi \in \Omega_{\gamma}\right\} \\
& Q_{\gamma}=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma}, \quad \xi \sigma(|\xi|)=\eta \sigma(|\eta|)\right\}
\end{aligned}
$$

The following assertions are the main result of this paper.
1.4. Theorem. Let $\gamma \in \mathbf{R}$. Then the following relations are true

$$
\begin{gather*}
\left(W_{\gamma}^{-}(\varepsilon) \cup D_{\gamma}\right) \subset \mathcal{A}_{\gamma}(\varepsilon) \subset\left(W_{\gamma}^{+}(\varepsilon) \cup D_{\gamma}\right) \quad \text { for all } \varepsilon \in(0,1) ; \tag{1.5}\\
\mathcal{A}_{\gamma}(\varepsilon)=D_{\gamma} \quad \text { for all } \varepsilon \in[1,+\infty) . \tag{1.6}
\end{gather*}
$$

1.7. Theorem. a) If $\gamma \in(-\infty,-1]$ then

$$
\begin{gather*}
\left(V_{\gamma}^{+}(\varepsilon) \cup D_{\gamma}\right) \subset \mathcal{B}_{\gamma}(\varepsilon) \subset\left(V_{\gamma}^{-}(\varepsilon) \cup D_{\gamma}\right) \text { for all } \epsilon \in(0,1) ; \tag{1.8}\\
\mathcal{B}_{\gamma}(\varepsilon)=\mathbf{R}^{2 n} \text { for all } \varepsilon \in[1,+\infty) \tag{1.9}
\end{gather*}
$$

b) If $\gamma \in(-1,+\infty)$ then

$$
\begin{gather*}
\left(V_{\gamma}^{+}(\varepsilon) \cap W_{\gamma}^{-}(0)\right) \subset \mathcal{B}_{\gamma}(\varepsilon) \subset\left(V_{\gamma}^{-}(\varepsilon) \cup Q_{\gamma}\right) \quad \text { for all } \varepsilon \in(0,1) \tag{1.10}\\
W_{\gamma}^{-}(0) \subset \mathcal{B}_{\gamma}(\varepsilon) \quad \text { for all } \varepsilon \in[1, \quad+\infty) \tag{1.11}
\end{gather*}
$$

First the relation (1.9) was proved for $\gamma=-1$ and $\varepsilon=1$ in [5]. Later it was repeatedly proved with these γ and ε in [6], [7], [8] and [9].

2 Proofs of main theorems

We will need the following elementary assertion.
2.12. Lemma. The function σ has the following properties:

1) the domain of σ is the set Σ_{γ}, moreover, $\sigma(0)=1, \sigma(+\infty)=0$ for $\gamma \leq 1$ and $\sigma\left(\sqrt{\frac{2}{\gamma-1}}\right)=0$ for $\gamma>1$;
2) for all $t \in \Sigma_{\gamma}$ we have

$$
0 \leq \sigma(t)<1 ;
$$

3) the function σ is decreasing on Σ_{γ} moreover

$$
\sigma^{\prime}(t)=-t\left(1-\frac{\gamma-1}{2} t^{2}\right)^{\frac{2-\gamma}{\gamma-1}}<0
$$

for all $t>0, t \in \Sigma_{\gamma}$;
4) the function $\theta(t)=t \sigma(t)$ is increasing on $[0,+\infty)$ for all $\gamma \in(-\infty,-1]$;
5) for every $\gamma \in(-1,+\infty)$, the function θ is increasing on $\left[0, \sqrt{\frac{2}{\gamma+1}}\right]$ and decreasing on $\left[\sqrt{\frac{2}{\gamma+1}},+\infty\right) \cap \Sigma_{\gamma} ;$
6) for every $\gamma \in(-\infty,-1] \cup[2,+\infty)$, the derivative θ^{\prime} is decreasing on Σ_{γ};
7) for every $\gamma \in(-1,2)$, the derivative θ^{\prime} is decreasing on $\left[0, \sqrt{\frac{6}{\gamma+1}}\right]$ and increasing on $\left[\sqrt{\frac{6}{\gamma+1}},+\infty\right) \cap \Sigma_{\gamma}$.

The proof follows from the equalities:

$$
\begin{gathered}
\sigma^{\prime}(t)=-t\left(1-\frac{\gamma-1}{2} t^{2}\right)^{\frac{2-\gamma}{\gamma-1}} \quad \text { for } \gamma \neq 1, \\
\sigma^{\prime}(t)=-t \exp \left\{-\frac{1}{2} t^{2}\right\} \quad \text { for } \gamma=1, \\
\theta^{\prime}(t)=\left(1-\frac{\gamma+1}{2} t^{2}\right)\left(1-\frac{\gamma-1}{2} t^{2}\right)^{\frac{2-\gamma}{\gamma-1}} \quad \text { for } \gamma \neq 1, \\
\theta^{\prime}(t)=\left(1-t^{2}\right) \exp \left\{-\frac{1}{2} t^{2}\right\} \quad \text { for } \gamma=1, \\
\theta^{\prime \prime}(t)=-t\left(3-\frac{\gamma+1}{2} t^{2}\right)\left(1-\frac{\gamma-1}{2} t^{2}\right)^{\frac{3-2 \gamma}{\gamma-1}} \quad \text { for } \gamma \neq 1, \\
\theta^{\prime \prime}(t)=t\left(t^{2}-3\right) \exp \left\{-\frac{1}{2} t^{2}\right\} \quad \text { for } \gamma=1 .
\end{gathered}
$$

2.13. Lemma. Let $\gamma \in \mathbf{R}$. Then for all $x, y \in \Sigma_{\gamma}, x^{2}+y^{2} \neq 0$ we have

$$
I_{\gamma}^{-}(x, y) \leq I_{\gamma}^{+}(x, y)<1
$$

Proof. Let x, y satisfy the assumptions of Lemma. If $x=y$ then

$$
I_{\gamma}^{-}(x, y)=\sigma(x)+x \sigma^{\prime}(x)<\sigma(x)=I_{\gamma}^{+}(x, y)<1 .
$$

Suppose that $x>y$. Since

$$
\sigma(x)<\sigma(y),
$$

we obtain

$$
\begin{aligned}
I_{\gamma}^{-}(x, y) & =\frac{x \sigma(x)-y \sigma(y)}{x-y} \leq \frac{x \sigma(x)-y \sigma(x)}{x-y}=\sigma(x) \\
& =\frac{x \sigma(x)+y \sigma(x)}{x+y} \leq \frac{x \sigma(x)+y \sigma(y)}{x+y}=I_{\gamma}^{+}(x, y) \\
& <\frac{x \sigma(y)+y \sigma(y)}{x+y}=\sigma(y)<1 .
\end{aligned}
$$

The case $x<y$ is analogous.
2.14. Lemma. Let $\gamma \in \mathbf{R}$. The sets $W_{\gamma}^{-}(\varepsilon), W_{\gamma}^{+}(\varepsilon), V_{\gamma}^{-}(\varepsilon)$ and $V_{\gamma}^{+}(\varepsilon)$ have the following properties:

1) $W_{\gamma}^{-}(\varepsilon)=W_{\gamma}^{+}(\varepsilon)=\emptyset \quad$ for all $\varepsilon>1$;
2) $W_{\gamma}^{-}(1)=W_{\gamma}^{+}(1)=\{0\}$;
3) $W_{\gamma}^{-}(\varepsilon) \subset W_{\gamma}^{+}(\varepsilon) \quad$ for all $\varepsilon \in(0,1)$;
4) $\quad V_{\gamma}^{-}(\varepsilon)=V_{\gamma}^{+}(\varepsilon)=\Omega_{\gamma} \times \Omega_{\gamma} \quad$ for all $\varepsilon \geq 1$;
5) $\quad V_{\gamma}^{+}(\varepsilon) \subset V_{\gamma}^{-}(\varepsilon) \quad$ for all $\varepsilon \in(0,1)$;
6) $\quad W_{\gamma}^{+}(0)=\Omega_{\gamma} \times \Omega_{\gamma}, \quad V_{\gamma}^{+}(0)=\emptyset$;
7) $\quad W_{\gamma}^{-}(0)=\mathbf{R}^{2 n}, \quad V_{\gamma}^{-}(0)=\emptyset \quad$ for all $\gamma \leq-1$.

The proof follows from Lemma 2.12 and Lemma 2.13.
Further, we set

$$
\begin{aligned}
& H_{\gamma}=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma},|\xi|=|\eta|, \xi \neq \eta\right\}, \\
& G_{\gamma}=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma},|\xi| \neq|\eta|\right\}, \\
& U_{\gamma}^{-}=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma}, I_{\gamma}^{-}(|\xi|,|\eta|)<0\right\}, \\
& U_{\gamma}^{+}=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma}, I_{\gamma}^{-}(|\xi|,|\eta|)>0\right\}, \\
& P_{\gamma}=\left\{(\xi, \eta): \xi, \eta \in \Omega_{\gamma},|\xi| \sigma(|\xi|)=|\eta| \sigma(|\eta|), \quad \xi \sigma(|\xi|) \neq \eta \sigma(|\eta|)\right\}, \\
& F_{\gamma}^{+}(\varepsilon)=\left(V_{\gamma}^{+}(\varepsilon) \cap U_{\gamma}^{+}\right) \cup Q_{\gamma} \cup\left(V_{\gamma}^{+}(\varepsilon) \cap P_{\gamma}\right), \\
& F_{\gamma}^{-}(\varepsilon)=\left(V_{\gamma}^{-}(\varepsilon) \cap U_{\gamma}^{+}\right) \cup Q_{\gamma} \cup\left(V_{\gamma}^{+}(\varepsilon) \cap P_{\gamma}\right) \cup\left(V_{\gamma}^{+}(\varepsilon) \cap U_{\gamma}^{-}\right) .
\end{aligned}
$$

For every $\xi, \eta \in \mathbf{R}^{n}$, their inner product is denoted by $\langle\xi, \eta\rangle$. Obviously, the inequalities (1.2), (1.3) with some constant $\varepsilon>0$ can be written as

$$
\begin{gather*}
\varepsilon|\xi-\eta|^{2} \leq\langle\sigma(|\xi|) \xi-\sigma(|\eta|) \eta, \xi-\eta\rangle \tag{2.15}\\
|\sigma(|\xi|) \xi-\sigma(|\eta|) \eta|^{2} \leq \varepsilon\langle\sigma(|\xi|) \xi-\sigma(|\eta|) \eta, \xi-\eta\rangle \tag{2.16}
\end{gather*}
$$

respectively.
Let φ be the angle between the vectors ξ and η. We have

$$
\begin{aligned}
& |\xi-\eta|^{2}=|\xi|^{2}+|\eta|^{2}-2|\xi||\eta| \cos \varphi \\
& \langle\sigma(|\xi|) \xi-\sigma(|\eta|) \eta, \xi-\eta\rangle=\sigma(|\xi|)|\xi|^{2}+\sigma(|\eta|)|\eta|^{2}-(\sigma(|\xi|)+\sigma(|\eta|))|\xi \||\eta| \cos \varphi, \\
& |\sigma(|\xi|) \xi-\sigma(|\eta|) \eta|^{2}=\sigma^{2}(|\xi|)|\xi|^{2}+\sigma^{2}(|\eta|)|\eta|^{2}-2 \sigma(|\xi|) \sigma(|\eta|)|\xi||\eta| \cos \varphi
\end{aligned}
$$

We set

$$
\begin{aligned}
\Upsilon(\varphi) & =|\xi|^{2}+|\eta|^{2}-2|\xi||\eta| \cos \varphi, \\
\Phi(\varphi) & =\sigma(|\xi|)|\xi|^{2}+\sigma(|\eta|)|\eta|^{2}-(\sigma(|\xi|)+\sigma(|\eta|))|\xi||\eta| \cos \varphi, \\
\Psi(\varphi) & =\sigma^{2}(|\xi|)|\xi|^{2}+\sigma^{2}(|\eta|)|\eta|^{2}-2 \sigma(|\xi|) \sigma(|\eta|)|\xi \||\eta| \cos \varphi .
\end{aligned}
$$

Proof of Theorem 1.4. It is clear that the inequality (2.15) holds for all $(\xi, \eta) \in D_{\gamma}$. Let $(\xi, \eta) \in \mathcal{A}_{\gamma}(\varepsilon) \cap H_{\gamma}$. In this case the inequality (2.15) is rewritten in the form

$$
\varepsilon \leq \sigma(|\xi|)=\sigma(|\eta|)
$$

Hence,

$$
\mathcal{A}_{\gamma}(\epsilon) \cap H_{\gamma}=W_{\gamma}^{+}(\epsilon) \cap H_{\gamma} .
$$

Using Lemma 2.14, we see that

$$
\begin{equation*}
\left(W_{\gamma}^{-}(\varepsilon) \cap H_{\gamma}\right) \subset\left(\mathcal{A}_{\gamma}(\varepsilon) \cap H_{\gamma}\right) \subset\left(W_{\gamma}^{+}(\varepsilon) \cap H_{\gamma}\right) . \tag{2.17}
\end{equation*}
$$

Now we assume that $(\xi, \eta) \in G_{\gamma}$. Then $\Upsilon(\varphi)>0$ and after simple calculations we find

$$
\frac{\partial}{\partial \varphi}\left(\frac{\Phi(\varphi)}{\Upsilon(\varphi)}\right)=\frac{(\sigma(|\eta|)-\sigma(|\xi|))\left(|\xi|^{2}-|\eta|^{2}\right)|\xi||\eta| \sin \varphi}{\Upsilon^{2}(\varphi)}
$$

By the property 3) of Lemma 2.12 we have

$$
(\sigma(|\eta|)-\sigma(|\xi|))\left(|\xi|^{2}-|\eta|^{2}\right)>0
$$

Therefore,

$$
\begin{aligned}
\min _{\varphi \in[0, \pi]}\left(\frac{\Phi(\varphi)}{\Upsilon(\varphi)}\right)=\frac{\Phi(0)}{\Upsilon(0)} & \\
& =\frac{\sigma(|\xi|)|\xi|^{2}+\sigma(|\eta|)|\eta|^{2}-(\sigma(|\xi|)+\sigma(|\eta|))|\xi||\eta|}{(|\xi|-|\eta|)^{2}}=I_{\gamma}^{-}(|\xi|,|\eta|)
\end{aligned}
$$

and

$$
\begin{aligned}
\max _{\varphi \in[0, \pi]}\left(\frac{\Phi(\varphi)}{\Upsilon(\varphi)}\right)=\frac{\Phi(\pi)}{\Upsilon(\pi)} & \\
& =\frac{\sigma(|\xi|)|\xi|^{2}+\sigma(|\eta|)|\eta|^{2}+(\sigma(|\xi|)+\sigma(|\eta|))|\xi||\eta|}{(|\xi|+|\eta|)^{2}}=I_{\gamma}^{+}(|\xi|,|\eta|)
\end{aligned}
$$

Then for all $(\xi, \eta) \in G_{\gamma}$ the following inequalities are valid

$$
I_{\gamma}^{-}(|\xi|,|\eta|) \leq \frac{\langle\sigma(|\xi|) \xi-\sigma(|\eta|) \eta, \xi-\eta\rangle}{|\xi-\eta|^{2}} \leq I_{\gamma}^{+}(|\xi|,|\eta|) .
$$

This implies

$$
\left(W_{\gamma}^{-}(\varepsilon) \cap G_{\gamma}\right) \subset\left(\mathcal{A}_{\gamma}(\varepsilon) \cap G_{\gamma}\right) \subset\left(W_{\gamma}^{+}(\varepsilon) \cap G_{\gamma}\right) .
$$

From this, by (2.17) and Lemma 2.14 we obtain (1.5) and (1.6).
Proof of Theorem 1.7. a) It is clear that (2.16) holds for all $(\xi, \eta) \in D_{\gamma}$.
Let $(\xi, \eta) \in \mathcal{B}_{\gamma}(\varepsilon) \cap H_{\gamma}$. In this case the inequality (2.16) becomes

$$
\sigma(|\xi|)=\sigma(|\eta|) \leq \varepsilon .
$$

Then

$$
\mathcal{B}_{\gamma}(\varepsilon) \cap H_{\gamma}=V_{\gamma}^{+}(\varepsilon) \cap H_{\gamma}
$$

Using Lemma 2.14, we see that

$$
\begin{equation*}
\left(V_{\gamma}^{+}(\varepsilon) \cap H_{\gamma}\right) \subset\left(\mathcal{B}_{\gamma}(\varepsilon) \cap H_{\gamma}\right) \subset\left(V_{\gamma}^{-}(\varepsilon) \cap H_{\gamma}\right) \tag{2.18}
\end{equation*}
$$

Now we assume that $(\xi, \eta) \in G_{\gamma}$. Then by the inequality

$$
\Psi(\varphi) \geq(\sigma(|\xi|)|\xi|-\sigma(|\eta|)|\eta|)^{2}
$$

and by the property 4) of Lemma 2.12 we can conclude that $\Psi(\varphi)>0$ for all $\varphi \in[0, \pi]$. Next after simple calculations, we obtain

$$
\frac{\partial}{\partial \varphi}\left(\frac{\Phi(\varphi)}{\Psi(\varphi)}\right)=\frac{(\sigma(|\xi|)-\sigma(|\eta|))\left(|\xi|^{2} \sigma^{2}(|\xi|)-|\eta|^{2} \sigma^{2}(|\eta|)\right)|\xi||\eta| \sin \varphi}{\Psi^{2}(\varphi)}
$$

By the properties 3) and 4) of Lemma 2.12 it follows that

$$
\begin{equation*}
(\sigma(|\xi|)-\sigma(|\eta|))\left(|\xi|^{2} \sigma^{2}(|\xi|)-|\eta|^{2} \sigma^{2}(|\eta|)\right)<0 \tag{2.19}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\min _{\varphi \in[0, \pi]}\left(\frac{\Phi(\varphi)}{\Psi(\varphi)}\right)=\frac{\Phi(\pi)}{\Psi(\pi)} & \\
& =\frac{\sigma(|\xi|)|\xi|^{2}+\sigma(|\eta|)|\eta|^{2}+(\sigma(|\xi|)+\sigma(|\eta|))|\xi||\eta|}{\sigma^{2}(|\xi|)|\xi|^{2}+\sigma^{2}(|\eta|)|\eta|^{2}+2 \sigma(|\xi|) \sigma(|\eta|)|\xi||\eta|}=\frac{1}{I_{\gamma}^{+}(|\xi|,|\eta|)}
\end{aligned}
$$

and

$$
\begin{aligned}
\max _{\varphi \in[0, \pi]}\left(\frac{\Phi(\varphi)}{\Psi(\varphi)}\right)=\frac{\Phi(0)}{\Psi(0)} & \\
& =\frac{\sigma(|\xi|)|\xi|^{2}+\sigma(|\eta|)|\eta|^{2}-(\sigma(|\xi|)+\sigma(|\eta|))|\xi||\eta|}{\sigma^{2}(|\xi|)|\xi|^{2}+\sigma^{2}(|\eta|)|\eta|^{2}-2 \sigma(|\xi|) \sigma(|\eta|)|\xi||\eta|}=\frac{1}{I_{\gamma}^{-}(|\xi|,|\eta|)}
\end{aligned}
$$

Thus for all $(\xi, \eta) \in G_{\gamma}$, the following inequalities are true

$$
\begin{equation*}
\frac{1}{I_{\gamma}^{+}(|\xi|,|\eta|)} \leq \frac{\langle\sigma(|\xi|) \xi-\sigma(|\eta|) \eta, \xi-\eta\rangle}{|\sigma(|\xi|) \xi-\sigma(|\eta|) \eta|^{2}} \leq \frac{1}{I_{\gamma}^{-}(|\xi|,|\eta|)} \tag{2.20}
\end{equation*}
$$

This implies that

$$
\left(V_{\gamma}^{+}(\varepsilon) \cap G_{\gamma}\right) \subset\left(\mathcal{B}_{\gamma}(\varepsilon) \cap G_{\gamma}\right) \subset\left(V_{\gamma}^{-}(\varepsilon) \cap G_{\gamma}\right)
$$

From this, by (2.18) and Lemma 2.14 we obtain the relations (1.8) and (1.9).
b) It is clear that the inequality (2.16) holds for all $(\xi, \eta) \in Q_{\gamma}$. Moreover, by the property 5 of Lemma 2.12 we have $Q_{\gamma} \neq D_{\gamma}$.

Let $(\xi, \eta) \in P_{\gamma}$. Similarly, we establish that $P_{\gamma} \neq H_{\gamma}$. Next, we have

$$
\Psi(\varphi)=\sigma^{2}(|\xi|)|\xi|^{2}+\sigma^{2}(|\eta|)|\eta|^{2}-2 \sigma(|\xi|) \sigma(|\eta|)|\xi||\eta| \cos \varphi=2 \sigma^{2}(|\xi|)|\xi|^{2}(1-\cos \varphi)
$$

and

$$
\begin{aligned}
\Phi(\varphi) & =\sigma(|\xi|)|\xi|^{2}+\sigma(|\eta|)|\eta|^{2}-(\sigma(|\xi|)+\sigma(|\eta|))|\xi||\eta| \cos \varphi \\
& =\sigma(|\xi|)|\xi|^{2}+\left.\sigma(|\xi|)|\xi| \eta \eta|-\sigma(|\xi|)| \xi| | \eta|\cos \varphi-\sigma(|\xi|)| \xi\right|^{2} \cos \varphi \\
& =\sigma(|\xi|)|\xi|(|\xi|+|\eta|)(1-\cos \varphi) .
\end{aligned}
$$

It is easy to see that $\cos \varphi \neq 1$. Indeed, we suppose that $\cos \varphi=1$. Then the vectors $\xi \sigma(|\xi|)$ and $\eta \sigma(|\eta|)$ are collinear. It implies that $\xi \sigma(|\xi|)=\eta \sigma(|\eta|)$.

We find

$$
\frac{\Psi(\varphi)}{\Phi(\varphi)}=\frac{2|\xi| \sigma(|\xi|)}{|\xi|+|\eta|}=I_{\gamma}^{+}(|\xi|,|\eta|) .
$$

Thus, the inequality (2.16) assumes the form

$$
I_{\gamma}^{+}(|\xi|,|\eta|) \leq \varepsilon
$$

and we establish that

$$
\begin{equation*}
\mathcal{B}_{\gamma}(\varepsilon) \cap P_{\gamma}=V_{\gamma}^{+}(\varepsilon) \cap P_{\gamma} . \tag{2.21}
\end{equation*}
$$

Let $(\xi, \eta) \in U_{\gamma}^{+}$. By the property 3) of Lemma 2.12 we find that the inequality (2.19) is valid. Therefore the inequalities (2.20) are true and we obtain

$$
\begin{equation*}
\left(V_{\gamma}^{+}(\varepsilon) \cap U_{\gamma}^{+}\right) \subset\left(\mathcal{B}_{\gamma}(\varepsilon) \cap U_{\gamma}^{+}\right) \subset\left(V_{\gamma}^{-}(\varepsilon) \cap U_{\gamma}^{+}\right) . \tag{2.22}
\end{equation*}
$$

Now let $(\xi, \eta) \in U_{\gamma}^{-}$. Observe that the set U_{γ}^{-}is not empty. It is easy to see that

$$
(\sigma(|\xi|)-\sigma(|\eta|))\left(|\xi|^{2} \sigma^{2}(|\xi|)-|\eta|^{2} \sigma^{2}(|\eta|)\right)>0
$$

For all $(\xi, \eta) \in U_{\gamma}^{-}$the following inequalities are true

$$
\frac{1}{I_{\gamma}^{-}(|\xi|,|\eta|)} \leq \frac{\langle\sigma(|\xi|) \xi-\sigma(|\eta|) \eta, \xi-\eta\rangle}{|\sigma(|\xi|) \xi-\sigma(|\eta|) \eta|^{2}} \leq \frac{1}{I_{\gamma}^{+}(|\xi|,|\eta|)}
$$

and we obtain

$$
\left(\mathcal{B}_{\gamma}(\varepsilon) \cap U_{\gamma}^{-}\right) \subset\left(V_{\gamma}^{+}(\varepsilon) \cap U_{\gamma}^{-}\right) .
$$

From here, by (2.21) and (2.22),

$$
F_{\gamma}^{+}(\varepsilon) \subset \mathcal{B}_{\gamma}(\varepsilon) \subset F_{\gamma}^{-}(\varepsilon)
$$

It is not hard to establish that

$$
W_{\gamma}^{-}(0) \subset\left(P_{\gamma} \cup Q_{\gamma} \cup U_{\gamma}^{+}\right), \quad\left(P_{\gamma} \cup Q_{\gamma} \cup U_{\gamma}^{+} \cup U_{\gamma}^{-}\right)=\Omega_{\gamma} \times \Omega_{\gamma} .
$$

Then, using Lemma 2.14, we find

$$
\left(V_{\gamma}^{+}(\varepsilon) \cap W_{\gamma}^{-}(0)\right) \subset F_{\gamma}^{+}(\varepsilon), \quad F_{\gamma}^{-}(\varepsilon) \subset\left(V_{\gamma}^{-}(\varepsilon) \cup Q_{\gamma}\right) .
$$

From here we obtain the relations (1.10) and (1.11).

3 Properties of $W_{\gamma}^{-}(\varepsilon), W_{\gamma}^{+}(\varepsilon), V_{\gamma}^{-}(\varepsilon)$ and $V_{\gamma}^{+}(\varepsilon)$

Here we study the sets $W_{\gamma}^{-}(\varepsilon), W_{\gamma}^{+}(\varepsilon), V_{\gamma}^{-}(\varepsilon)$ and $V_{\gamma}^{+}(\varepsilon)$. Consider the equation

$$
\begin{equation*}
\theta^{\prime}(t)=\varepsilon, \tag{3.23}
\end{equation*}
$$

where $\theta(t)=t \sigma(t)$ and ε is an arbitrary parameter. It is easy to verify that for $\gamma \neq 1$ the equation (3.23) can be written down in the following form:

$$
\frac{2}{\gamma-1} \sigma^{2-\gamma}(t)-\frac{\gamma+1}{\gamma-1} \sigma(t)+\varepsilon=0 .
$$

Further, we assume that $\varepsilon \in(0,1)$. We set

$$
r=\sqrt{\frac{2\left(1-\varepsilon^{\gamma-1}\right)}{\gamma-1}} \quad \text { for } \gamma \neq 1
$$

and

$$
r=\sqrt{-2 \ln \varepsilon} \quad \text { for } \gamma=1
$$

Observe that $r \in \Sigma_{\gamma}$ for all $\gamma \in \mathbf{R}$.
Fix $\varepsilon \in(0,1)$. Assume that $\gamma \leq-1$. It is easy to see that

$$
\theta^{\prime}(0)=1, \quad \lim _{t \rightarrow+\infty} \theta^{\prime}(t)=0 .
$$

From here and by the property 6) of Lemma 2.12 we deduce that the equation (3.23) has the unique positive solution s and $0 \leq t \leq s$ be the solutions of the inequality $\theta^{\prime}(t) \geq \varepsilon$ subject to $t \geq 0$.

Further, we have

$$
\sigma(r)=\varepsilon=\theta^{\prime}(s)=\sigma(s)+s \sigma^{\prime}(s)<\sigma(s) .
$$

Then the inequality $\sigma(r)<\sigma(s)$ implies $r>s$. Hence, $s \in(0, r)$.
Assume that $\gamma>-1$. By the property 5) of Lemma 2.12 we see that

$$
0 \leq t<\sqrt{\frac{2}{\gamma+1}}
$$

be the solutions of the inequality $\theta^{\prime}(t)>0$ subject to $t \geq 0$. By the properties 6$\left.), 7\right)$ of Lemma 2.12 we deduce that the function $\theta^{\prime}(t)$ is decreasing on $\left[0, \sqrt{\frac{2}{\gamma+1}}\right.$. Moreover,

$$
\theta^{\prime}(0)=1, \quad \theta^{\prime}\left(\sqrt{\frac{2}{\gamma+1}}\right)=0 .
$$

Therefore the equation (3.23) has the unique positive solution $s<\sqrt{\frac{2}{\gamma+1}}$ and $0 \leq t \leq s$ be the solutions of the inequality $\theta^{\prime}(t) \geq \varepsilon$ subject to $t \geq 0$. As above, we can show that $s \in(0, r)$.

Thus, we proved the following statement.
3.24. Lemma. Let $\gamma \in \mathbf{R}, \epsilon \in(0,1)$ and $s \in(0, r)$ be a positive solution of (3.23).. Then the following relations hold

$$
\begin{equation*}
\theta^{\prime}(t)>\varepsilon \quad \text { for all } t \in(0, s), \quad \theta^{\prime}(t)<\varepsilon \quad \text { for all } t>s, t \in \Sigma_{\gamma} \tag{3.25}
\end{equation*}
$$

3.26. Remark. It is not hard to establish that for $\gamma>-1$ and $\epsilon=0$ the relations (3.25) are true with $s=\sqrt{\frac{2}{\gamma+1}}$.

We say that a set $G \subset \mathbf{R}^{n}$ is an linearly connected if any pair of points $x, y \in G$ can be joined on D by an arc.

The sets $W_{\gamma}^{-}(\varepsilon), W_{\gamma}^{+}(\varepsilon), V_{\gamma}^{-}(\varepsilon)$ and $V_{\gamma}^{+}(\varepsilon)$ have the following properties.
3.27. Proposition. a) The set $W_{\gamma}^{-}(\varepsilon)$ is linearly connected for $\gamma \in \mathbf{R}$ and $\varepsilon \in(0,1)$.
b) The set $W_{\gamma}^{-}(0)$ is linearly connected for $\gamma>-1$.
c) The set $W_{\gamma}^{+}(\varepsilon)$ is linearly connected for $\gamma \in \mathbf{R}$ and $\varepsilon \in(0,1)$.

Proof. a) We fix numbers $\gamma \in \mathbf{R}^{n}, \varepsilon \in(0,1)$ and a nonzero point $\zeta=(\xi, \eta) \in W_{\gamma}^{-}(\varepsilon)$. To prove the statement, it is sufficient to show that the set $W_{\gamma}^{-}(\varepsilon)$ contains the segment $\mathcal{L}=\{(\xi t, \eta t): 0 \leq t \leq 1\}$ with the endpoints 0 and ζ.

Indeed, let $\zeta^{\prime}, \zeta^{\prime \prime} \in W_{\gamma}^{-}(\varepsilon)$ be arbitrary. Let $\mathcal{L}^{\prime}, \mathcal{L}^{\prime \prime}$ be the segments with the endpoints $0, \zeta^{\prime}$ and $0, \zeta^{\prime \prime}$ respectively. Denote by $\mathcal{L}^{\prime} \cup \mathcal{L}^{\prime \prime}$ the double curve which consists of two segments \mathcal{L}^{\prime} and $\mathcal{L}^{\prime \prime}$. Then this double curve will join the points $\zeta^{\prime}, \zeta^{\prime \prime}$ and it will lie on $W_{\gamma}^{-}(\varepsilon)$.

We prove that the segment \mathcal{L} lies in $W_{\gamma}^{-}(\varepsilon)$. Assume that $|\xi|<|\eta|$. For $t \in(0,1)$ we have

$$
\begin{aligned}
I_{\gamma}^{-}(|\xi t|,|\eta t|) & =\frac{|\xi| \sigma(|\xi t|)-|\eta| \sigma(|\eta t|)}{|\xi|-|\eta|} \geq \frac{|\xi| \sigma(|\xi|)-|\eta| \sigma(|\eta t|)}{|\xi|-|\eta|} \\
& =\frac{|\xi| \sigma(|\xi|)-|\eta| \sigma(|\eta|)+|\eta| \sigma(|\eta|)-|\eta| \sigma(|\eta t|)}{|\xi|-|\eta|} \\
& \geq \varepsilon+\frac{|\eta|(\sigma(|\eta|)-\sigma(|\eta t|))}{|\xi|-|\eta|} \geq \varepsilon .
\end{aligned}
$$

The case $|\xi|>|\eta|$ is analogous. Now we assume that $|\xi|=|\eta|$. We write

$$
I_{\gamma}^{-}(|\xi|,|\eta|)=\theta^{\prime}(|\xi|) \geq \varepsilon
$$

Then by Lemma 3.24 for $t \in(0,1)$ we deduce $|\xi t| \leq|\xi| \leq s$ and

$$
I_{\gamma}^{-}(|\xi t|,|\eta t|)=\theta^{\prime}(|\xi t|) \geq \varepsilon .
$$

Hence, the set $W_{\gamma}^{-}(\varepsilon)$ contains the segment \mathcal{L}.
b) The proof is analogous.
c) We fix numbers $\gamma \in \mathbf{R}^{n}, \varepsilon \in(0,1)$ and a nonzero point $\zeta=(\xi, \eta) \in W_{\gamma}^{+}(\varepsilon)$. As above, to prove this statement, it is sufficient to show that the set $W_{\gamma}^{+}(\varepsilon)$ contains the segment $\mathcal{L}=\{(\xi t, \eta t): 0 \leq t \leq 1\}$. For $t \in(0,1)$ we have

$$
I_{\gamma}^{+}(|\xi t|,|\eta t|)=\frac{|\xi| \sigma(|\xi t|)+|\eta| \sigma(|\eta t|)}{|\xi|+|\eta|} \geq \frac{|\xi| \sigma(|\xi|)+|\eta| \sigma(|\eta|)}{|\xi|+|\eta|} \geq \varepsilon
$$

Thus, the set $W_{\gamma}^{+}(\varepsilon)$ contains the segment \mathcal{L}.
3.28. Proposition. a) Let $\varepsilon \in(0,1)$ and $\gamma \in \mathbf{R}$. Then

$$
\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi| \leq s,|\eta| \leq s\right\} \subset W_{\gamma}^{-}(\varepsilon),
$$

where $s \in \Sigma_{\gamma}$ is the unique positive solution of the equation (3.23).
b) If $\gamma>-1$ then

$$
\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n}, \quad|\xi| \leq \sqrt{\frac{2}{\gamma+1}}, \quad|\eta| \leq \sqrt{\frac{2}{\gamma+1}}\right\} \subset W_{\gamma}^{-}(0) .
$$

c) Let $\varepsilon \in(0,1)$ and $\gamma \in \mathbf{R}$. Then

$$
V_{\gamma}^{-}(\varepsilon) \subset\left(\Omega_{\gamma} \times \Omega_{\gamma}\right) \backslash\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi|<s,|\eta|<s\right\},
$$

where s is the unique positive solution of the equation (3.23).
d) If $\gamma>-1$ then

$$
V_{\gamma}^{-}(0) \subset\left(\Omega_{\gamma} \times \Omega_{\gamma}\right) \backslash\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n}, \quad|\xi|<\sqrt{\frac{2}{\gamma+1}}, \quad|\eta|<\sqrt{\frac{2}{\gamma+1}}\right\} .
$$

Proof. $a)$ Let $(\xi, \eta) \in\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi| \leq s,|\eta| \leq s\right\}$. Using Lemma 3.24, we see that

$$
\theta^{\prime}(|\xi|) \geq \varepsilon, \quad \theta^{\prime}(|\eta|) \geq \varepsilon .
$$

We assume that $|\xi|=|\eta|$. Then

$$
I_{\gamma}^{-}(|\xi|,|\eta|)=\theta^{\prime}(|\xi|)=\theta^{\prime}(|\eta|) \geq \varepsilon
$$

and, hence, $(\xi, \eta) \in W_{\gamma}^{-}(\varepsilon)$.
Now we assume that $|\xi|<|\eta|$. Using the well-known Lagrange mean value theorem, we obtain

$$
I_{\gamma}^{-}(|\xi|,|\eta|)=\theta^{\prime}(c), \quad|\xi| \leq c \leq|\eta| .
$$

By Lemma 3.24,

$$
\theta^{\prime}(c) \geq \varepsilon
$$

Hence, $(\xi, \eta) \in W_{\gamma}^{-}(\varepsilon)$. The case $|\xi|>|\eta|$ is analogous.
b) The proof is analogous.
c) The proof easy follows from a).
d) The proof easy follows from b).
3.29. Proposition. If $\varepsilon \in(0,1)$ and $\gamma \in \mathbf{R}$, then we have
a) $\quad W_{\gamma}^{-}(\varepsilon) \subset\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi| \leq r,|\eta| \leq r\right\}$,
and
b) $\quad\left(\Omega_{\gamma} \times \Omega_{\gamma}\right) \backslash\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi|<r,|\eta|<r\right\} \subset V_{\gamma}^{-}(\varepsilon)$.

Proof. a) Let $(\xi, \eta) \in W_{\gamma}^{-}(\varepsilon)$. Assume that $|\xi|=|\eta|$. We have

$$
\varepsilon \leq I_{\gamma}^{-}(|\xi|,|\eta|)=\theta^{\prime}(|\xi|)=\sigma(|\xi|)+|\xi| \sigma^{\prime}(|\xi|) \leq \sigma(|\xi|)=\sigma(|\eta|) .
$$

Then the inequalities

$$
\sigma(|\xi|) \geq \varepsilon, \quad \sigma(|\eta|) \geq \varepsilon
$$

imply

$$
|\xi|=|\eta| \leq r .
$$

Hence,

$$
(\xi, \eta) \in\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi| \leq r,|\eta| \leq r\right\} .
$$

Now we assume that $|\xi|>|\eta|$. Using the inequality

$$
\sigma(|\xi|)<\sigma(|\eta|),
$$

we deduce

$$
\varepsilon \leq I_{\gamma}^{-}(|\xi|,|\eta|)=\frac{|\xi| \sigma(|\xi|)-|\eta| \sigma(|\eta|)}{|\xi|-|\eta|} \leq \frac{|\xi| \sigma(|\xi|)-|\eta| \sigma(|\xi|)}{|\xi|-|\eta|}=\sigma(|\xi|)<\sigma(|\eta|) .
$$

From here, $(\xi, \eta) \in\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi| \leq r,|\eta| \leq r\right\}$. The case $|\xi|<|\eta|$ is analogous. $b)$ The proof follows from a).
3.30. Proposition. If $\varepsilon \in(0,1)$ and $\gamma \in \mathbf{R}$, then
a) $\quad\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi| \leq r,|\eta| \leq r\right\} \subset W_{\gamma}^{+}(\varepsilon)$,
and
b) $\quad V_{\gamma}^{+}(\varepsilon) \subset\left(\Omega_{\gamma} \times \Omega_{\gamma}\right) \backslash\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi|<r,|\eta|<r\right\}$.

Proof. a) Let $(\xi, \eta) \in\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi| \leq r,|\eta| \leq r\right\}$. Then

$$
\sigma(|\xi|) \geq \varepsilon, \quad \sigma(|\eta|) \geq \varepsilon
$$

Assume that $|\xi|=|\eta|$. We have

$$
I_{\gamma}^{+}(|\xi|,|\eta|)=\sigma(|\xi|) \geq \varepsilon .
$$

Hence, $(\xi, \eta) \in W_{\gamma}^{+}(\varepsilon)$.
Now we assume that $|\xi|>|\eta|$. We deduce

$$
I_{\gamma}^{+}(|\xi|,|\eta|)=\frac{|\xi| \sigma(|\xi|)+|\eta| \sigma(|\eta|)}{|\xi|+|\eta|} \geq \frac{|\xi| \sigma(|\xi|)+|\eta| \sigma(|\xi|)}{|\xi|+|\eta|}=\sigma(|\xi|) \geq \varepsilon .
$$

From here, $(\xi, \eta) \in W_{\gamma}^{+}(\varepsilon)$. The case $|\xi|<|\eta|$ is analogous.
b) The proof follows from a).

4 Properties of $x_{\gamma}(\varepsilon)$

For arbitrary $\varepsilon \in(0,1), \gamma \in \mathbf{R}$ we set

$$
\begin{aligned}
X_{\gamma}(\varepsilon) & =\left\{x \in \Sigma_{\gamma}: \exists y \in \Sigma_{\gamma}, I_{\gamma}^{+}(x, y) \geq \varepsilon\right\} \\
\bar{X}_{\gamma}(\varepsilon) & =\left\{x \in \Sigma_{\gamma}: \exists y \in \Sigma_{\gamma}, I_{\gamma}^{+}(x, y)=\varepsilon\right\}, \\
x_{\gamma}(\varepsilon) & =\sup _{x} X_{\gamma}(\varepsilon) .
\end{aligned}
$$

If $x_{\gamma}(\varepsilon)<+\infty$ then the following relations are true

$$
W_{\gamma}^{+}(\varepsilon) \subset\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi| \leq x_{\gamma}(\varepsilon),|\eta| \leq x_{\gamma}(\varepsilon)\right\}
$$

and

$$
\left(\Omega_{\gamma} \times \Omega_{\gamma}\right) \backslash\left\{(\xi, \eta): \xi, \eta \in \mathbf{R}^{n},|\xi|<x_{\gamma}(\varepsilon),|\eta|<x_{\gamma}(\varepsilon)\right\} \subset V_{\gamma}^{+}(\varepsilon) .
$$

We shall study the function $x_{\gamma}(\varepsilon)$. We have

$$
I_{\gamma}^{+}(0, r)=\sigma(r)=\varepsilon \quad \text { for all } \varepsilon \in(0,1), \gamma \in \mathbf{R} .
$$

From here, we deduce that $r \in X_{\gamma}(\varepsilon)$ and $r \in \bar{X}_{\gamma}(\varepsilon)$. Then the function $x_{\gamma}(\varepsilon)$ is defined everywhere on $(0,1)$ and $r \leq x_{\gamma}(\varepsilon)$. Besides, from the definition of the set Σ_{γ} we establish

$$
x_{\gamma}(\varepsilon) \leq \sqrt{\frac{2}{\gamma-1}} \quad \text { for all } \gamma>1
$$

The function $x_{\gamma}(\varepsilon)$ has the following properties:
4.31. Proposition. The function $x_{\gamma}(\varepsilon)$ is nonincreasing on $(0,1)$.

The proof is evident.
4.32. Proposition. If $\gamma>1$ then

$$
\begin{equation*}
x_{\gamma}(\varepsilon)=\sqrt{\frac{2}{\gamma-1}} \quad \text { for all } \varepsilon \in\left(0, \varepsilon^{\prime}\right] \tag{4.33}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{\gamma}(\varepsilon)<\sqrt{\frac{2}{\gamma-1}} \quad \text { for all } \varepsilon \in\left(\varepsilon^{\prime}, 1\right) \tag{4.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon^{\prime}=\max _{y \in\left[0, \sqrt{\frac{2}{\gamma-1}}\right]} I_{\gamma}^{+}\left(\sqrt{\frac{2}{\gamma-1}}, y\right) . \tag{4.35}
\end{equation*}
$$

Proof. Let $\gamma>1$. We set

$$
\alpha(y) \equiv I_{\gamma}^{+}\left(\sqrt{\frac{2}{\gamma-1}}, y\right)=\frac{\theta(y)}{y+\sqrt{\frac{2}{\gamma-1}}} .
$$

It is easy to see that the function $\alpha(y)$ is positive on $\left(0, \sqrt{\frac{2}{\gamma-1}}\right)$ and it is continuous on $\left[0, \sqrt{\frac{2}{\gamma-1}}\right]$. Therefore there exists

$$
\varepsilon^{\prime}=\max _{y \in\left[0, \sqrt{\frac{2}{\gamma-1}}\right]} \alpha(y)>0 .
$$

We have

$$
\alpha(y) \leq \frac{y}{y+\sqrt{\frac{2}{\gamma-1}}}<1 \quad \text { for all } y \in\left[0, \sqrt{\frac{2}{\gamma-1}}\right] .
$$

Hence, $\varepsilon^{\prime}<1$. Therefore for $\varepsilon \in\left(0, \varepsilon^{\prime}\right]$ the equation

$$
\begin{equation*}
\alpha(y)=\varepsilon \tag{4.36}
\end{equation*}
$$

has at the minimum one solution $y_{0} \in\left(0, \sqrt{\frac{2}{\gamma-1}}\right)$. Otherwise the equation hasn't solutions.
We fix arbitrary $\varepsilon \in\left(0, \varepsilon^{\prime}\right], x \in \Sigma_{\gamma}$. Let $y_{0} \in \Sigma_{\gamma}$ be a solution of (4.36). We have

$$
\varepsilon=\alpha\left(y_{0}\right)=\frac{\theta\left(y_{0}\right)}{y_{0}+\sqrt{\frac{2}{\gamma-1}}} \leq \frac{\theta(x)+\theta\left(y_{0}\right)}{x+y_{0}}=I_{\gamma}^{+}\left(x, y_{0}\right) .
$$

From here, we deduce that $x \in X_{\gamma}(\varepsilon)$. Hence, $X_{\gamma}(\varepsilon)=\Sigma_{\gamma}$ for all $\varepsilon \in\left(0, \varepsilon^{\prime}\right]$. It proves the relation (4.33).

Now we prove the relation (4.34). Fix $\varepsilon \in\left(\varepsilon^{\prime}, 1\right)$. Suppose that

$$
x_{\gamma}(\varepsilon)=\sqrt{\frac{2}{\gamma-1}} .
$$

Then for $n \in \mathbf{N}$ there exists a number $x_{n} \in X_{\gamma}(\varepsilon)$ such that

$$
\sqrt{\frac{2}{\gamma-1}}-\frac{1}{n}<x_{n} .
$$

Moreover,

$$
\lim _{n \rightarrow \infty} x_{n}=\sqrt{\frac{2}{\gamma-1}}
$$

and for $n \in \mathbf{N}$ there exists $y_{n} \in \Sigma_{\gamma}$ satisfying the inequality

$$
I_{\gamma}^{+}\left(x_{n}, y_{n}\right) \geq \varepsilon .
$$

This inequality implies

$$
\begin{equation*}
\theta\left(x_{n}\right)-\varepsilon x_{n} \geq \varepsilon y_{n}-\theta\left(y_{n}\right) . \tag{4.37}
\end{equation*}
$$

Further, we have

$$
\alpha\left(y_{n}\right)=\frac{\theta\left(y_{n}\right)}{y_{n}+\sqrt{\frac{2}{\gamma-1}}} \leq \varepsilon^{\prime} \quad \text { for all } n \in \mathbf{N} .
$$

From here,

$$
\begin{equation*}
\theta\left(y_{n}\right) \leq \varepsilon^{\prime}\left(y_{n}+\sqrt{\frac{2}{\gamma-1}}\right) \quad \text { for all } n \in \mathbf{N} . \tag{4.38}
\end{equation*}
$$

Using (4.37) and (4.38), we deduce

$$
\begin{aligned}
\theta\left(x_{n}\right)-\varepsilon x_{n} \geq \varepsilon y_{n}-\theta\left(y_{n}\right) & \\
& \geq \varepsilon y_{n}-\varepsilon^{\prime}\left(y_{n}+\sqrt{\frac{2}{\gamma-1}}\right) \geq-\varepsilon^{\prime} \sqrt{\frac{2}{\gamma-1}} .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the inequality

$$
\theta\left(x_{n}\right)-\varepsilon x_{n} \geq-\varepsilon^{\prime} \sqrt{\frac{2}{\gamma-1}},
$$

we see that $\varepsilon \leq \varepsilon^{\prime}$ and we arrive at a contradiction.
Prove some auxiliary statements.
4.39. Lemma. Let

$$
\begin{equation*}
\gamma \in(-\infty, 1], \quad \varepsilon \in(0,1) \tag{4.40}
\end{equation*}
$$

or

$$
\begin{equation*}
\gamma \in(1,+\infty), \quad \varepsilon \in\left(\varepsilon^{\prime}, 1\right) \tag{4.41}
\end{equation*}
$$

where ε^{\prime} is defined by (4.35). Then the set $X_{\gamma}(\varepsilon)$ is compact.
Proof. Introduce the set

$$
Z_{\gamma}(\varepsilon)=\left\{(x, y) \in \Sigma_{\gamma} \times \Sigma_{\gamma}: I_{\gamma}^{+}(x, y) \geq \varepsilon\right\} .
$$

Let $\pi: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}, \pi(x, y)=x$ be natural projection. It is clear that $\pi\left(Z_{\gamma}(\varepsilon)\right)=X_{\gamma}(\varepsilon)$.
Assume that the condition (4.40) holds. The set $Z_{\gamma}(\varepsilon)$ is closed since the function $I_{\gamma}^{+}(x, y)$ is continuous.

The set $Z_{\gamma}(\varepsilon)$ is bounded. Indeed, we can find a sequence $Z_{\gamma}(\varepsilon) \ni\left(x_{n}, y_{n}\right) \rightarrow \infty$. Assume that $x_{n} \rightarrow \infty$. Then for the bounded subsequence of $\left\{y_{n}\right\}$ we have

$$
\varepsilon \leq I_{\gamma}^{+}\left(x_{n}, y_{n}\right)=\frac{x_{n} \sigma\left(x_{n}\right)+y_{n} \sigma\left(y_{n}\right)}{x_{n}+y_{n}} \leq \frac{x_{n} \sigma\left(x_{n}\right)+y_{n}}{x_{n}} .
$$

The right part of this inequality tends to zero as $n \rightarrow \infty$. Thus we obtain a contradiction to (4.40).

For an unbounded subsequence of $\left\{y_{n}\right\}$ we have

$$
\varepsilon \leq I_{\gamma}^{+}\left(x_{n}, y_{n}\right) \leq \sigma\left(x_{n}\right)+\sigma\left(y_{n}\right) .
$$

The right part of this inequality tends to zero as $n \rightarrow \infty$. Again we obtain a contradiction to (4.40). Hence, the set $Z_{\gamma}(\varepsilon)$ is bounded. Therefore the set $Z_{\gamma}(\varepsilon)$ is compact. Because the mapping π is continuous then the set $X_{\gamma}(\varepsilon)=\pi\left(Z_{\gamma}(\varepsilon)\right)$ is compact too.

Assume that the condition (4.41) holds. By (4.34) we have that $\overline{Z_{\gamma}(\varepsilon)} \subset \Sigma_{\gamma} \times \Sigma_{\gamma}$. Here $\overline{Z_{\gamma}(\varepsilon)}$ denotes the closure of $Z_{\gamma}(\varepsilon)$. Since the function $I_{\gamma}^{+}(x, y)$ is continuous then $Z_{\gamma}(\varepsilon)$ is compact. Therefore, the set $X_{\gamma}(\varepsilon)$ is compact too. The lemma is proved.
4.42. Corollary. If the condition (4.40) or (4.41) holds then the set $\bar{X}_{\gamma}(\varepsilon)$ is compact.
4.43. Lemma. If the condition (4.40) or (4.41) holds then

$$
\sup _{x} X_{\gamma}(\varepsilon)=\sup _{x} \bar{X}_{\gamma}(\varepsilon) .
$$

Proof. We set

$$
a=\sup X_{\gamma}(\varepsilon), \quad b=\sup \bar{X}_{\gamma}(\varepsilon) .
$$

Obviously, $a \geq b$. Show that $a \leq b$. By Lemma 4.39 we establish that $a \in X_{\gamma}(\varepsilon)$. Hence, there exists a number $y_{0} \in \Sigma_{\gamma}$ sach that

$$
I_{\gamma}^{+}\left(a, y_{0}\right) \geq \varepsilon .
$$

Assume that

$$
I_{\gamma}^{+}\left(a, y_{0}\right)=\varepsilon .
$$

Then $a \in \bar{X}_{\gamma}(\varepsilon)$. By Corollary 4.42 we conclude follows that b is the greatest element of the set $\bar{X}_{\gamma}(\varepsilon)$. Therefore, $a \leq b$.

Now we assume that

$$
I_{\gamma}^{+}\left(a, y_{0}\right)>\varepsilon .
$$

For $\gamma \leq 1$ we have

$$
\lim _{x \rightarrow+\infty} I_{\gamma}^{+}\left(x, y_{0}\right)=0
$$

Since the function $I_{\gamma}^{+}(x, y)$ is continuous then there exists a number $x^{\prime}>a$ such that

$$
\begin{equation*}
I_{\gamma}^{+}\left(x^{\prime}, y_{0}\right)=\varepsilon . \tag{4.44}
\end{equation*}
$$

Hence, $x^{\prime} \in \bar{X}_{\gamma}(\varepsilon)$. Then $a<x^{\prime} \leq b$ and we obtain a contradiction.
By (4.35) for $\gamma>1$, we deduce

$$
I_{\gamma}^{+}\left(\sqrt{\frac{2}{\gamma-1}}, y_{0}\right) \leq \varepsilon^{\prime}<\varepsilon
$$

Then there exists a number $x^{\prime} \in\left(a, \sqrt{\frac{2}{\gamma-1}}\right)$ satisfying (4.44). Hence, $x^{\prime} \in \bar{X}_{\gamma}(\varepsilon)$. From here, $a<x^{\prime} \leq b$ and again we obtain a contradiction. The lemma is proved.
4.45. Lemma. If the condition (4.40) or (4.41) holds, then there exists a number $y_{\gamma}(\varepsilon) \in \Sigma_{\gamma}$ such that

$$
\begin{equation*}
I_{\gamma}^{+}\left(x_{\gamma}(\varepsilon), y_{\gamma}(\varepsilon)\right)=\varepsilon . \tag{4.46}
\end{equation*}
$$

The proof follows from Corollary 4.42 and Lemma 4.43.
Continue to study the function $x_{\gamma}(\varepsilon)$.
4.47. Proposition. The function

$$
x_{\gamma}(\varepsilon) \in C^{\infty}(0,1) \quad \text { for all } \quad \gamma \leq 1
$$

and

$$
x_{\gamma}(\varepsilon) \in C^{\infty}\left(\left(0, \varepsilon^{\prime}\right) \cup\left(\varepsilon^{\prime}, 1\right)\right) \cap C(0,1) \quad \text { for all } \quad \gamma>1 .
$$

Proof. Fix ε_{0} and γ, satisfying (4.40) or (4.41). Then $x_{\gamma}\left(\varepsilon_{0}\right) \in \Sigma_{\gamma}$ and there exists $y_{\gamma}\left(\varepsilon_{0}\right) \in \Sigma_{\gamma}$ sach that

$$
I_{\gamma}^{+}\left(x_{\gamma}\left(\varepsilon_{0}\right), y_{\gamma}\left(\varepsilon_{0}\right)\right)=\varepsilon_{0} .
$$

We set

$$
F(x, y, \varepsilon)=I_{\gamma}^{+}(x, y)-\varepsilon .
$$

Observe that the function $F(x, y, \varepsilon)$ is C^{∞}-differentiable in some neighborhood $U \subset \mathbf{R}^{3}$ of the point $p_{0}=\left(x_{\gamma}\left(\varepsilon_{0}\right), y_{\gamma}\left(\varepsilon_{0}\right), \varepsilon_{0}\right)$ and $F\left(p_{0}\right)=0$. We have

$$
\frac{\partial F}{\partial x}\left(p_{0}\right)=\frac{\theta^{\prime}\left(x_{\gamma}\left(\varepsilon_{0}\right)\right)-I_{\gamma}^{+}\left(x_{\gamma}\left(\varepsilon_{0}\right), y_{\gamma}\left(\varepsilon_{0}\right)\right)}{x_{\gamma}\left(\varepsilon_{0}\right)+y_{\gamma}\left(\varepsilon_{0}\right)}=\frac{\theta^{\prime}\left(x_{\gamma}\left(\varepsilon_{0}\right)\right)-\varepsilon_{0}}{x_{\gamma}\left(\varepsilon_{0}\right)+y_{\gamma}\left(\varepsilon_{0}\right)} .
$$

In Section 3 we proved that $0<s<r$, where $s \in \Sigma_{\gamma}$ is the unique positive root of (3.23). Then the inequality $r \leq x_{\gamma}\left(\varepsilon_{0}\right)$ yields

$$
\frac{\partial F}{\partial x}\left(p_{0}\right) \neq 0
$$

By the implicit function theorem we deduce that there is an 3-dimensional interval $I=I_{x} \times I_{y} \times I_{\varepsilon} \subset U$ and a function $f \in C^{\infty}\left(I_{y} \times I_{\varepsilon}\right)$ such that for all $(x, y, \varepsilon) \in I_{x} \times I_{y} \times I_{\varepsilon}$

$$
F(x, y, \varepsilon)=0 \Leftrightarrow x=f(y, \varepsilon) .
$$

Here

$$
I_{x}=\left\{x \in \mathbf{R}:\left|x-x_{\gamma}\left(\varepsilon_{0}\right)\right|<a\right\}, \quad I_{y}=\left\{y \in \mathbf{R}:\left|y-y_{\gamma}\left(\varepsilon_{0}\right)\right|<b\right\}
$$

and

$$
I_{\varepsilon}=\left\{\varepsilon \in \mathbf{R}:\left|\varepsilon-\varepsilon_{0}\right|<c\right\} .
$$

Moreover,

$$
\begin{aligned}
& \frac{\partial f}{\partial y}\left(y_{\gamma}\left(\varepsilon_{0}\right), \varepsilon_{0}\right)=-\left[F_{x}^{\prime}\left(p_{0}\right)\right]^{-1}\left[F_{y}^{\prime}\left(p_{0}\right)\right]=-\frac{\theta^{\prime}\left(y_{\gamma}\left(\varepsilon_{0}\right)\right)-\varepsilon_{0}}{\theta^{\prime}\left(x_{\gamma}\left(\varepsilon_{0}\right)\right)-\varepsilon_{0}}, \\
& \frac{\partial f}{\partial \varepsilon}\left(y_{\gamma}\left(\varepsilon_{0}\right), \varepsilon_{0}\right)=-\left[F_{x}^{\prime}\left(p_{0}\right)\right]^{-1}\left[F_{\varepsilon}^{\prime}\left(p_{0}\right)\right]=\frac{x_{\gamma}\left(\varepsilon_{0}\right)+y_{\gamma}\left(\varepsilon_{0}\right)}{\theta^{\prime}\left(x_{\gamma}\left(\varepsilon_{0}\right)\right)-\varepsilon_{0}} .
\end{aligned}
$$

It is easy to see that at the point $y_{\gamma}\left(\varepsilon_{0}\right)$ the function $x=f\left(y, \varepsilon_{0}\right)$ reaches a maximum on I_{y}. Therefore

$$
\frac{\partial f}{\partial y}\left(y_{\gamma}\left(\varepsilon_{0}\right), \varepsilon_{0}\right)=0 .
$$

From this,

$$
\theta^{\prime}\left(y_{\gamma}\left(\varepsilon_{0}\right)\right)=\varepsilon_{0}
$$

and $y_{\gamma}\left(\varepsilon_{0}\right)=s$.
Further, we set

$$
G(y, \varepsilon)=\theta^{\prime}(y)-\varepsilon .
$$

Observe that the function $G(y, \varepsilon)$ is C^{∞}-differentiable in some neighborhood $V \subset \mathbf{R}^{2}$ of the point $q_{0}=\left(y_{\gamma}\left(\varepsilon_{0}\right), \varepsilon_{0}\right)$ and $G\left(q_{0}\right)=0$.

We have

$$
\frac{\partial G}{\partial y}\left(q_{0}\right)=\theta^{\prime \prime}\left(y_{\gamma}\left(\varepsilon_{0}\right)=\theta^{\prime \prime}(s)\right.
$$

Suppose that $\gamma \leq-1$. By Lemma 2.12 we see that if $\theta^{\prime \prime}(s)=0$ then $s=0$. But, $s>0$.
Now suppose that $\gamma>-1$. By Lemma 2.12 we see that if $\theta^{\prime \prime}(s)=0$ then $s=0$ or $s=\sqrt{\frac{6}{\gamma+1}}$. But, in Section 3 we showed that

$$
0<s<\sqrt{\frac{2}{\gamma+1}} \quad \text { for } \quad \gamma>-1
$$

Therefore

$$
\frac{\partial G}{\partial y}\left(q_{0}\right) \neq 0
$$

And by the implicit function theorem the function $y=y_{\gamma}(\varepsilon)$ is C^{∞}-differentiable in the point ε_{0}. Then there is an interval

$$
I_{\varepsilon}^{\prime}=\left\{\varepsilon \in \mathbf{R}:\left|\varepsilon-\varepsilon_{0}\right|<c^{\prime}\right\} \subset I_{\varepsilon}
$$

such that

$$
y_{\gamma}(\varepsilon) \in I_{y} \quad \text { for all } \quad \varepsilon \in I_{\varepsilon}^{\prime} .
$$

Hence, for all $(x, \varepsilon) \in I_{x} \times I_{\varepsilon}^{\prime}$

$$
F\left(x, y_{\gamma}(\varepsilon), \varepsilon\right)=0 \Leftrightarrow x=f\left(y_{\gamma}(\varepsilon), \varepsilon\right) .
$$

Fix arbitrary $\varepsilon \in I_{\varepsilon}^{\prime}$. Next,

$$
x=f\left(y_{\gamma}(\varepsilon), \varepsilon\right)=f(s, \varepsilon)
$$

From here,

$$
F(x, s, \varepsilon)=0 .
$$

Rewrite this equality in the form

$$
\varphi(x)=-\varphi(s),
$$

where

$$
\varphi(t)=\varphi(t, \varepsilon)=\theta(t)-t \varepsilon .
$$

We have

$$
\varphi^{\prime}(t)=\theta^{\prime}(t)-\varepsilon .
$$

By Lemma 3.24 we conclude that the function $\varphi(t)$ is strictly increasing on $(0, s)$ and strictly decreasing on $(s,+\infty) \cap \Sigma_{\gamma}$. Moreover, $\varphi(0)=\varphi(r)=0$ and by (4.46), $\varphi\left(x_{\gamma}(\varepsilon)\right)=-\varphi(s)$. Then it is not hard to check that $x=x_{\gamma}(\varepsilon)$.

Thus, we proved that

$$
x_{\gamma}(\varepsilon)=f\left(y_{\gamma}(\varepsilon), \varepsilon\right) \quad \text { for all } \varepsilon \in I_{\varepsilon}^{\prime} .
$$

Therefore, the function $x_{\gamma}(\varepsilon)$ is C^{∞}-differentiable in the point ε_{0} and, using (4.47), we deduce

$$
x_{\gamma}^{\prime}\left(\varepsilon_{0}\right)=\frac{\partial f}{\partial y}\left(y_{\gamma}\left(\varepsilon_{0}\right), \varepsilon_{0}\right) y_{\gamma}^{\prime}\left(\varepsilon_{0}\right)+\frac{\partial f}{\partial \varepsilon}\left(y_{\gamma}\left(\varepsilon_{0}\right), \varepsilon_{0}\right)=\frac{\partial f}{\partial \varepsilon}\left(y_{\gamma}\left(\varepsilon_{0}\right), \varepsilon_{0}\right) .
$$

Fix $\gamma>1$. By (4.33) we conclude that the function $x_{\gamma}(\varepsilon)$ is C^{∞}-differentiable on $\left(0, \varepsilon^{\prime}\right)$. Show that the function $x_{\gamma}(\varepsilon)$ is not differentiable in the point ε^{\prime}. Clearly,

$$
\lim _{\varepsilon \rightarrow \varepsilon^{\prime}-0} x_{\gamma}^{\prime}(\varepsilon)=0
$$

For arbitrary $\varepsilon \in\left(\varepsilon^{\prime}, 1\right)$ we have

$$
\left|x_{\gamma}^{\prime}(\varepsilon)\right|=\left|\frac{\partial f}{\partial \varepsilon}\left(y_{\gamma}(\varepsilon), \varepsilon\right)\right|=\left|\frac{x_{\gamma}(\varepsilon)+y_{\gamma}(\varepsilon)}{\theta^{\prime}\left(x_{\gamma}(\varepsilon)\right)-\varepsilon}\right| \geq \frac{x_{\gamma}(\varepsilon)}{1+\varepsilon} \geq \frac{r}{1+\varepsilon} .
$$

Hence, the function $x_{\gamma}^{\prime}(\varepsilon)$ does not tend to 0 as $\varepsilon \rightarrow \varepsilon^{\prime}+0$. Therefore the function $x_{\gamma}(\varepsilon)$ is not differentiable in the point ε^{\prime}.

Prove that function $x_{\gamma}(\varepsilon)$ is continuous in the point ε^{\prime}. By (4.33), we have

$$
\lim _{\varepsilon \rightarrow \varepsilon^{\prime}-0} x_{\gamma}(\varepsilon)=\sqrt{\frac{2}{\gamma-1}} .
$$

Show that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow \varepsilon^{\prime}+0} x_{\gamma}(\varepsilon)=\sqrt{\frac{2}{\gamma-1}} . \tag{4.48}
\end{equation*}
$$

Let $y_{\gamma}\left(\varepsilon^{\prime}\right) \in \Sigma_{\gamma}$ is a solution of the equation

$$
\alpha(y)=\varepsilon^{\prime},
$$

Here, as above,

$$
\alpha(y)=I_{\gamma}^{+}\left(\sqrt{\frac{2}{\gamma-1}}, y\right) .
$$

Then

$$
\begin{equation*}
\frac{\theta\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right)}{y_{\gamma}\left(\varepsilon^{\prime}\right)+\sqrt{\frac{2}{\gamma-1}}}=\varepsilon^{\prime} \tag{4.49}
\end{equation*}
$$

and

$$
\alpha^{\prime}\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right)=\frac{\theta^{\prime}\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right)\left(y_{\gamma}\left(\varepsilon^{\prime}\right)+\sqrt{\frac{2}{\gamma-1}}\right)-\theta\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right)}{\left(y_{\gamma}\left(\varepsilon^{\prime}\right)+\sqrt{\frac{2}{\gamma-1}}\right)^{2}}=0 .
$$

From this,

$$
\theta\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right)=\theta^{\prime}\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right)\left(y_{\gamma}\left(\varepsilon^{\prime}\right)+\sqrt{\frac{2}{\gamma-1}}\right),
$$

and, using (4.49), we conclude that

$$
\begin{equation*}
\theta^{\prime}\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right)=\varepsilon^{\prime} . \tag{4.50}
\end{equation*}
$$

Since

$$
\theta^{\prime}\left(y_{\gamma}(\varepsilon)\right)=\varepsilon \quad \text { for all } \varepsilon \in\left(\varepsilon^{\prime}, 1\right)
$$

then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow \varepsilon^{\prime}+0} \theta^{\prime}\left(y_{\gamma}(\varepsilon)\right)=\varepsilon^{\prime}=\theta^{\prime}\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right) \tag{4.51}
\end{equation*}
$$

By Lemma 2.12, the function $\varepsilon=\theta^{\prime}(y)$ is continuous and strictly decreasing on $\left(0, \sqrt{\frac{2}{\gamma+1}}\right)$. Moreover, $y_{\gamma}(\varepsilon) \in\left(0, \sqrt{\frac{2}{\gamma+1}}\right)$ for all $\varepsilon \in\left(\varepsilon^{\prime}, 1\right)$. Then by (4.51), we establish

$$
\lim _{\varepsilon \rightarrow \varepsilon^{\prime}+0} y_{\gamma}(\varepsilon)=y_{\gamma}\left(\varepsilon^{\prime}\right) .
$$

We can rewrite the equality (4.46) in the form

$$
\theta\left(x_{\gamma}(\varepsilon)\right)-x_{\gamma}(\varepsilon) \varepsilon=-\left(\theta\left(y_{\gamma}(\varepsilon)\right)-y_{\gamma}(\varepsilon) \varepsilon\right) .
$$

Using (4.49), we obtain

$$
\lim _{\varepsilon \rightarrow \varepsilon^{\prime}+0}\left(\theta\left(x_{\gamma}(\varepsilon)\right)-x_{\gamma}(\varepsilon) \varepsilon\right)=-\left(\theta\left(y_{\gamma}\left(\varepsilon^{\prime}\right)\right)-y_{\gamma}\left(\varepsilon^{\prime}\right) \varepsilon^{\prime}\right)=-\varepsilon^{\prime} \sqrt{\frac{2}{\gamma-1}} .
$$

From here,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow \varepsilon^{\prime}+0} \varphi\left(x_{\gamma}(\varepsilon), \varepsilon\right)=-\varepsilon^{\prime} \sqrt{\frac{2}{\gamma-1}} \tag{4.52}
\end{equation*}
$$

Here, as above,

$$
\varphi(t)=\varphi(t, \varepsilon)=\theta(t)-t \varepsilon
$$

Suppose that (4.48) is not true. That is, for some sequence $\varepsilon_{i} \rightarrow \varepsilon^{\prime}+0$ of numbers, the inequality

$$
x_{\gamma}\left(\varepsilon_{i}\right) \leq \sqrt{\frac{2}{\gamma-1}}-m
$$

holds with some constant $m>0$. By Lemma 3.24, we see that the function $\varphi(t)$ is continuous and strictly decreasing on $\left[r, \sqrt{\frac{2}{\gamma-1}}\right]$. Moreover, $x_{\gamma}(\varepsilon) \in\left[r, \sqrt{\frac{2}{\gamma-1}}\right]$ for all $\varepsilon \in\left(\varepsilon^{\prime}, 1\right)$. Then

$$
\varphi\left(x_{\gamma}\left(\varepsilon_{i}\right), \varepsilon_{i}\right)>\varphi\left(\sqrt{\frac{2}{\gamma-1}}-m, \varepsilon_{i}\right)>\varphi\left(\sqrt{\frac{2}{\gamma-1}}, \varepsilon_{i}\right)=-\varepsilon_{i} \sqrt{\frac{2}{\gamma-1}}>-\varepsilon^{\prime} \sqrt{\frac{2}{\gamma-1}} .
$$

Letting $\varepsilon_{i} \rightarrow \varepsilon^{\prime}+0$, we obtain a contradiction to (4.52).
Thus, the function $x_{\gamma}(\varepsilon)$ is continuous in the point ε^{\prime}.
Proving of Proposition 4.47, we established the following statements.
4.53. Proposition. For all $\gamma>1$, we have

$$
\lim _{\varepsilon \rightarrow \varepsilon^{\prime}+0} x_{\gamma}(\varepsilon)=\sqrt{\frac{2}{\gamma-1}} .
$$

4.54. Proposition. The function $x_{\gamma}(\varepsilon)$ is strictly decreasing on $(0,1)$ for $\gamma \leq 1$ and strictly decreasing on $\left(\varepsilon^{\prime}, 1\right)$ for $\gamma>1$. Moreover,

$$
x_{\gamma}^{\prime}(\varepsilon)=\frac{x_{\gamma}(\varepsilon)+y_{\gamma}(\varepsilon)}{\theta^{\prime}\left(x_{\gamma}(\varepsilon)\right)-\varepsilon}<0
$$

for all γ and ε, satisfying (4.40) or (4.41).
4.55. Proposition. For $\gamma \in \mathbf{R}$ we have

$$
\lim _{\varepsilon \rightarrow 1-0} x_{\gamma}(\varepsilon)=0
$$

Proof. Let ε and γ satisfy (4.40) or (4.41). Then

$$
0<y_{\gamma}(\varepsilon)=s \leq r .
$$

Letting $\varepsilon \rightarrow 1-0$ we obtain

$$
\lim _{\varepsilon \rightarrow 1-0} y_{\gamma}(\varepsilon)=0
$$

Show that

$$
\lim _{\varepsilon \rightarrow 1-0} x_{\gamma}(\varepsilon)=0 .
$$

Indeed, suppose that this is not true, that is, there is a number $\varepsilon_{0} \in(0,1)$ and a sequence $\varepsilon_{i} \rightarrow 1\left(\varepsilon_{0}<\varepsilon_{i}<1\right)$ such that the inequality

$$
c<x_{\gamma}\left(\varepsilon_{i}\right) \leq x_{\gamma}\left(\varepsilon_{0}\right) .
$$

holds with some constant $c>0$. We can consider that

$$
\lim _{\varepsilon_{i} \rightarrow 1} x_{\gamma}\left(\varepsilon_{i}\right)=a \in\left[c, x_{\gamma}\left(\varepsilon_{0}\right)\right] .
$$

We have

$$
1=\lim _{\varepsilon_{i} \rightarrow 1} \varepsilon_{i}=\lim _{\varepsilon_{i} \rightarrow 1} I_{\gamma}^{+}\left(x_{\gamma}\left(\varepsilon_{i}\right), y_{\gamma}\left(\varepsilon_{i}\right)\right)=I_{\gamma}^{+}(a, 0)=\sigma(a) .
$$

From here, $a=0<c$ and we obtain a contradiction.
4.56. Proposition. For all $\gamma \leq 1$ we have

$$
\lim _{\varepsilon \rightarrow 0+} x_{\gamma}(\varepsilon)=+\infty
$$

Proof. Letting $\varepsilon \rightarrow 0+$ in the inequality $x_{\gamma}(\varepsilon) \geq r$, we obtain required.
4.57. Proposition. a) If $\gamma \in(-\infty,-1]$, then

$$
\lim _{\varepsilon \rightarrow 0+} x_{\gamma}(\varepsilon) \varepsilon^{-\alpha}=0 \quad \text { for every } \quad \alpha<\frac{\gamma-1}{2}
$$

b) If $\gamma \in(-1,1)$, then

$$
\lim _{\varepsilon \rightarrow 0+} x_{\gamma}(\varepsilon) \varepsilon=\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2-2 \gamma}} .
$$

c) If $\gamma=1$, then

$$
\lim _{\varepsilon \rightarrow 0+} x_{\gamma}(\varepsilon) \varepsilon=\exp \left\{-\frac{1}{2}\right\}
$$

Proof. a) Let $\gamma<-1$. Using the inequalities $0<y_{\gamma}(\varepsilon) \leq r$, we obtain

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+} y_{\gamma}(\varepsilon) \varepsilon^{-\alpha}=0 \quad \text { for every } \quad \alpha<\frac{\gamma-1}{2} \tag{4.58}
\end{equation*}
$$

We set

$$
\mu(t)=\left(1-\frac{\gamma+1}{2} t^{2}\right)\left(1-\frac{\gamma-1}{2} t^{2}\right)^{-1}
$$

Obviously,

$$
\lim _{t \rightarrow+\infty} \mu(t)=\frac{\gamma+1}{\gamma-1}
$$

It is easy to see the function $\mu(t)$ is strictly decreasing on $(0,+\infty)$. Therefore

$$
\mu(t)>\frac{\gamma+1}{\gamma-1} \quad \text { for all } t \geq 0
$$

Next,

$$
\varepsilon=\theta^{\prime}\left(y_{\gamma}(\varepsilon)\right)=\left(1-\frac{\gamma-1}{2} y_{\gamma}^{2}(\varepsilon)\right)^{\frac{1}{\gamma-1}-1}\left(1-\frac{\gamma+1}{2} y_{\gamma}^{2}(\varepsilon)\right)>\sigma\left(y_{\gamma}(\varepsilon)\right) \frac{\gamma+1}{\gamma-1} .
$$

From here,

$$
\begin{equation*}
1 \leq \frac{\sigma\left(y_{\gamma}(\varepsilon)\right)}{\varepsilon} \leq \frac{\gamma-1}{\gamma+1} . \tag{4.59}
\end{equation*}
$$

We notice that the equation $I_{\gamma}^{+}(x, y)=\varepsilon$ we can write as

$$
x\left(\frac{\sigma(x)}{\varepsilon}-1\right)=y\left(\frac{\sigma(y)}{\varepsilon}-1\right) .
$$

Then by (4.58), (4.59) for all $\alpha<\frac{\gamma-1}{2}$ we have

$$
\begin{equation*}
0=\lim _{\varepsilon \rightarrow 0+} y_{\gamma}(\varepsilon) \varepsilon^{-\alpha}\left(\frac{\sigma\left(y_{\gamma}(\varepsilon)\right)}{\varepsilon}-1\right)=\lim _{\varepsilon \rightarrow 0+} x_{\gamma}(\varepsilon) \varepsilon^{-\alpha}\left(1-\frac{\sigma\left(x_{\gamma}(\varepsilon)\right)}{\varepsilon}\right) . \tag{4.60}
\end{equation*}
$$

Assume that there is $\alpha<\frac{\gamma-1}{2}$ such that

$$
\lim _{\varepsilon \rightarrow 0+} x_{\gamma}(\varepsilon) \varepsilon^{-\alpha} \neq 0
$$

Then for some sequence $\varepsilon_{i} \rightarrow 0$ of positive numbers the inequality

$$
\begin{equation*}
x_{\gamma}\left(\varepsilon_{i}\right) \varepsilon_{i}^{-\alpha} \geq m \tag{4.61}
\end{equation*}
$$

holds with some constant $m>0$.

By (4.60) we obtain

$$
\lim _{\varepsilon_{i} \rightarrow 0+} \frac{\sigma\left(x_{\gamma}\left(\varepsilon_{i}\right)\right)}{\varepsilon_{i}}=1
$$

By (4.61),

$$
\lim _{\varepsilon_{i} \rightarrow 0+} \frac{\sigma\left(x_{\gamma}\left(\varepsilon_{i}\right)\right)}{\varepsilon_{i}} \leq \lim _{\varepsilon_{i} \rightarrow 0+} \frac{\sigma\left(m \varepsilon_{i}^{\alpha}\right)}{\varepsilon_{i}}=0 .
$$

and we obtain a contradiction.
Let $\gamma=-1$. We have

$$
\varepsilon=\theta^{\prime}\left(y_{\gamma}(\varepsilon)\right)=\left(1+y_{\gamma}^{2}(\varepsilon)\right)^{-\frac{3}{2}}
$$

From here

$$
y_{\gamma}(\varepsilon)=\sqrt{\varepsilon^{-\frac{2}{3}}-1}
$$

and

$$
\sigma\left(y_{\gamma}(\varepsilon)\right)=\varepsilon^{\frac{1}{3}}
$$

For $\alpha<-1$ we have

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0+} x_{\gamma}(\varepsilon) \varepsilon^{-\alpha}\left(1-\frac{\sigma\left(x_{\gamma}(\varepsilon)\right)}{\varepsilon}\right) & =\lim _{\varepsilon \rightarrow 0+} y_{\gamma}(\varepsilon) \varepsilon^{-\alpha}\left(\frac{\sigma\left(y_{\gamma}(\varepsilon)\right)}{\varepsilon}-1\right) \\
& =\lim _{\varepsilon \rightarrow 0+} \varepsilon^{-\alpha-1}\left(1-\varepsilon^{2 / 3}\right)^{3 / 2}=0
\end{aligned}
$$

Assume that there exits $\alpha<-1$ such that

$$
\lim _{\varepsilon \rightarrow 0+} x_{\gamma}(\varepsilon) \varepsilon^{-\alpha} \neq 0
$$

Then for some sequence $\varepsilon_{i} \rightarrow 0$ of positive numbers the inequality (4.61) holds with some constant $m>0$. As above we obtain a contradiction.
b) By Proposition 4.56 we deduce

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+} \theta\left(x_{\gamma}(\varepsilon)\right)=0 \tag{4.62}
\end{equation*}
$$

Notice that the function $\theta^{\prime}(t)$ is continuous and the equation

$$
\theta^{\prime}(t)=0
$$

has the unique solution $s=\sqrt{\frac{2}{\gamma+1}}$. Then the equality

$$
\theta^{\prime}\left(y_{\gamma}(\varepsilon)\right)=\varepsilon
$$

yields

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+} y_{\gamma}(\varepsilon)=\sqrt{\frac{2}{\gamma+1}} \tag{4.63}
\end{equation*}
$$

By (4.62), (4.63) we obtain

$$
\begin{aligned}
\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2-2 \gamma}}=\theta\left(\sqrt{\frac{2}{\gamma+1}}\right) & =\lim _{\varepsilon \rightarrow 0+}\left(\theta\left(y_{\gamma}(\varepsilon)\right)-y_{\gamma}(\varepsilon) \varepsilon\right)= \\
& =\lim _{\varepsilon \rightarrow 0+}\left(x_{\gamma}(\varepsilon) \varepsilon-\theta\left(x_{\gamma}(\varepsilon)\right)\right)=\lim _{\epsilon \rightarrow 0+} x_{\gamma}(\varepsilon) \varepsilon
\end{aligned}
$$

c) The proof is analogous.
4.64. Proposition. a) If $\gamma \neq 1$, then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 1-0} \frac{x_{\gamma}(\varepsilon)}{(1-\varepsilon)^{\alpha}}=+\infty \quad \text { for all } \alpha>\frac{1}{2} \tag{4.65}
\end{equation*}
$$

b) If $\gamma=1$, then

$$
\lim _{\varepsilon \rightarrow 1-0} \frac{x_{\gamma}(\varepsilon)}{\ln ^{\alpha} \varepsilon}=+\infty \quad \text { for all } \alpha>\frac{1}{2}
$$

Proof. a) Assume that $\gamma>1$. Then

$$
x_{\gamma}(\varepsilon) \geq r=\sqrt{\frac{2\left(1-\varepsilon^{\gamma-1}\right)}{\gamma-1}}
$$

Using L'Hospital rule, we find

$$
\lim _{\varepsilon \rightarrow 1-0} \frac{1-\varepsilon^{\gamma-1}}{(1-\varepsilon)^{2 \alpha}}=\frac{\gamma-1}{2 \alpha} \lim _{\varepsilon \rightarrow 1-0} \frac{\varepsilon^{\gamma-2}}{(1-\varepsilon)^{2 \alpha-1}}=+\infty \quad \text { for all } \alpha>\frac{1}{2}
$$

From thies we obtain (4.65). The case $\gamma<1$ is analogous.
b) The proof is analogous.

Address :

Department of Mathematics
2 Prodolnaya 30, 400062 Volgograd
Volgograd State University
RUSSIA

Vladimir Klyachin : E-mail: klchnv@mail.ru

Alexey Kochetov : E-mail: kochetov.alexey@mail.ru

Vladimir Miklyukov : E-mail: miklyuk@mail.ru

References

[1] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surveys in Applied Mathematics, III, John Wiley \& Sons, Inc., Chapman \& Hall, Limited, New York - London, 1958.
[2] M.A. Lavrentiev, B.V. Shabat, Problems of Hydrodynamics and Their Mathematical Models (in Russian), Nauka, Moscow, 1973.
[3] G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings, Arch. Ration. Mech. and Anal., v. 158, 155-171, 2001.
[4] D. Faraco, Beltrami operators and microstructure, Academic dissertation, Depart. of Math., Faculty of Sci., University of Helsinki, Helsinki, 2002.
[5] V.M. Miklyukov, On a new aproach to Bernshtein's theorem and related questions for equations of minimal surface type, Math. Sb., v. 108, n. 2, 1979, 268-289; English transl. in Math. USSR Sbornik, v. 36, n. 2, 1980, 251-271.
[6] J.F. Hwang, Comparison principles and theorems for prescribed mean curvature equation in unbounded domains, Ann. Scuola Norm. Sup. Pisa, 1988, v. 15, 341-355.
[7] J.F. Hwang, A uniqueness theorem for the minimal surface equation, Pacific J. Math., 1996, v. 176, 357-364.
[8] P. Collin, R. Krust, Le probléme de Dirichlet pour l'equation des surfaces minimales sur des domaines non bornés, Bull. Soc. Math. France, 1991, v. 119, 443-458.
[9] S. Pigola, M. Rigoli and A.G. Setti, Some remarks on the prescribed mean curvature equation on complete manifolds, Pacific J. Math., 2002, v. 206, no. 1, 195-217.

