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Abstract

In this paper we will study the price-forming of securities in purely
financial markets when the agents have quadratic utility functions for
final wealth. We will emphasize a model where the utility parameters
are sampled and agents’ acts are somewhat random even in a homoge-
neous environment. In the scale of the whole economy some behavior
is still expected and we study the deviations from this behavior.

1 Security demand and equilibrium

Consider a set of agents i = 1, . . . , n acting on a two-period financial markets
with securities j = 1, . . . , ` bearing risk and a safe security j = ` + 1 with a
fixed payoff. At the next period there are states s = 1, . . . , S one of which
will reveal. The securities have state-dependent payoffs tomorrow in money,
ψj(s).

Ψ =




ψ1(1) ψ2(1) . . . ψ`+1(1)
ψ1(2) ψ2(2) . . . ψ`+1(2)

...
...

. . .
...

ψ1(S) ψ2(S) . . . ψ`+1(S)


 .

Especially for the `+1st commodity ψ`+1(s) ≡ 1 ∀ s = 1, . . . , S for which
the price p`+1 = 1. Hence it can be considered as the numeraire. For the
different states agents assign probabilities qi(s), i = 1, . . . , n. Furthermore,
agents have initial endowments in assets e1

i , . . . , e
`+1
i and a utility function

ui : IR → IR for final wealth with a special quadratic form:

ui(x) = x− x2

2ai

(1.1)
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The parameter a−1
i has a risk-aversion interpretation – the bigger it is,

the further we are from risk-neutrality. Argument x refers to the terminal
wealth of a feasible and optimal consumption allocation, or portfolio, as used
more often.

We assume that the portfolio-holders or agents have unique beliefs q of
future and agreement on Ψ. We define the portfolios and future beliefs by

xi =




x1
i

x2
i
...

x`+1
i


 , q =




q(1)
q(2)

...
q(S)


 .

We will first discuss the selection of an optimal and feasible portfolio. For
this, choose one agent and supress the agent index i everywhere.

1.1 Individual security demand

Recall that the instantaneous utility of a terminal wealth was u : IR → IR. If
we see this from today, the utility will be u : IRS → IRS, as there are S states
tomorrow. The utility of a whole portfolio x will then be u : IR(`+1)×S → IRS

u(Ψx) = (u(Ψ(1)x), . . . , u(Ψ(S)x))>. (1.2)

To define the optimal portfolio, an agent wants to maximize a utility
function U : IR`+1 → IR. A natural choice is the expected utility 1

U(x) = q>u(Ψx). (1.3)

Besides optimal, the portfolio must also be feasible and thus we have a convex
programming problem

max{U(x) = q>u(Ψx) |p>x = p>e}. (1.4)

The Lagrangean is

L(x; λ) = q>u(Ψx)− λp>(x− e)

and the first-order condition is

∇L(x; λ) = ∇(Ψx)u′(Ψx)q− λ∇(x− e)p

= Ψ>u′(Ψx)q− λp = 0,

where u′(Ψx) = diag[u′(Ψ(s)x)] ∈ IRS×S. This produces the system,

1U = f ◦ g : IR`+1 → IRS → IR, where g(x) .= Ψx and f(y) .= q>u(y).
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(∗)





∑S
s=1 q(s)u′[

∑`+1
j=1 ψj(s)xj]ψ1(s) = λp1

∑S
s=1 q(s)u′[

∑`+1
j=1 ψj(s)xj]ψ2(s) = λp2

...
...∑S

s=1 q(s)u′[
∑`+1

j=1 ψj(s)xj]ψ`+1(s) = λp`+1.

Now put u′(x) = 1 − x
a
. The system of equations (∗) can be written

shortly as

µψ −
1

a
Σψx = λp,

where µψ = Ψ>q and

[Σψ]j, k =
S∑

s=1

ψj(s)ψk(s)q(s).

For ψ`+1(· ) = 1 ∈ IRS and p`+1 = 1, hence λ = 1− 1
a

µ>ψx and

µψ − 1

a
Σψx = p− 1

a
µ>ψxp = p− 1

a
pµ>ψx.

The demand i.e. optimal and feasible portfolio is then

x(p) = a[p⊗ µψ −Σψ]−1(p− µψ), (1.5)

where p⊗ µψ denotes the tensor (Kronecker-) product pµ>ψ ∈ IR(`+1)×(`+1).

1.2 Equilibrium

We now add the subindex i in a, x(p) and e to indicate the agent. Denote
the individual excess demand by

ζi(p) = xi(p)− ei = ai[p⊗ µψ −Σψ]−1(p− µψ)− ei,

a vector in IR`, like ei and p− µψ, while [p⊗ µψ −Σψ]−1 is in `× `. For an
economy with n agents we use the following notation:

ζ̄(p) = ā⊗[[p⊗ µψ −Σψ]−1(p− µψ)]− ē, (1.6)

where ē, ζ̄(p) ∈ IRn×`, ā ∈ IRn and hence the rest is in IRn×` as ought to be.
The total excess demand Z̄(p) is the sum of the n individual excess demands

Z̄(p) = ζ̄(p)>1.

3



We get the market clearing condition of equilibrium:

[ā⊗ [(p⊗ µψ −Σψ)−1(p− µψ)]]>1− ē>1 = 0.

Let us look at the equilibrium prices of the securities. They satisfy

(p⊗ µψ −Σψ)−1(p− µψ)ā>1− ē>1 = 0.

Denote

S(p)
.
= (p⊗ µψ −Σψ)−1(p− µψ) =

ē>1
ā>1

⇔ p− µψ =
1

ā>1
(p⊗ µψē>1−Σψē>1)

⇔ p− 1

ā>1
pµ>ψ ē>1 = µψ − 1

ā>1
Σψē>1.

We get the formula for the equilibrium prices,

p =
ā>1µψ −Σψē>1
ā>1− µ>ψ ē>1

.
= p̄n. (1.7)

Remark 1.1. Write a
.
= θ1, e1 .

= θ2, ..., e` .
= θ`+1 and the total excess

demand Z̄(θ;p) can be defined more precisely

Z̄(θ;p) = ζ(θ1;p) + ... + ζ(θn;p)
.
= A(p)S̄(θ), (1.8)

where A(p) is a IR`×(`+1)-matrix,

A(p) =




S(p) −1 0 . . . 0
S(p) 0 −1 . . . 0

...
...

...
. . .

...
S(p) 0 0 . . . −1




and S̄(θ) is the sum of the individual characteristics. Using vector ζ(p),
Z̄(θ,p) = ζ(p)>1 = A(p)Θ>1 so that ζ(p) = ΘA(p)>, Θ ∈ IRn×(`+1).

Remark 1.2 (Capital asset prices). Put m
.
= (µψ − p), W

.
= p>e and

Cψ = [Cj,k
ψ ]

.
= [cov(ψj, ψk)] = Σψ − µψ ⊗ µψ. We can write (1.5) as

x(p) = (a−W )[Cψ + m⊗m]−1m. (1.9)

Write
[Cψ + m⊗m]x = (a−W )m ⇔

[Σψ − p⊗ µψ − µψ ⊗ p + p⊗ p]x = am− (m⊗ p)e.

The last two terms cancel from both sides by the equilibrium condition x = e,
which results in (1.5). The security demand of (1.9) is proportional to C−1

ψ m,
the solution of the mean-variance formulation of the CAPM. See [4].
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2 Random economy

Take, not only s, but also a and e as random variables with a joint-distribution
f(a, e). We define

µ(p) = IEζi(p) =

∫ ∫
ζi(a, e;p)f(a, e)deda.

Each ζi(p) is a realization via (a, e). When µ(p∗) = 0 we call p∗ an
expected equilibrium price. Let us solve the expected equilibrium prices:

µ(p) = IEa[p⊗ µψ −Σψ]−1(p− µψ)− IEe = 0 ⇔
1

IEa
pµ>ψ IEe− p =

1

IEa
ΣψIEe− µψ ⇔

p =
ΣψIEe− IEaµψ

µ>ψ IEe− IEa

.
= p∗. (2.1)

Recall that (1.7) equals

p̄n =
Σψ

1
n
ē>1− 1

n
ā>1µψ

µ>ψ
1
n
ē>1− 1

n
ā>1

.

Now we see that w.p. 1 as n →∞, p̄n → p∗. This is the law of large numbers.

2.1 The Gärtner-Ellis theorem

The total characteristic is denoted

S̄(θ) = θ1 + ... + θn
.
= (a1, e

>
1 )> + ... + (an, e>n )>,

which has the (limiting) free energy function

cθ(u) = lim
n→∞

1

n
log IE{exp[u>S̄(θ)]}.

The convex conjugate (or the Legendre– Fenchel transform) of it is

Iθ(x)
.
= sup

u
[u>x− cθ(u)]. (2.2)

According to the Gärtner-Ellis theorem, for an open set G and a closed set
F , the LDP holds for n−1S̄:

lim
n→∞

sup
1

n
log IP{n−1S̄(θ) ∈ F} ≤ − inf

x∈F
Iθ(x)

lim
n→∞

inf
1

n
log IP{n−1S̄(θ) ∈ G} ≥ − inf

x∈G
Iθ(x).

For instance, with θi iid, IP(n−1S̄(θ) ≈ x) ≈ e−nIθ(x), where x 6≈ IEθ1. In this
special case the Gärtner-Ellis theorem is called the Cramér’s theorem.
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2.2 Deviations from the expected behavior

We are interested in the asymptotics of IP(n−1Z̄(θ;p) ≈ 0) while µ(p) 6= 0.
Equally one may think of the event p 6= p∗ while the prices p seem to be
in equilibrium i.e. with zero total excess demand Z̄(θ;p), which was defined
as Z̄(θ;p) = ζ1(θ;p) + ... + ζn(θ;p)

.
= A(p)S̄(θ), where A(p) was defined in

remark (1.1).
With this linear form, we see that the function Z̄ is continuous and satis-

fies the requirements of the contraction principle, see e.g. [3], Theorem 4.2.1.
By the contraction principle, the LDP holds for n−1Z̄(θ;p) with an excess
demand-rate

I(z;p) = inf
y:A(p)y=x

Iθ(y). (2.3)

For the random equilibrium prices take z = 0 representing the equation
Z̄(θ;p) = 0. Our equilibrium-rate is then

I(0;p) = sup
u∈IR`+1

[0− c(u;p)] = − inf
u∈IR`+1

c(u;p).

Note that c(u;p) it is not cθ(u) but a different function. However u>Z̄(θ;p) =
(A(p)>u)>S̄(θ) which implies

c(u;p) = cθ(A(p)>u) and

I(p) = − inf
u∈IR`+1

cθ(A(p)>u) = −cθ(A(p)>u(p)),

where u(p) is a unique minimum as the function cθ(·) is convex. In this point

∇ucθ(A(p)>u) = 0.

Using the convex duality: ∇xIθ(x) = u(p), s.t. ∇ucθ(A(p)>u) = x, we get

I(p) = −cθ(A(p)>∇xIθ(x)).

Especially for the equilibrium prices x = 0 and the rate will be

I(p) = −cθ(A(p)>∇xIθ(x)|x=0). (2.4)

To make things more clear we will next present an example where the char-
acteristic parameters are independently sampled from the multinormal dis-
tribution.
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Example 2.1. Preferences θi i.i.d. ∼ mn(θ̄,Q) with mean θ̄ = IEθ1 and
covariance matrix Q = IE[(θ1 − θ̄)(θ1 − θ̄)>]. Assume Q invertible.

Now Sn(θ) =
∑n

i=1 θi ∼ mn(nθ̄, nQ) i.e. the density is

f(θ) = [(2π)|Q|]−1/2 exp[−1

2
(θ− θ̄)>Q−1(θ− θ̄)].

The Laplace transform of θ is well-known,

IE[eu>θ] = eu>θ̄+ 1
2
u>Qu

and correspondingly for Sn(θ)

IE[eu>Sn ] = enu>θ̄+n
2
u>Qu. (2.5)

Log of this is cθ(u) and the convex conjugate of it is Iθ(x) = supu∈IR`+1 [u>x−
cθ(u)]

= sup
u∈IR`+1

[u>x− nu>θ̄− n

2
u>Qu]. (2.6)

∇uIθ(x) = 0 ⇒ optimum û = Q−1(x
n
− θ̄). Substitute to (2.6).

Iθ(x) =
[
Q−1

(x

n
− θ̄

)]>
x− n

[
Q−1

(x

n
− θ̄

)]>
θ̄−

−n

2

[
Q−1

(x

n
− θ̄

)]>
Q

[
Q−1

(x

n
− θ̄

)]

=
[
Q−1

(x

n
− θ̄

)]>
(x− nθ̄)

− 1

2

[
Q−1

(x

n
− θ̄

)]>
(x− nθ̄)

=
n

2

(x

n
− θ̄

)>
Q−1

(x

n
− θ̄

)
(2.7)

The LDP holds with rate Iθ(x). Put ζ(θ) = aS(p) − e where θi, i =
1, . . . , n. In matrix form Zn(θ;p) = A(p)Sn(θ), which is a continuous trans-
formation. Thus due to the contraction principle we have that for Zn(θ;p) =
Sn(ζ(θ)) = A(p)Sn(θ) and the LDP holds for n−1Zn(θ;p) with rate I(z;p) =
infy:A(p)y=z Iθ(y).

The rate at which the probability of seeing a random equilibrium price
at a large economy, with pricesystem p s.t. p 6= p∗ was of the form I(p) =
− infu∈IR`+1 cθ(A(p)>u), equivalent to that of

I(p) = −cθ(A(p)>u(p))

= −cθ(A(p)>∇xIθ(x)|x=0)

= −cθ(−A(p)>Q−1θ̄)

= n[A(p)>Q−1θ̄]>θ̄

− n

2
[A(p)>Q−1θ̄]>Q[A(p)>Q−1θ̄].
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