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Abstract

In this paper we study a specific subclass of abstract elementary classes. We
assume disjoint amalgamation, existence of a prime model over () and a prop-
erty we call locality. This property is the main novelty of this paper. Almost
all examples of AEC’s have this property and it allows us to use so called
weak types in place of Galois types making it possible to study geometric sta-
bility theory in the context of abstract elementary classes. Also w-stability
and LS(K) = w are assumed. Our goal in the future is to construct a full
notion of independence in the style of [6].

In the first section we construct a monster model and introduce an ex-
tended language by adding some Skolem functions in the style of [9]. In
the second and third sections we introduce our notions of type and inde-
pendence based on splitting and discuss what assumptions are needed to
gain symmetry. Also other basic properties of non-splitting from elementary
model theory are proved. In the fourth section we define U-rank and prove
that when o/ and % are w-saturated, o/ C 4, then U(a/</) = U(a/RB)

if and only if @ is independent from % over < .



1 Abstract elementary classes

The notion of an abstract elementary class is due to Saharon Shelah, as
well as many ideas appearing in this paper and originally from elementary
model theory, like splitting, independence and the ideas behind the proof of
symmetry for splitting. See [8], [9] and [10]. The notions of Galois type
over a model and tameness are also due to Shelah, and they are studied for
example in [3] and [4].

Let 7 be a countable vocabulary.

Definition 1.1 A class of 7-structures (K, <k) is an abstract elementary
class if

1. Both K and the binary relation <k are closed under isomorphism.
2. If M <x N, then M is a substructure of N .

3. <k s a partial order on K.

4. If (e -1 < 0) is an <k -increasing chain:

(a) Ui<6£{i e K;
(b) for each j <6, ; Sk U;cs5
(c) if each of; Sx M €K, then \J, s % <k A .

5 If o B, 6 €K, o Sk C, B<xkC and o/ C B then o <x $.

When & <g %A, we say that & is an AE-extension of &/ and .« is an
AE-submodel of £.

Definition 1.2 If &/, % € K and f : o — % an embedding such that
f) Kx B, we say that f is an AE-embedding.

Assumption 1.3 K has arbitrarily large models.

Assumption 1.4 (LS(K) =w) If & € K and B C & a subset, there is
/' € K such that B C &' g & and |&'| = |B| +w.

Assumption 1.5 (Prime model) There is o/p € K such that for each
A € K there is an AE-embedding [ : o/p — of .

Assumption 1.6 (Disjoint amalgamation) If o/, 8,¢ € K, o <k £,
A Xk C and BNEC = o, thereis P € K and a map [ : BUC — P such
that f [ and f |¢ are AE-embeddings, and ()N f(€) = f().



We need still another assumption to capture the desired properties of the
xk-relation. To define this assumption we use the following concept of .of -
Galois type.

Definition 1.7 («/-Galois type) For «/,% € K and a € &/,b € B we
say B

t,(a/0) = t%(b/0)
if there is € € K and AE-embeddings f: o/ — € and g : B — € such that

f(@) =g(b).

Assumption 1.8 (Locality) If, o/, % € K, o C %, and for all finite
a € o/ we have that t7,(a/0) = t%,(a/0), then o <x AB.

Lemma 1.9 Let o/, % € K be such that A’ C o/ and f: A — B a 7-
embedding. Then there is %' € K and an isomorphism h : B — %' such
that ' Nt = A" = h(f(A")) and ho f=Tdy .

Proof: Because (K, k) is closed under isomorphism, we may take a disjoint
copy A" of # and an isomorphism g : B — B"”. Then go f : A\ — A"
is an 7-embedding. Let the universe of %’ be the union of the sets A’ and
A"\ go f(A"). Define a bijection F : B" — A

_ [(gof)~(a) whena€ go f(4),
F(a)_{a when a € #"\ go f(A").

Then define the structure in %’ induced by F', so that F' becomes an iso-
morphism. Also remark that the structure of A’ C %’ becomes identi-
cal to A’ C &/, and Fogo f: A — A the identity. When we denote
h=Fog:% — %', the claim follows. O

We will mostly use Assumption 1.8 when looking at mappings f : &/ —
B, where & <x #. This assumption gives a sufficient and necessary con-
dition for the mapping to be an AE-embedding.

Lemma 1.10 Let &, B €K, o xx B and f: o — B a mapping. Then
the condition that for all a € of

t5(a/0) = t5(f(a)/0) (1.1)
is equivalent for f being an AE-embedding.

Proof: First we assume that f : o/ — % has the property 1.1, and then
claim that it is also an AE-embedding. We can easily see that from 1.1 it
follows that f is an 7-embedding. Thus f(&7) € K, because K is closed
under isomorphism. Take a € &7. Let € € K, g and h be as in the definition



of Galois type, i.e. g: B — € and h: B — € AE-embeddings such that
g(@) = h(f(a)). Now go f~!: f(&/) — € is an AE-embedding, because
from o/ <k % it follows that (go f~1)(f()) = g(«) <k 9(%B) <x € and
furthermore (go f~1)(f(/)) < €. Also (go f~1)(f(a)) = g(a) = h(f(a)).
Hence we get for all f(a) € f(</) that t?(_@{)(f(d)/@) = t%,(f(a)/0), and
then from Assumption 1.8 that f(</) <x #. Thus f is an AE-embedding.

Then let f : & — % be an AE-embedding. When we substitute A’
for & and & for % in Lemma 1.9, we get %’ € K and an isomorphism
h: B — P such that & = ' NP and (ho f)(a) = a for all a € o .
Again because f(&) <k %, also & = h(f(&)) <x #'. We can use the
amalgamation assumption 1.6 to get 4 € K and g : BU %" — € such that
g % and g [ are AE-embeddings. Now ¢ and g o h are AE-embeddings
from % to % and g(a) = g((h o f)(a)) = (g o h)(f(a)) for all a € .
We can take %, g and g o h in the definition of Galois type to show that
t9,(a/0) = t9,(f(a)/0) for all tuples @ € &/ simultaneously. O

Finally we define our concept of local abstract elementary class.

Definition 1.11 (Local abstract elementary class) Abstract elemen-
tary class (K, <xk) satisfying Assumptions 1.3-1.6 and 1.8. is called a local
abstract elementary class.

From now on we will always assume that (K, <k) is a local abstract elemen-
tary class.
1.1 Extended vocabulary 7*

Sections 1.1 and 1.2 are based on ideas due to Shelah. In this section we
first introduce an extended vocabulary with some Skolem-functions. They
will be a useful tool especially in section 3.

Definition 1.12 Let 7 = 1 U{FF : n,k < w} and K* be 7*-structures
such that for o € K*:

1. & |,€K,
2. Forall aec o, o = {(Fflg(a))"d(d) :n < w}, is such that

(a) 3 € K and o5 <k A |-,
(b) if b C a then b€ o C oyt

"Here b C @ means that lg(b) < lg(a) and the members of the tuple b are contained
in the set of members of a, i.e. when b = (bo,...,b;) and @ = (ao,...,an), {bo,...,bx} C
{ao, ...,an}.



(c) Let (a;)i<w be a fized ordering on «/p. The mapping f : op —
o , where f(a;) = (F?)¥, is an AE-embedding.

Lemma 1.13 If & € K* and B C & a subset such that B 1is closed under
functions F¥ then B 7 €K and B|T<x & | T.

Proof: The proof is by induction on the size of B. First we notice that
because of the constants (Fz'o)fiw the prime model o/p is AE-embeddable
in B |7 and thus B # (.

1° |B] < w. Let B = (b;)ica, where @ < w, and denote B; =
Dby, iy SK @ | 7 as in Definition 1.12. By condition 2b) in Defi-
nition 1.12 and condition 5 in Definition 1.1 we get an <k-increasing chain
of models %; such that B = |J,_, %;. Now the claim follows from the
property 4 in Definition 1.1, that K is respects unions of =<k-increasing
chains.

2° Assume claim holds for all B’ of size less than « and let w < |B| = «a.
Because LS(K*) = w, we may write B as a union of an increasing chain of
7*-models (B;)i<a, where each B; is a 7*-substructure of &, and of size
strictly less than «. By induction, B; <x & for each i < . Again, using
the coherence property 5 of Definition 1.1, we get that (B;);<q is actually a
<k -increasing chain. The claim follows as in 1°. O

Remark that if &/, % € K* and f : &/ — % is an 7%-embedding,
then f : o/ [, — A [, is an AE-embedding. This follows from Lemma
1.13, because an image of a model in an embedding is always closed under
functions.

Of course from Lemma 1.13 it follows that if % is a 7*-submodel of
o/ € K*, then also & [.<kx &/ [ . Thus the properties 1.-5. of definition
1.1 hold for K* where < is replaced with the 7*-submodel relation.

Lemma 1.14 For every of € K there is &/* € K* such that &/* | 7= < .

Proof: We have to define functions (F¥)? so that they satisfy the conditions
in Definition 1.12. We do that by defining functions by induction on Ilg(a),
and for all @ € &7 of the same length simultaneously. We notice that o7
of Definition 1.12 need not to depend on the ordering of a, thus we let
(Filg(a))”(d) = (Fz-lg(a))d(ﬂ(d)), whenever 3 :a — a is a bijection. Also if
the elements of @ are already contained in some shorter sequence a’, we let
g equal oy .

1° First define constants (F;O)ﬁw. Let f be an AE-embedding of the prime
model o/p into o/ and (b;);<, be the fixed ordering on </p. We define
(FO) = f(b;) for all i < w.



29 Assume we have defined (Filg(a))'d (a) for all a of length less or equal
to n and for all i < w. Then define functions for all b € &, We
want to check that permutation does not affect to the choice of %, thus we
order .&7"*! and compare b € &/"*! with the previous ones. Let b € &7/ t!
and assume we have defined functions for the previous ¥ € @™+, If the
elements of the sequence b are already contained in some shorter sequence
Y or b is a permutation of some previous b € &/"*1 let ((F*1)“ (b)) =
((Filg(b,))% (v)) for all i < w. Otherwise we do the following. Because
LS(K) = w, there is o € K such that |#4| <w, o} <x & and F C 4%,
where F' is the countable set

F = {(F @) :a cb,ig(a) < lg(b),i < w} U {b}.

We let ((F"™)%(b))i<, enumerate o%. When we have defined functions for
all b€ o/ we see that o% C o whenever a C b. O

Lemma 1.15 (K* -amalgamation) If o7/, % € K* such that for all b €
o NAB and atomic 1,

o Ep(b) & B E (),
then there is € € K* and f: o UB — € such that f [ and f [g are

T* -embeddings.

Proof: Denote (o7 N %B)“ to be the closure of (&7 N #) under functions
(F,’f)“y,k,n € w, and (& N %’)% respectively. Now because by the as-
sumption (&7 N %)? and (& N %B)” are isomorphic over 7 N % and by
Lemma 1.13 belong to K*. Let &' : (& N AB)?Y — (o N %B)” be an iso-
morphism such that A’ [(;nz)= Id(ynz). Using Lemma 1.9 we find %’
and an isomorphism h : % — %’ such that ho b’ [(ng)s=1d(ynze and
A NRB = (dNB)” = (h((oZ NB)?)) = (o N A')?. From Lemma 1.13
we also get that ( NA) |7 <k & |7 and (Y NA) |7k B | 7.
We may use the disjoint amalgamation property of K and find 4 € K, and
amap f': .o UPB — € such that f' [, and f' |4 are AE-embeddings,
and f'(/) N f'(#') = [ NR) = (7 N B)7) = ['(h((«/ N B)7)).
We define functions (F¥)% in f'(«/ U2) as induced by f’. We can do this,
because functions induced by &7 on f'(«7) and %' on f'(#') agree on the
intersection. Then we can define functions in ¢\ f/(& U #’) as in Lemma
1.14. Now % belongs to K* and f’ |, and f’ |4 are 7*-embeddings. Then
look at the mapping f: &/ U%B — €, where

[ fl(a) when a € <7,
fla) = {f’ o h(a) when a € A.

This mapping is well defined, because when a € (/' N%), h(a) = hoh'(a) =
a. Also f |y= f' | and f [g= f' o h are T-embeddings. O



1.2 Monster model

With K*-amalgamation and Assumption 1.8 we may construct a monster
model.

Theorem 1.16 Let i be a cardinal. There is M* € K such that:

1. p-Universality: IM* is p-universal, that is for all o/ € K*, |&/| <
1, there is a 7" -embedding f : of — 9" .

2. p-Homogeneity: When (a;)ica, (bi)ica C IM*, a < p, and for all
10, -, in < @ and ¢ atomic T -formula,

m* l: ’(ﬁ(aio, eey ain) < M* ): "Lﬂ(bio, ceey bin),
there is f € Aut(9*) such that f(a;) = b; for all i < .

3. For all & g M* |, such that || < p and mappings f: o — IM*
such that for all finite tuples a € o/

e 11 (@/0) = . (F(@)/0),
there is g € Aut(9M* | 7) extending f.

We denote 9T =9" | 7.

Remark 1.17 By Lemma 1.10 we could also talk about AE-embeddings f :
o/ — I in condition 3 of Theorem 1.16.

It is possible to construct such a model for arbitrary p. For simplicity here
we assume that p is a regular cardinal such that 2<# = p. Especially we
assume that such a cardinal exists. Then the number of isomorphism types
of 7*-structures of cardinality strictly less that p is p. Also the number of
partial mappings f : p — p with dom(f) < p is p. With this assumption it
is possible to construct a monster model of size . Without the assumption
the size of the model might be larger.

At first we prove some lemmas and finally the theorem.

Lemma 1.18 Let 2<# = p. There is a model <y € K* such that || = p
and for every o' € K, |'| < p, there is an 7 -embedding o : ' — .

Proof: Let (%a)a<u be a sequence of models in K*, where every isomor-
phism type of a model in K* of size less than pu is represented. For conve-
nience we may assume that %, = J;., % for every limit ordinal a.

Let @ = %, and define @3 € K*, |o/3] < p, by induction, where
when a < 8 < pu, o, C %3 a submodel and there is an 7*-embedding
fat1 : Bag1 — 3 for every a < 3.



Figure 1: Picture for Lemma 1.19.

Remark that then by Lemma 1.13, we also get an increasing =<k-chain
of models 7, [,€ K.

When « is a limit ordinal, we simply take <7, = Ug ca 3. Now 4, is
in K* by the remark above and the union property 4 of Definition 1.1. Also
|| < .

Consider the case where @ = [ + 1 is a successor ordinal. We use
K*-amalgamation (1.15) to get %, € K such that both &3 and %, are
7*-embeddable in 47,. Then by lemma 1.9 we may assume that o3 C <,
is a substructure and also because LS(K*) = w, we may assume that |o7,| =
max{| 73], |1 Zal} < .

Finally we take < = ., “@a. Clearly |o7| = . O

a<p

We remark that now whenever & € K* is like in Lemma 1.18 and .# € K*
such that & is a submodel of .#, then also .# is p-universal.

Lemma 1.19 Let o, o be in K*, oy C &/ a submodel and B C &/ a
subset and f: B — y a mapping such that for all b € B and v atomic

ay = (B) if and only if A |= b(f(D)).

Then there is € € K* such that |€| = ||, &/ C € a submodel and an
7*-embedding F : oy — € such that f C F.

Proof: At first we use Lemma 1.9 to get &’ € K and an isomorphism
g: 4 |;— &' such that &7 |, N&’ = f(B) and go f~! lr3y= 1d (B
Then also g [p= f 5.

Because ) is a submodel of 7, they agree on atomic formulas, and we
get that if b € B and 1) atomic

o Ep(b) & A b)) & A (D) & o EP(f(b)),



and hence

A EP(f() & o = b) & o EdgOh) & o =D/ b))

We may now use K*-amalgamation 1.15 and get ¥ € K* and h: &/ U’ —
% such that h [, and h [, are 7% -embeddings.

Furthermore, by Lemma 1.9 we may assume that & C € and h [,=
Id. . Because LS(K*) = w, we may assume that |%| = | &/ U.&'| = ||.

The mapping hog : @ — % is an 7 -embedding and for b € B,
hog(b)=ho f(b) = f(b). O

Lemma 1.20 Let B, be in K, o € K*, o <x & |-, B <k < and
f: B — o a mapping such that for all b € B

5, (0/0) =, (f(b)/0).

Then there is € € K* such that |€| = |&/|, &/ C € a submodel and an
AE-embedding F : oy — € [ such that f C F.

Proof: At first we use Lemma 1.9 to get &’ € K and an isomorphism
g: 4 |.— o/ such that &/ |, N’ = f(#) and go f~! = 1d [ ¢() -
Then also g = f [%.

Because of the assumption and Lemma 1.10, f : & — o4 is an AE-
embedding. Then we have that f(#) <k % <x < | and because £ <k
A |7, also f(#) =9(#) sk 9() ="

Thus we get from amalgamation 1.6 ¢ € K and a mapping h : #/ U’ —
% such that h [, and h [, are AE-embeddings.

By Lemma 1.9 we may assume that &/ [, C ¢ and h [y,= Idg . Also
because LS(K) = w, we may assume that || = |&/ U &'| = ||.

Now the mapping hog: o/ [;— € is an AE-embedding. From o4 <k
o | we get that hog [ @ — € is also an AE-embedding. When b € 4,
hog(b)=ho f(b) = f(b).

Finally we may define functions (Ff)% in &/ C € as (FF)? and in
% \ & asin Lemma 1.14. O

Lemma 1.21 Let 2<# = i and p be reqular. There is a model .#* € K*
such that | A#*| = p and

1. A* is p-universal.



2. For all submodels € C .#*, |€| < u, and sets A,B C € such that
f:+A— B a bijection and for all a € A, 1 atomic T* -formula

M=) & AT = y(f(a)),

there is a submodel 9 C M*, |P| < p, and a T -embedding F : € —
9 such that f C F.

3. For all &/, ¢ € K such that |€¢| < p, € <x A* |7, o <x € and
9o — € a mapping such that for all a € of

oy, (@/0) =1%,., (f(a)/0),

there is a submodel 9 C M*, || < p, and an AE-embedding F :
C — 2 |, such that f C F.

Proof: We define by induction models .#; € K*,i < p, |#;] = p and 4;
a submodel of .#; for all i < j < pu. Let .#y = <%y the p-universal model
from Lemma 1.18. When « < p is a limit ordinal, we take union. When we
have defined ., we define .#, 1 as follows:

Let (fi)i<y enumerate all partial mappings f; : #, — .#., where
|dom(f;)| < pu and for all a € dom(f;)

Mo [ )(a) & Mo = Y(fi(@)).

Let (¢i)i<, enumerate all partial mappings ¢; : #, — .#., where
|dom(g;)| < p, dom(g;) <k A, and for all a € dom(g;)

9, (@/0) =14, . (gi(@)/0).

Again for convenience we may assume that f; = f;11 and ¢; = g;41 for
limit . Define models &; € K*, |%;| = u such that for all i <

(a) When j < i, €; is a submodel of ;.

(b) There is a 7*-embedding F; : .#, — %; such that f; C F;.

(c) There is an AE-embedding G; : #, [;— %; [+ such that g; C G;.
We let 6y = A, and for limit 7, &, = Uj<l.<€j.

Let i = 7+ 1. First from Lemma 1.19 we get 2 € K and F; : #, — 9 a
7*-embedding such that |Z| = u, €; C Z a submodel and f; C F;. Then
from Lemma 1.20 we get %; € K* and an AE-embedding G; : A4, — G;
such that |€;| = p, 2 C %; a submodel and g¢; C G;.



Mat1 = Uz‘<y @i

Finally take .Z* = Ui<u///i' Property 1 holds for .#* because the pu-
universal model @; is a submodel of .#Z*. We check that properties 2 and 3
hold for .#*. First the less trivial 3. Let € C .#* be a submodel, |€| < pu,
and f : € — ¥ a partial mapping as in 3. Now because p is regular,
€ C M, for some o < u. Because M, [r<x A [, we get that for all
ac M
oy, (@/0) =%, (9:(a)/0).

Then f = g; for some ¢ < p. From the construction of #,4+1 we get
an AE-embedding G; : A, — %; extending f. Because € [,<x #a [+
and 6; Sk Mat1 [+, we get that G; [¢: € [+— Ma+1 [+ 18 also an AE-
embedding. We can take ¥ € K* to be a submodel of .#,41 such that
|2] < 1 and rng(G; [¢) C 2. Property 2 follows from the property (b) of
the construction similarly. O

Lemma 1.22 Let p be reqular. Properties 2 and 3 of Lemma 1.16 hold also
for the model .#* of Lemma 1.21. That is, if .#* satisfies

2’. For all submodels € C M*, |€¢| < u, and sets A,B C € and bijec-
tions f: A — B such that for all a € A, ¥ atomic 7* -formula

M E ) & AT = y(f(a)),

there is a submodel 9 C M*, |P| < p, and a T -embedding F : € —
2 such that f C F.

3. For all &/, ¢ € K such that |€| < p, € sx A" |;, &/ <x € and
f: 9 — F a mapping such that for all a € of

By, (@/0) =12, (f(a)/0),

there is a submodel 9 C #*, |2| < wu, and an AE-embedding F :
€ — P |+ such that f C F.

then it also satisfies

2. When (a;)ica, (bi)ica C A, o < p, and for all ig, ...,i, < o and
atomic T -formula,

M ': w(aioa "'>ain) & M* ): w(bioa "-7bin)7

there is f € Aut(A*) such that f(a;) = b; for all i < a.

10



3. For all of g M such that || < p and f: o — H* [+ a mapping
such that for all a € of

t1-(a/0) = %41 (£(@)/0)
there is g € Aut(.#* | T) extending f.

Proof: We remark that the mapping a; +— b; in condition 2 is an isomor-
phism from (a;)i<q onto (b;)i<q. The proof that 2 follows from 2’ is very
much similar to the proof that 3 follows from 3’, thus we only present the
latter one.

We denote A4 = #* [,. Let &/, B € K and f : &/ — P be as
in condition 3. Let .# = {J,_, i, where & UZ C Ay, (AH)icu is an
increasing <k-chain and |4 < p for all ¢ < u. We can find this chain
because LS(K) = w. We may also assume that for limit i, A4 ={J;,; ;.

Then define another increasing <g-chain (.#;);<,, and an increasing
chain of partial mappings f; : #; — .#; by induction. We want that also
|G| < w, M; <k A, N; C dom(f;) Ntng(f;), dom(f;) <k # and that
for all a € dom(f;)

t%,(a/0) =%, (fi(a)/0)

for all ¢ < p.

Let A4y = N, fo = f. When i is limit, we take .#; = |
fi =U,<i fj- Now because i is regular, we have |.Z;] < pu.

j<i A and
Let i = j+1. Let 41 € K be an AE-submodel of .# of size strictly less that
i containing both .#; and .4;. Now f; is a partial mapping from €1 to
%, dom(f;) <k €1 and from the property 3’ we get % <x A4, |Z1| < u,
and an AE-embedding g : €1 — %1 extending f;.

Let € <k .# be a model containing all .47, €1 and 21, |62| < p. Now
g~ ! :mg(g) — % is an AE-embedding. Because dom(g~!) = ¢(%1) <.v
M, we get from Lemma 1.10 and property 3’ a model % g A, |Po| < 1
and an AE-embedding h : 65 — %5 extending g~ .

Then let #; <x A, | #;] < p be a model containing both %, and
Dy and f; = h™'. Because f; C g = (¢71)7! C h7l, fi extends f;.
Also because .4 C dom(g) and .4 C dom(h) = rng(h™!), we get that
A; C dom(f;) Nrng(f;). As before we also see that because f; and h are an
AE-embeddings and dom(f;) = h(%2) <k 4 , for all a € dom(f;)

t°,(a/0) = t7,(fi(a)/0).

Finally we take F'=J;_,, fi- Now .# C dom(F) Nrng(F') and because for
all a € dom(F)

t,(a/0) = t%,(F(a)/),
F is an automorphism of .# . Also F' extends f. O

11



2 Splitting

From now on we will assume that everything takes place in a large enough
monster model. If we say that 7 is a model, we mean that o/ g M. We
also assume that we can apply the homogeneity and universality properties
of Theorem 1.16 to every model and set under discussion.

Definition 2.1 (Galois type) We write t9(a/A) = t9(b/A) if there is f €
Aut(9M) such that f [a=id and f(a) =b.

Remark 2.2 For all a and b, t9(a/0) = t9(b/0) if and only if t3,(a/0) =
ton(b/0).
Proof: The other direction is trivial. We prove the direction

ton(@/0) = t5,(b/0) = t9(a/0) = t9(b/0).
Let 4 € Kand f: 9 — ¢, g : M — ¢ be AE-embeddings such that
f(@) =g(b). Now let o <x M, B <xx M, ¢’ <k € be such that a € 7,b €
B, f(A)Ug(B) € € and max{||,|B|,|€¢"|} < u. Then because M is

p-universal, there is an AE-embedding h : ' — 9.

Now because ho f: &/ — 9 and hog: B — M are AE-embeddings,
A <k M and B <k M, we get from lemma 1.10, that for all ¢ € &7

ton(c/0) = toy(h o f(€)/0),
and similarly for hog and #. Thus by the property 3 of Theorem 1.16, both

hof and hog extend to F,G € Aut(9M) respectively. Now G~1oF € Aut(IM)

and (G~'o F)(@) = ((hog) o (hof))(a) = (97" o f)(a) =g ' (f(@) =b.
O

Definition 2.3 (Weak type) Let &/ € K and a,b, A be in </ . We write
tY (a/A) = t%(b/A) if t7,(a~c/0) = t9,(b7¢/0) for every finite ¢ € A.

When we work inside the monster model 9, we just write ¢*(a/A) instead
of t§(a/A). From Remark 2.2 we get the following:

Remark 2.4 We have that t*(a/A) = t*(b/A) if and only if t9(a/B) =
t9(b/B) for every finite B C A.

Lemma 2.5 Assume that o/ is a model, (b');<,, is such that lg(b') =i+ 1
for all i < w and o/ = J,_, Bi, where i < j = B; C Bj and when we

denote bV = (b%, ...,bg),

<w

i< j = t9((b),....b])/B;) = t9(bi/ By).
Then there is (a;)i<, such that t9((ao,...,a;)/B;) = t9(b'/B;) for all i < w.
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Figure 2: Picture for Lemma 2.5.
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Proof: Define f, € Aut(M) for n € w such that when we denote g, =
fn (¢] fn—l O0...0 fo

Lo frs1(gn(B7TY)) = gi(b}) for all 0 < i < n,
2. fot1 lgu(a)= 1dg,(8,)-
First let fo =go = Idm

Assume we have defined f; for i < n. Let h € Aut(9) be such that
(b, b0ty = (b, .., 0%) and h g, = Idp, . Then let

fn—i—l =0gn© hognil‘

Clearly fui1 lg,(Ba)= (gnohogn™) 1g.(B= Idgs,). Now if n =0, we
have fni1 = f1 =h and fi(by) = b = go(bf).

If n > 0 we have by induction that for 0 < i < n, fi(gn—1(b}")) =
gi(b}), and hence we may write for1(gn(b;"1)) = gn(h(gn™" (9n(b])))) =
gn(h(01)) = gn(B7) = fu(gn-1(6})) = gi(B}). Also faia(gn(b7™)) = gn o
hogn Hgn(ith)) = gn(hn(BiF)) = g (0}).

Now we have defined f,, € Aut(9),n < w, such that they satisfy condi-
tions 1 and 2. We see that by condition 2, when n < m,

9m |Bn=9n B, -

Thus when we denote A" = J,,, 9n(Bn),

9= Jnlp,): e = A

n<w

is a mapping such that for all a € &/
9(a/0) = 19(g(a) /D).
Now we can extend g to G € Aut(9). Let
a; = G (g (bY)) for all i < w.

Now when n € w, we have (¢g—n"'0oG) [g,= (gt o gn) I,= ldp,,
go o G(ap) = go(go tbo) = bo and when n >0, 0 <i < n, (g, Lo G)(a;) =
gn M (9i(0) = (g1 0 fu (G (8)) = gn-1 H(gna (b)) = b7, (gn ' o
G)(an) = g™ (gn(b})) = 0F;.
Thus we get
t9((ag, ..., an)/0) = t9(b"/0).

14



Figure 3: Picture for Lemma 2.5.
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Corollary 2.6 Assume that o/ is a model, (b;)i<., a sequence of tuples and
A =, Bi, where i < j = B; C B; and
i <j=t9(b;/B;) =t (bi/B;).

Then there is @ such that t9(a/B;) = t9(b;/B;) for all i < w.

Proof: Let n = lg(by) = lg(b;) for all i < w. Let C; = By for 0 < i <n and
Citn = B; for i+n > n. When b_l = (b()’i, ...bnflyi), we let & = (b070, cees b@g),
when i <n and & = (bg, ..., buiy oy bpi), when n 414 > n. Now the as-
sumptions of Lemma 2.5 hold for & = J,;_, C; and ()icw. We get (a;)icw
such that when n <1i < w, t9((ag,...,a;)/Bi) = t9((bo,i; s busiy s i) / Bi).

Thus we get (ao,...,an) such that t9((ag,...,a,)/B;) = t9(b;/B;) for all
1< w. |

Definition 2.7 (Splitting) Let a and A be in M2, We say that the weak
type t¥(a/A) splits over finite B C A if there are ¢,d € A such that

t9(¢/B) = t9(d/B) but

t9(¢/BuU{a}) #t9(d/B U{a}).
We say that such €,d witness the fact.

The next remark is only to note that these definitions are sensible.

?In the general definition, where @ and A are in some o7 € K, we just replace t“(a/A)
with ¢ (a/A) and the Galois types with o/ -Galois types respectively.
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Remark 2.8 If t¥(a/A) = t*(b/A) and B C A is finite, then t“(a/A)
splits over B if and only if t“(b/A) splits over B.

Proof: Let ¢ and d witness that t%(a/A) splits over B. Now {¢,d}UB C A
is finite and thus there is f € Aut(9M) such that f(a) =b and f leayup 1
the identity. If there would be an automorphism g such that g(¢) = d and
9 lgyup= g, then also (f~1ogo f)(€) =d but (f~'ogo f) layup is
the identity. This contradicts ¢ and d being witnesses. Thus ¢ and d also
witness that t*(b/A) splits over B. O

Remark 2.9 If t“(a/A) splits over finite E C A and E' C E, then
t¥(a/A) splits over E'.

Proof: Let ¢,d € A witness that t“(a/A) splits over E. Denote by ¢ FE
the finite tuple where F is indexed after ¢ in some chosen order. Now
t9(¢"E/E") =tI(d"E/E') but t9(¢c"E/E'U{a}) # t9(d"E/E'"U{a}). Thus
the finite tuples ¢"F and d"F in A witness that t“(a/A) splits over E'.
O

Definition 2.10 (Independence) Let a, A and B be in IM3. We write
that a |5 B if there is finite C C A such that t*(a/A U B) does not split
over C'.

Now we introduce a new assumption for (K,=<gk). From now on we will
assume that (K, 5k) is an w-stable local abstract elementary class.

Assumption 2.11 (w-stability) If A C o/ € K, A is countable and a; €
o for i <wy, then for some i < j <wi t%(a;/A) =t%(a;/A).

Lemma 2.12 Let o/ be a model and and a a tuple. There is no increasing
chain of finite sets (B;)i<w such that o =\J._. B; and t“(a/B;y1) splits

over B; for all i < w.

i<w

Proof: We assume the contrary. Let a and &/ = (J,., Bn witness this.
Also let ¢y, dy, € Byy1 witness that t*(a/By11) splits over B,,.

Let n: w — 2 be a mapping. Then for each n € w we define mappings
for. € Aut(9M) such that when we denote g,;, = for,, © .- © fro

1. If m > n, fn[m rgn[n(Bn): Idgﬂfn(Bn) :

3In the general case, where @, A and B are in some & € K, replace t*(a/AU B) with
ty(a/AU B).

16



Figure 4: Picture for Lemma 2.12.
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2. If m(n) =1, then fyp, ., (g1, (cn)) = gyt (dn).
3. If n(n) =1, then
(Gt (@) /gyt (Bn U dn)) 7 t9(gn1,(@)/ gyt (Bn U dn)).-
4. If n(n) =0, then fy;,., = Idan.
We define such mappings by induction on n as follows:
First let fy1, = gy1, = Idon. Also when n(n) =0, let f,}, ., = Idon.
Assume 7(n) = 1 and we have defined mappings f,;, for i < n. Let h €

Aut(9) be such that h(c,) =d, and h [g,=Idg,. Then let

—1
fn[n+1 = 9nly © hognrn .

Now clearly fy;,,, satisfies conditions 1 and 2. To prove that it satisfies
also 3, we assume the contrary. Assume that there exists g € Aut(91) such
that g(gyp,.,(a)) = gyp.(a) and g(x) = z for all x € g, (B, Ud,). Then
when we denote g* = gy}, togo nlnsr € Aut(9M), we see that g*(c,) =

antn “lo go fn n+1(gn[ ( )) = gnFn_l © g(gn[n(dn)) = gn[n_l(gn[n(dn)) =d,
and that because f,; ., () = x for all z € g,,(B,), g*(x) = x for all

x € By,. But we have also that ¢g*(a) = a, thus this contradicts ¢, and d,
being Witnesses.

Denote a;, = gy, (@) for all n € w. When m > n the mapping fy, o ...0
T shows that

tg(anfm /gn In (Bn)) = tg(dn In /977 In (Bn))-

Also when @7, = (U, <, 91, (Bn), the mapping g = |, (991, [B,) : & —
a7, has the property that, for all ¢ € o7, t9(¢/0) = t9(g(c)/0). We notice that

now g is an AE-embedding and g(«/) = 4, g M. Thus from Corollary
2.6 we get @, such that for all n € w

t9(ay/gnr, (Bn)) = t(ay1,, /9ot (Bn))-

Denote

B=J a= U (UGB =UCU g.(Bu)).

nNiw—2 nNw—2 new new nw—2

Now because ,.,,_2(9n1, (Bn)) is finite for all n € w, we get that B C 9
is countable.

Let n and 1’ be two different mappings from w to 2. Let n = min{i < w :
n(i) # n'(i)}. We may assume that n(n) = 1. Because n [,= 7 |,, and of
conditions 1, 2 and 4

Inin (BnUdy) = 9n't (B Ud,) C (gnfn+1 (Bny1) N 90 Tt (Bny1))-
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Furthermore, by condition 4,

g77/ rn+1 (C_l) = gnl rn (d) = gnfn (C_L)
Now
t9(an/ gn1, (Bn U dn))

(
g(gﬂ ln+1 (d)/gn In (Bn U dn))
Y(gn1.(@)/ g1, (Bn U dn))
(
(

RIS

7 I’ Tns1 (a)/gn/ In (Bn U dn))
Y@y /gy 1, (B U dp)).

(S~ S, S

Thus we have that when n # /', t*(a,/B) # t*(a, /B). Tuples (ay)nw—2
have different weak types over countable B, and there are uncountably many
of them. This contradicts the w-stability assumption 2.11. ([

Theorem 2.13 ("a |5, 0") For all tuples a and models < there is finite
C C o such that t*(a/</) does not split over C'.

Proof: Assume the contrary. We define an increasing chain of finite sets
(Bn)n<w such that |, ., Bn <k #/ and that t"(a/B1) splits over B,, for
all n < w. Then also | B, <g M and such a chain contradicts Lemma
2.12.

By Lemma 1.14 we may find &* € K* such that &* [,= «/. Without
less of generality we may assume that &/* is a submodel of 9*. Let By = 0.
Assume that we have defined B; for ¢ < n as planned, and that each B;y
is closed under functions (Fj")“" for m,k <i. Let ¢,,d, € &/ witness that
t"(a/<f) splits over finite B,,. We can take B), | = B, U{cp,d,} and then
B, 11 to be the closure of the finite set B;,_; under finitely many functions
(E™M" k,m < n.

Finally we get that J,_,, Bn C & is closed under functions (F) M) for
all m,k € w and thus is a <g-submodel of &* [,= &7 O

n<w

We first define w-saturation in the class K, but use Definition 2.15 in our
context.

Definition 2.14 We say that a model o7 € K is w-saturated in K if for
all @ € o/ and b in some AE-elementary extension 9B of o/ there is d € o
such that t9,(a"d/0) = t%,(a"b/0).

Definition 2.15 We say that a submodel A C M is w-saturated if for all
a €M and finite B C A there is b € A such that t9(a/B) = t9(b/B).
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Remark 2.16 A model of <x M, || < p, is w-saturated if and only if
it 18 w-saturated in K.

Proof: First assume that & is w saturated and show that it is also w-
saturated in K. Let % be some AE-clementary extension of 7, b € % and
a € /. Because 9 is universal, there is an AE-embedding f : & — 9.
Isomorphism f~* [ty f() — o/ extends to an automorphism F'. Now

F(f(b)) € M and F(f(a)) = a. From w-saturation we get G € Aut(9)
such that G(a) = @ and G(F(f(b))) € & . Now AE-embeddings Fof : & —
M and G7! 1 7 — M show that t%,(b7a/0) = 9, (G(F(f(b)))"a/0).
Then assume that o is w-saturated in K. Let b € 9 and @ € o . Let
also # <x M be such that &/ U {b} C £ and |%B| < u. Now £ is an
AE-elementary extension of &/ and thus there are € € K, d € &7 and AE-
embeddings f : @/ — € and g : & — € such that f(a~d) = g(a~b). By
the universality of 91 we may assume that ¢ <g 9. Both AE-embeddings
extend to automorphisms F and G respectively. Now F~!o G € Aut(9)
and F~1oG(a™b) =a"d. O

Another remark tells us that w-saturated models do exists.

Remark 2.17 Let A be a set. There is an w-saturated model </ such that
AC o and || < |A|+ .

Proof: We construct a countable increasing chain of models <%, such that
A C oy, |9,| < |A|+Rg and for all finite B € o7, and @ thereis b € A,
such that t9(b/B) = t9(a/B). Then we may take o =/, .

First let 7 be such that A C o4 and || < |A| + Rg. Assume we
have defined 4, for m < n. When B C ., is finite, we note that by
w-stability, there are at most countably many a with different weak type
over B. Because B is finite, Galois type over B agrees with weak type over
B. Thus for each finite B C 7, there is a countable set Dp, where every
Galois type over B is represented. Then denote 2 = {B C ., : B finite}.
We have that |2| < ||+ Ry < |A] +Ro. We may take a model 7,1 such
that Jgey DB C @hy1 and || < |Upey DBl < |A] 4 Ro. O

The next lemma will show that an countable w-saturated substructure of 9t
is actually AE-elementary.

Lemma 2.18 Assume A is a countable set and the following holds: for all
a€ A and b there is d € A such that t9(a"b/0) = t9(a"d/0). Then A is a
model.

Proof: Let B <x MM be countable and w-saturated. Let A = {a, : n < w}
and & = {b, : n < w}. Define inductively sets A, and B, and automor-
phisms f,, such that for all n < w
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1. fn(An) - Bn;
2. {ao, ...,an,l} C A, C A and {bg, ...,bnfl} C B, C A.

Let fo = Id [an, Ao = 0 and By = (). Then assume we have defined f,,
A,, and B, for m <n.

By w-saturation there exists g € Aut(91) such that g(f,(a,)) € # and
g IB,= Idp, . Then by the assumption there exists h € Aut(9) such that
h [A,Ufa,} is the identity and h(f;tog '(b,)) € A. Define

Jnt1 =go fao h_lv
Apgs = Ay Ufan} U{(ho £ 0 g™1)(ba)} and
Bni1 = By U{(go fu)(an)} U {bs}.

Then we get that f,11(Ant+1) = Bnt1-

Finally f = Un<w(fn)_1 IB,: # — M is an AE-embedding because it
satisfies the property 1.1 of Lemma 1.10. Thus f(%) = A <k M. O

From the previous construction we can also get the following lemma. The
latter part we get by taking Ag = By = E in the construction.

Lemma 2.19 Let o/, B be w-saturated and countable models. Then there
is f € Aut(IM) such that f() = AB. Also if E C o/ N A is finite, we can
take f [p=1dg.

In the following theorem we prove some basic properties for splitting. The
version of existence of free extension is in section 3 found to be too restricted,
and we then discuss ways to improve it.

Theorem 2.20 Assume that A C B C C C D and similarly if one of the
sets is a model, and thus denoted with a curly letter.

1. Monotonicity If a |5 D, then a |3 C.

2. Restricted existence of free extension Assume o is an w-
saturated model and B is countable. For all a, if B C < 1is fi-
nite and tV(a/</) does not split over E, then there is b such that
t¥(a/o) =tV(b/</) and t*(b/B) does not split over E.

3. Uniqueness of frge extension Assume fzi 18 an w -saturated model.
If if_w(a/%) = t“(b/), a |5, B and b |3, B, then t*(a/B) =
t“(b/B).

4. Transitivity If # is an w-saturated model and C' is countable, then
a5 C if and only if a |5 & and a |3, C.
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Proof: Monotonicity: Let C' C A be a finite set such that t*(a/D) does
dot split over C. Now C' C B, and if t“(a/C) would split over C, there
would be some witnesses ¢,d € B C D, and the same c¢,d would witness
that ¢*(a/D) splits over C'. Thus t“(a/B) does not split over C'.

Restricted existence of free extension: Denote & = {a} : i < w}
and B = EU{V, : i < w}. Define mappings f, € Aut(9) and elements
Gn, bp,n < w, such that

1. fn [g=1dg forall n < w,
2. {by,...,b,,} C dom(f,) and {ay,...,a,} C rng(f,) C & for all n < w.
3. When n <m, fi(b;) = fu(b;) =a; forall 0 <i<2n+1.

Because & is w-saturated, there is fy € Aut(9) such that fy(b) € & and
fg fE: IdE. Then define bo = b6, bl = f_l(aé), apg = fo(bo) and a; = a6.
Now fo(bo,b1) = (ao,a1) and b € dom(fo), af, € rng(fo).

Assume we have defined f; for all i < n. We use again the w-saturation
of &/ to get g € Aut(IM) such that g [gufa,....a0ms1}= [dEU a0, ...a0ms1) a0
9(fn(bj 1)) € . We can take fri1 = g0 fa, bons1) = Ohirs bamgnye1 =
for1 7 an 1), agni1y = far1 (V) and asguynyi1 = @l

Finally we get a mapping

f= U(f’fl_l r{ao,...,a2n+1}) c e — {bz 11 < w},
i<w
which has the property that for all a € & t9(a/0) = t9(f(a)/0). Now
f:o — M is an AE-embedding and {b; : i < w} = f(&) <x M.
Denote ¢, = f, '(a) for all n < w. Now when n < m, f, 'o
Jm [EU{bo,...ban1) 18 the identity and fnto fm(Cm) = ¢é,. We can use
Corollary 2.6 to get b such that for all n < w

tg(l_)/E @] {bo, . b2n+1}) = tg(én/E U {b[), ooy b2n+1}).

We want to show that this is the b we wanted.

Let ¢,d € B and h € Aut(9) be such that h [gp= Idg and h(c) = d. Let
n be such that ¢,d € {bf,...,b),} C dom(f,) = {bo, ..., ban+1}. Then let f be
an automorphism such that f(b) = &, and f lEUfe,qy is the identity. Now
(Frof){e;d}) = fal{e,d}) € o, (faofoho(foo £) ) (fr0/)(e)) = (fao
)(d) and (fpo foho(fnof)™ 1) & is the identity. Because t¥(a/a”) does
not split over E, we have h* € Aut(9) such that h*((frof)(c)) = (fnof)(d)

and h* [gu(ay is the identity. Now ((fnof)_1 o h* o (fno f))c) = d,
((fao f) toh*o(faof)) & is the identity and ((fn o f) ' oh*o(fnof))(b) =
FHTH R (fa@)))) = FH TN R (@) = fH (fa M (@) = £ (en) = b
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We get that if ¢,d € B and t9(c/E) = t9(d/E), then also t9(c/EU{b}) =
t9(d/E U {b}). Thus t*(b/B) does not split over E.

Because f,((bo, ..., bn)) = (ag,...,an), fn [g= Id [E, and t*(b/B) does
not split over E, there is an automorphism g such that g(bo,...,b,) =
(ag,...,an) and g [pugey 1s the identity. Let f € Aut(9) be such that
f(b) =¢n and f (4, . p,} is the identity. Now (fn o fog)(b) = fn(f(b)) =
fn(@n) =a and (fp o fog)(a;) = fu(f(bi)) = fu(bi) =a; forall 0 <i<n.

Thus we get for all n < w that t9(b/{ag,...,an}) = t9(a/{ag,...,an}).
Because &7 = {a; : i < w}, we have that t¥(b/</) = t¥(a/ ).

Uniqueness of free extension: Let C' C B be an arbitrary finite set.
Let Ez C & be a finite set such that ¢“(a/B) does not split over FEj
and similarly E; C o/ for t¥(b/B). Because & is w-saturated, we have
J € Aut(9M) such that f(C) C & and f [g,uE; is the identity. Now we
have that t9(C/Ez) = t9(f(C)/Ez) and then by the choice of E; we have
also an automorphism f; such that fz [¢= f [¢ and fz(a) = a. With
similar reasoning we also get f; € Aut(9) such that f; [c= f [¢ and
f3(b) = b. Finally we use the assumption that t¥(a/«/) = t“(b/</) to get
an automorphism g such that g(a) = b and g [tcy= Id T§cy. When we
combine these mappings we get an automorphism h = fg_l ogo fz such that
h(a) = b and that for all = € C, h(x) = f, (g(fa()) = f; (g(f(x)) =
fi7 Y (f(2z)) = x. Thus t9(a/C) = t9(b/C) and because C C B was an
arbitrary finite set, we get that t*(a/B) = t“(b/B).

Transitivity: The ” = ”-direction follows from monotonicity. For the other
direction, let £ C A be a finite set such that t*(a/%) does not split over
E. Now we use the restricted existence of free extension to get b such that
t¥(b/C) does not split over E and that t¥(b/%) = t*(a/%#). Because also
a |5, C we get from uniqueness that t“(b/C) = t“(a/C). Hence t“(a/C)
does not split over £ C A. O

Lemma 2.21 Assume & C C are countable and % is an w-saturated

model. Let A = (a;)i<w be a set. There is A" = (a})i<w such that for

all n <w t“((ao, ...,an)/B) = t*((ag, ..., ap,)/B) and (ag, ...,a},) 135, C.
This we denote tV(A/RB) =tV (A'/RB) and A" |5, C.

Proof: By monotonicity and that LS(K) = w, we may assume that C is
actually a model, i.e. C gg 9. To emphasize this we denote C' = %.

We define an increasing chain of finite sets E, C % and (d~)), k,m < w,
such that for all n < w,

1. t“(ao,...,an/B) =t"(dg, ....d5 | B),
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2. t*(dg,...,dy/€) does not split over E,, and
3. when m <n, t“(dy,....dn/€) =t*(dy, ....,d}, /EC).

First Lemma 2.13 gives us Ey C % such that t*(ag/%) does not split over
Eo Then by Theorem 2.20 we get free extension d) such that t¥(ag/ %) =
t¥(dy/#) and t*(dJ/€) does not split over Ejp.

Assume we have defined Ej and dfn for m,k < m. Then we get from
Lemma 2.13 such E), | C £ that t“((ag, ..., an+1)/%) does not split over
E; 1. Now t*(ag,...,any1/%) does not split over E, U E]_; because or
Remark 2.9. We define E, 1 = E,UE]_,.

Then we use Theorem 2.20 to get a free extension (di'7, ..., dﬁii), for
which tw((dgﬂ,...,dZﬂ)/%’) = t“((ag,...,ant+1)/#) and the weak type
t((dgtt, ,dﬁﬂ) /%) does not split over E, ;1. We claim that now when
m <, t(dy . dEY /) = tU((dE ., ) /F) .

Let C' C € be an arbitrary finite set. Because % is w-saturated,
there is an automorphism f such that f(C') C # and f [g,,, is the
identity. Now because t%(d’g“,...,dﬁﬂ)/%) does not split over E,41
we have fi € Aut(M) such that f1 [cr= f [¢r and fi(d}T) = dpt!
for all 0 < ¢ < n 4+ 1. Similarly, because E,, C FE,, we get fo €
Aut(9) such that fo [cv= f [ and fo(d]*) = d* for all 0 < i < m.
In addition, because tw((ngrl,...,dZﬁ)/,%’) = t*((ag,...,an+1)/AB) and
t(dy, ....dm)/B) = t“((ao,...,am)/P#) we have mappings g1 and ¢
such that g1 [rcn= g2 [fcn= ldpcry and ga(df*) = a* = gl(d?H) for
all 0 <7 < m. Now f2_1 o gfl o g1 o f1 is an automorphism such that
(f2togatogrofi)(di) = d? forall 0 < i < m and (fo togatogiofi) [cr
is the identity.

Let ¢ = U;,, Ci, where (Cj)i<, is an increasing chain of finite sets.
Because of condition 3 we have that when m <n,

t((dg"s -+ diy) | Cm) = ¥((dg, .o, diy) [ Crn)-

Thus we may use Lemma 2.5 to get (a});<, such that, for all n < w,

tg((aE)’ ) a;z)/cn) = tg(( g? L dZ)/Cn)

Now we see that actually

tw((a67 ey a%)/%) = t"(( 0 7d2)/c€)

for all n < w, because when n < w and C' C € is a finite set, there is
some k > n for which ¢’ C C}, and thus from condition 3 we get that
t9((dg, ...,dp)/C") = tg((dlg, ndEY/CN = t9((ag, .., al,)/C").

Now also t“((ay,...,a,)/%B) = t*((dg,...,d")/B) for all n < w, and

because t“((dg,...,d))/€) does not split over E, C 2, neither does
t“((ag, .- ay,)/€), thus (ag,...,a},) |5, € forall n <w. O

coy Uy
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2.1 About weak type over a countable model

In this section we will prove that weak type and Galois type actually agree
over countable models.

Lemma 2.22 Assunze o is a countable model, a,b tuples and A C o
finite. Then there is b’ and finite A’ C &/ such that

i)t /AU {a}) = t*(b/AU {a}) and

it) forallc e M, if t*(c/A'U{a}) = tv(b' JA'U{a}), then t¥(¢//U{a}) =
tw (b ) o U{a}).

When ii) holds for b' and A’ we say that t* (V' /o7 U{a}) is weakly isolated
over A'U{a}.

Proof: We assume the contrary, and let @,b and A C &7 finite be such that
the claim does not hold. Then we derive a contradiction with w-stability as
in 2.12.

Denote &/ = {a; : i < w}. For each n:w — 2 and n € w we construct
finite sets A, and tuples ¢, such that

1. Au{ap,} C A, C Ay C A,

2. (e, /AU {a}) = t°(B/A U {a}),

3. when m > n, t“(¢y,, "a/An) =t (Cyy, "a/An),

4. n(n) =1 if and only if t*(¢,,., "a/Ans1) # tV(Cy1, "0/ Ans1)-

First let ¢,;, = b and Ag = AU {ap}. Then assume we have defined &y,
and A,, for m <n.

Because 2 holds for ¢, , t“(é,/</ U {a}) can’t be weakly iso-
lated over A, U {a}. Otherwise ¢, and A, would violate the counter-
assumption. Thus there exists some by}, and some finite D,;, C & such
that tW (b, /An U {a}) = t“(¢,,/An U {a}) but t“(b, /D u{a}) #

(Cnrn/D n U{a})-

If n(n) =0, we let &, , = &,, and if n(n) =1, we let &,,.,, = by,

Then we let
Api1 = Ay U{an} U U Dy,

Nlin:n—2

Finally by 3 and that J,., An = & we get from corollary 2.6 such
¢, and a, that t*(¢, "a,/A,) = t“ (¢, ~a/An) for each n < w. Now
if n # 7', we claim that t“(¢, ~a,/«/) # t(¢y "ay/</). Let n be the
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least index such that n(n) # n’(n). We may assume that n(n) = 1. Then
Cnln = Cy'1, and we may conclude that

Cntnss @/ Ant1)

577’\@77/‘4”4-1)’

which proves the claim. Now we have continuum-many different weak types
over & , a contradiction. O

Theorem 2.23 Assume that </ is a countable model and t*“(a/o/) =
t(b/</). Then also t9(a/</) =t9(b/ ).

Proof: First we are going to use Lemma 2.22 to define sequences a; and finite
sets A;, i < w such that

1. a=ap Cay Capyr and A, C Apy1 C A,
2. t*(any1/9 U{a,}) is weakly isolated over A, U {a,} and

3. B = 4/UlJ,_, @ has the following property: for all @’ € B and ' € M
there is ¢ € B such that t9(a’~¢/0) = t9(a’ V' /0).

Let ap = a and Ap = (). Assume we have defined a; and A; for j <n.
By w-stability, there are only countably many Galois types over A; U a;

for specific i < n. Let (6‘]
and then let d,, be a sequence where ¢ ’s are represented for i,j < n. By
Lemma 2.22 there exists @’ and finite A" C & such that t9(a’/A, U{an}) =
t9(d,/An U {a,}) and t¥(a’'/o/ U {a,}) is weakly isolated over A’ U {a,}.
Let Apy1 = A, UA" and apyq = ana'.

Finally we want to claim that 3 holds. Let @’ € &/ UlJ,_,, @; and b’ € M.
Now @’ € A U{a@n} for some m < w and t9(0' /A U{anm}) = t9(¢]" /Ap U

{@,}) for some j < w. Let n = max{m,j}. Then ¢ is a subsequence in

J
dn, and we get the claim because t9(an11/AnU{an}) = t9(dpan/An U{an}).

Now we define such (b;);., that by = b and

)j<w enumerate representatives for each type

ct

tg(l_)g...“l_)n/An) =t9(ay... an/Ay). (2.2)
We do this so that we always have that
t“’(l_)a...’\l_)n/;z%) =tY(ay ... an/ ). (2.3)

26



First let by = b. Then 2.3 holds because of the assumption. Assume that
we have defined b,, for m < n and that 2.3 holds. Let f € Aut(9) be
such that f(ay..."an) = by ... b, and that f a, = Ida,,,. Then let
bpt1 = f(@nt1). We claim that 2.3 holds. Assume the contrary and let
B C & be a finite set such that t9(ag ... ant1/B) # t9(by ... bpy1/B). We
may assume that 4,11 C B. Let g € Aut(9M) be such that g(b7 ... b,) =
ag ... a, and g [p= Idg. Then we have that t9(a ... an g(bp+1)/An+1) =
t9(by - b bns1/Ant1) = t9(ag ... G ant1/An+1) and because t*(ap41/97 U
{a,}) is weakly isolated over A,,1U{ay,}, we have also that ag ... an g(bp+1)
has the same Galois type than aj... anan+1 over B. But then we get
that t9(by ... bpbpy1/B) = t9(ag ... an g(bpy1)/B) = t9(ag ... an Gn11/B),
a contradiction.

Then because 2.2 we have automorphisms f, such that when m > n,
Im rAnU{an}: In fAnu{an} and fn(An U {én}) =AU {Bn} Then because
U ;. @i is a model by Lemma 2.18, we get that (J;_,(fn [4,0{an})
extends to an automorphism F' such that F' [,=1d, and F(a) = F(ag) =
bg = b. O

Now we can improve the result of Corollary 2.6.

Lemma 2.24 Assume </ is a model, || < Wy and for all finite A C of
there is aa such that if B C A, then t9(ap/B) = t9(aa/B). Then there is
a such that for all finite A C o/, t9(a/A) =t9(aa/A).

Proof: Let o = UKW1 of;, where (%)<, is an =<g-increasing chain of
countable models such that <7, = J,_,,
Corollary 2.6 we get for each i < w; a sequence a; such that t9(a;/A) =
t9(aa/A) for all finite A C . Now if j < i, we have that t"(a;/ /) =
t"(a;j/ <), because when A C o7 is a finite subset, t9(a;/A) = t9(aa/A) =
t9(a;j/A). Now we get from Theorem 2.23 that also t9(a;/ %) = t9(a;/ ;).

Then we do a similar construction as in Lemma 2.5. We define automor-
phisms g;, ¢ < wi, such that

A;, when « is a limit ordinal. From

L. For j <i<wi, gi lo,=gj lo; and
2. gi(di) =ag.
Let go = Idgy. Assume we have defined g; for i < a.

Case 1: a = [+ 1. This case is similar to the situation in Lemma 2.5. Be-

cause t9(aq/3) = t9(ag/ ), also t9(gp(aa)/95(3)) = t9(gs(as)/95(5)) .
and we have an automorphism f such that f lg5(e75) is the identity and

f(958(aa)) = gplag) = ag. We can take go = f o gg.
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Case 2: « is a limit ordinal. The mapping (J;, (9 [&) @ Zo — M
extends to an automorphism F. When A C 7, is finite, there is some
i < a such that A C . Let h witness that t9(a;/%) = t9(a/<%). Then
(hogitoF) Ja=Ids and (ho g, o F)(F(ap)) = (hog Y(ag) =
h(@;) = @o. Thus we have that t¥(F~1(ag)/ ) = t“(aa/Hs) and again,
by Theorem 2.23, t9(F~Y(ag)/s) = t9(da/a). Let f be an automorphism
such that f(a@,) = F~'(ao) and f [,,= Id,, . We can take g, = F o f.
Now 1 holds and also g4 (Ga) = (F(f(a@a)) = F(F~1(ao)) = ao.

Finally the mapping J;.,, (9i [#) @ @ — 9 extends to an automor-
phism G. We can take @ = G~ '(ap). Then for each i < w;, automorphism
G~ ! o g; shows that t9(a;/<;) = t9(a/<%). Thus when A C .o/ finite, there
is some i < « such that A C . Then t9(as/A) = t9(a;/A) = t9(a/A).
O

3 Symmetry

For symmetry we need an extra property, namely a non-restricted version of
existence of free extension, formulated in 3.2. To be more specific, we need
this property in lemma 3.4 and thus also in Theorem 3.13. In this section we
first prove symmetry using this property as an assumption, and then discuss
what more natural assumptions would imply this property. Note that we
now could prove already a stronger result than the one in 2.20.

Remark 3.1 Let &/ be an w-saturated model, E C o finite such that
t(a/) does not split over E and B such that &/ C B and |B| < ;.
Then there is b such that t*(b/B) does not split over E'.

Proof: The proof is identical to the proof of Theorem 3.19. We just use
Lemma 2.24 in the place of Lemma 3.18. (I

We formulate the new assumption generally in (K, k), but it is clear how
to interpret it in the context of a monster model.

Assumption 3.2 (Existence of free extension) Let &/ € K be w-
saturated in K, o <x #, o C B C % and a € B such that ty(a/)
does not split over finite E C /. Then there is € € K and b € € such that
B<xC, t9a/o) =t20b/) and t2(b/B) does not split over E.

Lemma 3.3 Let &/ be an w-saturated model, b Iy B and ¢ Ve, C. Then
there is a countable w-saturated /' <k o such that b %, B and ¢ |5, C.
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Proof: Let E C & be a finite set such that t“(b/</ U B) does not split over
E. Nowif EC &' C ., also b 13, B, because there are no more witnesses
in «/’UB than in &/ UB. We define an increasing chain of countable models
B, <k &« inductively so that

1. EC By,
2. for all finite D C B,, t*(¢/Bp+1 U C) splits over D,

3. for all finite D C B,, and a there is f € Aut(9) such that f(a) €
Byyq and f [p=1Idp.

First let By <g & be a countable model such that £ C By. Then assume
we have defined B; for ¢ < n. Denote

P ={D C B, : D a finite subset }.

Because B, is countable, also % is countable. Because ¢ ), C, for every
D € P there are ¢p,dp € o/ UC witnessing that t¥(¢/</ U C) splits over
D. If {ép,dp} Na/ C By, for all D € 4, 2 holds. Also because 9 is
w-stable, there are only countably many a” € 9t that have different weak
type over D. Because for a finite set D weak type and Galois type over
D coinside, we can enumerate such (@P);«, that for all @ exists such i
that t9(a/D) = t9(aP’ /D). Then because </ is w-saturated, we may take
aP € o for every i < w. Then let

B =B.U |J {ep,dptna)u | {al i <w).
De%# De%#

Now B, ; C & is countable and we can take B,y; <k & such that
B} .1 C Byy1. This By satisfies both 2 and 3.

Finally let &' = {J,., Bn. When D C &/ is a finite subset, there is
n < w such that D C B,,. Thus &/’ is as we wanted. O

Lemma 3.4 Assume that (K, k) satisfies the existence of free extension
-property. Assume that </ is a countable w-saturated model, a |3, b and
l_)J/jZ{ a. Then for any ordinal \ there exists a sequence (a;,b;)i<x of length
X\ such that b; 13, a; if and only if 1 > j.

Proof: We construct such a sequence by induction. Let ag = @ and by = b.

Assume we have found a;, b; for all i < a. Now we use Theorem 2.13 and
the existence of free extension to get a, and b, such that

1. t%(da"ba/ o) = t*(do " bo/ /) and
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2. CLiaABa lz/ (Ui<a{di’ EZ})

From monotonicity we get that d, "ba 13, @; for all ¢ < o and thus ba 13/ a;
for all i < «. First we claim that

3. when 3 < a, t¥(dy"bg/ o) = t¥(ap " bo/ ).

The proof of this claim is much similar to the uniqueness proof of 2.20. If
6 = «, the claim follows fromithe definition of a, and b,. Thus let 8 < a.
Because ag |5, bp and @ |3, bg, we have finite Eq, Eo C &/ such that

(a) t“(ao/«/ U {bo}) does not split over E; and
(b) t“(ae/« U{bs}) does not split over FEs.

Let C C & be an arbitrary finite set. Because & is w-saturated, there
exists an automorphism f such that f(by) C & and f [g,uE,uc is the
identity. From (a) we get an automorphism such that hy lcugpoy= [ Teugboy
and hl(c_Lo) =aqag.

Now we use the fact that ¥ (bg/o7) = t*(by/2/) to get an automorphism
f! such that f/(bg) = by and f’ [cug, is the identity. Then (fof’) [g,= Idg,
and (f o f)(bg"C) = f(bp)”C. Thus from (b) we get an automorphism hs
such that ha(ae) = Ga, he [c=Idc and ha(bg) = f(bo).

Because t“(ag/ /) = t“(an/<), there is also h € Aut(9) such that
h(aog) = Ga and h [{yg)uc is the identity.

Finally we combine these automorphisms to hy ! o ho hy € Aut(9).
Now (ha™! o h o hy) [¢ is the identity and (he™' o h o hi)(ag,by) =
ha~(h(ao, f(bo))) = ha '(@a, f(bo)) = (@a,bs). Because C C </ was
arbitrary, this proves claim 3.

Now we want to show that

4. for all i < a, b; Vo Qo

To prove this, we assume the contrary. Let § < « and E C & be a finite set
such that t“(bg/ o/ U {ds}) does not split over E. We have that by J5, ao
and thus ¥ (by/</ U{ap}) splits over E. Let ¢,d C &/ U {ao} witness that.

From 3 we get g € Aut(9M) such that g(@g, by) = (da,bg) and g [ (e, dyner)UE
is the identity.

Because g(¢) and g(d) are in &/ U {a,} and t9(g(¢)/E) =t
from the choice of E we get ¢g* € Aut(9M) such that g(¢) = d and ¢ [ BUEs)
is the identity.

Now (g tog*og)(¢) =d and (g~ tog*og) | Bugpo} 1S the identity, which
contradicts the choice of ¢ and d. This proves 4. U

The proof for the following theorem can be found for example in [2].
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Theorem 3.5 (Erd6és and Rado) Let « be an infinite cardinal and let
n < w. Suppose that

1. |X] > Ju(e),
2. [X]" C U  Ci and
3. || < a.
Then there are a subset Y C X and © € I such that

Y| > a and [Y]" C C;.

Remark 3.6 Let A C IM* be a subset and (a)c,ea a set of new constants.
Then let MY = (M, cq)aca be the model where the new constants are in-
terpreted as elements of A respectively. The following are equivalent for all

subsets B = (b;)ier and C = (¢;)icr of IM*.

1. For all first order formulas ¢ of vocabulary 7 U {cq : a € A}, all
n <w and all indexes ig, ...,in € I MY = d(big, ..., bi,,) if and only if
mz ): qZﬁ(Cim ceny Cin) .

2. For all atomic formulas ¢ of vocabulary 7 U{cq :a € A}, all n < w
and all indexes iy, ...,1, € I MYy = ¢(biy, ..., bi,,) if and only if MY =
QS(CZ‘O, cony Cin) .

8. For all n < w and indezes ig,...,in, € I there is an automorphism f

of M* such that f(b;,) =c;, for 0 <k <n and f [a=1d4.
4. There is an automorphism f of IM* such that f(b;) = ¢; for all € I
and f [a=1dy4.

This remark follows clearly from the homogeneity of 9t*.

Definition 3.7 (x-type) Let B = (b;)er and C = (¢;)ier be subsets of M.
We write
t*(B/A) = t*(C/A)

if one (and all) of the conditions 1, 2, 3 and 4 of Remark 3.6 hold for B and
C.

Remark 3.8 When (ai)z‘<(2ﬁo)
(2%)" such that t*(a;/A) = t*(a;/A).

+ C IM* and A countable, there are i,j <
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Proof: Denote by ® the set of all atomic formulas of 7* U {c, : a € A},
where ¢, is a new constant for each a € A. Because 7* and A are count-
able, the set ® is countable. Let (¢;)i<, enumerate ®. Let 9% be the
model (9M*,cq)qeca, where constants ¢, are interpreted as elements of A
respectively. Now for each a we have a function 7z : w — 2 such that

~ [ 1 when 9 = ¢i(a),
na(i) = {o when smﬁ = ¢i(a).

Clearly if 1z = 15, the countable sequences @ and b satisfy exactly the same
atomic formulas of 7* U {¢, : a € A}.

There can not be more than 2% tuples with different *-type. U

Lemma 3.9 Assume that (b');<., is a sequence of tuples such that lg(b') =
i+1 forall i <w and A a set such that A =J,_ , B;, where i < j = B; C
Bj and

<w

i< j=t((b),...,b))/Bi) = t*(b/ By).
Then there is (a;)i<w such that t*((ag, ...,a;)/B;) = t*(b'/B;) for all i < w.

Proof: The proof is similar to the proof of Lemma 2.5. U

Definition 3.10 (Order-indiscernible) Let (I,<) be a linear ordering.
We say that a sequence (a;)icr s n-indiscernible over A if for all ig < ... <
in_1 €1 and jo < ... < jpn_1 €1

t*(dio, ey dz‘nil/A) = t*(ajm ...,ajnil/A).

We say that the sequence is order-indiscernible if it is n-indiscernible for all
n<w.

Lemma 3.11 Let (a;);<x be a sequence of tuples, A a countable set and A
a cardinal such that A\ = Ua<((2No)+) K, Where ko > 280 and for all n € w
Jn(ka) < Kat1. Then there exists a sequence (a})i<., such that it is order-
indiscernible over A and for all n < w there exists ig < ... < inp < A such
that

t*(@y, ..., an JA) = t* (@, ..., ai, JA).

Proof: For a shorter notation we assume that a@; = a; and o’ = a;- for all

1 < A, j <w. We want to define by induction on n < w sets I} C or+le(@o)
a < (2%)*F such that

1. IZ C (ai)i<)\7
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2. I > Ky

3. I7 is n-indiscernible over A,

4. When bg,...,bp—1 € I} with increasing indexes and cp,...,cp—1 € Ig
with increasing indexes,

t*(bo, ceny bnfl/A) = t*(Co, ceey Cnfl/A).

5. When by, ...,b,—1 € I} with increasing indexes and cg,...,cn—1 € I}
with increasing indexes and m > n,

t*(bo, ceey bnfl/A) == t*(Co, ceey Cnfl/A).

Let n = 0. Define I = (a;)i<x, . Now 3,4 and 5 are trivial because we are
looking at sequences of length 0, i.e. empty sequences.

Assume we have defined I for all a < (2%0)* and m < n. Let [(a;)i<n]<
denote all finite subsets of {a; : i < A\}. To every A € [(ai)i<r]~* we
may attach a type in a natural way, i.e. the type t*(as,...,a;,/A), where
{aiy, .-, ai,} = A and the indexes iy, ...,%, are in an increasing order. By
Remark 3.8, there can’t be more than 2% different types for A € [(a;);<x]<
and thus [(a;)i<x]=¥ = U;e;Ci, where [I| < 2% and for all i € I,
t*((aio, ey azp)/A) = t*((bjo, ey bjm)/A) when {aio, ey aip}, {bjov ey bjm} S
C; and indexes i, ji are in an increasing order. Then of course p = m.

First we define sets J2™, o < (2%)* as follows: We have that [I7, | >
Kat1 > In(ka), [I] < 2% < kg and [I7,,]"™ C U, Ci. Then we get from
lemma 3.5 a subset J2™! C I” ; and iy € I such that [J?T!| > k, and
[Jotlntl c Oy, . Thus this J2 is (n + 1)-indiscernible over A.

Also if we take some m < n + 1 and tuples (cg,...,cm—1) € J2 and
(b0 ey bn—1) € IT, because JI' C I, we get from induction that
t*(co, ..oy m—1/A) = t*(bo, ..., bm—1/A). Thus condition 5 holds for tuples
in Jott,

Now again we have that [J7H]" 1 C |J,.; C; for all a < (2%0). By the
pigeonhole principle there must be an index ig € I such that

[{a < 2%)": [P C Gy}l = (28T
Define
Bo = min{f < (2%)*F . [J2H]"H < ¢y, and 8 > ) and
8 0
n+1 _ gn4l
I = i

Now also property 4 holds in I?*! for all a < (2%0)*.
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Let a < (2%)*. For all n € w we take some (n + 1)-tuple a, € I
with increasing indexes if, ..., 7). Then we get from condition 5 that when
m > n, t*((ap,...,ain)/A) = t* (g, ...,a;m)/A). We get from Lemma 3.9
a sequence (a;)i<y such that t*((ag,...,ap,)/A) = t*(aiy, ..., ain)/A) for all
n < w. We check that this (a])i<, is order- mdlscermble For this we take
some (aj,...,a; ) and (aj,..,a} ) with increasing indexes. Now we can
find (n + 1) tuples an € I'"tt and b, € I with increasing indexes
such that t*((aj ,...,a; )/A) —t*(an/A) and t*((aj,...,a} )/A) = t*(b bn/A)
by taklng suitable subsequences Thus from condition 5 it follows that

t*((adys s @3, ) [A) = t*((afy, -, a5,) [A). 0

Lemma 3.12 Let (a)ij<, be an order-indiscernible sequence over A and
(I, <) alinear ordering. There are tuples (C;)ic(r,<ry in MM such that for all
n<w and ig < ... <' i,

(Gigs ooy G JA) = (G, ..., Gn JA). (3.4)

Proof: We use <’ to denote the ordering of I and < to denote a well-order.
We prove the claim for all sub-orders (J,<’) C (I,<’) by induction on the
size of J.

Assume we have found such (¢;);es for all suborders J of size strictly
less than a cardinal « and let (J,<’) C (I,<’) be such that |J| =
Then let (J,<) be a a-type well-ordering of (J,<’). For i € J we say
that ¢ < f < o when we mean that i < h(3), where h : (a, <) — (J,<)
is an isomorphism. Then we define the ¢;’s by induction on <. Assume
we have defined ¢; for ¢ < § < « such that 3.4 holds for all n and all
00y .eeyin < B. Now ({i : 4 < },<’) is a suborder of (I,<’) and |{i : i <
B} = |8+ 1| < a. By induction there exists elements (d;);<g such that
3.4 holds for all n and all ig,...,i, < #. We may use homogeneity to find
[ € Aut(M) such that f [4=1da and f(¢;) = d; for all i < 3. Then define
¢g = f1(dg). Now t*((cl)z<5/A) = t*((di)i<p/A). When we take some
n < w and indexes ig <’ ... <’ i, such that i, < 8 for all 0 < k < n, we
have that t*(c, ... cln/A) = t*(diy, ..., d;,, JA) = t*(ag, ..., an/A). Finally we
have defined (¢;);j<o and thus (Cl)ze((]7</).

O

Now the following theorem finally combines all the previous lemmas.

Theorem 3.13 (Symmetry) Assume that (K,<k) satisfies the existence
of free extension -property. Let o/ be an w-saturated model. If a |5, b, then

bl*, a.
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Proof: We assume the contrary. Let @ and b be such that a Liy b and b Y,
a. First by Lemma 3.3 we may assume that &/ is countable. Then we get

from Lemma 3.4 a sequence (a;, b;);<x such that A satisfies the assumptions
of Lemma 3.11 and

bi 15, a; if and only if i > j.
Furthermore we use Lemma 3.11 and 3.12 to get a sequence (ai,l_)i)ie(R,<’)
such that

bi 1%, a; if and only if j <’ 4.
When we denote B = &/ U {(a;,b;) : i € Q}, B is countable and if i,j € R
and i # j, tuples (a;,b;) and (aj,b;) have different weak type over B.
Because R is uncountable, this contradicts the w-stability assumption. [

3.1 What implies Existence of free extension

Our first candidate for a more natural assumption than 3.2 is tameness. To
define tameness we need to define a general concept of Galois type over a
model, and then see that under tameness it is equivalent to our notion of
weak type over a model.

Definition 3.14 (#-Galois type over a model) Let &7/, %,2 € K, a €
B, beD, F <x B and o <x D. We say that t%(a/o) = t,(b) ) if
there is € € K and AFE-embeddings f: B — € and g: Y — € such that

f(a) =g() and f o= g lo=1dy.
We can see as in Remark 2.2 the following:

Remark 3.15 Let o <xg M and a,b € M. Then ty(a/d) = t9,(b/ )
if and only if t9(a/</) = t9(b/.o/), where the latter one means that there is
f € Aut(IM) fizing o such that f(a) =b.

Definition 3.16 (Tameness) Let LS(K) < k < \. We say that (K, k)
is (k, \) -tame, if for all €,2,9/ € K, a € € and b € 2 such that o/ <x B
and & <x 9, we have that if t,(a/<) # t5,(b/ /) and |A| < X, then there
is some B <x & of size K such that t7.(a/RB) # t,(b/A).

We say that (K, <k) is tame if it is (LS(K), \)-tame for all cardinals
A > LS(K).

From 3.15 it follows that if (K, <k) is tame and <7 is a model, t9(a/</) =

t9(b/a7) if and only if t9(a/%B) = t9(b/PB) for every countable # <x o .
The next remark follows from Theorem 2.23.
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Remark 3.17 Assume that (K, 5k) is tame. If o7 is a model, we have that
t¥(a/ o) =tV(b/<) if and only if t9(a/o/) =t9(b/.).

Now similarly as in 2.24, only by induction on ||, using Remark 3.17
instead of Theorem 2.23, we can prove the following lemma.

Lemma 3.18 Assume (K,<k) is tame, o/ a model, and that for all finite
A C o thereis aa such that if B C A, then t9(ap/B) = t9(aa/B). Then
there is a such that for all finite A C o7, t9(a/A) =t9(aa/A).

Theorem 3.19 (Existence of free extension) Assume that (K,<xk) is
tame. Let o/ be w-saturated model and E C < finite such that t*(a/</)
does not split over E. Then if B D o, there is b such that t¥(a/o/) =
t* (b)) and t*(b/B) does not split over E.

Proof: By monotonicity, we may assume that B = % is an w-saturated
model.

Let o) <g &/ be countable such that E C <. For every finite B C %4
we get from the restricted existence of free extension we proved in 2.20
some bp such that t*(bg/h) = t*(a/<h) and t¥(bg/<h U B) does not
split over £. When B and B’ are finite and B C B’ C 4, we have that
tw(l_)B/%) =t"(bp /), bp lfzio B and bp lzfo B. Thus t“(bg/<UB) =
t“(bp' /<% U B) by uniqueness. Hence we may use lemma 3.18 to get such b
that t9(b/B) = t9(bp/B) for every finite B C 4.

First we see that t¥(b/%) does not split over E. That is because if
it would split, there would be some witnesses ¢ d € . But this would
contradict the fact that t9(b/E U {¢,d}) = tg(EEU{E,J}/E U {¢,d}) and
tw(EEU{E,J}/E U {¢,d}) does not split over E.

Then we see that actually t*(b/«/) = t*(a/«/). When A C &/ is a
finite subset, we have that t"“(a/< U A) does not split over E. Then
again from uniqueness we get that t¥(a/a% U A) = t¥(ba/a% U A) and thus
t9(ajA) =t9(ba/A) = t9(b/A). O

We assumed (K, <k) to be w-stable. When we assume tameness, we gain
k-stability also for every other cardinal «.

Definition 3.20 We say that (K, k) is k-Galois-stable, if for every of <k
PBeK, || <k and a sequence (a;)ij<.+, where a; € B for every i < kT,
there are ig,jo < KT such that t2,(a;, /o) = t7,(aj, /).

Theorem 3.21 Assume that (K,<k) is tame. Then it is also k-Galois-
stable for every infinite k.

36



Proof: Let & be a model of size k. By w-stability, there is an w-saturated
model A’ of size x such that o/ C &'. If t9(a/</) # t9(b/</), then
t9(a/e’) # t9(b/</'). Thus there are more different types over ./’ and
hence we may assume that <7 is w-saturated.

Let a € 9. By Lemma 2.13 there is finite A C o/ such that t*(a/<)
does not split over A. Let B4 <k &/ be w-saturated and countable such
that A C %4. Now if b € M is such that t*(b/PB4) = t*(a/%B4) and
t*(b/.a7) does not split over A, we get by the uniqueness property proved
in Theorem 2.20 that for every countable B such that 44 C B C &,
t*(b/B) = t¥(a/B). Furthermore we get that t“(b/.</) = t¥(a/</), and
then from Remark 3.17 that t9(b/«/) = t9(a/ /).

Let (@;)j<+ C 9. There are only x-many finite sets A C /. Then
there is a subsequence (@;;);j<,+ such that ¢*(a;;/</) does not split over
the same finite set A for all j < x™. Then by w-stability, there are only
countably many weak types over #4 for each A. Thus there are some tuples
iy, Gig, v, B < KT such that t(a;,/%Ba) = t"(a;,/%Ba). Then by previous
reasoning, also t9(a;, /<) = t9(a;,/<). O

Another theorem tells us that we can imply Assumption 3.2 also from k-
categoricity for suitable k. The result is also due to Shelah and this proof
is from [1].

Definition 3.22 We say that (K, 5k) is k-categorical, if whenever of | % €
K and || = |%B| = k, then &/ and A are isomorphic.

For convenience we define A-dense to be the concept that is usually called
A-dense without endpoints.

Definition 3.23 Let (I, <) be a linear ordering and C,D C I. When ¢ < d
for all ¢ € C,d € D, we denote C < D. We say that (I,<) is \-dense,
if for all C,D C I, |C|,|D] < X and C < D, there is i € I such that
C < {i} < D, and for all C C I, |C| < A, there are i,j € I such that
{i} <C<{j}.

We say that (I,<) is dense, if it is Rq-dense.

Theorem 3.24 (Existence of free extension) Assume that (K,=<xk) is
k-categorical for k such that k = KN > X. Then if &/ is an w-saturated
model, o/ C B, |B] < X and t*(a/<?) does not split over finite E C o ,
there is b such that tV(b/<?) = t¥(a/</) and t*(b/B) does not split over
E.

Proof: Let o <g &/ be countable and w-saturated such that £ C <.
If we find such b that t*(b/a%) = t*(b/%) and that t“(b/B) does not
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split over E, we get that also t“(b/«) = t¥(a/</). That is because for
every finite A C &/, we have that tv (b)) =tV (a/ ), b 134 U A and
a |3, % UA. Then t9(b/A) = t9(a/A) follows from uniqueness. Thus we
may assume that &7 is countable.

Our second remark is that we can construct a wj-saturated? model of
size k, and then from k-categoricity it follows that every model of size k is
wi -saturated. Because kY0 = k, there are only k-many countable subsets of
a model of size xk, and by w-stability, only countably many different weak
types over each countable subset. Then we can construct an increasing chain
of models o7, i < wy, where || = k for all i < w; and every type over a
countable subset of 7 is satisfied in <71. Then | o7 1s wq-saturated
and of size k.

Lemmas 3.11 and 3.12 did not use Theorem 3.19. From 3.11 we get
that there is a countable order-indiscernible sequence in 97, and from 3.12
also an order-indiscernible (I, <), where I C M, |I| = k and (I,<) is
a dense linear order. Let SH(J) denote the closure of J C I with 7*.
The set B U {a} is included in # for some model # of size k. From
k-categoricity we get that % and SH(I) are isomorphic. Thus there is
an automorphism f € Aut(9) mapping % to SH(I). If we find b as
in the claim for f(<), f(B) and f(a), we can take f~!(b) for the claim.
Thus we may assume that Z U {a} C SH(I). We have that B C SH(K)
for some K C I such that |K| = XA. We assumed that &7 is countable,
and thus &/ <x SH(Jp) for some countable Jy C I. We can take Jy
such that (Jy, <) = (Q, <) because I is dense. Then again Jy g <7 for
some countable w-saturated model oj g SH(I). This way we can get a
increasing chain of models 7, and SH(J,,) such that |A,| = |SH(J,)| = No,
Ap <k SH(Jp) <k SH(I), (Jp,<) 2 (Q,<) and A, is w-saturated for all
n <w. Finally J = {J,,,(Jn, <) = (Q, <), because it is a countable dense
linear order, and SH(J) is a countable w-saturated model. By restricted
existence of free extension there is @’ € 9 such that t¥(a’'/«/) = t*(a/ <)
and t“(a’/SH(J)) does not split over E. Because SH(I) is wj-saturated,
there is such @’ in SH(I).

We use again Lemma 3.12 to find an order-indiscernible (I’, <) in 90*
such that (I’, <) is a A" -dense linear order, (I, <) = (I”,<) for some I" C
I’ and for every finite n < w and ig < ... <ip €1, jo < .. < jp €I, we
have that t*(io, ..., in/0) = t*(Jjo, ..., jn/0). Then we have an automorphism
of M* mapping I to I”, and thus have that I is a suborder of a order-
indiscernible A*-dense linear order in 9*. We call this order 1.

Let ig < ... < in—1 € I and functions F”OO7 ...,F,:;” € 7" be such that

@' = (F0) P00, oestmg—1)s woes (B )P (s s 1) (3.5)

1<wi

- 4A model & is w1 -saturated, if for every @ and every countable B C & there is
b € & such that t*(b/B) =t“(a/B).
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and {ig,...,in_1} = {z‘g,...,12071,...,z’f)’,...,z’flp_l}. Then we find jp < ... <
jn_1 € I't such that

—_

if i, € J, then jp = iy,
i < j if and only if j < j forall j € J |
if iy, € J, then jip & JUK,

Ll

if there is k € K\ J such that ji < k < jxt1, then there are infinitely
many j € J such that jix < j < jr+1,

5. if there is k € K between some j; and j € J, then there are infinitely
many ¢ € J in that same interval,

6. if there are k € K such that k& < ig, then there is infinitely many such
j € J and similarly for k > j,_1.

First we look at such k,...,k + p that [ig,ik4p] NJ = 0 and p has been
chosen maximally. If there are no j € J such that j < ix, we get from the
AT -density of I such ji < ... < jrip that jri, < j forall j € KUJ.
Symmetrically if there are no j € J such that j > d34,. Then clearly
condition 6 holds. Next assume that there are elements of J on both sides
of the interval [if,ix4,]. In that case condition 6 holds because J is dense.
Define ji,r = inf{j € J : j > ipqp} and jsup =sup{j € J : j < i;}. Both
tins and g, can’t be in J, because J is dense. Assume that ig,, is not in
J.Let C={i€e JUK :i< jins} and D={i € JUK : 0> jips}. By AT-
density of I, there are ji < ... < jyip € I such that C < {jy, ..., jr4p} <
D. Now there are no elements of K between jiy, and i;,; or between jy,
and ji,, when ki,ko € {k, ...,k + p}. Also there are always infinitely many
elements of J between j;,; and some 7 € J such that i > j;,; and also
between js,, and some i € J such that ¢ < js,;. Thus we see that 5 holds
for these jg, ..., jr4+p. The case when i;,f is not in J goes similarly.

Then we look at such i = ji that i € J. Conditions 5 and 6 follow
from the density of J. Also if jp_1 or jry1 are in J, 4 follows from the
density of J. If not, 4 follows from the condition 5 for jr_q or jgy1. We
see that 4 holds for all jg, ..., j,—1. That is because if there is none or only
one j € J such that jix < j < jgy1, it follows from above construction that
there are no element of K in that interval. If there are at least two such j,
then there are also infinitely many.

Finally let b be generated from jo, ..., jn—1 as @ was from g, ..., in_1,
that is

b= ((F2) (505 s dimg—1)s s (B )P (GG s 1)
where j; = j if and only if 7 = i} in 3.5. We claim that ¢t*(a’/SH(Jy)) =
t*(b/SH(Jy)) for every finite Jo C J. This is because we have an order-
preserving map f such that f(ix) = ji forall k € {0,....,n—1} and f(j) =j
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for all j € Jy. Because (I, <) is order-indiscernible, this f extends to F €
Aut(9*). Then F(a') =b and F [sr(J0)= IdsH(sy) - Because & = SH(J),
we have that t*(b/ /) = t¥(a' /o) = t"(a/ ).

Then we claim that ¢*(b/B) does not split over E. Assume that there
would be some ¢,d € B C SH(K) witnessing the contrary. Let ry <
... <rm € J besuch that EU ({¢,d} N SH(J)) € SH({rg,...,7m}). Then
let po,...,pmr € K\ J be such that ({¢,d} \ SH(J)) C SH({po, - Pm'})-
Let f be order-preserving such that f(ji) = iy for k € {0,....,n — 1} and
f(rg) = rp for k € {0,...,m}. Look at such p;, < ... < pj, that p; <
{jo, s dn—1,705 ..., "m } . Because p;, € K we get from condition 6 elements
f(pj,) < ... < f(pj.) € J such that f(p;,) < pj,. Then, because of 2, also
f(pj.) < {ios--s%n—1,70, .., "m}. Other cases similarly. For p;, < ... < pj,
between some two elements in {jo, ..., jn—1,70, ---s"m }, it depends whether
they belong to J or not, if we use the Ny-density of (J, <) or properties
4 and 5 to find suitable f(pj,) <,...,< f(pj,) € J. Finally we find an
order-preserving f : {Jo, .-y Jn—1,70s -+ Tms D0y -+, Pmy } — J, which extends
to F € Aut(9*). Then F(c), F(d) € SH(J) and F |pyay=Idgygary, thus
F(¢), F(d) witness that t*(a’/SH(J)) splits over E, a contradiction. [

We note that if we assume r-kategoricity for x > 280 we do not need to
assume w-stability for (K, k).

Theorem 3.25 Let (K, <k) be a local abstract elementary class, which is
K -categorical for k > 280 . Then it is w-stable.

Proof: Let A be countable. As we saw in Remark 3.8, there are at most 280 -
many *-types over A, and hence at most such many weak types also. Then
let % be a model such that A C &, |#| = k and every weak type over A is
represented in Z. Then let (k, <) C 9" be an order-indiscernible sequence
of order-type «, and denote again by SH (k) the model we get closing (k, <)
with the functions of 7*. From categoricity we get f € Aut(91) mapping
% to SH(k). Then f(A) C SH(J) for some countable J C x. If @ and b
in % have different weak type over A, then f(a) and f(b) in SH (k) have
different weak type over SH(J). It is enough to show that there are at
most countably many tuples in SH (k) with pairwise different *-type over
SH(J).

Every tuple b € SH(k) is generated by finitely many functions of 7*
from a finite suborder i of k. Tuples @ and b have same *-type over SH ()
if and only if there are ¢ and j in x such that @ can be generated from i
similarly and with the same functions that b can be generated from j and
a partial order-preserving f : k — k such that f(i) = j and f [;=1Id;.

Let (@;)i<w, be a sequence of tuples in SH(x). Choose a finite sequence
of functions in 7% and suborders j; in s for each @;. There are only count-
ably many different finite sequences of functions in 7%, thus by the pigeonhole
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principle there is a subsequence (an,)i<w, such that every a,, can be gen-
erated from some j,, € # with the same functions. Furthermore we can
choose @, such that they are generated similarly, because there are only
finitely many ways to order j,,. Also there are only countably many ways
to order a finite set compared to the countable well-order J. Thus we may
find indexes n, and ng such that when we denote j,, = (ko, ..., km) and
jnﬂ = (po, ..., Pm), we have that k, = j if and only if p, = j and k, < j if
and only if p, < j for all 0 <n < m and j € J. Then we have a partial
mapping as above, and hence t*(an,/SH(J)) = t*(an,/SH(J)) for some
Na,ng < wi, and tuples(a;)i<w, don’t have pairwise disjoint *-type over
SH(J). O

4 U-rank

In this section we assume that (K, <) is a local abstract elementary class
with w-stability and existence of free extension. Then we may use all proper-
ties derived from these in the previous chapters, including symmetry. Again
we work inside a monster model.

Definition 4.1 Let &/ be countable and w-saturated model. Define U-rank
of a over o, U(a/<), by induction:

1. Always U(a/</) > 0.

2. Ula/<f) > B+ 1 iff there is countable w-saturated model B such that
o CH,U(a/PB)>p and a [3,5

For a countable w-saturated model <7 , define
U(a/o/) =min{a:U(a/) ? a+ 1}

if such an ordinal exists. Then define U-rank for arbitrary w -saturated model
o as

Ula)o/) = min{U(a/o") : &' C o countable w-saturated model.}

For a countable w-saturated model &7 we say that U(a/</) is defined if there
exists an ordinal « such that U(a/</) ? a+ 1. Also the above minimum
is defined for arbitrary <7 if it is defined for some countable w-saturated
model &/’ C o/. The next lemma shows that U(a/</) is actually defined
for all w-saturated o7 .

Lemma 4.2 U(a/</) is defined for all a and all w-saturated models < .
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Proof: For a countable w-saturated model 7, denote
ay =sup{U(a/):a € M and U(a/</) is defined. } + 1.

Furthermore, let A = {&/ C M : &/ w-saturated, countable model } and
a = sup{ay : & € A}. Assume the contrary, that there would be some
oy € A and a such that U(a/%) is not defined, i.e. U(a/e%) > [ for all
ordinals (. Then also U(a/<%) > «. Assume we have defined % € A for
7 < n such that

1. when i < j, o C o},
2. when i <n, a l/f?{i o1 and
3. Ula/) > «.

Now U(a/<,) > a+ 1 and from the definition of U-rank we then get some
Dnt1 € A such that o, C 41, a J/_SQ{n i1 and U((_I/JZ{n+1) > a >
Q.. - Thus from the definition of g, ,, we get that U(a/<,41) is not
defined, and particularly, U(a/ e +1) > a.

Finally &/ = (J;,, 4 is a countable model. We would like to get a
contradiction with Lemma 2.12, but the lemma forbids a chain of finite
sets, and our sets 7 are countable. Next we find finite sets B; such that
Uico Bi = & and t"(a/B;y1) splits over B; for all i < w. To assure that
A C e, Bi, we write &7 = {a; : i <w} and make a; be an element of B;
for each i < w. We may assume that the a;’s are chosen so that a; € < for
1 < w.

Let ag € By C . Then assume we have defined an increasing chain of
finite sets B; for i < n such that a; € B; C & for i < n and t“(a/B;+1)
splits over B; for i < n. Then t“(a/w,+1) splits over B, C <, and
there are some ¢y, d, € 97,1 witnessing that. We can take B,+; = B, U
{an+t1,Cnydn} C Gy

These a and (B;)i<, contradict Lemma 2.12. O

These two remarks follow easily from the definition:

Remark 4.3 If U(a/</) = « and g is an automorphism of M then
Ug(a)/g()) = a.

Remark 4.4 If of and % are w-saturated models such that o C A, then
U(a/B) <Ula/).

Definition 4.5 We say that a and a set A are finitely equivalent to a’ and
A write

(a,A) = (a', A
if there is a bijective mapping f:aUA — a’' U A’ such that f(a) =a’ and
for all be A t9(a"b/0) = t9(a’" f(b)/0).
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We see that if t¥(a/A) = t“(a’/A), then (a, A) =y (a’, A).

Remark 4.6 If o/ and </’ are w-saturated models such that (a,</) =
(@,d"), then U(a/ot) =U(ad' | o").

Proof: By the definition of U-rank, it is enough to prove the claim for all
countable 7 and «7’. Hence we assume that &/ and &/ are countable.

Let f:aU.«/ — @ U4 be the mapping from the definition 4.5. Now
f 1y o — & extends to an automorphism g.

When ¢ € &/’ finite, we have that g1 (¢) = f~1(¢) € & and t9(g(a)"¢/0)
t9(@ " f~e)/0) = t9(a"¢/0). Thus t“(g(a)/«’') = t¥(@' /<) and we
get from Theorem 2.23 an automorphism h such that h(g(a)) = @’ and
h [g=1dg.

Now h o g is an automorphism, ho g(a) = a’ and ho g(«/) = «/'. The
claim follows from Remark 4.3. ([

Lemma 4.7 Assume that a |5, B, o/ C B and o/, % are countable, w-
saturated models. Then if U(a/</) > a, also U(a/A) > «.

Proof: The proof is by induction on «, and we prove the implication for all
o/ 9 and a simultaneously. If « is 0 or a limit ordinal, the induction step
is clear. Assume that a = 4+ 1 and that % is an w-saturated countable
model such that &/ C ¢, a )}, ¢, and U(a/€) > 3.

We use Lemma 2.21 to get a tuple @’ and countable set ¢’ such that
t“(a~ ¢ /o) = t¥ ("€ /o) and @€' |5, B. Then also (a',¢") =
(@,€¢). Because we may gain an automorphism mapping ¢ to %', we
see that also ¢’ is an w-saturated model. Then from Remark 4.6 we get
that U(a’'/€¢") > 8. Also & C ¢, t¥(a'/</) = t“(a/</) and we can also
easily see that a’ )5, €.

Let 2 be a countable w-saturated model such that ¢/ U2 C 2. From
the existence of free extension we get a* such that t*(a*/%¢") = t“(a’'/€”")
and a* |£, 2. Then also ¢’ C 2 and U(a*/¢") =U(a'/€¢") > (3, and from
induction we get that

Ua*/2) = 3. (4.6)

Next we would like to show that t*(a*/%) = t*(a/%). In order to do
that, we take arbitrary finite b € % and claim that

a* |5, b. (4.7)

Let b’ be a free extension such that t*(b/o/) = t“(V//</) and b |5, €". Let
¢ € ¢’ be finite. Because ¢’ |5, A, we get from symmetry that b 13, ¢. By
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monotonicity o 13, ¢ and we get from the uniqueness of free extension that
tv(b/o/ U{e}) = t¥(b' /< U{c}). Because this holds for all finite ¢ € €”, we
get that ¢“(b/¢") =t“(b'/¢"). Then also b |%, €.

Because a* |5, 2, we get that a* |2, b and again from symmetry
that b |$, a*. Now we have that & C ¢’ C ¢’ U{a*}, ¢’ w-saturated,
bls, ¢'Uf{a*} and b |5, €’. We may use transitivity to get b |5, €"U{a*}.
Claim (4.7) follows from symmetry.

Now we take a free extension d such that t¥(d/</) = t¥(a*/</) and
d |5, %. Then from (4.7) we get that for all finite b € & both d |5, b and
a* |, b. Again we get by uniqueness that ¢“(a*/<«/ Ub) = t(d/o/ Ub) for
all finite b € %, and thus t¥(a*/ %) = t*(d/P). Hence also a* |5, B.

Then because a* |3, &, a |3, # and t"(a/o/) = t"(a*/ /), we again
get from uniqueness that

tv(a/B) = t*@* ) B). (4.8)

Because we have that 8 C 2, 9 w-saturated and we have shown (4.6),
we would like to show that also

a ), 9. (4.9)

Assume the contrary, that a* |5, 2. Then we get from (4.8) and a |, #
that a* |5, % and furthermore from transitivity that a* |$, Z. But then
because ¢’ C 7, also a* |%, ¢'. This is a contradiction, because we chose
a* so that t“(a*/¢") =t"(a’/¥¢’) and we know that a’ [, €.
We have now that
U(a*/B) > a. (4.10)

Then finally from (4.10), (4.8) and Remark 4.6 we get that U(a/%) > «.
(]

Theorem 4.8 For w-saturated models o/ and % such that o C B, a |3,
P if and only if U(a/</) = U(a/B).

Proof: We prove the claim first for countable </ and %. If a ), &, we
can take # in Definition 4.1 to show that U(a/</) > U(a/%) + 1. Thus
from U(a/</) = U(b/9B) it follows that a |5, . Also if we have that
als, A, we get from Lemma 4.7 that U(a/«/) < U(a/%), and then by 4.4
U(a/of) =U(a/B).

Then let &/ and # be of arbitrary size. Assume that U(a/</) =
U(a/RB). Let ' C A be a countable w-saturated model such that U(a/%’)
is minimal. Then there must be some countable w-saturated /' C & such

that U(a/«/’") = U(a/%'). Now if a |5, A, also a [, # and as in 3.3,
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including all the necessary witnesses we can find a countable w-saturated
model #" C % such that &' U%A C #" and a )5, #B". Now U(a/B") #
Ula/ot") = U(a/AB') and because B C B", U(a/B") < U(a/PA'). This
contradicts the minimality of U(a/%’). Thus from U(a/«/) = U(a/AB) we
get that a |®, . Then assume that a |*, #. Let &/’ be a countable
w saturated model such that a |%, % and %’ again countable such that
U(a/B) =U(a/PA"). Then let #” be a countable w-saturated model such
that &' U%' C A" C %. Now because a |%,, #”, we have that U(a/«/') =
U(a/#A"). Then because &' C A", we have that U(a/B") < U(a/#'), and
thus U(a/%") = U(a/B). We get that U(a/o) < U(a/«/") = U(a/AB),
and because & C A, U(a//) =U(a/AB). O

4.1 Other results
Based on the results of this paper in [5] the following theorems are proved.
Definition 4.9

1. Suppose A C of . We say that o/ is minimal over A if there is no
B <x A such that A C B and B +# o .

2. Suppose o is w-saturated. We say that (a;)i<q s a Morley sequence
(over o) if for all i < j < o, t¥(a;//) = t*(a;/</) and for all
1< o, a; |3y, Uj<iaj'

3. We write bcl(A) for the set of those tuples a € M such that the number

of realizations of t*(a/A) in M is less or equal to |A| +w. Then we
also say that t“(a/A) is bounded.

4. Suppose that <7 is w-saturated. We say that t*(a/<f) is minimal if it
is not bounded but for all A D </ and b such that t*(b/<f) =t (a/ )
the following holds: if b |5, A, then t“(b/A) is bounded.

5. Suppose A C C. We say that C is atomic over A if for all a € C
there is finite B C A such that for all b, if t*(b/B) = t“(a/B), then
tY(b/A) =t*(a/A).

6. Suppose A C C'. We say that C is prime over A if for all w-saturated
A the following holds: If f : A — A is (weak) type-preserving, then
there is F' € Aut(9M) such that f C F and F(C) C A.

Theorem 4.10 Assume (K, <k) is tame local abstract elementary class and
K -categorical for all uncountable k. Suppose o is uncountable, # C </ a
countable w-saturated model, t*(a/AB) is a minimal type and (a;)icq C
is a mazimal Morley sequence over A such that t“(a/B) = t“(a;/B) for
all i < a. Then o is minimal, atomic and prime over B U|J

i<a @i+
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Theorem 4.11 Assume (K, <k) is tame local abstract elementary class and
K -categorical for all uncountable k. Suppose < is countable w-saturated and
t¥(a/<f) is a minimal type. Let P = {b € M : t*(b//) = t*(a/</)} and
cl an operation on P such that for all X C P, cl(X) = bcl(«/ UX)NP.
Then (P, cl) is a pregeometry.
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