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Abstract. We consider simulation of Subϕ(Ω)-processes that are weakly
self-similar with stationary increments in the sense that they have the covari-
ance function

R(t, s) =
1

2

“
t2H + s2H − |t− s|2H

”
for some H ∈ (0, 1). This means that the second order structure of the pro-
cesses is that of the fractional Brownian motion. Also, if H > 1

2
then the

process is long-range dependent.
The simulation is based on a series expansion of the fractional Brownian

motion due to Dzhaparidze and van Zanten. We prove an estimate of the accu-
racy of the simulation in the space C([0, 1]) of continuous functions equipped
with the usual sup-norm. The result holds also for the fractional Brownian
motion which may be considered as a special case of a Subx2/2(Ω)-process.
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1. Introduction

We consider simulation of centred second order processes defined on the inter-
val [0, 1] whose covariance function is

R(t, s) =
1
2
(
t2H + s2H − |t− s|2H

)
,

and belong to the space Subϕ(Ω). This space is defined later in Section 2. The
parameter H takes values in the interval (0, 1) the other cases being either
uninteresting or impossible.

The motivation to study processes with the second order structure given by R
comes from the notions of statistical self-similarity and long-range dependence. A
stationary square integrable process is long-range dependent if its autocorrelation
function is not summable. A process Z is self-similar with index H if it satisfies
the scaling property

(Zt)t≥0
d=
(
a−HZat

)
t≥0

for all a > 0. Here d means equality in distributions. The self-similarity pa-
rameter H ∈ (0, 1), or Hurst index, has also the following role. If H 6= 1

2

then Z is a process with dependent increments. There are 1
2 -self-similar pro-

cesses with independent increments, but these are processes with no variance. If
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H > 1
2 then the increments of the process Z are long-range dependent. The case

H < 1
2 corresponds to short-range dependence. These properties, self-similarity

and long-range dependence, have been shown to be charateristic in e.g. teletraffic
and financial time series. See [1, 3, 6, 12] for references to these studies and for
self-similarity and long-range dependence in general.

Assume now that a process Z is H -self-similar, has stationary increments,
and is centred and square integrable. Then it is easy to see that Z has R as the
covariance function. So, if a process has the covariance function R we say that
it is weakly self-similar with stationary increments, or second order self-similar
with stationary increments. In the Gaussian case the properties of the weak
self-similarity and the proper one coincide. In this case Z is called the fractional
Brownian motion, and, in particular, the Brownian motion if H = 1

2 . The
fractional Brownian motion was originally defined and studied by Kolmogorov
[8] under the name “Wiener helix”. The name “fractional Brownian motion”
comes from Mandelbrot and Van Ness [11].

Recently Dzhaparidze and van Zanten [5] proved a series representation for
the fractional Brownian motion B :

Bt =
∞∑

n=1

sin(xnt)
xn

Xn +
∞∑

n=1

1− cos(ynt)
yn

Yn. (1.1)

Here the Xn ’s and the Yn ’s are independent zero mean Gaussian random vari-
ables with certain variances depending on H and n. The xn ’s are the positive
real zeros of the Bessel function J−H of the first kind and the yn ’s are the posi-
tive real zeros of the Bessel function J1−H . The series in (1.1) converge in mean
square as well as uniformly on [0, 1] with probability 1. Details of representation
(1.1) are recalled later in Section 3.

In this paper we study the use of the expansion (1.1) in simulating processes
with the covariance function R. In particular, we study processes of the form
(1.1) where the Xn ’s and Yn ’s are replaced by independent random variables
from the space Subϕ(Ω). The fractional Brownian motion may be obtained as a
special case with ϕ(x) = x2/2.

Let us end this introduction by saying a few words of the pros and cons of
using the series expansion (1.1). The Hurst parameter H is roughly the Hölder
index of the process. This means that, especially in the case of small H, the
sample paths of the process are very erractic. However, the coefficient functions
in (1.1) are smooth. So, in order to have good accuracy in simulation one needs a
large truncation point in the expansion. This is the bad news. The good news is
that once the coefficient functions are calculated we are in now way restricted to
any pregiven time grid. Indeed, unlike in some traditional simulation methods,
to calculate the value of the sample path in a new time point one does not have
to condition on the already calculated time points. The computational effort in
adding a new time point is always constant.

2. Space Subϕ(Ω)

We recall some basic facts about the space Subϕ(Ω) of ϕ-sub-Gaussian (or
generalised sub-Gaussian) random variables. For details and proofs we refer to
Buldygin and Kozachenko [2] and Krasnoselskii and Rutitskii [10].
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Definition 2.1. [10] A continuous even convex function u is an Orlicz N-function
if it is strictly increasing for x > 0, u(0) = 0,

u(x)
x

→ 0 as x→ 0 and
u(x)
x

→∞ as x→∞.

Proposition 2.2. [10] The function u is an Orlicz N-function if and only if

u(x) =

|x|∫
0

l(u) du, x ∈ R,

where the density function l is nondecreasing, right continuous, l(u) > 0 as
u > 0, l(0) = 0 and l(u) →∞ as u→∞.

Definition 2.3. Let u be an Orlicz N-function. The even function u∗ defined
by the formula

u∗(x) = sup
y>0

(
xy − u(y)

)
is the Young-Fenchel transformation of the function u .

Proposition 2.4. [10] The function u∗ is an Orlicz N-function and for x > 0

u∗(x) = xy0 − u(y0) if y0 = l−1(x).

Here l−1 is the generalised inverse function of l , i.e.

l−1(x) := sup{v ≥ 0 : l(v) ≤ x}.

Definition 2.5. The assumption Q holds for an Orlicz N-function u if it is
quadratic around the origin, i.e. there exist such constants x0 > 0 and C > 0
that ϕ(x) = Cx2 for |x| ≤ x0 .

Example 2.6. The assumption Q holds for the following Orlicz N-functions

ϕ(x) =

{ |x|p
p if |x| > 1,

x2

p if |x| ≤ 1,
p > 1;

ϕ(x) =

{ (
eα
2

) 2
α x2 if |x| ≤

(
2
α

)1/α
,

exp{|x|α} if |x| >
(

2
α

)1/α
,

0 < α < 1.

Let (Ω,F ,P) be a standard probability space.

Definition 2.7. Let ϕ be an Orlicz N-function satisfying the assumption Q.
A zero mean random variable ξ belongs to the space Subϕ(Ω), the space of ϕ-
sub-Gaussian random variables, if there exists a positive constant a such that
the inequality

E exp{λξ} ≤ exp{ϕ(aλ)}
holds for all λ ∈ R .

A stochastic process X = (Xt)t∈[0,1] is a Subϕ(Ω)-process if it is a bounded
family of Subϕ(Ω)-processes: Xt ∈ Subϕ(Ω) for all t ∈ [0, 1] and

sup
t∈[0,1]

τϕ(Xt) < ∞.
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Remark 2.8. Note that like the Gaussian variables the ϕ-sub-Gaussian random
variables also have light tails. In particular, they have moments of all orders.

Proposition 2.9. [2] The space Subϕ(Ω) is a Banach space with respect to the
norm

τϕ(ξ) = inf
{
a ≥ 0 : E exp{λξ} ≤ exp

{
ϕ(aλ)

}
, λ ∈ R

}
.

Moreover, for any λ ∈ R we have

E exp{λξ} ≤ exp
{
ϕ
(
λτϕ(ξ)

)}
,(

Eξ2
) 1

2 ≤ (2C)
1
2 τϕ(ξ),

where C is the constant from the assumption Q.

The properties of random variables from the spaces Subϕ(Ω) were studied in
the book [2].

Remark 2.10. When ϕ(x) = x2

2 the space Subϕ(Ω) is called the space of
sub-Gaussian random variables and is denoted by Sub(Ω). Centred Gaussian
random variables ξ belong to the space Sub(Ω), and in this case τϕ(ξ) is just
the standard deviation: (Eξ2)1/2. Also, if ξ is bounded, i.e. |ξ| ≤ c a.s. then
ξ ∈ Sub(Ω) and τϕ(ξ) ≤ c.

Proposition 2.11. Let ϕ be an Orlicz N-function satisfying the assumption Q.
Assume further that the function ϕ(

√
· ) is convex. Let ξ1, ξ2, . . . , ξn be indepen-

dent random variables from the space Subϕ(Ω). Then

τ2
ϕ

(
n∑

i=1

ξi

)
≤

n∑
i=1

τ2
ϕ(ξi).

3. Series representation

Let us now recall the Dzhaparidze–van Zanten series representation (1.1) in
detail. Let Jν be the Bessel function of the first kind of order ν, i.e.

Jν(x) =
∞∑

n=0

(−1)n(x/2)ν+2n

Γ(n+ 1)Γ(ν + n+ 1)
.

Here x > 0, ν 6= −1,−2, . . . and Γ denotes the Euler Gamma function

Γ(z) =
∫ ∞

0
tz−1e−t dt.

It is well-known that for ν > −1 the Bessel function Jν has countable number
of real positive zeros tending to infinity. Denote by xn the nth positive real zero
of the Bessel function J−H ; yn is the nth positive real zero of J1−H .

Let B be the fractional Brownian motion with index H. Then it may be
represented as the mean square convergent series

Bt =
∞∑

n=1

cn sin(xnt) X̃n +
∞∑

n=1

dn

(
1− cos(ynt)

)
Ỹn.
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Here X̃n, Ỹn, n = 1, 2, . . . , are independent zero mean Gaussian random vari-
ables with EX̃2

n = EỸ 2
n = 1 and

cn =
√

2c
xH+1

n πHJ1−H(xn)
, n = 1, 2, . . . , (3.1)

dn =
√

2c
yH+1

n πHJ−H(yn)
, n = 1, 2, . . . , (3.2)

c =
Γ(2H + 1) sin(πH)

π2H+1
. (3.3)

We shall generalise the setting above in the following way: Define a process
Z = (Zt)t∈[0,1] by the expansion

Zt =
∞∑

n=1

cn sin(xnt) ξn +
∞∑

n=1

dn

(
1− cos(ynt)

)
ηn, (3.4)

where cn and dn are given by (3.1) and (3.2), ξn, ηn, n = 1, 2, . . . , are indepen-
dent identically distributed centred random variables from the space Subϕ(Ω)
with Eξ2n = Eη2

n = 1, n = 1, 2, . . . . Furthermore, we shall assume that the
function ϕ(

√
· ) is convex.

Since ϕ-sub-Gaussian random variables are square integrable we have the
following.

Proposition 3.1. The series (3.4) converge in mean square and the covariance
function of the process Z is R.

In addition to the L2 -convergence the spaces Subϕ(Ω) are nice enough to
allow uniform ω -by-ω convergence.

Theorem 3.2. The series (3.4) converge uniformly with probability one and the
process Z is almost surely continuous on [0, 1]. Moreover, if Z is strongly self-
similar with stationary increments then it is β -Hölder continuous with any index
β < H.

The continuity in Theorem 3.2 follows by using the Hunt’s theorem [7]. The
Hölder continuity comes from the Kolmogorov’s criterion. Let us also note that
from the case of fractional Brownian motion we know that in general we cannot
have Hölder continuity with index β = H, cf. [4].

For the reader’s convenience we now recite a modification of the Hunt’s theo-
rem as a lemma (cf. [2], Example 3.5.2).

Lemma 3.3. Suppose that (ξn)n≥1 is a sequence of independent centred random
variables with Eξ2n = 1, n = 1, 2, . . . . Let (λn)n≥1 be a sequence such that λn ≤
λn+1 and λn →∞ as n→∞.

If
∞∑

n=1

a2
n (ln(1 + λn))1+β < ∞
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for some β > 0 then the series

∞∑
n=1

an cos(λnt) ξn and
∞∑

n=1

an sin(λnt) ξn

converge uniformly on [0, 1] with probability one.

Proof of Theorem 3.2. Let us consider the almost sure uniform convergence first.
Now, from Watson [13], p. 506, we havexn ∼ yn ∼ πn as n → ∞ . Also from
[13], p. 200, we have the following asymptotic relation for the Bessel function Jν

for ν > −1:

J2
ν (x) + J2

ν+1(x) ∼ 2
πx

for large |x| . Since the zeros xn of Jν tend to infinity this yields

J2
1+ν(xn) ∼ 2

πxn

as n→∞. Therefore,

c2n ∼ c

n2H+1
and d2

n ∼ c

n2H+1
(3.5)

(see (3.1)–(3.3)). Consequently, the series

∞∑
n=1

c2n(ln(1 + xn))1+ε and
∞∑

n=1

d2
n(ln(1 + yn))1+ε

converge for all ε > 0. The almost sure uniform convergence and he continuity
of the process follow now from the Hunt’s theorem (Lemma 3.3).

To see the Hölder continuity of Z just use strong self-similarity and the station-
arity of the increments together with the fact that Z has all moments. Indeed,
for all n ∈ N we have

E
∣∣Zt − Zs

∣∣n = E
∣∣Zt−s

∣∣n = |t− s|HnE|Z1|n,

and the claim follows from the Kolmogorov’s criterion. �

4. Simulation, accuracy and reliability

We want to construct a model Z̃ of the process Z, such that Z̃ approximates
Z with given reliability and accuracy in the norm of some Banach space. In this
paper we consider the space C([0, 1]) equipped with the usual sup-norm.

Definition 4.1. The model Z̃ approximates the process Z with given reliability
1− ν , 0 < ν < 1, and accuracy δ > 0 in C([0, 1]) if

P

(
sup

t∈[0,1]
|Zt − Z̃t| > δ

)
≤ ν.
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A natural model for Z, defined by the expansion (3.4), would be the truncated
series

N∑
n=1

(
cn sin(xnt) ξn + dn

(
1− cos(ynt)

)
ηn

)
.

However, it is realistic to assume that the constants cn and dn and the zeros xn,
yn are only calculated approximately, especially since there are fast-to-compute
asymptotic formulas for the zeros xn and yn (cf. Watson [13], p. 506). Note
that the constants cn and dn depend on the zeros.

Let c̃n and d̃n be the approximated values of the cn and dn, respectively. Let

|c̃n − cn| ≤ γc
n,

|d̃n − dn| ≤ γd
n,

n = 1, . . . , N. The errors γc
n and γd

n are assumed to be known. Let x̃n and ỹn

be approximations of the corresponding zeros xn and yn with error bounds

|x̃n − xn| ≤ γx
n,

|ỹn − yn| ≤ γy
n.

The error bounds γx
n and γy

n are also assumed to be known.

Then, the model of the process Z is

Z̃t =
N∑

n=1

(
c̃n sin(x̃nt) ξn + d̃n

(
1− cos(ỹnt)

)
ηn

)
. (4.1)

The error in the simulation (model) is

∆t := Zt − Z̃t

=
N∑

n=1

{(
cn sin(xnt)− c̃n sin(x̃nt)

)
ξn

+
(
dn

(
1− cos(ynt)

)
− d̃n

(
1− cos(ỹnt)

))
ηn

}

+
∞∑

n=N+1

{
cn sin(xnt) ξn + dn

(
1− cos(ynt)

)
ηn

}
=: ∆appr

t + ∆cut
t .

In order to bound the error ∆ in C([0, 1]) we need estimates for τϕ(∆t)
and τϕ(∆t − ∆s) for all s, t ∈ [0, 1]. The estimates are given in the following
proposition.
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Proposition 4.2. Denote aϕ := τϕ(ξn) = τϕ(ηn) and

γcut := a2
ϕ

∞∑
n=N+1

(
c2n + 4d2

n

)
,

γappr := a2
ϕ

N∑
n=1

{(
cnγ

x
n + γc

n

)2
+
(
dnγ

y
n + 2γd

n

)2
}
.

Let α ∈ (0,H) and denote

γcut
α := 22−2αa2

ϕ

∞∑
n=N+1

(
c2nx

2α
n + d2

ny
2α
n

)
,

γappr
α := 23−2αa2

ϕ

N∑
n=1

(
c2nα

2(γx
n)2 + x̃2α

n (γc
n)2 + d2

nα
2(γy

n)2 + ỹ2α
n (γd

n)2
)
.

Then we have for all s, t ∈ [0, 1]

τ2
ϕ(∆t) ≤ γappr + γcut, (4.2)

τ2
ϕ(∆t −∆s) ≤

(
γappr

α + γcut
α

)
|t− s|2α. (4.3)

Proof. By Proposition 2.11 we know that

τ2
ϕ(∆t) ≤ τ2

ϕ(∆appr
t ) + τ2

ϕ(∆cut
t ).



SIMULATION OF WEAKLY SSSI Subϕ(Ω)-PROCESSES 9

For τ2
ϕ(∆appr

t ) we obtain by using Proposition 2.11 and the mean value theorem
that

τ2
ϕ(∆appr

t ) ≤
N∑

n=1

(
cn sin(xnt)− c̃n(sin x̃nt)

)2
τ2
ϕ(ξn)

+
N∑

n=1

(
dn

(
1− cos(ynt)

)
− d̃n

(
1− cos(ỹnt)

))2
τ2
ϕ(ηn)

≤ a2
ϕ

{
N∑

n=1

(
cn
(
sin(xnt)− sin(x̃nt)

)
+ (cn − c̃n) sin(x̃nt)

)2

+
N∑

n=1

(
dn

(
cos(ỹnt)− cos(ynt)

)
+ (dn − d̃n)

(
1− cos(ỹnt)

))2
}

≤ a2
ϕ

{
N∑

n=1

(
cn|xn − x̃n|t+ (cn − c̃n) sin(x̃nt)

)2

+
N∑

n=1

(
dn|ỹn − yn|t+ (dn − d̃n)

(
1− cos(ỹnt)

))2
}

≤ a2
ϕ

N∑
n=1

{(
cnγ

x
n + γc

n

)2
+
(
dnγ

y
n + 2γd

n

)2
}
.

= γappr.

Similarly we obtain

τ2
ϕ(∆cut

t ) ≤ a2
ϕ

∞∑
n=N+1

(
c2n + 4d2

n

)
= γcut. (4.4)

Recall the asymptotics of c2n and d2
n (3.5) to see that the series (4.4) above

converges. The estimate (4.2) follows.
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Now we shall estimate the incremental error τ2
ϕ(∆t − ∆s). For the “cut-off”

part we have

τ2
ϕ(∆cut

t −∆cut
s ) = τ2

ϕ

( ∞∑
n=N+1

cn
(
sin(xnt)− sin(xns)

)
ξn

+
∞∑

n=N+1

dn

(
cos(yns)− cos(ynt)

)
ηn

)

≤ 22(1−α)a2
ϕ

∞∑
n=N+1

(
c2n(xn|t− s|)2α + d2

n(yn|t− s|)2α

)

= 22(1−α)a2
ϕ

∞∑
n=N+1

(
c2nx

2α
n + d2

ny
2α
n

)
|t− s|2α (4.5)

= γcut
α |t− s|2α.

Due to the asymptotics (3.5) and xn ∼ yn ∼ πn the series in (4.5) converge if
α < H.

For the “approximating part” we have

τ2
ϕ(∆appr

t −∆appr
s )

≤ a2
ϕ

{ N∑
n=1

(
cn
(
sin(xnt)− sin(xns)

)
− c̃n

(
sin(x̃nt)− sin(x̃ns)

))2

+
N∑

n=1

(
dn

(
cos(yns)− cos(ynt)

)
− d̃n

(
cos(ỹns)− cos(ỹnt)

))2
}

≤ 22(1−α)a2
ϕ

N∑
n=1

((
cnx

α
n|t− s|α − c̃nx̃

α
n|t− s|α

)2

+
(
dny

α
n |t− s|α − d̃nỹ

α
n |t− s|α

)2
)

= 22−2αa2
ϕ

N∑
n=1

(
(cnxα

n − c̃nx̃
α
n)2 + (dny

α
n − d̃nỹ

α
n)2
)
|t− s|2α. (4.6)
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For the summand in (4.6) we have

(cnxα
n − c̃nx̃

α
n)2 + (dny

α
n − d̃nỹ

α
n)2

= (cnxα
n − cnx̃

α
n + cnx̃

α
n − c̃nx̃

α
n)2 + (dny

α
n − dnỹ

α
n + dnỹ

α
n − d̃nỹ

α
n)2

= (cn(xα
n − x̃α

n) + (cn − c̃n)x̃α
n)2 + (dn(yα

n − ỹα
n) + (dn − d̃n)ỹα

n)2

≤ 2c2n(xα
n − x̃α

n)2 + 2(cn − c̃n)2x̃2α
n + 2d2

n(yα
n − ỹα

n)2 + 2(dn − d̃n)2ỹ2α
n

= c2n(xα
n − x̃α

n)2 + (γc
n)2x̃2α

n + d2
n(yα

n − ỹα
n)2 + (γd

n)2ỹ2α
n

≤ c2nα
2(γx

n)2 + x̃2α
n (γc

n)2 + d2
nα

2(γy
n)2 + ỹ2α

n (γd
n)2 (4.7)

= γappr
α · 22α−2a−2

ϕ .

In (4.7) we used the mean value theorem together with the fact that the yn ’s
and xn ’s are bigger than one.

Estimate (4.3) follows now by collecting the estimates above and by using
Proposition 2.11. �

Now we are ready to state, although not yet to prove, our main result.

Theorem 4.3. Let b and α be such that 0 < b < α < H. Let γappr, γappr
α , γcut

and γcut
α be as in Proposition 4.2. Denote

γ0 =
√
γappr + γcut,

γα =
√
γappr

α + γcut
α ,

β = min
{
γ0,

γα

2α

}
.

Let l be the density of ϕ.

The model Z̃, defined by (4.1), approximates the separable process Z, defined
by (3.4), with given reliability 1− ν, 0 < ν < 1, and accuracy δ > 0 in C([0, 1])
if the following three inequalities are satisfied:

γ0 < δ, (4.8)

βγ0

γα
<

δ

2α(exp{ϕ(1)} − 1)α
, (4.9)

2 exp
{
−ϕ∗

(
δ

γ0
−1
)}

(
γαδ
βγ0

) 1
α

2
(

1− b
α

) 1
b

l−1

(
δ

γ0
−1
) 1

b

+1


2

≤ ν. (4.10)

The following lemma is our main tool for proving Theorem 4.3. For the proof
of it we refer to Kozachenko and Vasylyk [9], Lemma 3.3.
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Lemma 4.4. Let X = (Xt)t∈[0,1] be a separable random process from the space
Subϕ(Ω). Let σ : R+ → R+ be a strictly increasing continuous function such
that σ(h) → 0 as h→ 0 and

sup
|t−s|≤h

τϕ(Xt −Xs) ≤ σ(h).

Denote γ0 = supt∈[0,1] τϕ(Xt) and let β be such a number that β ≤ σ(1
2). Let

r : [1,∞) → R+ be a nondecreasing continuous function such that r(1) = 0 and
the mapping u 7→ r(eu) is convex. Suppose that

β∫
0

θ(u) du < ∞,

where

θ(u) = θ(ϕ, σ, r;u) =
r(N(σ−1(u)))

ϕ−1(lnN(σ−1(u)))
,

and N(ε) is the minimum number of closed intervals of the radius ε that is
needed to cover the interval [0, 1] (note that N(ε) ≤ 1

2ε + 1).
Then for all λ ∈ R and p ∈ (0, 1) we have

E exp

{
λ sup

t∈[0,1]
|Xt|

}
≤ 2 exp

{
ϕ

(
λγ0

1−p

)
(1−p) + ϕ

(
λβ

1−p

)
p

}
×

r−1

(
λγ0θ(pβ) +

λ

(1−p)p

βp2∫
0

θ(u) du
)2

. (4.11)

Let us now reformulate Lemma 4.4 above for our case.

Lemma 4.5. Let α, β, γ0 and γα be as in Theorem 4.3, and let r and θ be as
in Lemma 4.4. Then for all λ ∈ R and p ∈ (0, 1) we have

P

(
sup

t∈[0,1]
|∆t| > δ

)
≤ 2 exp

{
−λδ + ϕ

(
λγ0

1−p

)}
×

r−1

γ0

β

λ

p(1−p)

βp∫
0

θ(u) du

2

. (4.12)

Proof. >From Proposition 4.2 it follows that for the error process ∆ we may
take

γ0 =
√
γappr + γcut.

and
σ(h) = γα · hα =

√
γappr

α + γcut
α · hα.

In the inequality (4.11) we put β = min{γ0,
γα

2α } . Since β ≤ γ0 we have

ϕ

(
λγ0

1− p

)
(1−p) + ϕ

(
λβ

1− p

)
p ≤ ϕ

(
λγ0

1− p

)
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So, it follows from the Chebyshev inequality and from (4.11) that for any δ > 0
we have

P

(
sup

t∈[0,1]
|∆t| > δ

)
≤ exp

{
−λδ + ϕ

(
λγ0

1−p

)}
· 2I2

r ,

where we have used the denotation

Ir = r−1

λγ0θ(pβ) +
λ

(1−p)p

βp2∫
0

θ(u) du

 .

Since the function t 7→ r
(
eϕ(t)

)
is an Orlicz N-function

r(eϕ(t))
t increases in t ≥ 0

(cf. [10]). Therefore, ψ(ϕ−1(x)) = r(ex)
ϕ−1(x)

increases in x ≥ 0. Consequently, θ is
a decreasing function. Thus,

θ(pβ) ≤ 1
βp(1−p)

βp∫
βp2

θ(u) du

and

λγ0θ(pβ) ≤ λγ0

βp(1−p)

βp∫
βp2

θ(u) du.

Since γ0

β ≥ 1 we have

λγ0θ(pβ) +
λ

p(1−p)

βp2∫
0

θ(u) du ≤ γ0

β

λ

p(1−p)

βp∫
0

θ(u) du.

The claim follows now from Lemma 4.4. �

Theorem 4.3 follows now by using the Young–Fenchel transformation and then
choosing suitable λ, p and r in the inequality (4.12).

Proof of Theorem 4.3. By Proposition 2.4 we know that xy = ϕ(x)+ϕ∗(y) when
x = l−1(y), where l−1 is the generalised inverse function of the density l of ϕ.
Since

λδ − ϕ

(
λγ0

1−p

)
=

λγ0

1−p
· δ(1−p)

γ0
− ϕ

(
λγ0

1−p

)
we have the equality

λδ − ϕ

(
λγ0

1−p

)
= ϕ∗

(
δ(1−p)
γ0

)
when

λγ0

1−p
= l−1

(
δ(1−p)
γ0

)
.

So, we choose the following λ :

λ =
1−p
γ0

l−1

(
δ(1−p)
γ0

)
.
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Setting this λ in the inequality (4.12) we obtain

P

(
sup

t∈[0,1]
|∆t| > δ

)
≤ 2 exp

{
−ϕ∗

(
δ(1−p)
γ0

)}
×

r−1

γ0

β

λ0

p(1−p)

βp∫
0

θ(u) du

2

= 2 exp
{
−ϕ∗

(
δ(1−p)
γ0

)}
×

r−1

γ0

β

(1−p)
γ0

l−1

(
δ(1−p)
γ0

)
1

p(1−p)

βp∫
0

θ(u) du

2

= 2 exp
{
−ϕ∗

(
δ(1−p)
γ0

)}
×

r−1

 1
βp
l−1

(
δ(1−p)
γ0

) βp∫
0

θ(u) du

2

Let us now consider the integral term above. In our case we have

βp∫
0

θ(u) du =

βp∫
0

r(N(σ−1(u)))
ϕ−1(lnN(σ−1(u)))

du

≤
βp∫
0

r
(

1
2σ−1(u)

+ 1
)

ϕ−1
(
ln
(

1
2σ−1(u)

+ 1
)) du

=

βp∫
0

r
(

1
2

(γα

u

) 1
α + 1

)
ϕ−1

(
ln
((γα

u

) 1
α + 1

)) du.

Now, if the denominator satisfies

ϕ−1

(
ln
(

1
2

(γα

u

) 1
α + 1

))
≥ 1

as u ≤ βp , that is
p ≤ γα

β2α (exp{ϕ(1)} − 1)α , (4.13)

then we have
βp∫
0

θ(u) du ≤
βp∫
0

r

(
1
2

(γα

u

) 1
α + 1

)
du.
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Let us choose r(x) = xb − 1, where 0 < b < α . Then, by using the estimate
above and the fact that (x+ 1)b − xb ≤ 1, we obtain

βp∫
0

θ(u) du ≤
βp∫
0

(
1
2

(γα

u

) 1
α

)b

du =
γ

b
α
α

2b

(βp)1−
b
α

1− b
α

.

Thus, we have obtained the estimate

P

(
sup

t∈[0,1]
|∆t| > δ

)
≤ 2 exp

{
−ϕ∗

(
δ(1−p)
γ0

)}
×

r−1

 1
βp
l−1

(
δ(1−p)
γ0

)
γ

b
α
α

2b

(βp)1−
b
α

1− b
α

2

= 2 exp
{
−ϕ∗

(
δ(1−p)
γ0

)}
×

r−1

γ b
α
α (βp)−

b
α

2b(1− b
α)

l−1

(
δ(1−p)
γ0

)2

.

For p we choose
p =

γ0

δ
(4.14)

(recall that γ0 < δ ) and we obtain the inequality

P

(
sup

t∈[0,1]
|∆t| > δ

)
≤ 2 exp

{
−ϕ∗

(
δ

γ0
−1
)}

×

r−1

γ b
α
α (β γ0

δ )−
b
α

2b(1− b
α)

l−1

(
δ

γ0
−1
)2

= 2 exp
{
−ϕ∗

(
δ

γ0
−1
)}

×

r−1

(
1

2b(1− b
α)

(
γαδ

βγ0

) b
α

l−1

(
δ

γ0
−1
))2

= 2 exp
{
−ϕ∗

(
δ

γ0
−1
)}

×

(
1

2(1− b
α)

1
b

(
γαδ

βγ0

) 1
α

l−1

(
δ

γ0
−1
) 1

b

+1

)2

(4.15)

The claim follows from the inequalities (4.13), (4.14) and (4.15) and Lemma
4.5. �
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Let us now assume that the constants cn and dn and the zeros xn and yn are
actually correctly calculated.

Corollary 4.6. Suppose that there is no approximation error, i.e. γc
n = γd

n =
γx

n = γy
n = 0. Then the conditions (4.8) – (4.10) of Theorem 4.3 are satisfied if

N ≥ max

{(
A0

δ

)1/H

+ 1;
(
A0(exp{ϕ(1)} − 1)α

δ

)1/H

+ 1; 2
(
A0

Aα

) 1
α

}
(4.16)

and

ν ≥ 2 exp
{
−ϕ∗

(
δNH

A0
−1
)}

×

 (δAα)
1
α (N+1)2H/α

2
(

1− b
α

) 1
b

A
2
α
0 N

H−α
α

l−1

(
δ(N+1)H

A0
−1
) 1

b

+1


2

, (4.17)

where

A0 = aϕ

√
5c
2H

and Aα = 21−αaϕπ
α

√
c

H − α
.

Proof. Note that now γappr = γappr
α = 0.

We shall use the asymptotics xn ∼ yn ∼ nπ and c2n ∼ d2
n ∼ c

n2H+1 in the
expressions for γcut and γcut

α .

For γcut we get the upper bound

γcut = a2
ϕ

∞∑
n=N+1

(c2n + 4d2
n)

∼ a2
ϕ

∞∑
n=N+1

5c
n2H+1

≤ 5ca2
ϕ

∞∑
n=N

n+1∫
n

dx
x2H+1

=
5ca2

ϕ

2HN2H
.
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For γcut
α we obtain

γcut
α = 22−2αa2

ϕ

∞∑
n=N+1

(c2nx
2α
n + d2

ny
2α
n )

∼ 22−2αa2
ϕ

∞∑
n=N+1

(
c(πn)2α

n2H+1
+
c(πn)2α

n2H+1

)

≤ 22−2αa2
ϕ · 2cπ2α

∞∑
n=N

n+1∫
n

dx
x2(H−α)+1

=
22−2αa2

ϕcπ
2α

(H − α)N2(H−α)
.

In the same way we get the lower bounds

γcut ≥
5ca2

ϕ

2H(N + 1)2H
,

γcut
α ≥

22−2αa2
ϕcπ

2α

(H − α)(N + 1)2(H−α)
.

Therefore, we have the following bounds for γ0 and γα of Theorem 4.3:

A0

(N + 1)H
≤ γ0 ≤ A0

NH
,

Aα

(N + 1)H−α
≤ γα ≤ Aα

NH−α
.

If

N ≥ 2
(
A0

Aα

) 1
α

then in Theorem 4.3 we have β = γ0. Now we see that the condition (4.8) is
satisfied if

N ≥
(
A0

δ

)1/H

+ 1.

Similarly, (4.9) is satisfied if

N ≥
(
A0(exp{ϕ(1)} − 1)α

δ

)1/H

+ 1.

Finally, we see that the condition (4.10) is satisfied if (4.17) holds. �

Theorem 4.3 and Corollary 4.6 are still rather general and not readily useful
in practice. Indeed, there are still the parameters α and b one has to optimise.
If we choose a specific form for the function ϕ we are able to give an applicable
version of Corollary 4.6. The next corollary deals with the sub-Gaussian case,
i.e. ϕ(x) = x2/2.
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Corollary 4.7. If the process Z is sub-Gaussian then the conditions (4.16) and
(4.17) of Corollary 4.6 are satisfied if

N ≥ max


(
aϕ

δ

√
5c
2H

)1/H

+ 1;
22− 4

H 5
1
H

π

 (4.18)

and

2µ exp

−1
2

 δNH

aϕ

√
5c
2H

−1

2N14 ≤ ν, (4.19)

where

µ = π22
22
H
−45−

8
H

(
H

c

) 6
H
(
δ

aϕ

) 12
H

.

Proof. In the sub-Gaussian case we have ϕ(x) = x2

2 . So,

ϕ∗(x) =
x2

2
and l(x) = ϕ′(x) = x = l−1(x).

Thus, the conditions (4.16) and (4.17) take the form

N ≥ max

{(
A0

δ

)1/H

+ 1; 2
(
A0

Aα

) 1
α

}
(4.20)

and

ν ≥ 2 exp

{
−1

2

(
δNH

A0
−1
)2
}
×

 (δAα)
1
α (N+1)2H/α

2
(

1− b
α

) 1
b

A
2
α
0 N

H−α
α

(
δ(N+1)H

A0
−1
) 1

b

+1


2

. (4.21)

Let’s take α = H
2 and b = H

4 .

In this case A0 = aϕ

√
5c
2H , Aα = AH

2
= aϕπ

H
2 21−H

2

√
2c
H and from the in-

equality (4.20) we get

N ≥ max


(
aϕ

δ

√
5c
2H

)1/H

+ 1;
22− 4

H 5
1
H

π

 .

Since N is large we have in (4.21) (δAα)
1
α (N+1)2H/α

2
(

1− b
α

) 1
b

A
2
α
0 N

H−α
α

(
δ(N+1)H

A0
−1
) 1

b

+1


2

≈ µN14.
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The claim follows. �

Remark 4.8. In Corollary 4.7 the condition (4.18) for N is in closed form.
Condition (4.19) is still implicit, but it may be solved easily using numerical
methods. Corollary 4.7 is readily applicable for the fractional Brownian motion.
Indeed, in this case we aϕ = 1.

Example 4.9. Let

ϕ(x) =

{
xp

p , |x| > 1, p > 2;
x2

p , |x| ≤ 1.

In this case we have:

ϕ∗(x) =
x2

2
, l(x) = ϕ′(x) = x, l−1(x) = x

for x ∈ [0, 1] and

ϕ∗(x) =
xq

q
, (

1
p

+
1
q

= 1), l(x) = ϕ′(x) = xp−1, l−1(x) = x
1

p−1

for x > 1.
Then for 0 ≤ δ

γ0
− 1 ≤ 1 the condition (4.10) of Theorem 4.3 takes the form

2 exp

{
−1

2

(
δ

γ0
−1
)2
} 1

2
(

1− b
α

) 1
b

(
γαδ

βγ0

) 1
α
(
δ

γ0
−1
) 1

b

+ 1


2

≤ ν

and for δ
γ0
− 1 > 1 we have

2 exp
{
−1
q

(
δ

γ0
−1
)q} 1

2
(

1− b
α

) 1
b

(
γαδ

βγ0

) 1
α
(
δ

γ0
−1
) 1

b(p−1)
+ 1


2

≤ ν.
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