
VARIABLE EXPONENT LEBESGUE SPACES

ON METRIC SPACES:

THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

PETTERI HARJULEHTO, PETER HÄSTÖ AND MIKKO PERE

Abstract. In this article we introduce variable exponent Lebesgue spaces on met-
ric measure spaces and consider a central tool in geometric analysis: the Hardy-
Littlewood maximal operator. We show that the maximal operator is bounded
provided the variable exponent satisfies a log-Hölder type estimate. This condi-
tion is known to be essentially sharp in real Euclidean space, however, we show
that this is not so in metric spaces.

1. Introduction

Lebesgue and Sobolev spaces defined on metric spaces are to-date well understood,
see for instance [12]. These are function spaces in which we replace the Euclidean
space from classical analysis by a metric space equipped with a measure (satisfying
some conditions). Such spaces are natural abstractions in many situations – consider
for instance a plate joined to a block, or a rod joined to a plate (Figure 1). Neither of
these domains can be adequately analyzed in Euclidean space, since the joined plate
or rod has measure zero.

Figure 1. Some metric spaces

In classical Lebesgue and Sobolev theory many properties depend crucially on the
dimension of the underlying Euclidean space. Examples include the boundedness
of convolution with a Riesz kernel and the Sobolev embedding. In general, metric
measure spaces do not have a dimension which could reasonably take the place of
the Euclidean dimension in these cases. This problem has been ”dealt with” by
considering spaces with a doubling measure (see [8, 9, 16], for examples). However,
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this really gives only a lower dimension, i.e. µ(B(x, r)) ≥ CrQ. Moreover, this
dimension is the same in every part of the space, which does not correspond to the
geometry of the domain. To tackle this problem we propose that analysis on metric
measure spaces should be done in Lebesgue spaces where the exponent is allowed to
vary, to reflect the non-homogeneity of the underlying space. Then perhaps a local
uniformness condition of the kind µ(B(x, r)) ≈ rq(x) will suffice for many properties.
Note that this condition is satisfied in the spaces shown in Figure 1.

Variable exponent Lebesgue spaces on Euclidean spaces have attracted a steadily
increasing interest over the last couple of years, but the variable exponent framework
has not yet been applied to the metric measure space setting. Variable exponent
spaces have been independently discovered by several investigators [7, 14, 20, 21].
These investigations were motivated by differential equations with non-standard co-
ercivity conditions, arising for instance from modeling certain fluids (e.g, [1, 6, 19]).
For some of the latest advances see [4, 5, 10, 13]. Obviously, we also expect that the
greater versatility of variable exponent spaces will usefully carry over to the metric
space setting.

In this article we initiate the investigation of variable exponent Lebesgue spaces
on metric spaces by considering the Hardy-Littlewood maximal operator M. It has
proved to be a very useful tool in geometric analysis both in Rn and in metric measure
spaces. One central question is whether M maps Lp to Lp. In metric spaces with
a doubling measure everything works as in the classical case, i.e. Lp maps to itself
provided p > 1, [12]. In variable exponent Lebesgue spaces on Rn the situation is a

bit more precarious: Lp(·) maps to Lp(·) only when p(·) is sufficiently regular. Due
to the efforts of L. Pick & M. Růžička [18], L. Diening [3], A. Nekvinda [17], and D.
Cruz-Uribe, A. Fiorenze & C. Neugebauer [2], the essentially sharp condition on p(·)
is known.

We will show in this paper that the condition from the Euclidean setting is suf-
ficient but not necessary in metric measure spaces (Theorem 4.3 and Example 4.5,
respectively). For the first of these results we adapt a method of L. Diening’s from
[3]. In Section 5 we show that a so-called weak type estimate of the maximal operator
holds irrespective of the variation of the exponent. This result and its proof are simi-
lar to their analogues in Euclidean spaces, [2, Section 4]. D. Cruz-Uribe, A. Fiorenze
and C. Neugebauer [2] have also given the correct condition for when the maximal
operator is bounded on Lebesgue spaces defined on the whole of Rn. Unfortunately,
e are not able to generalize this global result. We conclude by giving a weak type
estimate of the maximal operator (adapting a method from [2]) and use it to show

that almost every point is a Lebesgue point of a function in L
p(·)
loc (X).

2. Metric measure spaces

By a metric measure space we mean a triple (X, d, µ), where X is a set, d is a
metric on X and µ is a non-negative Borel regular outer measure on X which is
finite in every bounded set. For simplicity, we often write X instead of (X, d, µ). For
x ∈ X and r > 0 we denote by B(x, r) the open ball centered at x with radius r. We
use the convention that C denotes a constant whose value can change even between
different occurrences on the same line.

A metric measure space X or a measure µ is said to be doubling if there is a
constant C ≥ 1 such that

(2.1) µ(B(x, 2r)) ≤ Cµ(B(x, r))
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for every open ball B(x, r) ⊂ X. The constant C in (2.1) is called the doubling
constant of µ. By the doubling property, if B(y,R) is an open ball in X, x ∈ B(y,R)
and 0 < r ≤ R <∞, then

(2.2)
µ(B(x, r))

µ(B(y,R))
≥ CQ

( r
R

)Q

for some CQ and Q depending only on the doubling constant. For example, in Rn
with the Lebesgue measure (2.2) holds with Q equal to the dimension n.

We say that the measure µ is lower Ahlfors Q–regular if there exists a constant
C > 0 such that µ(B) ≥ C diam(B)Q for every ball B ⊂ X with diamB ≤ 1. We
say that µ is upper Ahlfors q–regular if there exists a constant C > 0 such that
µ(B) ≤ C diam(B)q for every ball B ⊂ X with diamB ≤ 1. The measure µ is
Ahlfors q–regular if it is upper and lower Ahlfors q–regular, i.e. if µ(B) ≈ diam(B)q

for every ball B ⊂ X with diamB ≤ diamX.

2.3. Lemma. Let X be a bounded metric measure space, i.e. µ(X) <∞ and diam(X) <
∞. If µ is a doubling measure, then it is lower Ahlfors Q-regular.

Proof. By property (2.2) we obtain for every x ∈ X and 0 < r < diam(X)

µ(B(x, r)) ≥ CQ
µ(X)

diam(X)Q
rQ = CQ,Xr

Q.

�

3. Variable exponent Lebesgue spaces

We call a measurable function p : X → [1,∞) a variable exponent. For A ⊂ X
we define p+

A = ess supx∈A p(x) and p−A = ess infx∈A p(x); we use the abbreviations

p+ = p+
X and p− = p−X . For a µ–measurable function u : X → R we define the

modular

%p(·)(u) =

∫

X
|u(y)|p(y)dµ(y).

and the norm
‖u‖p(·) = inf{λ > 0: %p(·)(u/λ) ≤ 1}.

Sometimes we use the notation ‖u‖p(·),X when we also want to indicate in what metric

space the norm is taken. The variable exponent Lebesgue spaces on X, Lp(·)(X, d, µ),
consists of those µ–measurable functions u : X → R for which there exists λ > 0 such
that %p(·)(λu) < ∞. This space is an Orlicz–Museliak space (at least in Euclidean
space), cf. [15].

It is easy to see that ‖ · ‖p(·) is a norm. As in [14] we see that if ‖f‖p(·) ≤ 1

then %p(·)(f) ≤ ‖f‖p(·). Moreover, if p+ < ∞, then %p(·)(fi) → 0 if and only if
‖fn‖p(·) → 0. Hölder’s inequality (i.e. ‖fg‖1 ≤ C‖f‖p(·)‖g‖p′(·)) holds also in variable
exponent Lebesgue spaces, the proof being as in the Euclidean setting, [14, Theorem
2.1].

3.1. Lemma. The space Lp(·)(X) is a Banach space.

Proof. Let (fi) be a Cauchy sequence in Lp(·)(X). Then there is a subsequence,
denoted by (fi), such that

(3.2) ‖fi+1 − fi‖p(·) < 2−i.

We set

gk =
k∑

i=1

|fi+1 − fi| and g =
∞∑

i=1

|fi+1 − fi|.
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By (3.2) and the triangle inequality, we obtain ‖gk‖p(·) < 1 for every k. Fatou’s

Lemma applied to (g
p(·)
k ) gives

∫

X
lim inf gk(x)p(x)dµ(x) ≤ lim inf

∫

X
gk(x)p(x)dµ(x) ≤ ‖gk‖p(·) < 1.

In particular g(x) <∞ almost everywhere, so that

f = f1 +
∞∑

i=1

(fi+1 − fi)

exists almost everywhere, and f(x) = lim fi(x) almost everywhere. Now we need

to prove that f is the Lp(·) limit of (fi). Let ε > 0. There exists N such that
‖fi − fj‖p(·) < ε for i, j > N . For every m > N , Fatou’s Lemma implies that

∫

X
|f − fm|p(·)dµ ≤ lim inf

i→∞

∫

X
|fi − fm|p(·)dµ ≤ lim inf

i→∞
‖fi − fm‖p(·) ≤ ε

and hence f ∈ Lp(·)(X) and ‖f − fm‖p(·) → 0 as m→∞. �

In the next theorem we use the method of Kováčik and Rákosńık [14, Theorem 2.11]
to show that continuous functions are dense in variable exponent Lebesgue space.

3.3. Theorem. Let X be a locally compact doubling space and let p+ < ∞. Then
continuous functions with compact support are dense in Lp(·)(X).

Proof. Let f ∈ Lp(·)(X) and define

fn(x) =





f(x), if |f(x)| ≤ n and x ∈ B(0, n),

n sign f(x), if |f(x)| > n and x ∈ B(0, n),

0, elsewhere.

Then each fn is bounded and has a bounded support. By the Lebesgue Dominated
Convergence Theorem ρp(·)(f−fn)→ 0 as n→∞, and therefore also ‖fn−f‖p(·) → 0.

This shows that the set of bounded functions with bounded support is dense in Lp(·).
Let ε > 0 and choose a bounded function g ∈ Lp(·)(X) with bounded support such

that

(3.4) ‖f − g‖p(·) < ε.

By Luzin’s theorem [22, Theorem 11.36] there exists a continuous function h with
compact support in X and an open set U such that

µ(U) < min

{
1,

(
ε

2‖g‖∞

)p+
}
,

g(x) = h(x) in X \ U , and sup |h(x)| = supX\U |g(x)| ≤ ‖g‖∞. Hence,

ρp(·)((g − h)/ε) ≤ max
{

1, (2‖g‖∞/ε)p
+
}
µ(U) ≤ 1,

which implies ‖g − h‖p(·) ≤ ε. Together with (3.4) this gives

‖f − h‖p(·) ≤ 2ε.

�
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The following condition has emerged as the right one to guarantee regularity of
variable exponent Lebesgue spaces. We say that p is log-Hölder continuous if

(3.5) |p(x)− p(y)| ≤ C

− log d(x, y)
,

when d(x, y) ≤ 1/2. This condition has also been called Dini-Lipschitz, weak-
Lipschitz and 0-Hölder. Since it is the limiting case of α-Hölder continuity, we think
that the term log-Hölder is the most descriptive one. The following lemma illustrates
the geometrical significance of log-Hölder continuous exponents. It corresponds to
Lemma 3.2 of [3].

3.6. Lemma. Assume that p+ <∞ and define two conditions:

(1) p is log-Hölder continuous,

(2) for all balls B ⊂ X we have µ(B)p
−
B−p

+
B ≤ C.

If µ is lower Ahlfors Q-regular, then (1) implies (2). If µ is upper Ahlfors q-regular,
then (2) implies (1).

Proof. Suppose first that µ is lower Ahlfors Q-regular and that (1) holds. Since
p−B − p+

B ≤ 0, it suffices to check (2) for balls B with radius r less than 1
2 . By (3.5)

we obtain

µ(B)p
−
B−p

+
B ≤ (CrQ)p

−
B−p

+
B ≤ (Cr)

−QC
log(1/2r) ≤ C.

Suppose then that µ is upper Ahlfors q-regular and that (2) holds. Since p+ <∞,
we need only prove (3.5) for d(x, y) less than some constant. We choose this constant
so that µ(B(x, d(x, y))) < 1 for all pairs x, y that we consider. For these x and y and
B = B(x, d(x, y)) we have

|p(x)− p(y)| ≤ C
(
p−B − p+

B

) log µ(B)

− log d(x, y)
≤ C

− log d(x, y)
.

�

4. A strong type estimate

For every locally integrable function on X we set

MB(x,r)f = –

∫

B(x,r)

|f(y)| dµ(y)

and

Mf(x) = sup
r>0
MB(x,r)f.

The operator M is called the Hardy-Littlewood maximal operator. If X is doubling,
then for every t > 0 and f ∈ L1(X) we have the weak type estimate

(4.1) µ
(
{x ∈ X :Mf(x) > t)}

)
≤ C1

t

∫

X
|f | dµ,

and for every f ∈ Lq(X), 1 < q ≤ ∞, the strong type estimate

‖Mf‖q,X ≤ Cq‖f‖q,X .
The constants C1 and Cq depend only on q and the doubling constant. Proof for
these results can be found for example in [12].

Our first goal is to generalize the latter result to variable exponent Lebesgue spaces,
adapting the method of L. Diening’s from [3]. The following lemma is a streamlined
version of [3, Lemma 3.3].
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4.2. Lemma. Suppose that X is a bounded doubling space and that p is log-Hölder
continuous with p+ < ∞. Let f ∈ Lp(·)(X,µ) be such that (1 + µ(X))‖f‖p(·) ≤ 1.
Then for every x ∈ X we have

[
Mf(x)

]p(x) ≤ C(M(fp)(x) + 1).

Proof. Fix x ∈ X and let B be a ball centered at x. By [14, Theorem 2.8], we
have ‖f‖p−B ≤ (1 + µ(X))‖f‖p(·) ≤ 1. Using Hölder’s inequality, ‖f‖p−B ≤ 1 and

Lemmata 2.3 and 3.6 we find that

(MBf)p(x) ≤
(

–

∫

B

|f(y)|p−Bdµ(y)

)p(x)/p−B
= µ(B)−p(x)/p−B‖f‖p(x)

p−B

≤ µ(B)−p(x)/p−B‖f(y)‖p
−
B

p−B
= µ(B)(p−B−p(x))/p−B –

∫

B

|f(y)|p−Bdµ(y)

≤ C –

∫

B

|f(y)|p(y) + 1 dµ(y) ≤ C(MB(fp) + 1).

Since the constant does not depend on the ball B, the result follows by taking the
supremum over B. �

We are now ready to prove the main result, which corresponds to Theorem 3.5,
[3].

4.3. Theorem. Let X be a bounded doubling space. Suppose that p is log-Hölder
continuous with 1 < p− ≤ p+ <∞. Then

(4.4) ‖Mf‖p(·) ≤ C‖f‖p(·).
Proof. Define q(x) = p(x)/p− for x ∈ X. Since (4.4) is homogeneous, it suffices to
assume that ‖f‖p(·) ≤ 1 and prove that ‖Mf‖p(·) ≤ C. We may assume additionally
that (1 + µ(X))‖f‖q(·) ≤ 1. Then f satisfies the assumptions of Lemma 4.2 (with p
replaced by q), and so

[
Mf(x)

]q(x) ≤ C(M(f q)(x) + 1)

for every x ∈ X. Since p− > 1, M : Lp
− → Lp

−
is a bounded operator, and we get

ρp(·)(Mf) =
∥∥(Mf)q(·)

∥∥p−
p− ≤ C

(
‖M(f q)‖p− + ‖1‖p−

)p−

≤ C
(
‖f q‖p− + µ(X)1/p−

)p−
≤ C.

Since p+ < ∞, this implies (by [7, Theorem 1.3]) that ‖Mf‖p(·) ≤ C, which proves
the claim. �

An example by L. Pick and M. Růžička [18] showed that log-Hölder continuity of
the exponent is essentially the optimal condition for when the maximal operator is
bounded on variable exponent Lebesgue spaces defined on Euclidean spaces. The
next example features a metric space of the kind considered in the introduction. It
shows that in metric spaces the maximal function can be bounded even though the
variable exponent is not log-Hölder continuous. In particular, this example implies
that there is still work to be done on this question in metric spaces.
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4.5. Example. Let X1 =
{

(x, 0) ∈ R2 : 0 ≤ x < 1/4
}

and X2 =
{

(x, y) ∈
B(0, 1/2) : x < 0

}
and define (X,µ) = (X1,m1) ∪ (X2,m2), where mi denotes the

i-dimension Lebesgue measure. The space X is the leftmost domain in Figure 2.
We set the exponent p equal to s on X1 and to t on X2 (s, t > 1). Then M is a

bounded operator from Lp(·)(X,µ) onto itself if and only if s ≥ t and either t ≥ 2 or
s < t/(2− t).

Figure 2. The space X and some variants

4.6. Remark. The space X in the previous example is essentially the same as the
right-hand-side space in Figure 1, since X is mapped by a bilipshcitz mapping to
the space in the middle of Figure 2 and can then be extended to the third space in
Figure 2 by reflexion. In particular, the maximal operator is bounded for exactly the
same exponents in all these cases.

Let us prove the claims of the example. Take f ∈ Lp(·)(X,µ). For the ball B ⊂ X
we have

MBf =
1

m1(B ∩X1) +m2(B ∩X2)

(∫

B∩X1

|f(y)| dm1(y) +

∫

B∩X2

|f(y)| dm2(y)

)
.

Suppose first that s ≥ t and either t ≥ 2 or s < t/(2 − t). If we denote f1 = fχX1

and f2 = fχX2 (χS denotes the characteristic function of the set S), then we see that

‖Mf‖p(·) ≤ ‖Mf1‖s,X1 + ‖Mf2‖s,X1 + ‖Mf‖t,X2 .

Since f ∈ Lp(·)(X) ⊂ Lt(X), classical Lebesgue theory in metric spaces tells us that
the third term in the last expression is bounded by C‖f‖p(·),X . Since the first term
lives only in X1 and f1 ∈ Ls(X), we get an upper bound for it in terms of ‖f1‖s,X1 .
Therefore we have shown that

‖Mf‖p(·) ≤ C
(
‖f1‖s,X1 + ‖f‖p(·),X

)
+ ‖Mf2‖s,X1 ,

and all that remains is to show is that ‖Mf2‖s,X1 ≤ C‖f2‖t,X2 .
The idea of the proof is that the only really important part of the norm is the

origin and its surroundings. Therefore we can make estimates when calculating the
norms that have an effect only far from the origin, without this having a large effect
on the result.

In what follows we will denote by B(r) a ball centered at the origin with radius
r > 0. For a ball B centered on X1 and intersecting X2, let B′ be the ball whose
diameter is B ∩{(0, y) : y ∈ R}. Then for x ∈ X1 and a ball B centered at x we have

MBf2 = –

∫

B

|f2| dµ ≤
1

µ(B)

∫

B′
|f2| dµ ≤

1

µ(B ∩X1)

∫

B′∩X2

|f2| dm2

≤ 1

min{|x|+ r, 1/4}

∫

B′∩X2

|f2| dm2,
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where r is the radius of B′. Therefore

Mf2(x) ≤ 1

min{|x|+ r(x), 1/4}

∫

B(r(x))∩X2

|f2| dm2

for some suitable function r : X1 → [0, 1/2). For those x ∈ X1 with |x|+ r(x) > 1/4
this means that

Mf2(x) ≤ 4

∫

X2

|f2| dm2 ≤ C‖f2‖t,X2 ,

so we need not worry about these points. For the other points we calculate

(4.7) ‖Mf2‖s,X1 ≤
(∫ 1/4

0

(
1

|x|+ r(x)

∫

B(r(x))∩X2

|f2| dm2

)s
dx

)1/s

.

By Hölder’s inequality we have
∫

B(r)∩X2

|f2| dm2 ≤ ‖f2‖t,B(r)∩X2
‖1‖t′,B(r)∩X2

≤ Cr2(1−1/t)‖f2‖t,X2 .

Using this in (4.7) gives

‖Mf2‖s,X1 ≤
(∫ 1/4

0

(
Cr(x)2(1−1/t)

|x|+ r(x)
‖f2‖t,X2

)s
dx

)1/s

= C

(∫ 1/4

0

(
r(x)2(1−1/t)

|x|+ r(x)

)s
dx

)1/s

‖f2‖t,X2 .

By considering the partial derivative with respect to r, we see that

ra

|x|+ r
≤
{

aa

(1−a)1−ax
1−2/t if a < 1

1
1+x if a ≥ 1

,

where a = 2(1 − 1/t). Using this in our previous estimate gives ‖Mf2‖s,X1 ≤
C‖f2‖t,X2 if either a ≥ 1 (that is t ≥ 2), or a < 1 and

∫ 1/4

0
x(1−2/t)sdx <∞.

This integral is finite provided (1 − 2/t)s > −1, i.e. s < t/(2 − t), which concludes
the proof of sufficiency.

If t > s, it is easy to see that the maximal operator is not bounded (consider the

function defined as |x|−2/(s+t) on X1 and 0 on X2). For t < 2 we will construct a

function g ∈ Lp(·)(X) for whichMg 6∈ Lt/(2−t)(X1). Since Ls(X1) ⊂ Lt/(2−t)(X1) for
s > t/(2− t), this will conclude the proof. We set s = t/(2− t).

If we analyze the proof of sufficiency above, we see that we need to choose a
function with gt ∈ L1 \ L logL for there to be any chance of our example working.

It turns out that g(x) =
(
|x| log(1/|x|)

)−2/t
for x ∈ X2 and g|X1 = 0 does the trick.

For we have

‖g‖tt,X2
=

∫ 1/2

0
r
(
r log(1/r)

)−2
dr =

∫ 1/2

0
r−1 log−2(1/r) dr =

1

log 2
,
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so that g ∈ Lt(X2). For x ∈ X1 we find that

Mg(x) ≥ –

∫

B(x,2|x|)

|g(y)| dµ(y) ≥ 1

3|x|+ π(2|x|)2

∫

B(0,|x|)
g(y) dm2(y)

=
1

3 + 4π|x|

|x|

–

∫

0

rg(r) dr ≥ 1

3 + π

|x|

–

∫

0

r1−2/t log−2/t
(

1
r

)
dr.

Since r 7→ r1−2/t log−2/t(1/r) is convex, we find, by Jensen’s inequality, that

2y

–

∫

0

r1−2/t log−2/t
(

1
r

)
dr ≥ y1−2/t log−2/t

(
1
y

)
.

Using this in the previous estimate gives

‖Mg‖ss,X1
=

∫ 1/4

0
(Mg(x))sdx ≥ 1

(3 + π)s

∫ 1/4

0

(
(x/2)1−2/t log−2/t

(
2
x

))s
dx

≥ 2

(3 + π)s

∫ 1/8

0
y−1 log−2/(2−t)

(
1
y

)
dy.

This last integral is finite if and only if 2/(2 − t) > 1, i.e. t < 1. But since t > 1 by
assumption, this means that Mg 6∈ Ls(X1), which was to be shown.

5. A weak type estimate and Lebesgue points

In this section we derive a weak type inequality of the norm of the maximal oper-
ator. This result is obtained by adapting the method used by Cruz-Uribe, Fiorenze
and Neugebauer in Section 4, [2]. Their result is stated assuming that the inverse of
the variable exponent belongs to the reverse Hölder class. We will assume instead
that p+ <∞. This stronger assumption is motivated by the fact that almost nothing
is known of the properties of variable exponent Lebesgue or Sobolev spaces when
p+ =∞. Also our assumption allows us to simplify and shorten their proof.

The next lemma is an adaptation of [2, Lemma 4.1]

5.1. Lemma. Let X be a doubling space and assume that p+ < ∞. Let also f ∈
Lp(·)(X) and t > 0. Suppose that B is a ball such that

∫

B

|f(y)|
t

dµ(y) > µ(B).

Then there exists a constant C depending only on p such that

µ(B) ≤ C
∫

B

( |f(y)|
t

)p(y)

dµ(y).

Proof. We choose a sequence of simple functions {sn} with sn ≥ p−B such that the
sequence {sn(x)} increases monotonically to p(x) on B. Then for each n,

sn(x) =

kn∑

j=1

αn,jχAn,j (x),

where the sets An,1, . . . , An,kn are disjoint and ∪jAn,j = B.
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Using Hölder’s and Young’s inequalities we have

∫

An,j

|f(y)|
t

dµ(y) ≤
(∫

An,j

( |f(y)|
t

)αn,j
dµ(y)

)1/αn,j

µ(An,j)
1/α′n,j

≤ 1

αn,j

∫

An,j

( |f(y)|
t

)αn,j
dµ(y) +

µ(An,j)

α′n,j

≤ 1

p−B

∫

An,j

( |f(y)|
t

)sn(y)

dµ(y) +
µ(An,j)

(p+
B)′

Adding the inequalities from 1 to kn gives
∫

B

|f(y)|
t

dµ(y) ≤ 1

p−B

∫

B

( |f(y)|
t

)sn(y)

dµ(y) +
µ(B)

(p+
B)′

.

This inequality holds for all n, hence the monotone convergence theorem implies that

µ(B) <

∫

B

|f(y)|
t

dµ(y) ≤ 1

p−B

∫

B

( |f(y)|
t

)p(y)

dµ(y) +
µ(B)

(p+
B)′

.

Since p+ <∞, it follows that (p+
B)′ > 1, so we are done. �

The following theorem is an adaptation of [2, Theorem 1.8]

5.2. Theorem. Let X be a doubling space and assume that p+ < ∞. Then for all
f ∈ Lp(·)(X) and t > 0

(5.3) µ ({x ∈ X : Mf(x) > t}) ≤ C
∫

X

( |f(y)|
t

)p(y)

dµ(y).

Proof. Let n > 0 and define

Mnf(x) = sup
r≤n

–

∫

B(x,r)

|f(y)| dµ(y).

Then the sequence {Mnf(x)} is increasing and converges toMf(x) for every x ∈ X.
By the monotone convergence theorem, we find for each t > 0 that

µ({x ∈ X :Mf(x) > t}) = lim
n→∞

µ({x ∈ X :Mnf(x) > t}),

and therefore it suffices to prove (5.3) for Mn and a constant independent of n.
Let t > 0 and denote En = {x ∈ X :Mnf(x) > t}. Then for each x ∈ En there is

a ball Bx = B(x, rx) such that

–

∫

Bx

|f(y)| dµ(y) > t.

By the standard covering theorem [12, Theorem 1.2] we find a disjoint family F
of balls Bx with En ⊂

⋃
B∈F 5B. Using the doubling property and Lemma 5.1 this

implies that

µ(En) ≤
∑

B∈F
µ(5B) ≤ C

∑

B∈F
µ(B)

≤ C
∑

B∈F

∫

B

( |f(y)|
t

)p(y)

dµ(y) ≤ C
∫

X

( |f(y)|
t

)p(y)

dµ(y),

where the constant C depends on p+ and the doubling constant. �
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A standard application of the weak type estimate is the Lebesgue point theorem.
We show that this method also work in our case, provided we know that continuous
functions are dense in Lp(·)(X). The theorem generalizes [11, Theorem 3.1] to metric
measure spaces.

5.4. Theorem. Let X be a locally compact doubling space and assume that p+ <∞.

Then for every u ∈ Lp(·)loc (X) and almost every x ∈ X

lim sup
r→0

–

∫

B(x,r)

|u(y)− u(x)|p(y)dµ(y) = 0.

Proof. We may assume that u ∈ Lp(·)(X). Otherwise we can study a function uχBr ,
where χBr is the characteristic function of a ball with radius r > 0, and the theorem
follows by the subadditivity of the measure. We define

Lu(x) = lim sup
r→0

–

∫

B(x,r)

|u(y)− u(x)|p(y)dµ(y).

For x ∈ X we obtain

Lu(x) ≤ 2p
+

lim sup
r→0

–

∫

B(x,r)

|u(y)|p(y)dµ(y) + 2p
+

lim sup
r→0

–

∫

B(x,r)

|u(x)|p(y)dµ(y)

≤ 2p
+Mup(·)(x) + 2p

+
max{|u(x)|, |u(x)|p+}

Furthermore L(u1 + u2)(x) ≤ 2p
+
Lu1(x) + 2p

+
Lu2(x) and if v is continuous then Lv

is identically zero. This yields

µ({x ∈ X : Lu(x) > t}) ≤ µ
({
x ∈ X : L(u− v)(x) > t

2p
+

})

≤ µ
({
x ∈ X :M(u− v)p(·)(x) > t

2p
++2

})

+µ
({
x ∈ X : |u(x)− v(x)| > min

{
t

2p
++2

, t
1/p+

21+2

}})
.

We use the weak type estimate (4.1) or Theorem 5.2 for (u− v)p(·) ∈ L1(X) to get

µ ({x ∈ X : Lu(x) > t}) ≤ C(t)

∫

X
|u(y)− v(y)|p(y)dµ(y)

+µ
(
{x ∈ X : |u(x)− v(x)| > C(t)}

)
.

Since continuous functions are dense in Lp(·)(X), Theorem 3.3, we can chose u → v

in Lp(·)(X). Since convergence in norm implies convergence in measure, the right-
hand-side of the previous inequality tends to 0 for every t > 0. By the subadditivity
of the measure, this completes the proof. �
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