Stochastic equilibrium in financial markets

Toni Blomster

August 8, 2003

Abstract

In this paper we will study the price-forming of securities in purely financial markets when the agents have quadratic utility functions for final wealth. We will emphasize a model where the utility parameters are sampled and agents' acts are somewhat random even in a homogeneous environment. In the scale of the whole economy some behavior is still expected and we study the deviations from this behavior.

1 Security demand and equilibrium

Consider a set of agents $i=1, \ldots, n$ acting on a two-period financial markets with securities $j=1, \ldots, \ell$ bearing risk and a safe security $j=\ell+1$ with a fixed payoff. At the next period there are states $s=1, \ldots, S$ one of which will reveal. The securities have state-dependent payoffs tomorrow in money, $\psi^{j}(s)$.

$$
\boldsymbol{\Psi}=\left(\begin{array}{cccc}
\psi^{1}(1) & \psi^{2}(1) & \ldots & \psi^{\ell+1}(1) \\
\psi^{1}(2) & \psi^{2}(2) & \ldots & \psi^{\ell+1}(2) \\
\vdots & \vdots & \ddots & \vdots \\
\psi^{1}(S) & \psi^{2}(S) & \ldots & \psi^{\ell+1}(S)
\end{array}\right)
$$

Especially for the $\ell+1^{s t}$ commodity $\psi^{\ell+1}(s) \equiv 1 \forall s=1, \ldots, S$ for which the price $p^{\ell+1}=1$. Hence it can be considered as the numeraire. For the different states agents assign probabilities $q_{i}(s), i=1, \ldots, n$. Furthermore, agents have initial endowments in assets $e_{i}^{1}, \ldots, e_{i}^{\ell+1}$ and a utility function $u_{i}: \mathbb{R} \rightarrow \mathbb{R}$ for final wealth with a special quadratic form:

$$
\begin{equation*}
u_{i}(x)=x-\frac{x^{2}}{2 a_{i}} \tag{1.1}
\end{equation*}
$$

The parameter a_{i}^{-1} has a risk-aversion interpretation - the bigger it is, the further we are from risk-neutrality. Argument x refers to the terminal wealth of a feasible and optimal consumption allocation, or portfolio, as used more often.

We assume that the portfolio-holders or agents have unique beliefs \mathbf{q} of future and agreement on Ψ. We define the portfolios and future beliefs by

$$
\mathbf{x}_{i}=\left(\begin{array}{c}
x_{i}^{1} \\
x_{i}^{2} \\
\vdots \\
x_{i}^{\ell+1}
\end{array}\right), \quad \mathbf{q}=\left(\begin{array}{c}
q(1) \\
q(2) \\
\vdots \\
q(S)
\end{array}\right)
$$

We will first discuss the selection of an optimal and feasible portfolio. For this, choose one agent and supress the agent index i everywhere.

1.1 Individual security demand

Recall that the instantaneous utility of a terminal wealth was $u: \mathbb{R} \rightarrow \mathbb{R}$. If we see this from today, the utility will be $\mathbf{u}: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$, as there are S states tomorrow. The utility of a whole portfolio \mathbf{x} will then be $\mathbf{u}: \mathbb{R}^{(\ell+1) \times S} \rightarrow \mathbb{R}^{S}$

$$
\begin{equation*}
\mathbf{u}(\boldsymbol{\Psi} \mathbf{x})=(u(\boldsymbol{\Psi}(1) \mathbf{x}), \ldots, u(\boldsymbol{\Psi}(S) \mathbf{x}))^{\top} \tag{1.2}
\end{equation*}
$$

To define the optimal portfolio, an agent wants to maximize a utility function $U: \mathbb{R}^{\ell+1} \rightarrow \mathbb{R}$. A natural choice is the expected utility ${ }^{1}$

$$
\begin{equation*}
U(\mathbf{x})=\mathbf{q}^{\top} \mathbf{u}(\Psi \mathbf{\Psi}) \tag{1.3}
\end{equation*}
$$

Besides optimal, the portfolio must also be feasible and thus we have a convex programming problem

$$
\begin{equation*}
\max \left\{U(\mathbf{x})=\mathbf{q}^{\top} \mathbf{u}(\Psi \mathbf{x}) \mid \mathbf{p}^{\top} \mathbf{x}=\mathbf{p}^{\top} \mathbf{e}\right\} . \tag{1.4}
\end{equation*}
$$

The Lagrangean is

$$
L(\mathbf{x} ; \lambda)=\mathbf{q}^{\top} \mathbf{u}(\Psi \mathbf{\Psi})-\lambda \mathbf{p}^{\top}(\mathbf{x}-\mathbf{e})
$$

and the first-order condition is

$$
\begin{aligned}
\nabla L(\mathbf{x} ; \lambda) & =\nabla(\boldsymbol{\Psi} \mathbf{x}) \mathbf{u}^{\prime}(\mathbf{\Psi} \mathbf{x}) \mathbf{q}-\lambda \nabla(\mathbf{x}-\mathbf{e}) \mathbf{p} \\
& =\mathbf{\Psi}^{\top} \mathbf{u}^{\prime}(\mathbf{\Psi} \mathbf{x}) \mathbf{q}-\lambda \mathbf{p}=\mathbf{0}
\end{aligned}
$$

where $\mathbf{u}^{\prime}(\mathbf{\Psi} \mathbf{x})=\operatorname{diag}\left[u^{\prime}(\Psi(s) \mathbf{x})\right] \in \mathbb{R}^{S \times S}$. This produces the system,

$$
{ }^{1} U=f \circ \mathbf{g}: \mathbb{R}^{\ell+1} \rightarrow \mathbb{R}^{S} \rightarrow \mathbb{R}, \text { where } \mathbf{g}(\mathbf{x}) \doteq \mathbf{\Psi} \mathbf{x} \text { and } f(\mathbf{y}) \doteq \mathbf{q}^{\top} \mathbf{u}(\mathbf{y}) .
$$

$$
(*) \begin{cases}\sum_{s=1}^{S} q(s) u^{\prime}\left[\sum_{j=1}^{\ell+1} \psi^{j}(s) x^{j}\right] \psi^{1}(s) & =\lambda p^{1} \\ \sum_{s=1}^{S} q(s) u^{\prime}\left[\sum_{j=1}^{\ell+1} \psi^{j}(s) x^{j}\right] \psi^{2}(s) & =\lambda p^{2} \\ & \vdots \\ & \vdots \\ \sum_{s=1}^{S} q(s) u^{\prime}\left[\sum_{j=1}^{\ell+1} \psi^{j}(s) x^{j}\right] \psi^{\ell+1}(s) & =\lambda p^{\ell+1} .\end{cases}
$$

Now put $u^{\prime}(x)=1-\frac{x}{a}$. The system of equations (*) can be written shortly as

$$
\boldsymbol{\mu}_{\psi}-\frac{1}{a} \boldsymbol{\Sigma}_{\psi} \mathbf{x}=\lambda \mathbf{p}
$$

where $\boldsymbol{\mu}_{\psi}=\boldsymbol{\Psi}^{\top} \mathbf{q}$ and

$$
\left[\boldsymbol{\Sigma}_{\psi}\right]^{j, k}=\sum_{s=1}^{S} \psi^{j}(s) \psi^{k}(s) q(s) .
$$

For $\psi^{\ell+1}(\cdot)=\mathbf{1} \in \mathbb{R}^{S}$ and $p^{\ell+1}=1$, hence $\lambda=1-\frac{1}{a} \boldsymbol{\mu}_{\psi}^{\top} \mathbf{x}$ and

$$
\boldsymbol{\mu}_{\psi}-\frac{1}{a} \boldsymbol{\Sigma}_{\psi} \mathbf{x}=\mathbf{p}-\frac{1}{a} \boldsymbol{\mu}_{\psi}^{\top} \mathbf{x} \mathbf{p}=\mathbf{p}-\frac{1}{a} \mathbf{p} \boldsymbol{\mu}_{\psi}^{\top} \mathbf{x} .
$$

The demand i.e. optimal and feasible portfolio is then

$$
\begin{equation*}
\mathbf{x}(\mathbf{p})=a\left[\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}-\boldsymbol{\Sigma}_{\psi}\right]^{-1}\left(\mathbf{p}-\boldsymbol{\mu}_{\psi}\right) \tag{1.5}
\end{equation*}
$$

where $\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}$ denotes the tensor (Kronecker-) product $\mathbf{p} \boldsymbol{\mu}_{\psi}^{\top} \in \mathbb{R}^{(\ell+1) \times(\ell+1)}$.

1.2 Equilibrium

We now add the subindex i in $a, \mathbf{x}(\mathbf{p})$ and \mathbf{e} to indicate the agent. Denote the individual excess demand by

$$
\boldsymbol{\zeta}_{i}(\mathbf{p})=\mathbf{x}_{i}(\mathbf{p})-\mathbf{e}_{i}=a_{i}\left[\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}-\boldsymbol{\Sigma}_{\psi}\right]^{-1}\left(\mathbf{p}-\boldsymbol{\mu}_{\psi}\right)-\mathbf{e}_{i}
$$

a vector in \mathbb{R}^{ℓ}, like \mathbf{e}_{i} and $\mathbf{p}-\boldsymbol{\mu}_{\psi}$, while $\left[\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}-\boldsymbol{\Sigma}_{\psi}\right]^{-1}$ is in $\ell \times \ell$. For an economy with n agents we use the following notation:

$$
\begin{equation*}
\bar{\zeta}(\mathbf{p})=\bar{a} \otimes\left[\left[\mathbf{p} \otimes \mu_{\psi}-\boldsymbol{\Sigma}_{\psi}\right]^{-1}\left(\mathbf{p}-\mu_{\psi}\right)\right]-\overline{\mathbf{e}} \tag{1.6}
\end{equation*}
$$

where $\overline{\mathbf{e}}, \bar{\zeta}(\mathbf{p}) \in \mathbb{R}^{n \times \ell}, \bar{a} \in \mathbb{R}^{n}$ and hence the rest is in $\mathbb{R}^{n \times \ell}$ as ought to be. The total excess demand $\overline{\mathbf{Z}}(\mathbf{p})$ is the sum of the n individual excess demands

$$
\overline{\mathbf{Z}}(\mathbf{p})=\bar{\zeta}(\mathbf{p})^{\top} \mathbf{1} .
$$

We get the market clearing condition of equilibrium:

$$
\left[\bar{a} \otimes\left[\left(\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}-\boldsymbol{\Sigma}_{\psi}\right)^{-1}\left(\mathbf{p}-\boldsymbol{\mu}_{\psi}\right)\right]\right]^{\top} \mathbf{1}-\overline{\mathbf{e}}^{\top} \mathbf{1}=\mathbf{0}
$$

Let us look at the equilibrium prices of the securities. They satisfy

$$
\left(\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}-\boldsymbol{\Sigma}_{\psi}\right)^{-1}\left(\mathbf{p}-\boldsymbol{\mu}_{\psi}\right) \bar{a}^{\top} \mathbf{1}-\overline{\mathbf{e}}^{\top} \mathbf{1}=\mathbf{0} .
$$

Denote

$$
\begin{aligned}
& S(p) \doteq\left(\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}-\boldsymbol{\Sigma}_{\psi}\right)^{-1}\left(\mathbf{p}-\boldsymbol{\mu}_{\psi}\right)=\frac{\overline{\mathbf{e}}^{\top} \mathbf{1}}{\bar{a}^{\top} \mathbf{1}} \\
& \Leftrightarrow \mathbf{p}-\boldsymbol{\mu}_{\psi}=\frac{1}{\bar{a}^{\top} \mathbf{1}}\left(\mathbf{p} \otimes \boldsymbol{\mu}_{\psi} \overline{\mathbf{e}}^{\top} \mathbf{1}-\boldsymbol{\Sigma}_{\psi} \overline{\mathbf{e}}^{\top} \mathbf{1}\right) \\
& \Leftrightarrow \mathbf{p}-\frac{1}{\bar{a}^{\top} \mathbf{1}} \mathbf{p} \boldsymbol{\mu}_{\psi}^{\top} \overline{\mathbf{e}}^{\top} \mathbf{1}=\boldsymbol{\mu}_{\psi}-\frac{1}{\bar{a}^{\top} \mathbf{1}} \boldsymbol{\Sigma}_{\psi} \overline{\mathbf{e}}^{\top} \mathbf{1} .
\end{aligned}
$$

We get the formula for the equilibrium prices,

$$
\begin{equation*}
\mathbf{p}=\frac{\bar{a}^{\top} \mathbf{1} \boldsymbol{\mu}_{\psi}-\boldsymbol{\Sigma}_{\psi} \overline{\mathbf{e}}^{\top} \mathbf{1}}{\bar{a}^{\top} \mathbf{1}-\boldsymbol{\mu}_{\psi}^{\top} \overline{\mathbf{e}}^{\top} \mathbf{1}} \doteq \overline{\mathbf{p}}_{n} . \tag{1.7}
\end{equation*}
$$

Remark 1.1. Write $a \doteq \theta^{1}, e^{1} \doteq \theta^{2}, \ldots, e^{\ell} \doteq \theta^{\ell+1}$ and the total excess demand $\overline{\mathbf{Z}}(\theta ; \mathbf{p})$ can be defined more precisely

$$
\begin{equation*}
\overline{\mathbf{Z}}(\theta ; \mathbf{p})=\boldsymbol{\zeta}\left(\theta_{1} ; \mathbf{p}\right)+\ldots+\boldsymbol{\zeta}\left(\theta_{n} ; \mathbf{p}\right) \doteq \mathrm{A}(p) \overline{\mathbf{S}}(\theta) \tag{1.8}
\end{equation*}
$$

where $\mathrm{A}(p)$ is a $\mathbb{R}^{\ell \times(\ell+1)}$-matrix,

$$
\mathrm{A}(p)=\left(\begin{array}{ccccc}
S(p) & -1 & 0 & \ldots & 0 \\
S(p) & 0 & -1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
S(p) & 0 & 0 & \ldots & -1
\end{array}\right)
$$

and $\overline{\mathbf{S}}(\theta)$ is the sum of the individual characteristics. Using vector $\zeta(\mathbf{p})$, $\overline{\mathbf{Z}}(\theta, \mathbf{p})=\boldsymbol{\zeta}(p)^{\top} \mathbf{1}=\mathrm{A}(p) \Theta^{\top} \mathbf{1}$ so that $\boldsymbol{\zeta}(p)=\Theta \mathrm{A}(p)^{\top}, \Theta \in \mathbb{R}^{n \times(\ell+1)}$.
Remark 1.2 (Capital asset prices). Put $\mathbf{m} \doteq\left(\boldsymbol{\mu}_{\psi}-\mathbf{p}\right), W \doteq \mathbf{p}^{\top} \mathbf{e}$ and $\mathbf{C}_{\psi}=\left[\mathbf{C}_{\psi}^{j, k}\right] \doteq\left[\operatorname{cov}\left(\psi^{j}, \psi^{k}\right)\right]=\boldsymbol{\Sigma}_{\psi}-\boldsymbol{\mu}_{\psi} \otimes \boldsymbol{\mu}_{\psi}$. We can write (1.5) as

$$
\begin{equation*}
\mathbf{x}(\mathbf{p})=(a-W)\left[\mathbf{C}_{\psi}+\mathbf{m} \otimes \mathbf{m}\right]^{-1} \mathbf{m} \tag{1.9}
\end{equation*}
$$

Write

$$
\begin{gathered}
{\left[\mathbf{C}_{\psi}+\mathbf{m} \otimes \mathbf{m}\right] \mathbf{x}=(a-W) \mathbf{m} \Leftrightarrow} \\
{\left[\boldsymbol{\Sigma}_{\psi}-\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}-\boldsymbol{\mu}_{\psi} \otimes \mathbf{p}+\mathbf{p} \otimes \mathbf{p}\right] \mathbf{x}=a \mathbf{m}-(\mathbf{m} \otimes \mathbf{p}) \mathbf{e} .}
\end{gathered}
$$

The last two terms cancel from both sides by the equilibrium condition $\mathbf{x}=\mathbf{e}$, which results in (1.5). The security demand of (1.9) is proportional to $\mathbf{C}_{\psi}^{-1} \mathbf{m}$, the solution of the mean-variance formulation of the CAPM. See [4].

2 Random economy

Take, not only s, but also a and \mathbf{e} as random variables with a joint-distribution $f(a, \mathbf{e})$. We define

$$
\mu(\mathbf{p})=\mathbb{E} \zeta_{i}(\mathbf{p})=\iint \zeta_{i}(a, \mathbf{e} ; \mathbf{p}) f(a, \mathbf{e}) d \mathbf{e} d a
$$

Each $\boldsymbol{\zeta}_{i}(\mathbf{p})$ is a realization via (a, \mathbf{e}). When $\boldsymbol{\mu}\left(\mathbf{p}^{*}\right)=\mathbf{0}$ we call \mathbf{p}^{*} an expected equilibrium price. Let us solve the expected equilibrium prices:

$$
\begin{gather*}
\boldsymbol{\mu}(\mathbf{p})=\mathbb{E} a\left[\mathbf{p} \otimes \boldsymbol{\mu}_{\psi}-\boldsymbol{\Sigma}_{\psi}\right]^{-1}\left(\mathbf{p}-\boldsymbol{\mu}_{\psi}\right)-\mathbb{E} \mathbf{e}=\mathbf{0} \Leftrightarrow \\
\frac{1}{\mathbb{E} a} \mathbf{p} \boldsymbol{\mu}_{\psi}^{\top} \mathbb{E} \mathbf{e}-\mathbf{p}=\frac{1}{\mathbb{E} a} \boldsymbol{\Sigma}_{\psi} \mathbb{E} \mathbf{e}-\boldsymbol{\mu}_{\psi} \Leftrightarrow \\
\mathbf{p}=\frac{\boldsymbol{\Sigma}_{\psi} \mathbb{E} \mathbf{E}-\mathbb{E} a \boldsymbol{\mu}_{\psi}}{\boldsymbol{\mu}_{\psi}^{\top} \mathbb{E} \mathbf{e}-\mathbb{E} a} \doteq \mathbf{p}^{*} . \tag{2.1}
\end{gather*}
$$

Recall that (1.7) equals

$$
\overline{\mathbf{p}}_{n}=\frac{\boldsymbol{\Sigma}_{\psi} \frac{1}{n} \overline{\mathbf{e}}^{\top} \mathbf{1}-\frac{1}{n} \bar{a}^{\top} \mathbf{1} \boldsymbol{\mu}_{\psi}}{\boldsymbol{\mu}_{\psi}^{\top} \frac{1}{n} \overline{\mathbf{e}}^{\top} \mathbf{1}-\frac{1}{n} \bar{a}^{\top} \mathbf{1}} .
$$

Now we see that w.p. 1 as $n \rightarrow \infty, \overline{\mathbf{p}}_{n} \rightarrow \mathbf{p}^{*}$. This is the law of large numbers.

2.1 The Gärtner-Ellis theorem

The total characteristic is denoted

$$
\overline{\mathbf{S}}(\theta)=\theta_{1}+\ldots+\theta_{n} \doteq\left(a_{1}, \mathbf{e}_{1}^{\top}\right)^{\top}+\ldots+\left(a_{n}, \mathbf{e}_{n}^{\top}\right)^{\top}
$$

which has the (limiting) free energy function

$$
c_{\theta}(\mathbf{u})=\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left\{\exp \left[\mathbf{u}^{\top} \overline{\mathbf{S}}(\theta)\right]\right\} .
$$

The convex conjugate (or the Legendre- Fenchel transform) of it is

$$
\begin{equation*}
I_{\theta}(x) \doteq \sup _{\mathbf{u}}\left[\mathbf{u}^{\top} \mathbf{x}-c_{\theta}(\mathbf{u})\right] . \tag{2.2}
\end{equation*}
$$

According to the Gärtner-Ellis theorem, for an open set G and a closed set F, the LDP holds for $n^{-1} \overline{\mathbf{S}}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sup \frac{1}{n} \log \mathbb{P}\left\{n^{-1} \overline{\mathbf{S}}(\theta) \in F\right\} & \leq-\inf _{x \in F} I_{\theta}(x) \\
\lim _{n \rightarrow \infty} \inf \frac{1}{n} \log \mathbb{P}\left\{n^{-1} \overline{\mathbf{S}}(\theta) \in G\right\} & \geq-\inf _{x \in G} I_{\theta}(x)
\end{aligned}
$$

For instance, with θ_{i} iid, $\mathbb{P}\left(n^{-1} \mathbf{S}(\theta) \approx x\right) \approx \mathrm{e}^{-n I_{\theta}(x)}$, where $x \not \approx \mathbb{E} \theta_{1}$. In this special case the Gärtner-Ellis theorem is called the Cramér's theorem.

2.2 Deviations from the expected behavior

We are interested in the asymptotics of $\mathbb{P}\left(n^{-1} \overline{\mathbf{Z}}(\theta ; \mathbf{p}) \approx \mathbf{0}\right)$ while $\mu(\mathbf{p}) \neq \mathbf{0}$. Equally one may think of the event $\mathbf{p} \neq \mathbf{p}^{*}$ while the prices \mathbf{p} seem to be in equilibrium i.e. with zero total excess demand $\overline{\mathbf{Z}}(\theta ; \mathbf{p})$, which was defined as $\overline{\mathbf{Z}}(\theta ; \mathbf{p})=\zeta_{1}(\theta ; \mathbf{p})+\ldots+\zeta_{n}(\theta ; \mathbf{p}) \doteq \mathrm{A}(\mathbf{p}) \overline{\mathbf{S}}(\theta)$, where $\mathrm{A}(\mathbf{p})$ was defined in remark (1.1).

With this linear form, we see that the function $\overline{\mathbf{Z}}$ is continuous and satisfies the requirements of the contraction principle, see e.g. [3], Theorem 4.2.1. By the contraction principle, the LDP holds for $n^{-1} \overline{\mathbf{Z}}(\theta ; \mathbf{p})$ with an excess demand-rate

$$
\begin{equation*}
I(\mathbf{z} ; \mathbf{p})=\inf _{\mathbf{y}: \mathrm{A}(\mathbf{p}) \mathbf{y}=\mathbf{x}} I_{\theta}(\mathbf{y}) . \tag{2.3}
\end{equation*}
$$

For the random equilibrium prices take $\mathbf{z}=\mathbf{0}$ representing the equation $\overline{\mathbf{Z}}(\theta ; \mathbf{p})=\mathbf{0}$. Our equilibrium-rate is then

$$
I(\mathbf{0} ; \mathbf{p})=\sup _{\mathbf{u} \in \mathbb{R}^{\ell+1}}[\mathbf{0}-\mathbf{c}(\mathbf{u} ; \mathbf{p})]=-\inf _{\mathbf{u} \in \mathbb{R}^{\ell+1}} \mathbf{c}(\mathbf{u} ; \mathbf{p})
$$

Note that $\mathbf{c}(\mathbf{u} ; \mathbf{p})$ it is not $c_{\theta}(\mathbf{u})$ but a different function. However $\mathbf{u}^{\top} \overline{\mathbf{Z}}(\theta ; \mathbf{p})=$ $\left(\mathrm{A}(\mathbf{p})^{\top} \mathbf{u}\right)^{\top} \overline{\mathbf{S}}(\theta)$ which implies

$$
\begin{gathered}
c(\mathbf{u} ; \mathbf{p})=c_{\theta}\left(\mathrm{A}(\mathbf{p})^{\top} \mathbf{u}\right) \text { and } \\
I(\mathbf{p})=-\inf _{\mathbf{u} \in \mathbb{R}^{\ell+1}} c_{\theta}\left(\mathrm{A}(\mathbf{p})^{\top} \mathbf{u}\right)=-c_{\theta}\left(\mathrm{A}(\mathbf{p})^{\top} \mathbf{u}(\mathbf{p})\right),
\end{gathered}
$$

where $\mathbf{u}(\mathbf{p})$ is a unique minimum as the function $c_{\theta}(\cdot)$ is convex. In this point

$$
\nabla_{\mathbf{u}} c_{\theta}\left(\mathrm{A}(\mathbf{p})^{\top} \mathbf{u}\right)=\mathbf{0}
$$

Using the convex duality: $\nabla_{\mathbf{x}} I_{\theta}(\mathbf{x})=\mathbf{u}(\mathbf{p})$, s.t. $\nabla_{\mathbf{u}} c_{\theta}\left(\mathrm{A}(\mathbf{p})^{\top} \mathbf{u}\right)=\mathbf{x}$, we get

$$
I(\mathbf{p})=-c_{\theta}\left(\mathrm{A}(\mathbf{p})^{\top} \nabla_{\mathbf{x}} I_{\theta}(\mathbf{x})\right) .
$$

Especially for the equilibrium prices $\mathbf{x}=\mathbf{0}$ and the rate will be

$$
\begin{equation*}
I(\mathbf{p})=-c_{\theta}\left(\left.\mathrm{A}(\mathbf{p})^{\top} \nabla_{\mathbf{x}} I_{\theta}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{0}}\right) . \tag{2.4}
\end{equation*}
$$

To make things more clear we will next present an example where the characteristic parameters are independently sampled from the multinormal distribution.

Example 2.1. Preferences $\boldsymbol{\theta}_{i}$ i.i.d. $\sim \operatorname{mn}(\overline{\boldsymbol{\theta}}, \mathbf{Q})$ with mean $\overline{\boldsymbol{\theta}}=\mathbb{E} \boldsymbol{\theta}_{1}$ and covariance matrix $\mathbf{Q}=\mathbb{E}\left[\left(\boldsymbol{\theta}_{1}-\overline{\boldsymbol{\theta}}\right)\left(\boldsymbol{\theta}_{1}-\overline{\boldsymbol{\theta}}\right)^{\top}\right]$. Assume \mathbf{Q} invertible.

Now $\mathbf{S}_{n}(\boldsymbol{\theta})=\sum_{i=1}^{n} \boldsymbol{\theta}_{i} \sim \operatorname{mn}(n \overline{\boldsymbol{\theta}}, n \mathbf{Q})$ i.e. the density is

$$
f(\boldsymbol{\theta})=[(2 \pi)|\mathbf{Q}|]^{-1 / 2} \exp \left[-\frac{1}{2}(\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})^{\top} \mathbf{Q}^{-1}(\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})\right] .
$$

The Laplace transform of θ is well-known,

$$
\mathbb{E}\left[\mathrm{e}^{\mathbf{u}^{\top} \boldsymbol{\theta}}\right]=\mathrm{e}^{\mathbf{u}^{\top} \overline{\boldsymbol{\theta}}+\frac{1}{2} \mathbf{u}^{\top} \mathbf{Q u}}
$$

and correspondingly for $\mathbf{S}_{n}(\boldsymbol{\theta})$

$$
\begin{equation*}
\mathbb{E}\left[\mathrm{e}^{\mathbf{u}^{\top} \mathbf{S}_{n}}\right]=\mathrm{e}^{n u^{\top} \overline{\boldsymbol{\theta}}+\frac{n}{2}} \mathbf{u}^{\top} \mathbf{Q} \mathbf{u} . \tag{2.5}
\end{equation*}
$$

\log of this is $c_{\boldsymbol{\theta}}(\mathbf{u})$ and the convex conjugate of it is $I_{\boldsymbol{\theta}}(\mathbf{x})=\sup _{\mathbf{u} \in \mathbb{R}^{\ell+1}}\left[\mathbf{u}^{\top} \mathbf{x}-\right.$ $\left.c_{\theta}(\mathbf{u})\right]$

$$
\begin{equation*}
=\sup _{\mathbf{u} \in \mathbb{R}^{\ell+1}}\left[\mathbf{u}^{\top} \mathbf{x}-n \mathbf{u}^{\top} \overline{\boldsymbol{\theta}}-\frac{n}{2} \mathbf{u}^{\top} \mathbf{Q} \mathbf{u}\right] . \tag{2.6}
\end{equation*}
$$

$\nabla_{\mathbf{u}} I_{\boldsymbol{\theta}}(\mathbf{x})=0 \Rightarrow$ optimum $\hat{\mathbf{u}}=\mathbf{Q}^{-1}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right)$. Substitute to (2.6).

$$
\begin{align*}
I_{\boldsymbol{\theta}}(\mathbf{x})= & {\left[\mathbf{Q}^{-1}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right)\right]^{\top} \mathbf{x}-n\left[\mathbf{Q}^{-1}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right)\right]^{\top} \overline{\boldsymbol{\theta}}-} \\
& -\frac{n}{2}\left[\mathbf{Q}^{-1}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right)\right]^{\top} \mathbf{Q}\left[\mathbf{Q}^{-1}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right)\right] \\
= & {\left[\mathbf{Q}^{-1}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right)\right]^{\top}(\mathbf{x}-n \overline{\boldsymbol{\theta}}) } \\
- & \frac{1}{2}\left[\mathbf{Q}^{-1}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right)\right]^{\top}(\mathbf{x}-n \overline{\boldsymbol{\theta}}) \\
= & \frac{n}{2}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right)^{\top} \mathbf{Q}^{-1}\left(\frac{\mathbf{x}}{n}-\overline{\boldsymbol{\theta}}\right) \tag{2.7}
\end{align*}
$$

The LDP holds with rate $I_{\boldsymbol{\theta}}(\mathbf{x})$. Put $\boldsymbol{\zeta}(\boldsymbol{\theta})=a S(p)-\mathbf{e}$ where $\boldsymbol{\theta}_{i}, i=$ $1, \ldots, n$. In matrix form $\mathbf{Z}_{n}(\boldsymbol{\theta} ; \mathbf{p})=\mathrm{A}(\mathbf{p}) \mathbf{S}_{n}(\boldsymbol{\theta})$, which is a continuous transformation. Thus due to the contraction principle we have that for $\mathbf{Z}_{n}(\boldsymbol{\theta} ; \mathbf{p})=$ $\mathbf{S}_{n}(\boldsymbol{\zeta}(\boldsymbol{\theta}))=\mathrm{A}(\mathbf{p}) \mathbf{S}_{n}(\boldsymbol{\theta})$ and the LDP holds for $n^{-1} \mathbf{Z}_{n}(\boldsymbol{\theta} ; \mathbf{p})$ with rate $I(\mathbf{z} ; \mathbf{p})=$ $\inf _{\mathbf{y}: \mathrm{A}(\mathbf{p}) \mathbf{y}=\mathbf{z}} I_{\theta}(\mathbf{y})$.

The rate at which the probability of seeing a random equilibrium price at a large economy, with pricesystem \mathbf{p} s.t. $\mathbf{p} \neq \mathbf{p}^{*}$ was of the form $I(\mathbf{p})=$ $-\inf _{\mathbf{u} \in \mathbb{R}^{\ell+1}} c_{\boldsymbol{\theta}}\left(\mathrm{A}(\mathbf{p})^{\top} \mathbf{u}\right)$, equivalent to that of

$$
\begin{aligned}
I(\mathbf{p}) & =-c_{\boldsymbol{\theta}}\left(\mathrm{A}(\mathbf{p})^{\top} \mathbf{u}(\mathbf{p})\right) \\
& =-c_{\boldsymbol{\theta}}\left(\left.\mathrm{A}(\mathbf{p})^{\top} \nabla_{\mathbf{x}} I_{\boldsymbol{\theta}}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{0}}\right) \\
& =-c_{\boldsymbol{\theta}}\left(-\mathrm{A}(\mathbf{p})^{\top} \mathbf{Q}^{-1} \overline{\boldsymbol{\theta}}\right) \\
& =n\left[\mathrm{~A}(\mathbf{p})^{\top} \mathbf{Q}^{-1} \overline{\boldsymbol{\theta}}\right]^{\top} \overline{\boldsymbol{\theta}} \\
& -\frac{n}{2}\left[\mathrm{~A}(\mathbf{p})^{\top} \mathbf{Q}^{-1} \overline{\boldsymbol{\theta}}\right]^{\top} \mathbf{Q}\left[\mathrm{A}(\mathbf{p})^{\top} \mathbf{Q}^{-1} \overline{\boldsymbol{\theta}}\right] .
\end{aligned}
$$

References

[1] R. Bellman (1970), Introduction to Matrix Analysis,2nd ed., McGrawHill.
[2] J.A. Bucklew (1990), Large deviation techniques in decision, simulation and estimation, Wiley \& Sons.
[3] A. Dembo \& O. Zeitouni (1998), Large deviations techniques and applications, Springer.
[4] J. Mossin (1973), Theory of financial markets, Prentice-Hall.
[5] E. Nummelin (2000), Principles of stochastic equilibrium theory I: The law of large numbers and the principle of large deviations, Report of the Department of Mathematics, University of Helsinki, Preprint 273.
[6] E. Nummelin (2001), Entropy and equilibrium I: Laws of large numbers and large deviations of equilibrium prices in stochastic economies, Report of the Department of Mathematics, University of Helsinki, Preprint 277.
[7] E. Nummelin (2000), Large deviations of random vector fields with applications to economics, Advances in Applied Mathematics 24, 222-259.

