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Abstract

In this paper we study a specific subclass of abstract elementary classes. We

assume disjoint amalgamation, existence of a prime model over ∅ and a prop-

erty we call locality. This property is the main novelty of this paper. Almost

all examples of AEC’s have this property and it allows us to use so called

weak types in place of Galois types making it possible to study geometric sta-

bility theory in the context of abstract elementary classes. Also ω -stability

and LS(K) = ω are assumed. Our goal in the future is to construct a full

notion of independence in the style of [6].

In the first section we construct a monster model and introduce an ex-

tended language by adding some Skolem functions in the style of [9]. In

the second and third sections we introduce our notions of type and inde-

pendence based on splitting and discuss what assumptions are needed to

gain symmetry. Also other basic properties of non-splitting from elementary

model theory are proved. In the fourth section we define U-rank and prove

that when A and B are ω -saturated, A ⊂ B , then U(ā/A ) = U(ā/B)

if and only if ā is independent from B over A .



1 Abstract elementary classes

The notion of an abstract elementary class is due to Saharon Shelah, as

well as many ideas appearing in this paper and originally from elementary

model theory, like splitting, independence and the ideas behind the proof of

symmetry for splitting. See [8], [9] and [10]. The notions of Galois type

over a model and tameness are also due to Shelah, and they are studied for

example in [3] and [4].

Let τ be a countable vocabulary.

Definition 1.1 A class of τ -structures (K,4K) is an abstract elementary

class if

1. Both K and the binary relation 4K are closed under isomorphism.

2. If M 4K N , then M is a substructure of N .

3. 4K is a partial order on K .

4. If 〈Ai : i < δ〉 is an 4K -increasing chain:

(a)
⋃

i<δ Ai ∈ K ;

(b) for each j < δ , Aj 4K

⋃

i<δ Ai

(c) if each Ai 4K M ∈ K , then
⋃

i<δ Ai 4K M .

5. If A ,B,C ∈ K , A 4K C , B 4K C and A ⊆ B then A 4K B .

When A 4K B , we say that B is an AE-extension of A and A is an

AE-submodel of B .

Definition 1.2 If A ,B ∈ K and f : A → B an embedding such that

f(A ) 4K B , we say that f is an AE-embedding.

Assumption 1.3 K has arbitrarily large models.

Assumption 1.4 (LS(K) = ω) If A ∈ K and B ⊂ A a subset, there is

A ′ ∈ K such that B ⊂ A ′ 4K A and |A ′| = |B| + ω .

Assumption 1.5 (Prime model) There is AP ∈ K such that for each

A ∈ K there is an AE-embedding f : AP → A .

Assumption 1.6 (Disjoint amalgamation) If A ,B,C ∈ K , A 4K B ,

A 4K C and B ∩C = A , there is D ∈ K and a map f : B ∪C → D such

that f ↾B and f ↾C are AE-embeddings, and f(B) ∩ f(C ) = f(A ).
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We need still another assumption to capture the desired properties of the

4K -relation. To define this assumption we use the following concept of A -

Galois type.

Definition 1.7 (A -Galois type) For A ,B ∈ K and ā ∈ A , b̄ ∈ B we

say

tg
A

(ā/∅) = tg
B

(b̄/∅)

if there is C ∈ K and AE-embeddings f : A → C and g : B → C such that

f(ā) = g(b̄).

Assumption 1.8 (Locality) If, A ,B ∈ K , A ⊂ B , and for all finite

ā ∈ A we have that tg
A

(ā/∅) = tg
B

(ā/∅), then A 4K B.

Lemma 1.9 Let A ,B ∈ K be such that A′ ⊂ A and f : A′ → B a τ -

embedding. Then there is B′ ∈ K and an isomorphism h : B → B′ such

that B′ ∩ A = A′ = h(f(A′)) and h ◦ f = IdA′ .

Proof: Because (K,4K) is closed under isomorphism, we may take a disjoint

copy B′′ of B and an isomorphism g : B → B′′ . Then g ◦ f : A′ → B′′

is an τ -embedding. Let the universe of B′ be the union of the sets A′ and

B′′ \ g ◦ f(A′) . Define a bijection F : B′′ → B′

F (a) =

{

(g ◦ f)−1(a) when a ∈ g ◦ f(A′),

a when a ∈ B′′ \ g ◦ f(A′).

Then define the structure in B′ induced by F , so that F becomes an iso-

morphism. Also remark that the structure of A′ ⊂ B′ becomes identi-

cal to A′ ⊂ A , and F ◦ g ◦ f : A′ → A′ the identity. When we denote

h = F ◦ g : B → B′ , the claim follows. �

We will mostly use Assumption 1.8 when looking at mappings f : A →
B , where A 4K B . This assumption gives a sufficient and necessary con-

dition for the mapping to be an AE-embedding.

Lemma 1.10 Let A ,B ∈ K , A 4K B and f : A → B a mapping. Then

the condition that for all ā ∈ A

tg
B

(ā/∅) = tg
B

(f(ā)/∅) (1.1)

is equivalent for f being an AE-embedding.

Proof: First we assume that f : A → B has the property 1.1, and then

claim that it is also an AE-embedding. We can easily see that from 1.1 it

follows that f is an τ -embedding. Thus f(A ) ∈ K , because K is closed

under isomorphism. Take ā ∈ A . Let C ∈ K, g and h be as in the definition
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of Galois type, i.e. g : B → C and h : B → C AE-embeddings such that

g(ā) = h(f(ā)) . Now g ◦ f−1 : f(A ) → C is an AE-embedding, because

from A 4K B it follows that (g ◦ f−1)(f(A )) = g(A ) 4K g(B) 4K C and

furthermore (g ◦ f−1)(f(A )) 4K C . Also (g ◦ f−1)(f(ā)) = g(ā) = h(f(ā)) .

Hence we get for all f(ā) ∈ f(A ) that tg
f(A )(f(ā)/∅) = tg

B
(f(ā)/∅) , and

then from Assumption 1.8 that f(A ) 4K B . Thus f is an AE-embedding.

Then let f : A → B be an AE-embedding. When we substitute A′

for A and A for B in Lemma 1.9, we get B′ ∈ K and an isomorphism

h : B → B′ such that A = B′ ∩ B and (h ◦ f)(a) = a for all a ∈ A .

Again because f(A ) 4K B , also A = h(f(A )) 4K B′ . We can use the

amalgamation assumption 1.6 to get C ∈ K and g : B ∪B′ → C such that

g ↾B and g ↾B′ are AE-embeddings. Now g and g ◦ h are AE-embeddings

from B to C and g(a) = g((h ◦ f)(a)) = (g ◦ h)(f(a)) for all a ∈ A .

We can take C , g and g ◦ h in the definition of Galois type to show that

tg
B

(ā/∅) = tg
B

(f(ā)/∅) for all tuples ā ∈ A simultaneously. �

Finally we define our concept of local abstract elementary class.

Definition 1.11 (Local abstract elementary class) Abstract elemen-

tary class (K,4K) satisfying Assumptions 1.3-1.6 and 1.8. is called a local

abstract elementary class.

From now on we will always assume that (K,4K) is a local abstract elemen-

tary class.

1.1 Extended vocabulary τ
∗

Sections 1.1 and 1.2 are based on ideas due to Shelah. In this section we

first introduce an extended vocabulary with some Skolem-functions. They

will be a useful tool especially in section 3.

Definition 1.12 Let τ∗ = τ ∪ {F k
n : n, k < ω} and K∗ be τ∗ -structures

such that for A ∈ K∗ :

1. A ↾τ∈ K ,

2. For all ā ∈ A , Aā = {(F
lg(ā)
n )A (ā) : n < ω} , is such that

(a) Aā ∈ K and Aā 4K A ↾τ ,

(b) if b̄ ⊂ ā then b̄ ∈ Ab̄ ⊂ Aā
1.

1Here b̄ ⊂ ā means that lg(b̄) ≤ lg(ā) and the members of the tuple b̄ are contained

in the set of members of ā , i.e. when b̄ = (b0, ..., bk) and ā = (a0, ..., an) , {b0, ..., bk} ⊂
{a0, ..., an} .
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(c) Let (ai)i<ω be a fixed ordering on AP . The mapping f : AP →
A , where f(ai) = (F 0

i )A , is an AE-embedding.

Lemma 1.13 If A ∈ K∗ and B ⊂ A a subset such that B is closed under

functions F k
n , then B ↾ τ ∈ K and B ↾ τ 4K A ↾ τ .

Proof: The proof is by induction on the size of B . First we notice that

because of the constants (F 0
i )A

i<ω , the prime model AP is AE-embeddable

in B ↾ τ and thus B 6= ∅ .

1o |B| ≤ ω . Let B = (bi)i<α , where α ≤ ω , and denote Bi =

A{b0,...,bi−1} 4K A ↾ τ as in Definition 1.12. By condition 2b) in Defi-

nition 1.12 and condition 5 in Definition 1.1 we get an 4K -increasing chain

of models Bi such that B =
⋃

i<ω Bi . Now the claim follows from the

property 4 in Definition 1.1, that K is respects unions of 4K -increasing

chains.

2o Assume claim holds for all B′ of size less than α and let ω < |B| = α .

Because LS(K∗) = ω , we may write B as a union of an increasing chain of

τ∗ -models (Bi)i<α , where each Bi is a τ∗ -substructure of A , and of size

strictly less than α . By induction, Bi 4K A for each i < α . Again, using

the coherence property 5 of Definition 1.1, we get that (Bi)i<α is actually a

4K -increasing chain. The claim follows as in 1o . �

Remark that if A ,B ∈ K∗ and f : A → B is an τ∗ -embedding,

then f : A ↾τ → B ↾τ is an AE-embedding. This follows from Lemma

1.13, because an image of a model in an embedding is always closed under

functions.

Of course from Lemma 1.13 it follows that if B is a τ∗ -submodel of

A ∈ K∗ , then also B ↾τ4K A ↾τ . Thus the properties 1.-5. of definition

1.1 hold for K∗ where 4K is replaced with the τ∗ -submodel relation.

Lemma 1.14 For every A ∈ K there is A ∗ ∈ K∗ such that A ∗ ↾ τ = A .

Proof: We have to define functions (F k
n )A so that they satisfy the conditions

in Definition 1.12. We do that by defining functions by induction on lg(ā) ,

and for all ā ∈ A of the same length simultaneously. We notice that Aā

of Definition 1.12 need not to depend on the ordering of ā , thus we let

(F
lg(ā)
i )A (ā) = (F

lg(ā)
i )A (β(ā)) , whenever β : ā → ā is a bijection. Also if

the elements of ā are already contained in some shorter sequence ā′ , we let

Aā equal Aā′ .

1o First define constants (F 0
i )A

i<ω . Let f be an AE-embedding of the prime

model AP into A and (bi)i<ω be the fixed ordering on AP . We define

(F 0
i )A = f(bi) for all i < ω .
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2o Assume we have defined (F
lg(ā)
i )A (ā) for all ā of length less or equal

to n and for all i < ω . Then define functions for all b̄ ∈ A n+1 . We

want to check that permutation does not affect to the choice of Ab̄ , thus we

order A n+1 and compare b̄ ∈ A n+1 with the previous ones. Let b̄ ∈ A n+1

and assume we have defined functions for the previous b̄′ ∈ A n+1 . If the

elements of the sequence b̄ are already contained in some shorter sequence

b̄′ or b̄ is a permutation of some previous b̄′ ∈ A n+1 , let ((Fn+1
i )A (b̄)) =

((F
lg(b̄′)
i )A (b̄′)) for all i < ω . Otherwise we do the following. Because

LS(K) = ω , there is Ab̄ ∈ K such that |Ab̄| ≤ ω , Ab̄ 4K A and F ⊂ Ab̄ ,

where F is the countable set

F = {(F
lg(ā)
i )A (ā) : ā ⊂ b̄, lg(ā) < lg(b̄), i < ω} ∪ {b̄}.

We let ((Fn+1
i )A (b̄))i<ω enumerate Ab̄ . When we have defined functions for

all b̄ ∈ A n+1 , we see that Aā ⊂ Ab̄ whenever ā ⊂ b̄ . �

Lemma 1.15 (K∗ -amalgamation) If A ,B ∈ K∗ such that for all b̄ ∈
A ∩ B and atomic ψ ,

A |= ψ(b̄) ⇔ B |= ψ(b̄),

then there is C ∈ K∗ and f : A ∪ B → C such that f ↾A and f ↾B are

τ∗ -embeddings.

Proof: Denote (A ∩ B)A to be the closure of (A ∩ B) under functions

(F k
n )A , k, n ∈ ω , and (A ∩ B)B respectively. Now because by the as-

sumption (A ∩ B)A and (A ∩ B)B are isomorphic over A ∩ B and by

Lemma 1.13 belong to K∗ . Let h′ : (A ∩ B)A → (A ∩ B)B be an iso-

morphism such that h′ ↾(A ∩B)= Id(A ∩B) . Using Lemma 1.9 we find B′

and an isomorphism h : B → B′ such that h ◦ h′ ↾(A ∩B)A = Id(A ∩B)A and

A ∩ B′ = (A ∩ B)A = (h((A ∩ B)B)) = (A ∩ B′)B′

. From Lemma 1.13

we also get that (A ∩ B′) ↾ τ 4K A ↾ τ and (A ∩ B′) ↾ τ 4K B′ ↾ τ .

We may use the disjoint amalgamation property of K and find C ∈ K , and

a map f ′ : A ∪ B′ → C such that f ′ ↾A and f ′ ↾B′ are AE-embeddings,

and f ′(A ) ∩ f ′(B′) = f ′(A ∩ B′) = f ′((A ∩ B)A ) = f ′(h((A ∩ B)B)) .

We define functions (F k
n )C in f ′(A ∪B) as induced by f ′ . We can do this,

because functions induced by A on f ′(A ) and B′ on f ′(B′) agree on the

intersection. Then we can define functions in C \ f ′(A ∪ B′) as in Lemma

1.14. Now C belongs to K∗ and f ′ ↾A and f ′ ↾B′ are τ∗ -embeddings. Then

look at the mapping f : A ∪ B → C , where

f(a) =

{

f ′(a) when a ∈ A ,

f ′ ◦ h(a) when a ∈ B.

This mapping is well defined, because when a ∈ (A ∩B) , h(a) = h◦h′(a) =

a . Also f ↾A = f ′ ↾A and f ↾B= f ′ ◦ h are τ -embeddings. �
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1.2 Monster model

With K∗ -amalgamation and Assumption 1.8 we may construct a monster

model.

Theorem 1.16 Let µ be a cardinal. There is M
∗ ∈ K such that:

1. µ-Universality: M
∗ is µ-universal, that is for all A ∈ K∗ , |A | <

µ, there is a τ∗ -embedding f : A → M
∗ .

2. µ-Homogeneity: When (ai)i<α, (bi)i<α ⊂ M
∗ , α < µ, and for all

i0, ..., in < α and ψ atomic τ∗ -formula,

M
∗ |= ψ(ai0 , ..., ain) ⇔ M

∗ |= ψ(bi0 , ..., bin),

there is f ∈ Aut(M∗) such that f(ai) = bi for all i < α .

3. For all A 4K M
∗ ↾τ such that |A | < µ and mappings f : A → M

∗

such that for all finite tuples ā ∈ A

tg
M∗↾τ (ā/∅) = tg

M∗↾τ (f(ā)/∅),

there is g ∈ Aut(M∗ ↾ τ) extending f .

We denote M = M
∗ ↾ τ .

Remark 1.17 By Lemma 1.10 we could also talk about AE-embeddings f :

A → M in condition 3 of Theorem 1.16.

It is possible to construct such a model for arbitrary µ . For simplicity here

we assume that µ is a regular cardinal such that 2<µ = µ . Especially we

assume that such a cardinal exists. Then the number of isomorphism types

of τ∗ -structures of cardinality strictly less that µ is µ . Also the number of

partial mappings f : µ→ µ with dom(f) < µ is µ . With this assumption it

is possible to construct a monster model of size µ . Without the assumption

the size of the model might be larger.

At first we prove some lemmas and finally the theorem.

Lemma 1.18 Let 2<µ = µ. There is a model AU ∈ K∗ such that |AU | = µ

and for every A ′ ∈ K, |A ′| < µ, there is an τ∗ -embedding fA ′ : A ′ → AU .

Proof: Let (Bα)α<µ be a sequence of models in K∗ , where every isomor-

phism type of a model in K∗ of size less than µ is represented. For conve-

nience we may assume that Bα =
⋃

i<α Bi for every limit ordinal α .

Let A0 = B0 and define Aβ ∈ K∗ , |Aβ| ≤ µ , by induction, where

when α < β < µ , Aα ⊂ Aβ a submodel and there is an τ∗ -embedding

fα+1 : Bα+1 → Aβ for every α < β .
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Figure 1: Picture for Lemma 1.19.
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Remark that then by Lemma 1.13, we also get an increasing 4K -chain

of models Aα ↾τ∈ K .

When α is a limit ordinal, we simply take Aα =
⋃

β<α Aβ . Now Aα is

in K∗ by the remark above and the union property 4 of Definition 1.1. Also

|Aα| ≤ µ .

Consider the case where α = β + 1 is a successor ordinal. We use

K∗ -amalgamation (1.15) to get Aα ∈ K such that both Aβ and Bα are

τ∗ -embeddable in Aα . Then by lemma 1.9 we may assume that Aβ ⊂ Aα

is a substructure and also because LS(K∗) = ω , we may assume that |Aα| =

max{|Aβ|, |Bα|} ≤ µ .

Finally we take AU =
⋃

α<µ Aα . Clearly |AU | = µ . �

We remark that now whenever A ∈ K∗ is like in Lemma 1.18 and M ∈ K∗

such that A is a submodel of M , then also M is µ-universal.

Lemma 1.19 Let A0,A be in K∗ , A0 ⊂ A a submodel and B ⊂ A a

subset and f : B → A0 a mapping such that for all b̄ ∈ B and ψ atomic

A0 |= ψ(b̄) if and only if A0 |= ψ(f(b̄)).

Then there is C ∈ K∗ such that |C | = |A | , A ⊂ C a submodel and an

τ∗ -embedding F : A0 → C such that f ⊂ F .

Proof: At first we use Lemma 1.9 to get A ′ ∈ K and an isomorphism

g : A ↾τ→ A ′ such that A ↾τ ∩A ′ = f(B) and g ◦ f−1 ↾f(B)= Id ↾f(B) .

Then also g ↾B= f ↾B .

Because A0 is a submodel of A , they agree on atomic formulas, and we

get that if b̄ ∈ B and ψ atomic

A |= ψ(b̄) ⇔ A0 |= ψ(b̄) ⇔ A0 |= ψ(f(b̄)) ⇔ A |= ψ(f(b̄)),
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and hence

A |= ψ(f(b̄)) ⇔ A |= ψ(b̄) ⇔ A
′ |= ψ(g(b̄)) ⇔ A

′ |= ψ(f(b̄)).

We may now use K∗ -amalgamation 1.15 and get C ∈ K∗ and h : A ∪A ′ →
C such that h ↾A and h ↾A ′ are τ∗ -embeddings.

Furthermore, by Lemma 1.9 we may assume that A ⊂ C and h ↾A =

IdA . Because LS(K∗) = ω , we may assume that |C | = |A ∪ A ′| = |A | .

The mapping h ◦ g : A0 → C is an τ∗ -embedding and for b ∈ B ,

h ◦ g(b) = h ◦ f(b) = f(b) . �

Lemma 1.20 Let B,A0 be in K , A ∈ K∗ , A0 4K A ↾τ ,B 4K A0 and

f : B → A0 a mapping such that for all b̄ ∈ B

tg
A0

(b̄/∅) = tg
A0

(f(b̄)/∅).

Then there is C ∈ K∗ such that |C | = |A | , A ⊂ C a submodel and an

AE-embedding F : A0 → C ↾τ such that f ⊂ F .

Proof: At first we use Lemma 1.9 to get A ′ ∈ K and an isomorphism

g : A ↾τ→ A ′ such that A ↾τ ∩A ′ = f(B) and g ◦ f−1 ↾f(B)= Id ↾f(B) .

Then also g ↾B= f ↾B .

Because of the assumption and Lemma 1.10, f : B → A0 is an AE-

embedding. Then we have that f(B) 4K A0 4K A ↾τ and because B 4K

A ↾τ , also f(B) = g(B) 4K g(A ) = A ′ .

Thus we get from amalgamation 1.6 C ∈ K and a mapping h : A ∪A ′ →
C such that h ↾A and h ↾A ′ are AE-embeddings.

By Lemma 1.9 we may assume that A ↾τ⊂ C and h ↾A ↾τ= IdA ↾τ . Also

because LS(K) = ω , we may assume that |C | = |A ∪ A ′| = |A | .

Now the mapping h ◦ g : A ↾τ→ C is an AE-embedding. From A0 4K

A ↾τ we get that h◦g ↾A0
: A0 → C is also an AE-embedding. When b ∈ B ,

h ◦ g(b) = h ◦ f(b) = f(b) .

Finally we may define functions (F k
n )C in A ⊂ C as (F k

n )A and in

C \ A as in Lemma 1.14. �

Lemma 1.21 Let 2<µ = µ and µ be regular. There is a model M ∗ ∈ K∗

such that |M ∗| = µ and

1. M ∗ is µ-universal.

8



2. For all submodels C ⊂ M ∗ , |C | < µ, and sets A,B ⊂ C such that

f : A→ B a bijection and for all ā ∈ A , ψ atomic τ∗ -formula

M
∗ |= ψ(ā) ⇔ M

∗ |= ψ(f(ā)),

there is a submodel D ⊂ M ∗ , |D | < µ, and a τ∗ -embedding F : C →
D such that f ⊂ F .

3. For all A ,C ∈ K such that |C | < µ, C 4K M ∗ ↾τ , A 4K C and

f : A → C a mapping such that for all ā ∈ A

tg
M ∗↾τ

(ā/∅) = tg
M ∗↾τ

(f(ā)/∅),

there is a submodel D ⊂ M ∗ , |D | < µ, and an AE-embedding F :

C → D ↾τ such that f ⊂ F .

Proof: We define by induction models Mi ∈ K∗, i < µ , |Mi| = µ and Mi

a submodel of Mj for all i < j < µ . Let M0 = AU the µ-universal model

from Lemma 1.18. When α < µ is a limit ordinal, we take union. When we

have defined Mα , we define Mα+1 as follows:

Let (fi)i<µ enumerate all partial mappings fi : Mα → Mα , where

|dom(fi)| < µ and for all ā ∈ dom(fi)

Mα |= ψ(ā) ⇔ Mα |= ψ(fi(ā)).

Let (gi)i<µ enumerate all partial mappings gi : Mα → Mα , where

|dom(gi)| < µ , dom(gi) 4K Mα and for all ā ∈ dom(gi)

tg
Mα↾τ

(ā/∅) = tg
Mα↾τ

(gi(ā)/∅).

Again for convenience we may assume that fi = fi+1 and gi = gi+1 for

limit i . Define models Ci ∈ K∗ , |Ci| = µ such that for all i < µ

(a) When j < i , Cj is a submodel of Ci .

(b) There is a τ∗ -embedding Fi : Mα → Ci such that fi ⊂ Fi .

(c) There is an AE-embedding Gi : Mα ↾τ→ Ci ↾τ such that gi ⊂ Gi .

We let C0 = Mα and for limit i , Ci =
⋃

j<i Cj .

Let i = j + 1 . First from Lemma 1.19 we get D ∈ K and Fi : Mα → D a

τ∗ -embedding such that |D | = µ , Cj ⊂ D a submodel and fi ⊂ Fi . Then

from Lemma 1.20 we get Ci ∈ K∗ and an AE-embedding Gi : Mα → Ci

such that |Ci| = µ , D ⊂ Ci a submodel and gi ⊂ Gi .

9



Mα+1 =
⋃

i<µ Ci .

Finally take M ∗ =
⋃

i<µ Mi . Property 1 holds for M ∗ because the µ-

universal model AU is a submodel of M ∗ . We check that properties 2 and 3

hold for M ∗ . First the less trivial 3. Let C ⊂ M ∗ be a submodel, |C | < µ ,

and f : C → C a partial mapping as in 3. Now because µ is regular,

C ⊂ Mα for some α < µ . Because Mα ↾τ4K M ∗ ↾τ , we get that for all

ā ∈ Mα

tg
Mα↾τ

(ā/∅) = tg
Mα↾τ

(gi(ā)/∅).

Then f = gi for some i < µ . From the construction of Mα+1 we get

an AE-embedding Gi : Mα → Ci extending f . Because C ↾τ4K Mα ↾τ

and Ci 4K Mα+1 ↾τ , we get that Gi ↾C : C ↾τ→ Mα+1 ↾τ is also an AE-

embedding. We can take D ∈ K∗ to be a submodel of Mα+1 such that

|D | < µ and rng(Gi ↾C ) ⊂ D . Property 2 follows from the property (b) of

the construction similarly. �

Lemma 1.22 Let µ be regular. Properties 2 and 3 of Lemma 1.16 hold also

for the model M ∗ of Lemma 1.21. That is, if M ∗ satisfies

2’. For all submodels C ⊂ M ∗ , |C | < µ, and sets A,B ⊂ C and bijec-

tions f : A→ B such that for all ā ∈ A , ψ atomic τ∗ -formula

M
∗ |= ψ(ā) ⇔ M

∗ |= ψ(f(ā)),

there is a submodel D ⊂ M ∗ , |D | < µ, and a τ∗ -embedding F : C →
D such that f ⊂ F .

3’. For all A ,C ∈ K such that |C | < µ, C 4K M ∗ ↾τ , A 4K C and

f : A → C a mapping such that for all ā ∈ A

tg
M ∗↾τ

(ā/∅) = tg
M ∗↾τ

(f(ā)/∅),

there is a submodel D ⊂ M ∗ , |D | < µ, and an AE-embedding F :

C → D ↾τ such that f ⊂ F .

then it also satisfies

2. When (ai)i<α, (bi)i<α ⊂ M ∗ , α < µ, and for all i0, ..., in < α and ψ

atomic τ∗ -formula,

M
∗ |= ψ(ai0 , ..., ain) ⇔ M

∗ |= ψ(bi0 , ..., bin),

there is f ∈ Aut(M ∗) such that f(ai) = bi for all i < α .
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3. For all A 4K M such that |A | < µ and f : A → M ∗ ↾τ a mapping

such that for all ā ∈ A

tg
M ∗↾τ (ā/∅) = tg

M ∗↾τ (f(ā)/∅)

there is g ∈ Aut(M ∗ ↾ τ) extending f .

Proof: We remark that the mapping ai 7→ bi in condition 2 is an isomor-

phism from (ai)i<α onto (bi)i<α . The proof that 2 follows from 2’ is very

much similar to the proof that 3 follows from 3’, thus we only present the

latter one.

We denote M = M ∗ ↾τ . Let A ,B ∈ K and f : A → B be as

in condition 3. Let M =
⋃

i<µ Ni , where A ∪ B ⊂ N0 , (Ni)i<µ is an

increasing 4K -chain and |Ni| < µ for all i < µ . We can find this chain

because LS(K) = ω. We may also assume that for limit i , Ni =
⋃

j<i Nj .

Then define another increasing 4K -chain (Mi)i<µ , and an increasing

chain of partial mappings fi : Mi → Mi by induction. We want that also

|Mi| < µ , Mi 4K M , Ni ⊂ dom(fi) ∩ rng(fi) , dom(fi) 4K M and that

for all ā ∈ dom(fi)

tg
M

(ā/∅) = tg
M

(fi(ā)/∅)

for all i < µ .

Let M0 = N0, f0 = f . When i is limit, we take Mi =
⋃

j<i Mj and

fi =
⋃

j<i fj . Now because µ is regular, we have |Mi| < µ .

Let i = j+1 . Let C1 ∈ K be an AE-submodel of M of size strictly less that

µ containing both Mj and Ni . Now fj is a partial mapping from C1 to

C1 , dom(fj) 4K C1 and from the property 3’ we get D1 4K M , |D1| < µ ,

and an AE-embedding g : C1 → D1 extending fj .

Let C2 4K M be a model containing all Ni , C1 and D1 , |C2| < µ . Now

g−1 : rng(g) → C2 is an AE-embedding. Because dom(g−1) = g(C1) 4M

M , we get from Lemma 1.10 and property 3’ a model D2 4K M , |D2| < µ

and an AE-embedding h : C2 → D2 extending g−1 .

Then let Mi 4K M , |Mi| < µ be a model containing both C2 and

D2 and fi = h−1 . Because fj ⊂ g = (g−1)−1 ⊂ h−1 , fi extends fj .

Also because Ni ⊂ dom(g) and Ni ⊂ dom(h) = rng(h−1) , we get that

Ni ⊂ dom(fi)∩ rng(fi) . As before we also see that because fi and h are an

AE-embeddings and dom(fi) = h(C2) 4K M , for all ā ∈ dom(fi)

tg
M

(ā/∅) = tg
M

(fi(ā)/∅).

Finally we take F =
⋃

i<µ fi . Now M ⊂ dom(F ) ∩ rng(F ) and because for

all ā ∈ dom(F )

tg
M

(ā/∅) = tg
M

(F (ā)/∅),

F is an automorphism of M . Also F extends f . �
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2 Splitting

From now on we will assume that everything takes place in a large enough

monster model. If we say that A is a model, we mean that A 4K M . We

also assume that we can apply the homogeneity and universality properties

of Theorem 1.16 to every model and set under discussion.

Definition 2.1 (Galois type) We write tg(ā/A) = tg(b̄/A) if there is f ∈
Aut(M) such that f ↾A= id and f(ā) = b̄.

Remark 2.2 For all ā and b̄ , tg(ā/∅) = tg(b̄/∅) if and only if tg
M

(ā/∅) =

tg
M

(b̄/∅).

Proof: The other direction is trivial. We prove the direction

tg
M

(ā/∅) = tg
M

(b̄/∅) ⇒ tg(ā/∅) = tg(b̄/∅).

Let C ∈ K and f : M → C , g : M → C be AE-embeddings such that

f(ā) = g(b̄) . Now let A 4K M,B 4K M,C ′ 4K C be such that ā ∈ A , b̄ ∈
B, f(A ) ∪ g(B) ∈ C ′ and max{|A |, |B|, |C ′|} < µ . Then because M is

µ-universal, there is an AE-embedding h : C ′ → M .

Now because h ◦ f : A → M and h ◦ g : B → M are AE-embeddings,

A 4K M and B 4K M , we get from lemma 1.10, that for all c̄ ∈ A

tg
M

(c̄/∅) = tg
M

(h ◦ f(c̄)/∅),

and similarly for h◦g and B . Thus by the property 3 of Theorem 1.16, both

h◦f and h◦g extend to F,G ∈ Aut(M) respectively. Now G−1◦F ∈ Aut(M)

and (G−1 ◦ F )(ā) = ((h ◦ g)−1 ◦ (h ◦ f))(ā) = (g−1 ◦ f)(ā) = g−1(f(ā)) = b̄.

�

Definition 2.3 (Weak type) Let A ∈ K and ā, b̄, A be in A . We write

tw
A

(ā/A) = tw
A

(b̄/A) if tg
A

(āac̄/∅) = tg
A

(b̄ac̄/∅) for every finite c̄ ∈ A.

When we work inside the monster model M , we just write tw(ā/A) instead

of tw
M

(ā/A) . From Remark 2.2 we get the following:

Remark 2.4 We have that tw(ā/A) = tw(b̄/A) if and only if tg(ā/B) =

tg(b̄/B) for every finite B ⊂ A .

Lemma 2.5 Assume that A is a model, (b̄i)i<ω is such that lg(b̄i) = i+ 1

for all i < ω and A =
⋃

i<ω Bi , where i < j ⇒ Bi ⊂ Bj and when we

denote b̄j = (bj0, ..., b
j
j),

i < j ⇒ tg((bj0, ..., b
j
i )/Bi) = tg(b̄i/Bi).

Then there is (ai)i<ω such that tg((a0, ..., ai)/Bi) = tg(b̄i/Bi) for all i < ω .

12



Figure 2: Picture for Lemma 2.5.
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Proof: Define fn ∈ Aut(M) for n ∈ ω such that when we denote gn =

fn ◦ fn−1 ◦ ... ◦ f0

1. fn+1(gn(bn+1
i )) = gi(b

i
i) for all 0 ≤ i ≤ n ,

2. fn+1 ↾gn(Bn)= Idgn(Bn) .

First let f0 = g0 = IdM.

Assume we have defined fi for i ≤ n . Let h ∈ Aut(M) be such that

h(bn+1
0 , ..., bn+1

n ) = (bn0 , ..., b
n
n) and h ↾Bn= IdBn . Then let

fn+1 = gn ◦ h ◦ gn
−1.

Clearly fn+1 ↾gn(Bn)= (gn ◦ h ◦ gn
−1) ↾gn(Bn)= Idg(Bn) . Now if n = 0 , we

have fn+1 = f1 = h and f1(b
1
0) = b00 = g0(b

0
0) .

If n > 0 we have by induction that for 0 ≤ i < n, fn(gn−1(b
n
i )) =

gi(b
i
i), and hence we may write fn+1(gn(bn+1

i )) = gn(h(gn
−1(gn(bn+1

i )))) =

gn(h(bn+1
i )) = gn(bni ) = fn(gn−1(b

n
i )) = gi(b

i
i). Also fn+1(gn(bn+1

n )) = gn ◦
h ◦ gn

−1(gn(bn+1
n )) = gn(hn(bn+1

n )) = gn(bnn).

Now we have defined fn ∈ Aut(M), n < ω, such that they satisfy condi-

tions 1 and 2. We see that by condition 2, when n ≤ m ,

gm ↾Bn= gn ↾Bn .

Thus when we denote A′ =
⋃

n<ω gn(Bn),

g =
⋃

n<ω

(gn ↾Bn) : A → A′

is a mapping such that for all ā ∈ A

tg(ā/∅) = tg(g(ā)/∅).

Now we can extend g to G ∈ Aut(M). Let

ai = G−1(gi(b
i
i)) for all i < ω.

Now when n ∈ ω , we have (g − n−1 ◦ G) ↾Bn= (gn
−1 ◦ gn) ↾Bn= IdBn ,

g0 ◦G(a0) = g0(g0
−1b0) = b0 and when n > 0 , 0 ≤ i < n , (gn

−1 ◦G)(ai) =

gn
−1(gi(b

i
i)) = (gn−1

−1 ◦ fn
−1)(gi(b

i
i)) = gn−1

−1(gn−1(b
n
i )) = bni , (gn

−1 ◦
G)(an) = gn

−1(gn(bnn)) = bnn.

Thus we get

tg((a0, ..., an)/∅) = tg(b̄n/∅).

�
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Figure 3: Picture for Lemma 2.5.
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Corollary 2.6 Assume that A is a model, (b̄i)i<ω a sequence of tuples and

A =
⋃

i<ω Bi , where i < j ⇒ Bi ⊂ Bj and

i < j ⇒ tg(b̄j/Bi) = tg(b̄i/Bi).

Then there is ā such that tg(ā/Bi) = tg(b̄i/Bi) for all i < ω .

Proof: Let n = lg(b̄0) = lg(b̄i) for all i < ω. Let Ci = B0 for 0 ≤ i ≤ n and

Ci+n = Bi for i+n > n . When b̄i = (b0,i, ...bn−1,i) , we let c̄i = (b0,0, ..., bi,0) ,

when i ≤ n and c̄n+i = (b0,i, ..., bn,i, ..., bn,i) , when n + i > n . Now the as-

sumptions of Lemma 2.5 hold for A =
⋃

i<ω Ci and (c̄i)i<ω . We get (ai)i<ω

such that when n ≤ i < ω , tg((a0, ..., ai)/Bi) = tg((b0,i, ..., bn,i, ..., bn,i)/Bi).

Thus we get (a0, ..., an) such that tg((a0, ..., an)/Bi) = tg(b̄i/Bi) for all

i < ω . �

Definition 2.7 (Splitting) Let ā and A be in M
2. We say that the weak

type tw(ā/A) splits over finite B ⊂ A if there are c̄, d̄ ∈ A such that

tg(c̄/B) = tg(d̄/B) but

tg(c̄/B ∪ {ā}) 6= tg(d̄/B ∪ {ā}).

We say that such c̄, d̄ witness the fact.

The next remark is only to note that these definitions are sensible.

2In the general definition, where ā and A are in some A ∈ K , we just replace tw(ā/A)
with tw

A (ā/A) and the Galois types with A -Galois types respectively.
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Remark 2.8 If tw(ā/A) = tw(b̄/A) and B ⊂ A is finite, then tw(ā/A)

splits over B if and only if tw(b̄/A) splits over B .

Proof: Let c̄ and d̄ witness that tw(ā/A) splits over B . Now {c̄, d̄}∪B ⊂ A

is finite and thus there is f ∈ Aut(M) such that f(ā) = b̄ and f ↾{c̄,d̄}∪B is

the identity. If there would be an automorphism g such that g(c̄) = d̄ and

g ↾{b̄}∪B= Id{b̄}∪B , then also (f−1 ◦ g ◦ f)(c̄) = d̄ but (f−1 ◦ g ◦ f) ↾{ā}∪B is

the identity. This contradicts c̄ and d̄ being witnesses. Thus c̄ and d̄ also

witness that tw(b̄/A) splits over B . �

Remark 2.9 If tw(ā/A) splits over finite E ⊂ A and E′ ⊂ E , then

tw(ā/A) splits over E′ .

Proof: Let c̄, d̄ ∈ A witness that tw(ā/A) splits over E . Denote by c̄aE

the finite tuple where E is indexed after c̄ in some chosen order. Now

tg(c̄aE/E′) = tg(d̄aE/E′) but tg(c̄aE/E′∪{ā}) 6= tg(d̄aE/E′∪{ā}) . Thus

the finite tuples c̄aE and d̄aE in A witness that tw(ā/A) splits over E′ .

�

Definition 2.10 (Independence) Let ā, A and B be in M
3. We write

that ā ↓s
A B if there is finite C ⊂ A such that tw(ā/A ∪ B) does not split

over C .

Now we introduce a new assumption for (K,4K) . From now on we will

assume that (K,4K) is an ω -stable local abstract elementary class.

Assumption 2.11 (ω -stability) If A ⊂ A ∈ K , A is countable and āi ∈
A for i < ω1 , then for some i < j < ω1 tw

A
(āi/A) = tw

A
(āj/A).

Lemma 2.12 Let A be a model and and ā a tuple. There is no increasing

chain of finite sets (Bi)i<ω such that A =
⋃

i<ω Bi and tw(ā/Bi+1) splits

over Bi for all i < ω .

Proof: We assume the contrary. Let ā and A =
⋃

n<ω Bn witness this.

Also let cn, dn ∈ Bn+1 witness that tw(ā/Bn+1) splits over Bn .

Let η : ω → 2 be a mapping. Then for each n ∈ ω we define mappings

fη↾n ∈ Aut(M) such that when we denote gη↾n = fη↾n ◦ ... ◦ fη↾0

1. If m > n , fη↾m ↾gη↾n(Bn)= Idgη↾n(Bn) .

3In the general case, where ā, A and B are in some A ∈ K , replace tw(ā/A∪B) with

tw
A (ā/A ∪ B) .
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Figure 4: Picture for Lemma 2.12.
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2. If η(n) = 1 , then fη↾n+1
(gη↾n(cn)) = gη↾n(dn) .

3. If η(n) = 1 , then

tg(gη↾n+1
(ā)/gη↾n(Bn ∪ dn)) 6= tg(gη↾n(ā)/gη↾n(Bn ∪ dn)).

4. If η(n) = 0 , then fη↾n+1
= IdM.

We define such mappings by induction on n as follows:

First let fη↾0 = gη↾0 = IdM. Also when η(n) = 0 , let fη↾n+1
= IdM.

Assume η(n) = 1 and we have defined mappings fη↾i
for i ≤ n . Let h ∈

Aut(M) be such that h(cn) = dn and h ↾Bn= IdBn . Then let

fη↾n+1
= gη↾n ◦ h ◦ gη↾n

−1.

Now clearly fη↾n+1
satisfies conditions 1 and 2. To prove that it satisfies

also 3, we assume the contrary. Assume that there exists g ∈ Aut(M) such

that g(gη↾n+1
(ā)) = gη↾n(ā) and g(x) = x for all x ∈ gη↾n(Bn ∪ dn). Then

when we denote g∗ = gη↾n
−1 ◦ g ◦ gη↾n+1

∈ Aut(M) , we see that g∗(cn) =

gη↾n
−1 ◦ g ◦ fη↾n+1

(gη↾n(cn)) = gη↾n
−1 ◦ g(gη↾n(dn)) = gη↾n

−1(gη↾n(dn)) = dn

and that because fη↾n+1
(x) = x for all x ∈ gη↾n(Bn) , g∗(x) = x for all

x ∈ Bn . But we have also that g∗(ā) = ā , thus this contradicts cn and dn

being witnesses.

Denote ā↾n = gη↾n(ā) for all n ∈ ω . When m > n the mapping fη↾m ◦ ... ◦
fη↾n+1

shows that

tg(āη↾m/gη↾n(Bn)) = tg(āη↾n/gη↾n(Bn)).

Also when Aη =
⋃

n<ω gη↾n(Bn) , the mapping g =
⋃

n<ω(gη↾n ↾Bn) : A →
Aη has the property that, for all c̄ ∈ A , tg(c̄/∅) = tg(g(c̄)/∅). We notice that

now g is an AE-embedding and g(A ) = Aη 4K M . Thus from Corollary

2.6 we get āη such that for all n ∈ ω

tg(āη/gη↾n(Bn)) = tg(āη↾n/gη↾n(Bn)).

Denote

B =
⋃

η:ω→2

Aη =
⋃

η:ω→2

(
⋃

n∈ω

(gη↾n(Bn))) =
⋃

n∈ω

(
⋃

η:ω→2

(gη↾n(Bn))).

Now because
⋃

η:ω→2(gη↾n(Bn)) is finite for all n ∈ ω , we get that B ⊂ M

is countable.

Let η and η′ be two different mappings from ω to 2. Let n = min{i < ω :

η(i) 6= η′(i)} . We may assume that η(n) = 1 . Because η ↾n= η′ ↾n and of

conditions 1, 2 and 4

gη↾n(Bn ∪ dn) = gη′↾n
(Bn ∪ dn) ⊂ (gη↾n+1

(Bn+1) ∩ gη′↾n+1
(Bn+1)).
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Furthermore, by condition 4,

gη′↾n+1
(ā) = gη′↾n

(ā) = gη↾n(ā).

Now

tg(āη/gη↾n(Bn ∪ dn))

= tg(gη↾n+1
(ā)/gη↾n(Bn ∪ dn))

6= tg(gη↾n(ā)/gη↾n(Bn ∪ dn))

= tg(gη′↾n+1
(ā)/gη′↾n

(Bn ∪ dn))

= tg(āη′/gη′↾n
(Bn ∪ dn)).

Thus we have that when η 6= η′ , tw(āη/B) 6= tw(āη′/B). Tuples (āη)η:ω→2

have different weak types over countable B , and there are uncountably many

of them. This contradicts the ω -stability assumption 2.11. �

Theorem 2.13 (" ā ↓s
A

∅") For all tuples ā and models A there is finite

C ⊂ A such that tw(ā/A ) does not split over C .

Proof: Assume the contrary. We define an increasing chain of finite sets

(Bn)n<ω such that
⋃

n<ω Bn 4K A and that tw(ā/Bn+1) splits over Bn for

all n < ω . Then also
⋃

n<ω Bn 4K M and such a chain contradicts Lemma

2.12.

By Lemma 1.14 we may find A ∗ ∈ K∗ such that A ∗ ↾τ= A . Without

less of generality we may assume that A ∗ is a submodel of M
∗ . Let B0 = ∅.

Assume that we have defined Bi for i ≤ n as planned, and that each Bi+1

is closed under functions (Fm
k )A ∗

for m, k ≤ i . Let cn, dn ∈ A witness that

tw(ā/A ) splits over finite Bn . We can take B′
n+1 = Bn ∪ {cn, dn} and then

Bn+1 to be the closure of the finite set B′
n+1 under finitely many functions

(Fm
k )A ∗

, k,m ≤ n .

Finally we get that
⋃

n<ω Bn ⊂ A is closed under functions (Fm
k )A ∗

for

all m, k ∈ ω and thus is a 4K -submodel of A ∗ ↾τ= A . �

We first define ω -saturation in the class K , but use Definition 2.15 in our

context.

Definition 2.14 We say that a model A ∈ K is ω -saturated in K if for

all ā ∈ A and b̄ in some AE-elementary extension B of A there is d̄ ∈ A

such that tg
A

(āad̄/∅) = tg
B

(āab̄/∅).

Definition 2.15 We say that a submodel A ⊂ M is ω -saturated if for all

ā ∈ M and finite B ⊂ A there is b̄ ∈ A such that tg(ā/B) = tg(b̄/B).
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Remark 2.16 A model A 4K M, |A | < µ, is ω -saturated if and only if

it is ω -saturated in K .

Proof: First assume that A is ω saturated and show that it is also ω -

saturated in K . Let B be some AE-elementary extension of A , b̄ ∈ B and

ā ∈ A . Because M is universal, there is an AE-embedding f : B → M .

Isomorphism f−1 ↾f(A ) f(A ) → A extends to an automorphism F . Now

F (f(b̄)) ∈ M and F (f(ā)) = ā . From ω -saturation we get G ∈ Aut(M)

such that G(ā) = ā and G(F (f(b̄))) ∈ A . Now AE-embeddings F ◦f : B →
M and G−1 ↾A : A → M show that tg

B
(b̄aā/∅) = tg

A
(G(F (f(b̄)))aā/∅) .

Then assume that A is ω -saturated in K . Let b̄ ∈ M and ā ∈ A . Let

also B 4K M be such that A ∪ {b̄} ⊂ B and |B| < µ . Now B is an

AE-elementary extension of A and thus there are C ∈ K , d̄ ∈ A and AE-

embeddings f : A → C and g : B → C such that f(āad̄) = g(āab̄) . By

the universality of M we may assume that C 4K M . Both AE-embeddings

extend to automorphisms F and G respectively. Now F−1 ◦ G ∈ Aut(M)

and F−1 ◦G(āab̄) = āad̄ . �

Another remark tells us that ω -saturated models do exists.

Remark 2.17 Let A be a set. There is an ω -saturated model A such that

A ⊂ A and |A | ≤ |A| + ℵ0 .

Proof: We construct a countable increasing chain of models An such that

A ⊂ A0 , |An| ≤ |A|+ ℵ0 and for all finite B ∈ An and ā there is b̄ ∈ An+1

such that tg(b̄/B) = tg(ā/B) . Then we may take A =
⋃

n<ω An .

First let A0 be such that A ⊂ A0 and |A0| ≤ |A| + ℵ0 . Assume we

have defined Am for m ≤ n . When B ⊂ An is finite, we note that by

ω -stability, there are at most countably many ā with different weak type

over B . Because B is finite, Galois type over B agrees with weak type over

B . Thus for each finite B ⊂ An there is a countable set DB , where every

Galois type over B is represented. Then denote D = {B ⊂ An : B finite}.
We have that |D | ≤ |An|+ℵ0 ≤ |A|+ℵ0 . We may take a model An+1 such

that
⋃

B∈D
DB ⊂ An+1 and |An| ≤ |

⋃

B∈D
DB| ≤ |A| + ℵ0 . �

The next lemma will show that an countable ω -saturated substructure of M

is actually AE-elementary.

Lemma 2.18 Assume A is a countable set and the following holds: for all

ā ∈ A and b̄ there is d̄ ∈ A such that tg(āab̄/∅) = tg(āad̄/∅). Then A is a

model.

Proof: Let B 4K M be countable and ω -saturated. Let A = {an : n < ω}
and B = {bn : n < ω} . Define inductively sets An and Bn and automor-

phisms fn such that for all n < ω
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1. fn(An) = Bn ,

2. {a0, ..., an−1} ⊂ An ⊂ A and {b0, ..., bn−1} ⊂ Bn ⊂ B .

Let f0 = Id ↾M, A0 = ∅ and B0 = ∅ . Then assume we have defined fm ,

Am and Bm for m ≤ n .

By ω -saturation there exists g ∈ Aut(M) such that g(fn(an)) ∈ B and

g ↾Bn= IdBn . Then by the assumption there exists h ∈ Aut(M) such that

h ↾An∪{an} is the identity and h(f−1
n ◦ g−1(bn)) ∈ A . Define

fn+1 = g ◦ fn ◦ h−1,

An+1 = An ∪ {an} ∪ {(h ◦ f−1
n ◦ g−1)(bn)} and

Bn+1 = Bn ∪ {(g ◦ fn)(an)} ∪ {bn}.

Then we get that fn+1(An+1) = Bn+1 .

Finally f =
⋃

n<ω(fn)−1 ↾Bn : B → M is an AE-embedding because it

satisfies the property 1.1 of Lemma 1.10. Thus f(B) = A 4K M . �

From the previous construction we can also get the following lemma. The

latter part we get by taking A0 = B0 = E in the construction.

Lemma 2.19 Let A , B be ω -saturated and countable models. Then there

is f ∈ Aut(M) such that f(A ) = B . Also if E ⊂ A ∩ B is finite, we can

take f ↾E= IdE .

In the following theorem we prove some basic properties for splitting. The

version of existence of free extension is in section 3 found to be too restricted,

and we then discuss ways to improve it.

Theorem 2.20 Assume that A ⊂ B ⊂ C ⊂ D and similarly if one of the

sets is a model, and thus denoted with a curly letter.

1. Monotonicity If ā ↓s
A D , then ā ↓s

B C .

2. Restricted existence of free extension Assume A is an ω -

saturated model and B is countable. For all ā , if E ⊂ A is fi-

nite and tw(ā/A ) does not split over E , then there is b̄ such that

tw(ā/A ) = tw(b̄/A ) and tw(b̄/B) does not split over E .

3. Uniqueness of free extension Assume A is an ω -saturated model.

If tw(ā/A ) = tw(b̄/A ), ā ↓s
A

B and b̄ ↓s
A

B , then tw(ā/B) =

tw(b̄/B).

4. Transitivity If B is an ω -saturated model and C is countable, then

ā ↓s
A C if and only if ā ↓s

A B and ā ↓s
B
C .
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Proof: Monotonicity: Let C ⊂ A be a finite set such that tw(ā/D) does

dot split over C . Now C ⊂ B , and if tw(ā/C) would split over C , there

would be some witnesses c, d ∈ B ⊂ D , and the same c, d would witness

that tw(ā/D) splits over C . Thus tw(ā/B) does not split over C .

Restricted existence of free extension: Denote A = {a′i : i < ω}
and B = E ∪ {b′i : i < ω} . Define mappings fn ∈ Aut(M) and elements

an, bn, n < ω , such that

1. fn ↾E= IdE for all n < ω ,

2. {b′0, ..., b
′
n} ⊂ dom(fn) and {a′0, ..., a

′
n} ⊂ rng(fn) ⊂ A for all n < ω.

3. When n ≤ m , fm(bi) = fn(bi) = ai for all 0 ≤ i ≤ 2n+ 1 .

Because A is ω -saturated, there is f0 ∈ Aut(M) such that f0(b
′
0) ∈ A and

f0 ↾E= IdE . Then define b0 = b′0 , b1 = f−1(a′0) , a0 = f0(b0) and a1 = a′0 .

Now f0(b0, b1) = (a0, a1) and b′0 ∈ dom(f0) , a
′
0 ∈ rng(f0) .

Assume we have defined fi for all i ≤ n . We use again the ω -saturation

of A to get g ∈ Aut(M) such that g ↾E∪{a0,...,a2n+1}= IdE∪{a0,...,a2n+1} and

g(fn(b′n+1)) ∈ A . We can take fn+1 = g ◦ fn, b2(n+1) = b′n+1 , b2(n+1)+1 =

fn+1
−1(a′n+1) , a2(n+1) = fn+1(b

′
n+1) and a2(n+1)+1 = a′n+1 .

Finally we get a mapping

f =
⋃

i<ω

(fn
−1 ↾{a0,...,a2n+1}) : A → {bi : i < ω},

which has the property that for all ā ∈ A tg(ā/∅) = tg(f(ā)/∅) . Now

f : A → M is an AE-embedding and {bi : i < ω} = f(A ) 4K M .

Denote c̄n = fn
−1(ā) for all n < ω . Now when n ≤ m , fn

−1 ◦
fm ↾E∪{b0,...,b2n+1} is the identity and fn

−1 ◦ fm(c̄m) = c̄n . We can use

Corollary 2.6 to get b̄ such that for all n < ω

tg(b̄/E ∪ {b0, ..., b2n+1}) = tg(c̄n/E ∪ {b0, ..., b2n+1}).

We want to show that this is the b̄ we wanted.

Let c, d ∈ B and h ∈ Aut(M) be such that h ↾E= IdE and h(c) = d . Let

n be such that c, d ∈ {b′0, ..., b
′
n} ⊂ dom(fn) = {b0, ..., b2n+1} . Then let f be

an automorphism such that f(b̄) = c̄n and f ↾E∪{c,d} is the identity. Now

(fn ◦f)({c, d}) = fn({c, d}) ⊂ A , (fn ◦f ◦h◦(fn ◦ f)−1)((fn ◦f)(c)) = (fn ◦
f)(d) and (fn ◦ f ◦h ◦ (fn ◦ f)−1) ↾E is the identity. Because tw(ā/A ) does

not split over E , we have h∗ ∈ Aut(M) such that h∗((fn◦f)(c)) = (fn◦f)(d)

and h∗ ↾E∪{ā} is the identity. Now ((fn ◦ f)−1 ◦ h∗ ◦ (fn ◦ f))(c) = d ,

((fn ◦ f)−1◦h∗◦(fn◦f)) ↾E is the identity and ((fn ◦ f)−1◦h∗◦(fn◦f))(b̄) =

f−1(fn
−1(h∗(fn(c̄n)))) = f−1(fn

−1(h∗(ā))) = f−1(fn
−1(ā)) = f−1(c̄n) = b̄.
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We get that if c, d ∈ B and tg(c/E) = tg(d/E) , then also tg(c/E∪{b̄}) =

tg(d/E ∪ {b̄}) . Thus tw(b̄/B) does not split over E .

Because fn((b0, ..., bn)) = (a0, ..., an) , fn ↾E= Id ↾E , and tw(b̄/B) does

not split over E , there is an automorphism g such that g(b0, ..., bn) =

(a0, ..., an) and g ↾E∪{b̄} is the identity. Let f ∈ Aut(M) be such that

f(b̄) = c̄n and f ↾{b0,...,bn} is the identity. Now (fn ◦ f ◦ g)(b̄) = fn(f(b̄)) =

fn(c̄n) = ā and (fn ◦ f ◦ g)(ai) = fn(f(bi)) = fn(bi) = ai for all 0 ≤ i ≤ n .

Thus we get for all n < ω that tg(b̄/{a0, ..., an}) = tg(ā/{a0, ..., an}) .
Because A = {ai : i < ω} , we have that tw(b̄/A ) = tw(ā/A ) .

Uniqueness of free extension: Let C ⊂ B be an arbitrary finite set.

Let Eā ⊂ A be a finite set such that tw(ā/B) does not split over Eā

and similarly Eb̄ ⊂ A for tw(b̄/B) . Because A is ω -saturated, we have

f ∈ Aut(M) such that f(C) ⊂ A and f ↾Eā∪Eb̄
is the identity. Now we

have that tg(C/Eā) = tg(f(C)/Eā) and then by the choice of Eā we have

also an automorphism fā such that fā ↾C= f ↾C and fā(ā) = ā . With

similar reasoning we also get fb̄ ∈ Aut(M) such that fb̄ ↾C= f ↾C and

fb̄(b̄) = b̄ . Finally we use the assumption that tw(ā/A ) = tw(b̄/A ) to get

an automorphism g such that g(ā) = b̄ and g ↾f(C)= Id ↾f(C) . When we

combine these mappings we get an automorphism h = fb̄
−1 ◦g ◦fā such that

h(ā) = b̄ and that for all x ∈ C , h(x) = fb̄
−1(g(fā(x))) = fb̄

−1(g(f(x))) =

fb̄
−1(f(x)) = x . Thus tg(ā/C) = tg(b̄/C) and because C ⊂ B was an

arbitrary finite set, we get that tw(ā/B) = tw(b̄/B) .

Transitivity: The ” ⇒ ”-direction follows from monotonicity. For the other

direction, let E ⊂ A be a finite set such that tw(ā/B) does not split over

E . Now we use the restricted existence of free extension to get b̄ such that

tw(b̄/C) does not split over E and that tw(b̄/B) = tw(ā/B) . Because also

ā ↓s
B
C we get from uniqueness that tw(b̄/C) = tw(ā/C) . Hence tw(ā/C)

does not split over E ⊂ A . �

Lemma 2.21 Assume B ⊂ C are countable and B is an ω -saturated

model. Let A = (ai)i<ω be a set. There is A′ = (a′i)i<ω such that for

all n < ω tw((a0, ..., an)/B) = tw((a′0, ..., a
′
n)/B) and (a′0, ..., a

′
n) ↓s

B
C .

This we denote tw(A/B) = tw(A′/B) and A′ ↓s
B
C .

Proof: By monotonicity and that LS(K) = ω , we may assume that C is

actually a model, i.e. C 4K M . To emphasize this we denote C = C .

We define an increasing chain of finite sets En ⊂ B and (dk
m) , k,m < ω ,

such that for all n < ω ,

1. tw(a0, ..., an/B) = tw(dn
0 , ..., d

n
n/B) ,
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2. tw(dn
0 , ..., d

n
n/C ) does not split over En and

3. when m ≤ n , tw(dm
0 , ..., d

m
m/C ) = tw(dn

0 , ..., d
n
m/C ).

First Lemma 2.13 gives us E0 ⊂ B such that tw(a0/B) does not split over

E0 Then by Theorem 2.20 we get free extension d0
0 such that tw(a0/B) =

tw(d0
0/B) and tw(d0

0/C ) does not split over E0 .

Assume we have defined Ek and dk
m for m, k ≤ n . Then we get from

Lemma 2.13 such E′
n+1 ⊂ B that tw((a0, ..., an+1)/B) does not split over

E′
n+1 . Now tw(a0, ..., an+1/B) does not split over En ∪ E′

n+1 because or

Remark 2.9. We define En+1 = En ∪ E′
n+1 .

Then we use Theorem 2.20 to get a free extension (dn+1
0 , ..., dn+1

n+1) , for

which tw((dn+1
0 , ..., dn+1

n+1)/B) = tw((a0, ..., an+1)/B) and the weak type

tw((dn+1
0 , ..., dn+1

n+1)/C ) does not split over En+1 . We claim that now when

m ≤ n , tw((dn+1
0 , ..., dn+1

m )/C ) = tw((dm
0 , ..., d

m
m)/C ) .

Let C ′ ⊂ C be an arbitrary finite set. Because B is ω -saturated,

there is an automorphism f such that f(C ′) ⊂ B and f ↾En+1
is the

identity. Now because tw((dn+1
0 , ..., dn+1

n+1)/C ) does not split over En+1

we have f1 ∈ Aut(M) such that f1 ↾C′= f ↾C′ and f1(d
n+1
i ) = dn+1

i

for all 0 ≤ i ≤ n + 1 . Similarly, because Em ⊂ En , we get f2 ∈
Aut(M) such that f2 ↾C′= f ↾C′ and f2(d

m
i ) = dm

i for all 0 ≤ i ≤ m .

In addition, because tw((dn+1
0 , ..., dn+1

n+1)/B) = tw((a0, ..., an+1)/B) and

tw((dm
0 , ..., d

m
m)/B) = tw((a0, ..., am)/B) we have mappings g1 and g2

such that g1 ↾f(C′)= g2 ↾f(C′)= Idf(C′) and g2(d
m
i ) = am

i = g1(d
n+1
i ) for

all 0 ≤ i ≤ m . Now f2
−1 ◦ g2

−1 ◦ g1 ◦ f1 is an automorphism such that

(f2
−1◦g2

−1◦g1◦f1)(d
n+1
i ) = dm

i for all 0 ≤ i ≤ m and (f2
−1◦g2

−1◦g1◦f1) ↾C′

is the identity.

Let C =
⋃

i<ω Ci , where (Ci)i<ω is an increasing chain of finite sets.

Because of condition 3 we have that when m ≤ n ,

tg((dm
0 , ..., d

m
m)/Cm) = tg((dn

0 , ..., d
n
m)/Cm).

Thus we may use Lemma 2.5 to get (a′i)i<ω such that, for all n < ω ,

tg((a′0, ..., a
′
n)/Cn) = tg((dn

0 , ..., d
n
n)/Cn).

Now we see that actually

tw((a′0, ..., a
′
n)/C ) = tw((dn

0 , ..., d
n
n)/C )

for all n < ω , because when n < ω and C ′ ⊂ C is a finite set, there is

some k ≥ n for which C ′ ⊂ Ck , and thus from condition 3 we get that

tg((dn
0 , ..., d

n
n)/C ′) = tg((dk

0, ..., d
k
n)/C ′) = tg((a′0, ..., a

′
n)/C ′).

Now also tw((a′0, ..., a
′
n)/B) = tw((dn

0 , ..., d
n
n)/B) for all n < ω , and

because tw((dn
0 , ..., d

n
n)/C ) does not split over En ⊂ B , neither does

tw((a′0, ..., a
′
n)/C ) , thus (a′0, ..., a

′
n) ↓s

B
C for all n < ω . �
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2.1 About weak type over a countable model

In this section we will prove that weak type and Galois type actually agree

over countable models.

Lemma 2.22 Assume A is a countable model, ā, b̄ tuples and A ⊂ A

finite. Then there is b̄′ and finite A′ ⊂ A such that

i) tw(b̄′/A ∪ {ā}) = tw(b̄/A ∪ {ā}) and

ii) for all c̄ ∈ M, if tw(c̄/A′∪{ā}) = tw(b̄′/A′∪{ā}), then tw(c̄/A ∪{ā}) =

tw(b̄′/A ∪ {ā}).

When ii) holds for b̄′ and A′ we say that tw(b̄′/A ∪ {ā}) is weakly isolated

over A′ ∪ {ā} .

Proof: We assume the contrary, and let ā, b̄ and A ⊂ A finite be such that

the claim does not hold. Then we derive a contradiction with ω -stability as

in 2.12.

Denote A = {ai : i < ω} . For each η : ω → 2 and n ∈ ω we construct

finite sets An and tuples c̄η↾n such that

1. A ∪ {an} ⊂ An ⊂ An+1 ⊂ A ,

2. tw(c̄η↾m/A ∪ {ā}) = tw(b̄/A ∪ {ā}) ,

3. when m ≥ n , tw(c̄η↾m
aā/An) = tw(c̄η↾n

aā/An) ,

4. η(n) = 1 if and only if tw(c̄η↾n+1

aā/An+1) 6= tw(c̄η↾n
aā/An+1) .

First let c̄η↾0 = b̄ and A0 = A ∪ {a0} . Then assume we have defined c̄η↾m

and Am for m ≤ n .

Because 2 holds for c̄η↾n , tw(c̄η↾n/A ∪ {ā}) can’t be weakly iso-

lated over An ∪ {ā} . Otherwise c̄η↾n and An would violate the counter-

assumption. Thus there exists some b̄η↾n and some finite Dη↾n ⊂ A such

that tw(b̄η↾n/An ∪ {ā}) = tw(c̄η↾n/An ∪ {ā}) but tw(b̄η↾n/Dη↾n ∪ {ā}) 6=
tw(c̄η↾n/Dη↾n ∪ {ā}).

If η(n) = 0 , we let c̄η↾n+1
= c̄η↾n , and if η(n) = 1 , we let c̄η↾n+1

= b̄η↾n .

Then we let

An+1 = An ∪ {an} ∪
⋃

η↾n:n→2

Dη↾n .

Finally by 3 and that
⋃

n<ω An = A we get from corollary 2.6 such

c̄η and āη that tw(c̄η
aāη/An) = tw(c̄η↾n

aā/An) for each n < ω . Now

if η 6= η′ , we claim that tw(c̄η
aāη/A ) 6= tw(c̄η′

aāη′/A ) . Let n be the
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least index such that η(n) 6= η′(n) . We may assume that η(n) = 1 . Then

c̄η↾n = c̄η′↾n
and we may conclude that

tw(c̄η′
aāη′/An+1)

= tw(c̄η′↾n+1

aā/An+1)

= tw(c̄η′↾n

aā/An+1)

= tw(c̄η↾n

aā/An+1)

6= tw(c̄η↾n+1

aā/An+1)

= tw(c̄η
aāη/An+1),

which proves the claim. Now we have continuum-many different weak types

over A , a contradiction. �

Theorem 2.23 Assume that A is a countable model and tw(ā/A ) =

tw(b̄/A ). Then also tg(ā/A ) = tg(b̄/A ).

Proof:First we are going to use Lemma 2.22 to define sequences āi and finite

sets Ai , i < ω such that

1. ā = ā0 ⊂ ān ⊂ ān+1 and An ⊂ An+1 ⊂ A ,

2. tw(ān+1/A ∪ {ān}) is weakly isolated over An ∪ {ān} and

3. B = A ∪
⋃

i<ω āi has the following property: for all ā′ ∈ B and b̄′ ∈ M

there is c̄ ∈ B such that tg(ā′ac̄/∅) = tg(ā′ab̄′/∅).

Let ā0 = ā and A0 = ∅ . Assume we have defined āj and Aj for j ≤ n .

By ω -stability, there are only countably many Galois types over Ai ∪ āi

for specific i ≤ n . Let (c̄ij)j<ω enumerate representatives for each type

and then let d̄n be a sequence where c̄ij ’s are represented for i, j ≤ n . By

Lemma 2.22 there exists ā′ and finite A′ ⊂ A such that tg(ā′/An ∪{ān}) =

tg(d̄n/An ∪ {ān}) and tw(ā′/A ∪ {ān}) is weakly isolated over A′ ∪ {ān} .

Let An+1 = An ∪A′ and ān+1 = āa
n ā′ .

Finally we want to claim that 3 holds. Let ā′ ∈ A ∪
⋃

i<ω āi and b̄′ ∈ M .

Now ā′ ∈ Am ∪ {ām} for some m < ω and tg(b̄′/Am ∪ {ām}) = tg(c̄mj /Am ∪
{ām}) for some j < ω . Let n = max{m, j} . Then c̄mj is a subsequence in

d̄n and we get the claim because tg(ān+1/An∪{ān}) = tg(d̄a
n ān/An∪{ān}) .

Now we define such (b̄i)i<ω that b̄0 = b̄ and

tg(b̄a0 ...
ab̄n/An) = tg(āa

0 ...
aān/An). (2.2)

We do this so that we always have that

tw(b̄a0 ...
ab̄n/A ) = tw(āa

0 ...
aān/A ). (2.3)
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First let b̄0 = b̄ . Then 2.3 holds because of the assumption. Assume that

we have defined b̄m for m ≤ n and that 2.3 holds. Let f ∈ Aut(M) be

such that f(āa
0 ...

aān) = b̄a0 ...
ab̄n and that f ↾An+1

= IdAn+1
. Then let

b̄n+1 = f(ān+1) . We claim that 2.3 holds. Assume the contrary and let

B ⊂ A be a finite set such that tg(āa
0 ...

aān+1/B) 6= tg(b̄a0 ...
ab̄n+1/B) . We

may assume that An+1 ⊂ B . Let g ∈ Aut(M) be such that g(b̄a0 ...
ab̄n) =

āa
0 ...

aān and g ↾B= IdB . Then we have that tg(āa
0 ...

aāa
n g(b̄n+1)/An+1) =

tg(b̄a0 ...
ab̄an b̄n+1/An+1) = tg(āa

0 ...
aāa

n ān+1/An+1) and because tw(ān+1/A ∪

{ān}) is weakly isolated over An+1∪{ān} , we have also that āa
0 ...

aāa
n g(b̄n+1)

has the same Galois type than āa
0 ...

aāa
n ān+1 over B. But then we get

that tg(b̄a0 ...
ab̄an b̄n+1/B) = tg(āa

0 ...
aāa

n g(b̄n+1)/B) = tg(āa
0 ...

aāa
n ān+1/B) ,

a contradiction.

Then because 2.2 we have automorphisms fn such that when m ≥ n ,

fm ↾An∪{ān}= fn ↾An∪{ān} and fn(An ∪ {ān}) = An ∪ {b̄n} . Then because

A ∪
⋃

i<ω āi is a model by Lemma 2.18, we get that
⋃

i<ω(fn ↾An∪{ān})

extends to an automorphism F such that F ↾A = IdA and F (ā) = F (ā0) =

b̄0 = b̄. �

Now we can improve the result of Corollary 2.6.

Lemma 2.24 Assume A is a model, |A | ≤ ℵ1 and for all finite A ⊂ A

there is āA such that if B ⊂ A , then tg(āB/B) = tg(āA/B). Then there is

ā such that for all finite A ⊂ A , tg(ā/A) = tg(āA/A).

Proof: Let A =
⋃

i<ω1
Ai , where (Ai)i<ω1

is an 4K -increasing chain of

countable models such that Aα =
⋃

i<αAi , when α is a limit ordinal. From

Corollary 2.6 we get for each i < ω1 a sequence āi such that tg(āi/A) =

tg(āA/A) for all finite A ⊂ Ai . Now if j < i , we have that tw(āi/Aj) =

tw(āj/Aj) , because when A ⊂ Aj is a finite subset, tg(āi/A) = tg(āA/A) =

tg(āj/A) . Now we get from Theorem 2.23 that also tg(āi/Aj) = tg(āj/Aj) .

Then we do a similar construction as in Lemma 2.5. We define automor-

phisms gi , i < ω1 , such that

1. For j < i < ω1 , gi ↾Aj
= gj ↾Aj

and

2. gi(āi) = ā0 .

Let g0 = IdM. Assume we have defined gi for i < α .

Case 1: α = β + 1 . This case is similar to the situation in Lemma 2.5. Be-

cause tg(āα/Aβ) = tg(āβ/Aβ) , also tg(gβ(āα)/gβ(Aβ)) = tg(gβ(āβ)/gβ(Aβ)) ,

and we have an automorphism f such that f ↾gβ(Aβ) is the identity and

f(gβ(āα)) = gβ(āβ) = ā0 . We can take gα = f ◦ gβ .
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Case 2: α is a limit ordinal. The mapping
⋃

i<α(gi ↾Ai
) : Aα → M

extends to an automorphism F . When A ⊂ Aα is finite, there is some

i < α such that A ⊂ Ai . Let h witness that tg(āi/Ai) = tg(āα/Ai) . Then

(h ◦ gi
−1 ◦ F ) ↾A= IdA and (h ◦ gi

−1 ◦ F )(F−1(ā0)) = (h ◦ gi
−1)(ā0) =

h(āi) = āα . Thus we have that tw(F−1(ā0)/Aα) = tw(āα/Aα) and again,

by Theorem 2.23, tg(F−1(ā0)/Aα) = tg(āα/Aα) . Let f be an automorphism

such that f(āα) = F−1(ā0) and f ↾Aα
= IdAα

. We can take gα = F ◦ f .

Now 1 holds and also gα(āα) = (F (f(āα)) = F (F−1(ā0)) = ā0.

Finally the mapping
⋃

i<ω1
(gi ↾Ai

) : A → M extends to an automor-

phism G . We can take ā = G−1(ā0) . Then for each i < ω1 , automorphism

G−1 ◦ gi shows that tg(āi/Ai) = tg(ā/Ai) . Thus when A ⊂ A finite, there

is some i < α such that A ⊂ Ai . Then tg(āA/A) = tg(āi/A) = tg(ā/A) .

�

3 Symmetry

For symmetry we need an extra property, namely a non-restricted version of

existence of free extension, formulated in 3.2. To be more specific, we need

this property in lemma 3.4 and thus also in Theorem 3.13. In this section we

first prove symmetry using this property as an assumption, and then discuss

what more natural assumptions would imply this property. Note that we

now could prove already a stronger result than the one in 2.20.

Remark 3.1 Let A be an ω -saturated model, E ⊂ A finite such that

tw(ā/A ) does not split over E and B such that A ⊂ B and |B| ≤ ℵ1 .

Then there is b̄ such that tw(b̄/B) does not split over E .

Proof: The proof is identical to the proof of Theorem 3.19. We just use

Lemma 2.24 in the place of Lemma 3.18. �

We formulate the new assumption generally in (K,4K) , but it is clear how

to interpret it in the context of a monster model.

Assumption 3.2 (Existence of free extension) Let A ∈ K be ω -

saturated in K , A 4K B , A ⊂ B ⊂ B and ā ∈ B such that tw
B

(ā/A )

does not split over finite E ⊂ A . Then there is C ∈ K and b̄ ∈ C such that

B 4K C , tw
B

(ā/A ) = tw
C
(b̄/A ) and tw

C
(b̄/B) does not split over E .

Lemma 3.3 Let A be an ω -saturated model, b̄ ↓s
A
B and c̄ 6↓s

A
C . Then

there is a countable ω -saturated A ′ 4K A such that b̄ ↓s
A ′ B and c̄ 6↓s

A ′ C .
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Proof: Let E ⊂ A be a finite set such that tw(b̄/A ∪B) does not split over

E . Now if E ⊂ A ′ ⊂ A , also b̄ ↓s
A ′ B , because there are no more witnesses

in A ′∪B than in A ∪B . We define an increasing chain of countable models

Bn 4K A inductively so that

1. E ⊂ B0 ,

2. for all finite D ⊂ Bn tw(c̄/Bn+1 ∪ C) splits over D ,

3. for all finite D ⊂ Bn and ā there is f ∈ Aut(M) such that f(ā) ∈
Bn+1 and f ↾D= IdD .

First let B0 4K A be a countable model such that E ⊂ B0 . Then assume

we have defined Bi for i ≤ n . Denote

B = {D ⊂ Bn : D a finite subset }.

Because Bn is countable, also B is countable. Because c̄ 6↓s
A
C , for every

D ∈ B there are c̄D, d̄D ∈ A ∪ C witnessing that tw(c̄/A ∪ C) splits over

D . If {c̄D, d̄D} ∩ A ⊂ Bn+1 for all D ∈ B , 2 holds. Also because M is

ω -stable, there are only countably many āD ∈ M that have different weak

type over D . Because for a finite set D weak type and Galois type over

D coinside, we can enumerate such (āD
i )i<ω that for all ā exists such i

that tg(ā/D) = tg(āD
i /D). Then because A is ω -saturated, we may take

āD
i ∈ A for every i < ω . Then let

B′
n+1 = Bn ∪

⋃

D∈B

({c̄D, d̄D} ∩ A ) ∪
⋃

D∈B

{āD
i : i < ω}.

Now B′
n+1 ⊂ A is countable and we can take Bn+1 4K A such that

B′
n+1 ⊂ Bn+1 . This Bn+1 satisfies both 2 and 3.

Finally let A ′ =
⋃

n<ω Bn . When D ⊂ A ′ is a finite subset, there is

n < ω such that D ⊂ Bn . Thus A ′ is as we wanted. �

Lemma 3.4 Assume that (K,4K) satisfies the existence of free extension

-property. Assume that A is a countable ω -saturated model, ā ↓s
A
b̄ and

b̄ 6↓s
A
ā. Then for any ordinal λ there exists a sequence (āi, b̄i)i<λ of length

λ such that b̄i ↓
s
A
āj if and only if i > j.

Proof: We construct such a sequence by induction. Let ā0 = ā and b̄0 = b̄ .

Assume we have found āi, b̄i for all i < α . Now we use Theorem 2.13 and

the existence of free extension to get āα and b̄α such that

1. tw(āα
ab̄α/A ) = tw(ā0

ab̄0/A ) and
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2. āα
ab̄α ↓s

A
(
⋃

i<α{āi, b̄i}).

From monotonicity we get that āα
ab̄α ↓s

A
āi for all i < α and thus b̄α ↓s

A
āi

for all i < α . First we claim that

3. when β ≤ α , tw(āα
ab̄β/A ) = tw(ā0

ab̄0/A ) .

The proof of this claim is much similar to the uniqueness proof of 2.20. If

β = α , the claim follows from the definition of āα and b̄α . Thus let β < α .

Because ā0 ↓s
A
b̄0 and āα ↓s

A
b̄β , we have finite E1, E2 ⊂ A such that

(a) tw(ā0/A ∪ {b̄0}) does not split over E1 and

(b) tw(āα/A ∪ {b̄β}) does not split over E2 .

Let C ⊂ A be an arbitrary finite set. Because A is ω -saturated, there

exists an automorphism f such that f(b̄0) ⊂ A and f ↾E1∪E2∪C is the

identity. From (a) we get an automorphism such that h1 ↾C∪{b̄0}= f ↾C∪{b̄0}

and h1(ā0) = ā0 .

Now we use the fact that tw(b̄β/A ) = tw(b̄0/A ) to get an automorphism

f ′ such that f ′(b̄β) = b̄0 and f ′ ↾C∪E2
is the identity. Then (f◦f ′) ↾E2

= IdE2

and (f ◦ f ′)(b̄β
a
C) = f(b̄0)

a
C. Thus from (b) we get an automorphism h2

such that h2(āα) = āα , h2 ↾C= IdC and h2(b̄β) = f(b̄0) .

Because tw(ā0/A ) = tw(āα/A ) , there is also h ∈ Aut(M) such that

h(ā0) = āα and h ↾{f(b̄0)}∪C is the identity.

Finally we combine these automorphisms to h2
−1 ◦ h ◦ h1 ∈ Aut(M) .

Now (h2
−1 ◦ h ◦ h1) ↾C is the identity and (h2

−1 ◦ h ◦ h1)(ā0, b̄0) =

h2
−1(h(ā0, f(b̄0))) = h2

−1(āα, f(b̄0)) = (āα, b̄β) . Because C ⊂ A was

arbitrary, this proves claim 3.

Now we want to show that

4. for all i ≤ α , b̄i 6↓
s
A
āα.

To prove this, we assume the contrary. Let β ≤ α and E ⊂ A be a finite set

such that tw(b̄β/A ∪ {āα}) does not split over E . We have that b̄0 6↓s
A
ā0

and thus tw(b̄0/A ∪ {ā0}) splits over E . Let c̄, d̄ ⊂ A ∪ {ā0} witness that.

From 3 we get g ∈ Aut(M) such that g(ā0, b̄0) = (āα, b̄β) and g ↾({c̄,d̄}∩A )∪E

is the identity.

Because g(c̄) and g(d̄) are in A ∪ {āα} and tg(g(c̄)/E) = tg(g(d̄)/E)

from the choice of E we get g∗ ∈ Aut(M) such that g(c̄) = d̄ and g ↾E∪{b̄β}

is the identity.

Now (g−1 ◦ g∗ ◦ g)(c̄) = d̄ and (g−1 ◦ g∗ ◦ g) ↾E∪{b̄0} is the identity, which

contradicts the choice of c̄ and d̄ . This proves 4. �

The proof for the following theorem can be found for example in [2].
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Theorem 3.5 (Erdős and Rado) Let α be an infinite cardinal and let

n < ω . Suppose that

1. |X| > in(α),

2. [X]n+1 ⊂
⋃

i∈I Ci and

3. |I| ≤ α .

Then there are a subset Y ⊂ X and i ∈ I such that

|Y | > α and [Y ]n+1 ⊂ Ci.

Remark 3.6 Let A ⊂ M
∗ be a subset and (a)ca∈A a set of new constants.

Then let M
∗
A = (M, ca)a∈A be the model where the new constants are in-

terpreted as elements of A respectively. The following are equivalent for all

subsets B = (bi)i∈I and C = (ci)i∈I of M
∗ .

1. For all first order formulas φ of vocabulary τ∗ ∪ {ca : a ∈ A} , all

n < ω and all indexes i0, ..., in ∈ I M
∗
A |= φ(bi0 , ..., bin) if and only if

M
∗
A |= φ(ci0 , ..., cin).

2. For all atomic formulas φ of vocabulary τ∗ ∪ {ca : a ∈ A} , all n < ω

and all indexes i0, ..., in ∈ I M
∗
A |= φ(bi0 , ..., bin) if and only if M

∗
A |=

φ(ci0 , ..., cin).

3. For all n < ω and indexes i0, ..., in ∈ I there is an automorphism f

of M
∗ such that f(bik) = cik for 0 ≤ k ≤ n and f ↾A= IdA .

4. There is an automorphism f of M
∗ such that f(bi) = ci for all ∈ I

and f ↾A= IdA .

This remark follows clearly from the homogeneity of M
∗ .

Definition 3.7 (∗-type) Let B = (bi)∈I and C = (ci)i∈I be subsets of M.

We write

t∗(B/A) = t∗(C/A)

if one (and all) of the conditions 1, 2, 3 and 4 of Remark 3.6 hold for B and

C .

Remark 3.8 When (āi)i<(2ℵ0 )
+ ⊂ M

∗ and A countable, there are i, j <

(2ℵ0)
+

such that t∗(āi/A) = t∗(āj/A).
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Proof: Denote by Φ the set of all atomic formulas of τ∗ ∪ {ca : a ∈ A} ,

where ca is a new constant for each a ∈ A . Because τ∗ and A are count-

able, the set Φ is countable. Let (φi)i<ω enumerate Φ . Let M
∗
A be the

model (M∗, ca)a∈A , where constants ca are interpreted as elements of A

respectively. Now for each ā we have a function ηā : ω → 2 such that

ηā(i) =

{

1 when M
∗
A |= φi(ā),

0 when M
∗
A 6|= φi(ā).

Clearly if ηā = ηb̄ , the countable sequences ā and b̄ satisfy exactly the same

atomic formulas of τ∗ ∪ {ca : a ∈ A} .

There can not be more than 2ℵ0 tuples with different ∗-type. �

Lemma 3.9 Assume that (b̄i)i<ω is a sequence of tuples such that lg(b̄i) =

i+1 for all i < ω and A a set such that A =
⋃

i<ω Bi , where i < j ⇒ Bi ⊂
Bj and

i < j ⇒ t∗((bj0, ..., b
j
i )/Bi) = t∗(b̄i/Bi).

Then there is (ai)i<ω such that t∗((a0, ..., ai)/Bi) = t∗(b̄i/Bi) for all i < ω .

Proof: The proof is similar to the proof of Lemma 2.5. �

Definition 3.10 (Order-indiscernible) Let (I,<) be a linear ordering.

We say that a sequence (āi)i∈I is n-indiscernible over A if for all i0 < ... <

in−1 ∈ I and j0 < ... < jn−1 ∈ I

t∗(āi0 , ..., āin−1
/A) = t∗(āj0 , ..., ājn−1

/A).

We say that the sequence is order-indiscernible if it is n-indiscernible for all

n < ω .

Lemma 3.11 Let (āi)i<λ be a sequence of tuples, A a countable set and λ

a cardinal such that λ =
⋃

α<((2ℵ0 )+) κα , where κ0 ≥ 2ℵ0 and for all n ∈ ω

in(κα) < κα+1 . Then there exists a sequence (ā′i)i<ω such that it is order-

indiscernible over A and for all n < ω there exists i0 < ... < in < λ such

that

t∗(ā′0, ..., ā
′
n/A) = t∗(āi0 , ..., āin/A).

Proof: For a shorter notation we assume that āi = ai and ā′j = a′j for all

i < λ, j < ω . We want to define by induction on n < ω sets In
α ⊂ M

∗lg(ā0) ,

α < (2ℵ0)+ such that

1. In
α ⊂ (ai)i<λ,
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2. |In
α | ≥ κα,

3. In
α is n-indiscernible over A ,

4. When b0, ..., bn−1 ∈ In
α with increasing indexes and c0, ..., cn−1 ∈ In

β

with increasing indexes,

t∗(b0, ..., bn−1/A) = t∗(c0, ..., cn−1/A).

5. When b0, ..., bn−1 ∈ In
α with increasing indexes and c0, ..., cn−1 ∈ Im

α

with increasing indexes and m > n ,

t∗(b0, ..., bn−1/A) = t∗(c0, ..., cn−1/A).

Let n = 0 . Define I0
α = (ai)i<κα . Now 3,4 and 5 are trivial because we are

looking at sequences of length 0, i.e. empty sequences.

Assume we have defined Im
α for all α < (2ℵ0)+ and m ≤ n . Let [(ai)i<λ]<ω

denote all finite subsets of {ai : i < λ} . To every A ∈ [(ai)i<λ]<ω we

may attach a type in a natural way, i.e. the type t∗(ai0 , ..., ain/A) , where

{ai0 , ..., ain} = A and the indexes i0, ..., in are in an increasing order. By

Remark 3.8, there can’t be more than 2ℵ0 different types for A ∈ [(ai)i<λ]<ω

and thus [(ai)i<λ]<ω =
⋃

i∈I Ci , where |I| ≤ 2ℵ0 and for all i ∈ I ,

t∗((ai0 , ..., aip)/A) = t∗((bj0 , ..., bjm)/A) when {ai0 , ..., aip}, {bj0 , ..., bjm} ∈
Ci and indexes ik, jk are in an increasing order. Then of course p = m .

First we define sets Jn+1
α , α < (2ℵ0)+ as follows: We have that |In

α+1| ≥
κα+1 > in(κα) , |I| ≤ 2ℵ0 ≤ κα and [In

α+1]
n+1 ⊂

⋃

i∈I Ci . Then we get from

lemma 3.5 a subset Jn+1
α ⊂ In

α+1 and i0 ∈ I such that |Jn+1
α | ≥ κα and

[Jn+1
α ]n+1 ⊂ Ci0 . Thus this Jn+1

α is (n+ 1)-indiscernible over A .

Also if we take some m < n + 1 and tuples (c0, ..., cm−1) ∈ Jn+1
α and

(b0, ..., bm−1) ∈ Im
α , because Jn+1

α ⊂ In
α+1 , we get from induction that

t∗(c0, ..., cm−1/A) = t∗(b0, ..., bm−1/A) . Thus condition 5 holds for tuples

in Jn+1
α .

Now again we have that [Jn+1
α ]n+1 ⊂

⋃

i∈I Ci for all α < (2ℵ0)+ . By the

pigeonhole principle there must be an index i0 ∈ I such that

|{α < (2ℵ0)+ : [Jn+1
α ]n+1 ⊂ Ci0}| = (2ℵ0)+.

Define

βα = min{β < (2ℵ0)+ : [Jn+1
β ]n+1 ⊂ Ci0 and β ≥ α} and

In+1
α = Jn+1

βα
.

Now also property 4 holds in In+1
α for all α < (2ℵ0)+ .
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Let α < (2ℵ0)+ . For all n ∈ ω we take some (n + 1)-tuple ān ∈ In+1
α

with increasing indexes in0 , ..., i
n
n . Then we get from condition 5 that when

m ≥ n , t∗((ain
0
, ..., ainn)/A) = t∗(aim

0
, ..., aimn )/A) . We get from Lemma 3.9

a sequence (a′i)i<ω such that t∗((a′0, ..., a
′
n)/A) = t∗(ain

0
, ..., ainn)/A) for all

n < ω . We check that this (a′i)i<ω is order-indiscernible. For this we take

some (a′i0 , ..., a
′
in

) and (a′j0 , ..., a
′
jn

) with increasing indexes. Now we can

find (n + 1)-tuples ān ∈ Iin+1
α and b̄n ∈ Ijn+1

α with increasing indexes

such that t∗((a′i0 , ..., a
′
in

)/A) = t∗(ān/A) and t∗((a′j0 , ..., a
′
jn

)/A) = t∗(b̄n/A)

by taking suitable subsequences. Thus from condition 5 it follows that

t∗((a′i0 , ..., a
′
in

)/A) = t∗((a′j0 , ..., a
′
jn

)/A) . �

Lemma 3.12 Let (ā)i<ω be an order-indiscernible sequence over A and

(I,<′) a linear ordering. There are tuples (c̄i)i∈(I,<′) in M such that for all

n < ω and i0 <
′ ... <′ in

t∗(c̄i0 , ..., c̄in/A) = t∗(ā0, ..., ān/A). (3.4)

Proof: We use <′ to denote the ordering of I and < to denote a well-order.

We prove the claim for all sub-orders (J,<′) ⊂ (I,<′) by induction on the

size of J .

Assume we have found such (c̄i)i∈J for all suborders J of size strictly

less than a cardinal α and let (J,<′) ⊂ (I,<′) be such that |J | = α .

Then let (J,<) be a α-type well-ordering of (J,<′) . For i ∈ J we say

that i < β < α when we mean that i < h(β) , where h : (α,<) → (J,<)

is an isomorphism. Then we define the c̄i ’s by induction on < . Assume

we have defined c̄i for i < β < α such that 3.4 holds for all n and all

i0, ..., in < β . Now ({i : i ≤ β}, <′) is a suborder of (I,<′) and |{i : i ≤
β}| = |β + 1| < α . By induction there exists elements (d̄i)i≤β such that

3.4 holds for all n and all i0, ..., in ≤ β . We may use homogeneity to find

f ∈ Aut(M) such that f ↾A= IdA and f(c̄i) = d̄i for all i < β . Then define

c̄β = f−1(d̄β) . Now t∗((c̄i)i≤β/A) = t∗((d̄i)i≤β/A) . When we take some

n < ω and indexes i0 <
′ ... <′ in such that ik ≤ β for all 0 ≤ k ≤ n , we

have that t∗(c̄i0 , ..., c̄in/A) = t∗(d̄i0 , ..., d̄in/A) = t∗(ā0, ..., ān/A) . Finally we

have defined (c̄i)i<α and thus (c̄i)i∈(J,<′) .

�

Now the following theorem finally combines all the previous lemmas.

Theorem 3.13 (Symmetry) Assume that (K,4K) satisfies the existence

of free extension -property. Let A be an ω -saturated model. If ā ↓s
A
b̄ , then

b̄ ↓s
A
ā.
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Proof: We assume the contrary. Let ā and b̄ be such that ā ↓s
A
b̄ and b̄ 6↓s

A

ā . First by Lemma 3.3 we may assume that A is countable. Then we get

from Lemma 3.4 a sequence (āi, b̄i)i<λ such that λ satisfies the assumptions

of Lemma 3.11 and

b̄i ↓
s
A āj if and only if i > j.

Furthermore we use Lemma 3.11 and 3.12 to get a sequence (āi, b̄i)i∈(R,<′)

such that

b̄i ↓
s
A āj if and only if j <′ i.

When we denote B = A ∪ {(āi, b̄i) : i ∈ Q}, B is countable and if i, j ∈ R

and i 6= j , tuples (āi, b̄i) and (āj , b̄j) have different weak type over B .

Because R is uncountable, this contradicts the ω -stability assumption. �

3.1 What implies Existence of free extension

Our first candidate for a more natural assumption than 3.2 is tameness. To

define tameness we need to define a general concept of Galois type over a

model, and then see that under tameness it is equivalent to our notion of

weak type over a model.

Definition 3.14 (B -Galois type over a model) Let A ,B,D ∈ K , ā ∈
B , b̄ ∈ D , A 4K B and A 4K D . We say that tg

B
(ā/A ) = tg

C
(b̄/A ) if

there is C ∈ K and AE-embeddings f : B → C and g : D → C such that

f(ā) = g(b̄) and f ↾A = g ↾A = IdA .

We can see as in Remark 2.2 the following:

Remark 3.15 Let A 4K M and ā, b̄ ∈ M. Then tg
M

(ā/A ) = tg
M

(b̄/A )

if and only if tg(ā/A ) = tg(b̄/A ), where the latter one means that there is

f ∈ Aut(M) fixing A such that f(ā) = b̄ .

Definition 3.16 (Tameness) Let LS(K) ≤ κ ≤ λ . We say that (K,4K)

is (κ, λ)-tame, if for all C ,D ,A ∈ K , ā ∈ C and b̄ ∈ D such that A 4K B

and A 4K D , we have that if tg
C
(ā/A ) 6= tg

D
(b̄/A ) and |A| ≤ λ , then there

is some B 4K A of size κ such that tg
C
(ā/B) 6= tg

D
(b̄/B).

We say that (K,4K) is tame if it is (LS(K), λ)-tame for all cardinals

λ ≥ LS(K).

From 3.15 it follows that if (K,4K) is tame and A is a model, tg(ā/A ) =

tg(b̄/A ) if and only if tg(ā/B) = tg(b̄/B) for every countable B 4K A .

The next remark follows from Theorem 2.23.
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Remark 3.17 Assume that (K,4K) is tame. If A is a model, we have that

tw(ā/A ) = tw(b̄/A ) if and only if tg(ā/A ) = tg(b̄/A ).

Now similarly as in 2.24, only by induction on |A | , using Remark 3.17

instead of Theorem 2.23, we can prove the following lemma.

Lemma 3.18 Assume (K,4K) is tame, A a model, and that for all finite

A ⊂ A there is āA such that if B ⊂ A , then tg(āB/B) = tg(āA/B). Then

there is ā such that for all finite A ⊂ A , tg(ā/A) = tg(āA/A).

Theorem 3.19 (Existence of free extension) Assume that (K,4K) is

tame. Let A be ω -saturated model and E ⊂ A finite such that tw(ā/A )

does not split over E . Then if B ⊃ A , there is b̄ such that tw(ā/A ) =

tw(b̄/A ) and tw(b̄/B) does not split over E .

Proof: By monotonicity, we may assume that B = B is an ω -saturated

model.

Let A0 4K A be countable such that E ⊂ A0 . For every finite B ⊂ B

we get from the restricted existence of free extension we proved in 2.20

some b̄B such that tw(b̄B/A0) = tw(ā/A0) and tw(b̄B/A0 ∪ B) does not

split over E . When B and B′ are finite and B ⊂ B′ ⊂ B , we have that

tw(b̄B/A0) = tw(b̄B′/A0) , b̄B ↓s
A0
B and b̄B′ ↓s

A0
B . Thus tw(b̄B/A0 ∪B) =

tw(b̄B′/A0 ∪B) by uniqueness. Hence we may use lemma 3.18 to get such b̄

that tg(b̄/B) = tg(b̄B/B) for every finite B ⊂ B .

First we see that tw(b̄/B) does not split over E . That is because if

it would split, there would be some witnesses c̄, d̄ ∈ B . But this would

contradict the fact that tg(b̄/E ∪ {c̄, d̄}) = tg(b̄E∪{c̄,d̄}/E ∪ {c̄, d̄}) and

tw(b̄E∪{c̄,d̄}/E ∪ {c̄, d̄}) does not split over E .

Then we see that actually tw(b̄/A ) = tw(ā/A ) . When A ⊂ A is a

finite subset, we have that tw(ā/A0 ∪ A) does not split over E . Then

again from uniqueness we get that tw(ā/A0 ∪A) = tw(b̄A/A0 ∪A) and thus

tg(ā/A) = tg(b̄A/A) = tg(b̄/A) . �

We assumed (K,4K) to be ω -stable. When we assume tameness, we gain

κ-stability also for every other cardinal κ .

Definition 3.20 We say that (K,4K) is κ-Galois-stable, if for every A 4K

B ∈ K , |A | ≤ κ and a sequence (āi)i<κ+ , where āi ∈ B for every i < κ+ ,

there are i0 ,j0 < κ+ such that tg
B

(āi0/A ) = tg
B

(āj0/A ).

Theorem 3.21 Assume that (K,4K) is tame. Then it is also κ-Galois-

stable for every infinite κ .
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Proof: Let A be a model of size κ . By ω -stability, there is an ω -saturated

model A′ of size κ such that A ⊂ A ′ . If tg(ā/A ) 6= tg(b̄/A ) , then

tg(ā/A ′) 6= tg(b̄/A ′) . Thus there are more different types over A ′ and

hence we may assume that A is ω -saturated.

Let ā ∈ M . By Lemma 2.13 there is finite A ⊂ A such that tw(ā/A )

does not split over A . Let BA 4K A be ω -saturated and countable such

that A ⊂ BA . Now if b̄ ∈ M is such that tw(b̄/BA) = tw(ā/BA) and

tw(b̄/A ) does not split over A , we get by the uniqueness property proved

in Theorem 2.20 that for every countable B such that BA ⊂ B ⊂ A ,

tw(b̄/B) = tw(ā/B) . Furthermore we get that tw(b̄/A ) = tw(ā/A ) , and

then from Remark 3.17 that tg(b̄/A ) = tg(ā/A ) .

Let (āi)i<κ+ ⊂ M . There are only κ-many finite sets A ⊂ A . Then

there is a subsequence (āij )j<κ+ such that tw(āij/A ) does not split over

the same finite set A for all j < κ+ . Then by ω -stability, there are only

countably many weak types over BA for each A . Thus there are some tuples

āiα , āiβ , α, β < κ+ such that tw(āiα/BA) = tw(āiβ/BA) . Then by previous

reasoning, also tg(āiα/A ) = tg(āiβ/A ) . �

Another theorem tells us that we can imply Assumption 3.2 also from κ-

categoricity for suitable κ . The result is also due to Shelah and this proof

is from [1].

Definition 3.22 We say that (K,4K) is κ-categorical, if whenever A ,B ∈
K and |A | = |B| = κ , then A and B are isomorphic.

For convenience we define λ-dense to be the concept that is usually called

λ-dense without endpoints.

Definition 3.23 Let (I,<) be a linear ordering and C,D ⊂ I . When c < d

for all c ∈ C, d ∈ D , we denote C < D . We say that (I,<) is λ-dense,

if for all C,D ⊂ I , |C|, |D| < λ and C < D , there is i ∈ I such that

C < {i} < D , and for all C ⊂ I , |C| < λ , there are i, j ∈ I such that

{i} < C < {j} .

We say that (I,<) is dense, if it is ℵ0 -dense.

Theorem 3.24 (Existence of free extension) Assume that (K,4K) is

κ-categorical for κ such that κ = κℵ0 ≥ λ . Then if A is an ω -saturated

model, A ⊂ B , |B| ≤ λ and tw(ā/A ) does not split over finite E ⊂ A ,

there is b̄ such that tw(b̄/A ) = tw(ā/A ) and tw(b̄/B) does not split over

E .

Proof: Let A0 4K A be countable and ω -saturated such that E ⊂ A .

If we find such b̄ that tw(b̄/A0) = tw(b̄/A0) and that tw(b̄/B) does not
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split over E , we get that also tw(b̄/A ) = tw(ā/A ) . That is because for

every finite A ⊂ A , we have that tw(b̄/A0) = tw(ā/A0) , b̄ ↓
s
A0

A0 ∪ A and

ā ↓s
A0

A0 ∪ A . Then tg(b̄/A) = tg(ā/A) follows from uniqueness. Thus we

may assume that A is countable.

Our second remark is that we can construct a ω1 -saturated4 model of

size κ , and then from κ-categoricity it follows that every model of size κ is

ω1 -saturated. Because κℵ0 = κ , there are only κ-many countable subsets of

a model of size κ , and by ω -stability, only countably many different weak

types over each countable subset. Then we can construct an increasing chain

of models Ai , i < ω1 , where |Ai| = κ for all i < ω1 and every type over a

countable subset of Ai is satisfied in Ai+1 . Then
⋃

i<ω1
Ai is ω1 -saturated

and of size κ .

Lemmas 3.11 and 3.12 did not use Theorem 3.19. From 3.11 we get

that there is a countable order-indiscernible sequence in M , and from 3.12

also an order-indiscernible (I,<) , where I ⊂ M , |I| = κ and (I,<) is

a dense linear order. Let SH(J) denote the closure of J ⊂ I with τ∗ .

The set B ∪ {ā} is included in B for some model B of size κ . From

κ-categoricity we get that B and SH(I) are isomorphic. Thus there is

an automorphism f ∈ Aut(M) mapping B to SH(I) . If we find b̄ as

in the claim for f(A ), f(B) and f(ā) , we can take f−1(b̄) for the claim.

Thus we may assume that B ∪ {ā} ⊂ SH(I) . We have that B ⊂ SH(K)

for some K ⊂ I such that |K| = λ . We assumed that A is countable,

and thus A 4K SH(J0) for some countable J0 ⊂ I . We can take J0

such that (J0, <) ∼= (Q, <) because I is dense. Then again J0 4K A1 for

some countable ω -saturated model A1 4K SH(I) . This way we can get a

increasing chain of models An and SH(Jn) such that |An| = |SH(Jn)| = ℵ0 ,

An 4K SH(Jn) 4K SH(I) , (Jn, <) ∼= (Q, <) and An is ω -saturated for all

n < ω . Finally J =
⋃

n<ω(Jn, <) ∼= (Q, <) , because it is a countable dense

linear order, and SH(J) is a countable ω -saturated model. By restricted

existence of free extension there is ā′ ∈ M such that tw(ā′/A ) = tw(ā/A )

and tw(ā′/SH(J)) does not split over E . Because SH(I) is ω1 -saturated,

there is such ā′ in SH(I) .

We use again Lemma 3.12 to find an order-indiscernible (I ′, <) in M
∗

such that (I ′, <) is a λ+ -dense linear order, (I,<) ∼= (I ′′, <) for some I ′′ ⊂
I ′ and for every finite n < ω and i0 < ... < in ∈ I , j0 < ... < jn ∈ I ′ , we

have that t∗(i0, ..., in/∅) = t∗(j0, ..., jn/∅) . Then we have an automorphism

of M
∗ mapping I to I ′′ , and thus have that I is a suborder of a order-

indiscernible λ+ -dense linear order in M
∗ . We call this order I+ .

Let i0 < ... < in−1 ∈ I and functions Fn0

k0
, ..., F

np

kp
∈ τ∗ be such that

ā′ = ((Fn0

k0
)M(i00, ..., i

0
n0−1), ..., (F

np

kp
)M(ip0, ..., i

p
np−1)) (3.5)

4A model A is ω1 -saturated, if for every ā and every countable B ⊂ A there is

b̄ ∈ A such that tw(b̄/B) = tw(ā/B) .
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and {i0, ..., in−1} = {i00, ..., i
0
n0−1, ..., i

p
0, ..., i

p
np−1} . Then we find j0 < ... <

jn−1 ∈ I+ such that

1. if ik ∈ J , then jk = ik ,

2. ik < j if and only if jk < j for all j ∈ J ,

3. if ik 6∈ J , then jk 6∈ J ∪K ,

4. if there is k ∈ K \ J such that jk < k < jk+1 , then there are infinitely

many j ∈ J such that jk < j < jk+1 ,

5. if there is k ∈ K between some jk and j ∈ J , then there are infinitely

many i ∈ J in that same interval,

6. if there are k ∈ K such that k < i0 , then there is infinitely many such

j ∈ J and similarly for k > jn−1 .

First we look at such k, ..., k + p that [ik, ik+p] ∩ J = ∅ and p has been

chosen maximally. If there are no j ∈ J such that j < ik , we get from the

λ+ -density of I+ such jk < ... < jk+p that jk+p < j for all j ∈ K ∪ J .

Symmetrically if there are no j ∈ J such that j > ik+p . Then clearly

condition 6 holds. Next assume that there are elements of J on both sides

of the interval [ik, ik+p] . In that case condition 6 holds because J is dense.

Define jinf = inf{j ∈ J : j > ik+p} and jsup = sup{j ∈ J : j < ik} . Both

iinf and isup can’t be in J , because J is dense. Assume that isup is not in

J . Let C = {i ∈ J ∪K : i < jinf} and D = {i ∈ J ∪K : i ≥ jinf} . By λ+ -

density of I+ , there are jk < ... < jk+p ∈ I+ such that C < {jk, ..., jk+p} <
D . Now there are no elements of K between jk+p and iinf or between jk1

and jk2
, when k1, k2 ∈ {k, ..., k + p} . Also there are always infinitely many

elements of J between jinf and some i ∈ J such that i > jinf and also

between jsup and some i ∈ J such that i < jsup . Thus we see that 5 holds

for these jk, ..., jk+p . The case when iinf is not in J goes similarly.

Then we look at such ik = jk that ik ∈ J . Conditions 5 and 6 follow

from the density of J . Also if jk−1 or jk+1 are in J , 4 follows from the

density of J . If not, 4 follows from the condition 5 for jk−1 or jk+1 . We

see that 4 holds for all j0, ..., jn−1 . That is because if there is none or only

one j ∈ J such that jk ≤ j ≤ jk+1 , it follows from above construction that

there are no element of K in that interval. If there are at least two such j ,

then there are also infinitely many.

Finally let b̄ be generated from j0, ..., jn−1 as ā′ was from i0, ..., in−1 ,

that is

b̄ = ((Fn0

k0
)M(j00 , ..., j

0
n0−1), ..., (F

np

kp
)M(jp

0 , ..., j
p
np−1)),

where jr
qs

= jk if and only if irqs
= ik in 3.5. We claim that t∗(ā′/SH(J0)) =

t∗(b̄/SH(J0)) for every finite J0 ⊂ J . This is because we have an order-

preserving map f such that f(ik) = jk for all k ∈ {0, ..., n−1} and f(j) = j
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for all j ∈ J0 . Because (I,<) is order-indiscernible, this f extends to F ∈
Aut(M∗) . Then F (ā′) = b̄ and F ↾SH(J0)= IdSH(J0) . Because A = SH(J) ,

we have that tw(b̄/A ) = tw(ā′/A ) = tw(ā/A ) .

Then we claim that tw(b̄/B) does not split over E . Assume that there

would be some c̄, d̄ ∈ B ⊂ SH(K) witnessing the contrary. Let r0 <

... < rm ∈ J be such that E ∪ ({c̄, d̄} ∩ SH(J)) ⊂ SH({r0, ..., rm}) . Then

let p0, ..., pm′ ∈ K \ J be such that ({c̄, d̄} \ SH(J)) ⊂ SH({p0, ..., pm′}) .
Let f be order-preserving such that f(jk) = ik for k ∈ {0, ..., n − 1} and

f(rk) = rk for k ∈ {0, ...,m} . Look at such pj0 < ... < pjk
that pjk

<

{j0, ..., jn−1, r0, ..., rm} . Because pjk
∈ K we get from condition 6 elements

f(pj0) < ... < f(pjk
) ∈ J such that f(pjk

) < pjk
. Then, because of 2, also

f(pjk
) < {i0, ..., in−1, r0, ..., rm} . Other cases similarly. For pj0 < ... < pjk

between some two elements in {j0, ..., jn−1, r0, ..., rm} , it depends whether

they belong to J or not, if we use the ℵ0 -density of (J,<) or properties

4 and 5 to find suitable f(pj0) <, ..., < f(pjk
) ∈ J . Finally we find an

order-preserving f : {j0, ..., jn−1, r0, ..., rm, p0, ..., pm′} → J , which extends

to F ∈ Aut(M∗) . Then F (c̄), F (d̄) ∈ SH(J) and F ↾E∪{ā′}= IdE∪{ā′} , thus

F (c̄), F (d̄) witness that tw(ā′/SH(J)) splits over E , a contradiction. �

We note that if we assume κ-kategoricity for κ ≥ 2ℵ0 , we do not need to

assume ω -stability for (K,4K) .

Theorem 3.25 Let (K,4K) be a local abstract elementary class, which is

κ-categorical for κ ≥ 2ℵ0 . Then it is ω -stable.

Proof: Let A be countable. As we saw in Remark 3.8, there are at most 2ℵ0 -

many ∗-types over A , and hence at most such many weak types also. Then

let B be a model such that A ⊂ B , |B| = κ and every weak type over A is

represented in B . Then let (κ,<) ⊂ M
∗ be an order-indiscernible sequence

of order-type κ , and denote again by SH(κ) the model we get closing (κ,<)

with the functions of τ∗ . From categoricity we get f ∈ Aut(M) mapping

B to SH(κ) . Then f(A) ⊂ SH(J) for some countable J ⊂ κ . If ā and b̄

in B have different weak type over A , then f(ā) and f(b̄) in SH(κ) have

different weak type over SH(J) . It is enough to show that there are at

most countably many tuples in SH(κ) with pairwise different ∗-type over

SH(J) .

Every tuple b̄ ∈ SH(κ) is generated by finitely many functions of τ∗

from a finite suborder ī of κ . Tuples ā and b̄ have same ∗-type over SH(α)

if and only if there are ī and j̄ in κ such that ā can be generated from ī

similarly and with the same functions that b̄ can be generated from j̄ and

a partial order-preserving f : κ→ κ such that f (̄i) = j̄ and f ↾J= IdJ .

Let (āi)i<ω1
be a sequence of tuples in SH(κ) . Choose a finite sequence

of functions in τ∗ and suborders j̄i in κ for each āi . There are only count-

ably many different finite sequences of functions in τ∗ , thus by the pigeonhole
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principle there is a subsequence (āni
)i<ω1

such that every āni
can be gen-

erated from some j̄ni
∈ κ with the same functions. Furthermore we can

choose āni
such that they are generated similarly, because there are only

finitely many ways to order j̄ni
. Also there are only countably many ways

to order a finite set compared to the countable well-order J . Thus we may

find indexes nα and nβ such that when we denote j̄nα = (k0, ..., km) and

j̄nβ
= (p0, ..., pm) , we have that kn = j if and only if pn = j and kn < j if

and only if pn < j for all 0 ≤ n ≤ m and j ∈ J . Then we have a partial

mapping as above, and hence t∗(ānα/SH(J)) = t∗(ānβ
/SH(J)) for some

nα, nβ < ω1 , and tuples(āi)i<ω1
don’t have pairwise disjoint ∗-type over

SH(J) . �

4 U-rank

In this section we assume that (K,4K) is a local abstract elementary class

with ω -stability and existence of free extension. Then we may use all proper-

ties derived from these in the previous chapters, including symmetry. Again

we work inside a monster model.

Definition 4.1 Let A be countable and ω -saturated model. Define U-rank

of ā over A , U(ā/A ), by induction:

1. Always U(ā/A ) ≥ 0 .

2. U(ā/A ) ≥ β+ 1 iff there is countable ω -saturated model B such that

A ⊂ B , U(ā/B) ≥ β and ā 6 ↓s
A

B

For a countable ω -saturated model A , define

U(ā/A ) = min{α : U(ā/A ) 6≥ α+ 1}

if such an ordinal exists. Then define U-rank for arbitrary ω -saturated model

A as

U(ā/A ) = min{U(ā/A ′) : A
′ ⊂ A countable ω -saturated model.}

For a countable ω -saturated model A we say that U(ā/A ) is defined if there

exists an ordinal α such that U(ā/A ) 6≥ α + 1 . Also the above minimum

is defined for arbitrary A if it is defined for some countable ω -saturated

model A ′ ⊂ A . The next lemma shows that U(ā/A ) is actually defined

for all ω -saturated A .

Lemma 4.2 U(ā/A ) is defined for all ā and all ω -saturated models A .
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Proof: For a countable ω -saturated model A , denote

αA = sup{U(ā/A ) : ā ∈ M and U(ā/A ) is defined. } + 1.

Furthermore, let A = {A ⊂ M : A ω -saturated, countable model } and

α = sup{αA : A ∈ A} . Assume the contrary, that there would be some

A0 ∈ A and ā such that U(ā/A0) is not defined, i.e. U(ā/A0) > β for all

ordinals β . Then also U(ā/A0) > α . Assume we have defined Ai ∈ A for

i ≤ n such that

1. when i ≤ j , Ai ⊂ Aj ,

2. when i < n , ā 6↓s
Ai

Ai+1 and

3. U(ā/Ai) > α .

Now U(ā/An) ≥ α+ 1 and from the definition of U -rank we then get some

An+1 ∈ A such that An ⊂ An+1 , ā 6↓s
An

An+1 and U(ā/An+1) ≥ α ≥
αAn+1

. Thus from the definition of αAn+1
we get that U(ā/An+1) is not

defined, and particularly, U(ā/An+1) > α.

Finally A =
⋃

i<ω Ai is a countable model. We would like to get a

contradiction with Lemma 2.12, but the lemma forbids a chain of finite

sets, and our sets Ai are countable. Next we find finite sets Bi such that
⋃

i<ω Bi = A and tw(ā/Bi+1) splits over Bi for all i < ω . To assure that

A ⊂
⋃

i<ω Bi , we write A = {ai : i < ω} and make ai be an element of Bi

for each i < ω . We may assume that the ai ’s are chosen so that ai ∈ Ai for

i < ω .

Let a0 ∈ B0 ⊂ A0 . Then assume we have defined an increasing chain of

finite sets Bi for i ≤ n such that ai ∈ Bi ⊂ Ai for i ≤ n and tw(ā/Bi+1)

splits over Bi for i < n . Then tw(ā/An+1) splits over Bn ⊂ An , and

there are some cn, dn ∈ An+1 witnessing that. We can take Bn+1 = Bn ∪
{an+1, cn, dn} ⊂ An+1 .

These ā and (Bi)i<ω contradict Lemma 2.12. �

These two remarks follow easily from the definition:

Remark 4.3 If U(ā/A ) = α and g is an automorphism of M then

U(g(a)/g(A )) = α .

Remark 4.4 If A and B are ω -saturated models such that A ⊂ B , then

U(ā/B) ≤ U(ā/A ).

Definition 4.5 We say that ā and a set A are finitely equivalent to ā′ and

A′ , write

(ā, A) ≡∅ (ā′, A′)

if there is a bijective mapping f : ā ∪ A → ā′ ∪ A′ such that f(ā) = ā′ and

for all b̄ ∈ A tg(āab̄/∅) = tg(ā′af(b̄)/∅).
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We see that if tw(ā/A) = tw(ā′/A) , then (ā, A) ≡∅ (ā′, A).

Remark 4.6 If A and A ′ are ω -saturated models such that (ā,A ) ≡∅

(ā′,A ′), then U(ā/A ) = U(ā′/A ′).

Proof: By the definition of U-rank, it is enough to prove the claim for all

countable A and A ′ . Hence we assume that A and A are countable.

Let f : ā ∪ A → ā′ ∪ A ′ be the mapping from the definition 4.5. Now

f ↾A : A → A ′ extends to an automorphism g .

When c̄ ∈ A ′ finite, we have that g−1(c̄) = f−1(c̄) ∈ A and tg(g(ā)ac̄/∅) =

tg(āaf−1(c̄)/∅) = tg(ā′ac̄/∅) . Thus tw(g(ā)/A ′) = tw(ā′/A ′) and we

get from Theorem 2.23 an automorphism h such that h(g(ā)) = ā′ and

h ↾A ′= IdA ′ .

Now h ◦ g is an automorphism, h ◦ g(ā) = ā′ and h ◦ g(A ) = A ′ . The

claim follows from Remark 4.3. �

Lemma 4.7 Assume that ā ↓s
A

B , A ⊂ B and A ,B are countable, ω -

saturated models. Then if U(ā/A ) ≥ α , also U(ā/B) ≥ α .

Proof: The proof is by induction on α , and we prove the implication for all

A ,B and ā simultaneously. If α is 0 or a limit ordinal, the induction step

is clear. Assume that α = β + 1 and that C is an ω -saturated countable

model such that A ⊂ C , ā 6↓s
A

C , and U(ā/C ) ≥ β .

We use Lemma 2.21 to get a tuple ā′ and countable set C ’ such that

tw(āaC /A ) = tw(ā′aC ′/A ) and ā′aC ′ ↓s
A

B . Then also (ā′,C ′) ≡∅

(ā′,C ) . Because we may gain an automorphism mapping C to C ′ , we

see that also C ′ is an ω -saturated model. Then from Remark 4.6 we get

that U(ā′/C ′) ≥ β . Also A ⊂ C ′ , tw(ā′/A ) = tw(ā/A ) and we can also

easily see that ā′ 6↓s
A

C ′ .

Let D be a countable ω -saturated model such that C ′ ∪ B ⊂ D . From

the existence of free extension we get ā∗ such that tw(ā∗/C ′) = tw(ā′/C ′)

and ā∗ ↓s
C ′ D . Then also C ′ ⊂ D and U(ā∗/C ′) = U(ā′/C ′) ≥ β , and from

induction we get that

U(ā∗/D) ≥ β. (4.6)

Next we would like to show that tw(ā∗/B) = tw(ā/B) . In order to do

that, we take arbitrary finite b̄ ∈ B and claim that

ā∗ ↓s
A b̄. (4.7)

Let b̄′ be a free extension such that tw(b̄/A ) = tw(b̄′/A ) and b̄′ ↓s
A

C ′ . Let

c̄ ∈ C ′ be finite. Because C ′ ↓s
A

B , we get from symmetry that b̄ ↓s
A
c̄ . By
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monotonicity b̄′ ↓s
A
c̄ and we get from the uniqueness of free extension that

tw(b̄/A ∪{c̄}) = tw(b̄′/A ∪{c̄}). Because this holds for all finite c̄ ∈ C ′ , we

get that tw(b̄/C ′) = tw(b̄′/C ′) . Then also b̄ ↓s
A

C ′ .

Because ā∗ ↓s
C ′ D , we get that ā∗ ↓s

C ′ b̄ and again from symmetry

that b̄ ↓s
C ′ ā∗ . Now we have that A ⊂ C ′ ⊂ C ′ ∪ {ā∗} , C ′ ω -saturated,

b̄ ↓s
C ′ C ′∪{ā∗} and b̄ ↓s

A
C ′ . We may use transitivity to get b̄ ↓s

A
C ′∪{ā∗} .

Claim (4.7) follows from symmetry.

Now we take a free extension d̄ such that tw(d̄/A ) = tw(ā∗/A ) and

d̄ ↓s
A

B . Then from (4.7) we get that for all finite b̄ ∈ B both d̄ ↓s
A
b̄ and

ā∗ ↓s
A
b̄ . Again we get by uniqueness that tw(ā∗/A ∪ b̄) = t(d̄/A ∪ b̄) for

all finite b̄ ∈ B , and thus tw(ā∗/B) = tw(d̄/B) . Hence also ā∗ ↓s
A

B .

Then because ā∗ ↓s
A

B , ā ↓s
A

B and tw(ā/A ) = tw(ā∗/A ) , we again

get from uniqueness that

tw(ā/B) = tw(ā∗/B). (4.8)

Because we have that B ⊂ D , D ω -saturated and we have shown (4.6),

we would like to show that also

ā∗ 6↓s
B D . (4.9)

Assume the contrary, that ā∗ ↓s
B

D . Then we get from (4.8) and ā ↓s
A

B

that ā∗ ↓s
A

B and furthermore from transitivity that ā∗ ↓s
A

D . But then

because C ′ ⊂ D , also ā∗ ↓s
A

C ′ . This is a contradiction, because we chose

ā∗ so that tw(ā∗/C ′) = tw(ā′/C ′) and we know that ā′ 6↓s
A

C ′.

We have now that

U(ā∗/B) ≥ α. (4.10)

Then finally from (4.10), (4.8) and Remark 4.6 we get that U(ā/B) ≥ α .

�

Theorem 4.8 For ω -saturated models A and B such that A ⊂ B , ā ↓s
A

B if and only if U(ā/A ) = U(ā/B).

Proof: We prove the claim first for countable A and B . If ā 6↓s
A

B , we

can take B in Definition 4.1 to show that U(ā/A ) ≥ U(ā/B) + 1 . Thus

from U(ā/A ) = U(b̄/B) it follows that ā ↓s
A

B . Also if we have that

ā ↓s
A

B , we get from Lemma 4.7 that U(ā/A ) ≤ U(ā/B) , and then by 4.4

U(ā/A ) = U(ā/B) .

Then let A and B be of arbitrary size. Assume that U(ā/A ) =

U(ā/B) . Let B′ ⊂ B be a countable ω -saturated model such that U(ā/B′)

is minimal. Then there must be some countable ω -saturated A ′ ⊂ A such

that U(ā/A ′) = U(ā/B′) . Now if ā 6↓s
A

B , also ā 6↓s
A ′ B and as in 3.3,
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including all the necessary witnesses we can find a countable ω -saturated

model B′′ ⊂ B such that A ′ ∪ B′ ⊂ B′′ and ā 6↓s
A ′ B′′ . Now U(ā/B′′) 6=

U(ā/A ′) = U(ā/B′) and because B′ ⊂ B′′ , U(ā/B′′) ≤ U(ā/B′) . This

contradicts the minimality of U(ā/B′) . Thus from U(ā/A ) = U(ā/B) we

get that ā ↓s
A

B . Then assume that ā ↓s
A

B . Let A ′ be a countable

ω saturated model such that ā ↓s
A ′ B and B′ again countable such that

U(ā/B) = U(ā/B′) . Then let B′′ be a countable ω -saturated model such

that A ′∪B′ ⊂ B′′ ⊂ B . Now because ā ↓s
A ′ B′′ , we have that U(ā/A ′) =

U(ā/B′′) . Then because B′ ⊂ B′′ , we have that U(ā/B′′) ≤ U(ā/B′) , and

thus U(ā/B′′) = U(ā/B) . We get that U(ā/A ) ≤ U(ā/A ′) = U(ā/B) ,

and because A ⊂ B , U(ā/A ) = U(ā/B) . �

4.1 Other results

Based on the results of this paper in [5] the following theorems are proved.

Definition 4.9

1. Suppose A ⊂ A . We say that A is minimal over A if there is no

B 4K A such that A ⊂ B and B 6= A .

2. Suppose A is ω -saturated. We say that (āi)i<α is a Morley sequence

(over A ) if for all i < j < α , tw(āi/A ) = tw(āj/A ) and for all

i < α , āi ↓
s
A

⋃

j<i āj .

3. We write bcl(A) for the set of those tuples ā ∈ M such that the number

of realizations of tw(ā/A) in M is less or equal to |A| + ω . Then we

also say that tw(ā/A) is bounded.

4. Suppose that A is ω -saturated. We say that tw(ā/A ) is minimal if it

is not bounded but for all A ⊇ A and b̄ such that tw(b̄/A ) = tw(ā/A )

the following holds: if b̄ ↓s
A
A , then tw(b̄/A) is bounded.

5. Suppose A ⊂ C . We say that C is atomic over A if for all ā ∈ C

there is finite B ⊂ A such that for all b̄ , if tw(b̄/B) = tw(ā/B), then

tw(b̄/A) = tw(ā/A).

6. Suppose A ⊂ C . We say that C is prime over A if for all ω -saturated

B the following holds: If f : A → B is (weak) type-preserving, then

there is F ∈ Aut(M) such that f ⊂ F and F (C) ⊂ B .

Theorem 4.10 Assume (K,4K) is tame local abstract elementary class and

κ-categorical for all uncountable κ . Suppose A is uncountable, B ⊂ A a

countable ω -saturated model, tw(ā/B) is a minimal type and (āi)i<α ⊂ A

is a maximal Morley sequence over B such that tw(ā/B) = tw(āi/B) for

all i < α . Then A is minimal, atomic and prime over B ∪
⋃

i<α āi .
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Theorem 4.11 Assume (K,4K) is tame local abstract elementary class and

κ-categorical for all uncountable κ . Suppose A is countable ω -saturated and

tw(ā/A ) is a minimal type. Let P = {b̄ ∈ M : tw(b̄/A ) = tw(ā/A )} and

cl an operation on P such that for all X ⊂ P , cl(X) = bcl(A ∪ X) ∩ P .

Then (P, cl) is a pregeometry.
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