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Abstract: We study an inverse problem for the two-dimensional random
Schrodinger equation (A + g + k?)u(z,y, k) = 0. The potential ¢(z) is as-
sumed to be a Gaussian random function that defines a Markov field. We
show that the back scattered field, obtained from a single realization of the
random potential ¢, determines uniquely the principal symbol of the covari-
ance operator. The analysis is carried out by combining methods of harmonic
and microlocal analysis to stochastic methods, in particular, to the theory of
ergodic processes and properties of the Wiener chaos decomposition.
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1 Introduction

1.1 Background

Consider scattering of waves from a perturbed half-space, like the surface of
earth, where the macro-scale structure of the perturbation is smooth but in
very small scale, the surface is rough. If one forgets the micro-scale roughness,
and approximate the surface with a smooth surface, on the high frequencies
waves scatter according to Kirchoff law, that is, like from a mirror. This
contradicts many everyday experiences, like walking with a torch in dark
field. For a valid model to describe the scattering as above one needs to
deal with the micro-structure of the object. The inverse problem here is
not so much to recover the exact micro-structure of an object but merely to
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determine the parameters or functions describing the characteristic properties
of the micro-structure. One example of such a parameter is the correlation
length of the medium that is related to the typical size of the “particles” in
the scatterer or the material of the medium.

A stochastic model serves best to formulate the above problem in rigorous
terms. One explanation to this is that very general independence assumptions
lead to non-smooth structures. For example, the paths of a Brownian motion
are nowhere differentiable.

In this work we consider scattering from a random medium and the inverse
problem for it. More precisely, we study as a basic model case the Schrédinger
equation

(A + K> + q)u = 4y,

where ¢ is a random, compactly supported potential and y is a point outside
the support of q. Throughout the paper we assume that the deterministic
part of ¢ vanish, i.e., Eq = 0. The field u can be decomposed as

u = ug(z, k) + us(z, k)

where wug(z, k) = ug(z,y, k) is the incident field in the homogeneous space
corresponding a point source at y and us(x, k) = us(z,y, k) is the scattered
field induced by q. We adopt a terminology where the parameter £ is referred
to as frequency.

By definition, a random potential means a measurable mapping from a
probability space to some function space: w — ¢(+,z). In the realm of inverse
problems the existing deterministic theory would answer to the question: If
we have measurements from a single realization of the potential ¢(-, wy), can
we determine the potential uniquely. In the below diagram this correspond
the existence of the map R;.

Random process ¢(z,w) 7 Expectation E (|u,(z,y, k,w)?)
R3

Sample ‘us(xa Y, k, w0)|2

Sample ¢(z, wp) ™

Typical features of deterministic theory of inverse problems is that the the-
ory is mathematically rigorous, i.e. requires no approximations and applies
harmonic and microlocal analysis, see [8], [32], [33], [51]. An excellent review
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for deterministic inverse problems has been given in [53]. For scattering from
non-smooth deterministic structures see, [7], [38] and [39].

In the random side the first question to answer is: What is meant by
measurements from random a object? To enlight the problem, consider an
example of radar measurements done far from the surface of the Earth. A
common model is to assume that the surface is random and when several
measurements are done, we may compute e.g. the covariance of the scattered
signal by taking averages over sequences of measurements. The correspond-
ing inverse problem is to find the stochastical characteristics of the process
q(z,w) from the stochastical characteristics of the measured signal. In the
above diagram this corresponds to the map Ry. In this interpretation one
considers the surface as a different sample of the “random scatterer” for each
measurement. In reality, the object that we are measuring is all the time the
same. For instance the trees and stones on the surface of the Earth have not
moved their locations between times of different measurements. Mathemat-
ically speaking this means that we have done measurements from one fixed
realization of the random scatterer. The reason why the traditional approach
might work is the underlying assumption (that has not often been explicitly
formulated in applied literature) that the measured signal is ergodic in the
sense that one realization determines a.s. stochastical characteristics of the
process. In the above diagram this corresponds to the existence of the map
E.

In traditional applied and engineering literature concerning inverse scat-
tering from random media the problem has been formulated as the exis-
tence of the map Ry in the above diagram: Does the expectation of the
scattered signal E (|us(z,y,w)[?), determine e.g. the covariance function
E (¢(z,w)q(y,w)). Typical “ad hoc” model for covariance function used in
3-dimensional acoustic problems is

E (e, w)a(y: ) = exp(~ ) )

where parameter [ is called the correlation length. This parameter [ describes
how distant points can still have a correlation above some given bound. The
correlation length can be considered as a spatially varying parameter that, at
the end of the day, one wants to determine from the measurements. Moreover,
the multiple scattering is often omitted, that is, the data is thought to be
the covariance of the first order term in Born series, E |u;(z,y, k,w)|*>. This
leads to a linearization of the inverse the problem and can be justified when



q is small, see classical books [19] and [36] and in general, Journal Waves in
Random Media. Also, an extensively studied question is the scattering from
a random surface having small amplitude, see e.g. [47], [48].

A related approach for the scattering from a random media is the study
of the multi-scale asymptotics. In this case the made approximations can
be justified when the frequency k£ and the spatial frequency of the scat-
terer have appropriate magnitudes. Indeed, if measurements are done on
frequencies k € [K;, Ks] that are much smaller than the spatial frequencies
of the scatterer, done approximations coincide with measurements. For this
type of approach, consider the case of Schrodinger equation assuming that
there is a small parameter e > 0 such that £ = koe ' and ¢ = ¢o(%, w),
where ¢y is a random function. Then one has an asymptotic expansion
us(z,y, k) = e2us(,y, ko) + O(e®) and properties of random function g can
be derived from leading order term wu,o(z,y, ko) of the measurement when
¢ — 0. This type of asymptotic analysis has been studied by Papanicolaou’s
school in various cases, see e.g. [3], [46], [42], [23], [41].

In this paper we use as the measured data mean values (over the fre-
quency k) of the energy |us(z,y, k,wp)|?, obtained from a single realization
q(2z,wp). This corresponds to studying the existence of the map Rz in the
above diagram, which is a more realistic point of departure since it is often
impossible to measure the averaged signal E |u,(z,y, k,w)[?. See Sections 1.3
and 1.4 for the exact statement of our results.

This type of approach, i.e., study of properties of random Schrédinger
operator that are valid almost surely have been used successfully in spec-
tral theory of random Schrodinger operators. For instance, the structure
of the spectrum of random Schrédinger operators has been studied in cel-
ebrated papers of Kotani, [25],[26], that has been extensively generalized
by B. Simon and others (cf. [43],[12],[50],[49],[29],[11]). These results show
that Schrodinger operators having Anderson model-type random potentials
or potentials that are ergodic in translations x — = + a have almost surely
no absolutely continuous spectrum. One-dimensional inverse problems for
potentials that are ergodic in translations have been studied, see e.g. [24].
For physical applications, see [27], [28]. Intuitively, the absence of absolutely
continuous spectrum means that all propagating waves get a.s. trapped in
the random potential in R”. Analogous intuitive interpretation for our result
is that near each point the potential a.s. has wave front set to all direc-
tions. This explains why the micro-structure of ¢ can be reconstructed from



backscattered wave.

1.2 Mathematical model for the random potential

Fix a bounded domain D C R?. Assume that the potential ¢ is a localization
of a generalized Gaussian field. Thus, we may write ¢ = x(@Q, where x €
C$°(D) and Q is a centered (i.e., EQ = 0) generalized Gaussian field on R?.
Recall, that this means that () is a measurable map from the probability
space (2 to the space of distributions D'(R?) such that for all ¢ € C$°(R?)
the mapping

Q35w (Qw), )

is a centered Gaussian random variable. We will assume that the probability
measure space (§2, F,P) is complete. The reason for introducing the cutoff
X is to avoid the possible effects arising from discontinuity at the boundary.

To get a more concrete structure we will assume further that Q has addi-
tionally a Markov structure. Below we will follow [45] and give a definition
and some basic properties of a generalized Markov field; these are discussed
in more detail in Appendix 1. The definition that we use for Markov fields
mimics the situation where physical particles in a lattice have no long-term
interaction, i.e., only neighboring particles have direct interaction. Assume
that S; C D is an open set. Weset S, = D\ S; and S, = {x € D :
d(z,051) < €}, € > 0, a collar neighborhood of the boundary 9S; in S.
Intuitively the Markov property means that the influence from the inside to
the outside must pass through the collar. This leads to

Definition 1.1 A generalized random field @ on R? satisfies the Markov
property if for any S1, Sy and S; as described above, and € > 0 small enough,
the conditional expectations satisfy

E (hoQ()|B(S:)) = E (ho Q(v)|B(S; U S1))
for any complex polynomial h and for any test function ¢ € C§°(Ss).

Here B(S;) is the o-algebra generated by the random variables Q(¢), ¢ €
Cs°(S)), 7 =1,2, and B(S,) is defined respectively.
The Markov property has dramatic implications to the structure of the
field @ and especially to its covariance operator Cg defined by
Co: C(R?) —» D'(R?),
(11, Cibz) = E(Q(11)Q(¥2))- (2)
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It turns out, that under minor additional conditions, the inverse operator
(Co)™ "' (assuming that it exists in a suitable sense) must be a local operator:
it cannot increase the support of a test function. By a well-known theorem
of J. Peetre [44] (Cp)~" must be a linear partial differential operator, which
we shall henceforth assume.

We shall next further reduce the complexity of the structure by mak-
ing three additional assumptions on (Cg)~" (the discussion in rest of this
subsection is still somewhat descriptive; see Definition 1.3 and Subsection
1.4 below for the definitive precise statement). The first assumption is that
(Cq) ! is a non-degenerate operator, i.e. its principal symbol does not van-
ish in R? \ {0}. Since (Cg)™" is positive, it corresponds to an elliptic partial
differential operator, of even order.

Our second assumption is that the order of (Cg)™! is two. Otherwise, in
the case where (Cg) ! is of fourth order or higher, with smooth coefficients,
one could easily verify (c.f. the proof of Theorem 2.3) that the realizations of
g are in the Sobolev class Wjo’fnp(RQ) forall s <1and 1 < p < co. Recall that
the aim was to consider the case of non-smooth potentials, that is the most
interesting case in view of many applications. Since (Cg)~! is a symmetric
operator, it can be written in the form

(Co) = Ple D) = = 32 La(e) o +H(2) )

where
[ajr(2)] = c(2)], ¢(2) >0

is a symmetric matrix.

Our last simplifying assumption is that the random structure of the poten-
tial is (micro-)locally isotropic with smooth coefficients structure. In terms
of the coefficients, we thus assume that

ajr(2) = a(z)dy;. (4)

and that a(z) > 0 and b(z) are smooth functions.

Summarizing: we assume that (Cg) ' is a non-degenerate, is of 2nd or-
der, has smooth coefficients, and finally its principal part is positive and
homogeneous. We call such a field @) micro-locally isotropic, as then Cg is
a pseudodifferential operator with an isotropic principal symbol. Namely, in



our situation Cg is (some) parametrix of (Cg)~" and thus its Schwartz kernel
ko(z,2'") = G(z,2') is a Green’s function of P(z, D,) satisfying

P(z,D,)G(z,7") = d6(z — 2'),

An important example of such random fields of this type is obtained
by the free Gaussian fields, which appears in two dimension quantum field
theory (c.f. e.g. [14]). The free Gaussian field on the bounded domain
D, corresponding to Dirichlet boundary values, has the (Dirichlet-)Green’s
function Gp as the kernel of its covariance operator. This correspond to
choices a(z) = 1, b(z) = 0. More complicated examples can be constructed
easily.

Starting from the fact that our covariance operator corresponds locally
(modulo smooth error) to a Green’s function of the operator P, one may
verify (c.f. Proposition 2.2 below), that C¢g has locally integrable kernel k¢
that has for fixed z, the asymptotics

1
ko(21,22) = —@logm — 2| + f(21, 2)

where f is locally bounded. Hence the function a(-) describes the strength
of the singularity of kg near the diagonal, and is approximately proportional
to the radius of the set {21 : kg(21,22) > M} with a given large bound
M. Because of the analogy to parameter / in formula (1) we call a(zo)™"' the
macro-correlation length function.

Let C = C, be the covariance operator of the potential ¢, and let us denote
also its kernel by the symbol C. We obtain that C(z1,22) = k4(z1,20) =
X(21)kq (21, 22) X(22). This implies for C(z, z2) the form

Cl(21, ) = —p(z2) log |21 — 20| + F(21, 22),

where F' € L7, and

We call u(x) the micro-correlation length of q.



1.3 Direct and inverse scattering problem and the mea-
surement

We consider the Schrodinger equation with outgoing radiation condition

{(A—q+k2>u=6y
(& —ik) u(x) = of|z|/?)

where the potential ¢ is compactly supported random generalized function,
as described above. The support of ¢ is hence contained in the domain D.
In Section 3 we will show that this equation has a unique solution in the
appropriate class of functions.

For a non-vanishing potential ¢, we decompose u to two parts

(6)

U = U,()(CL', Y, k) + US(CC, Y, k)
Here us(x,y, k) is the scattered field and

{
uo(z,y, k) = B(e —y) = L Hy (klz —y))

is the incident field corresponding a point source at y. We shall assume that
y € U, where the domain U C R? \E is called the measurement domain,
and we assume that U is bounded and convex. As ¢ = ¢(w) is random, also
the scattered field is a random variable. We sometimes emphasize this by
writing us(x,y, k) = us(x, y, k, w).

Definition 1.2 Given w € Q, the measurement m(x,y,w) is the weak limit
@) = Jim —— [ Kz, k) P )
mxayaw _Kl—I)nooK—]_ 1 us xaya 7w .

Here the limit is defined in D'(U x U), i.e., in the sense of distributions with
respect to variables x and y.

The measurement is an average over all frequencies so that it is not sen-
sitive to measurement errors. For example, the white noise error in the
measurement, is filtered out with frequency averaging.

As later will be observed, the existence of the distribution limits m(x,y, w)
in Definition 7 is equivalent to the existence of limits

M) = Jim = [ ([ [ Wt b o) dady ) de 9
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for ¢,v € C§°(U).
It is highly non-trivial fact that the above definition gives a well-defined,
finite and non-zero quantity. That this is so, is a part of our main result.

Figure 1: Measurements corresponding to a point source at x € U. Lines
corresponds to first and second order scattering observed at point y.

1.4 The result

Before stating the result, we collect together the definitions made in Section
1.2 in a mathematically precise, and slightly more general form:

Assumption 1.3  We assume that: D C R? is a simply connected bounded
domain, p € C§(D), pu(x) > 0. The potential ¢ is a generalized centered
Gaussian random field on R?, with realizations almost surely supported on
the domain D, and whose covariance operator is a classical pseudodifferential
operator having the principal symbol u(z)|£|72 for || > 1. The measurement
domain U C R? \ D is assumed to be bounded and convex.

Observe that our assumptions cover the case of Markov fields of the type
considered in Section 1.2. Moreover, one could easily dispense with the as-



sumption that ¢ is centered. We discuss this in more detail in the remarks
at the end of Section 7.

The main result of this paper is

Theorem 1.4 Assume that the conditions stated in Assumption 1.8 hold.
Then

(i) The measurement m(x,y,w) exists almost surely as a limit in D' (U X
U).

(ii) Almost surely, the distribution m(z,y,w) coincides with a deterministic
function mo(x,y) which is continuous in x,y € U.

(iii) The back-scattering data ng(z) = mo(z,z), x € U uniquely deter-
manes the function u, i.e. the micro-correlation length of the potential.
Moreover, there is a linear operator T operating to ng such that

T(no) = p € C3°(D).

We stress that the above result allows us to determine the principal struc-
ture of the covariance from measurements from a single realization of the
potential only! Property (ii) in Theorem 1.4 is sometimes called statistical
stability, c.f. [6]. Observe that the needed data is essentially energy av-
erages of the back-scattered field. We refer to the Remarks in the end of
section for a more through discussion of the relation of the above result to
its deterministic counterparts.

2 Stochastic properties of ¢

We start our proof by first considering the regularity of the covariance and
the realizations of th potential ¢. It turns out that ¢(w) is not a function
(or even a measure); almost surely it is a proper distribution. This is not
so surprising since in the special case where ¢ = 1 and b = 0 our random
field corresponds locally to a free Gaussian field. However, the potential just
barely fails to be a function: almost every realization of the potential satisfies

qg(w) € Wy “P(D) for all e >0 and 1< p < o0. 9)
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Above W;P(D) is the space of W*P(R?) functions supported in D, and
WeP(R?) = F~1((1 + |£[?)*2FLP(R?)) is the standard Sobolev space, de-
fined with Fourier transform JF. In this section we prove this fact, which is
crucial for the success of the subsequent analysis of our problem. For ex-
ample, it enables us to prove in the following chapter the uniqueness for the
corresponding scattering problem, even though the uniqueness is known to
fail for certain integrable potentials.

We start by recording a result which yields a criterion for realizations of
a random field to lie in (., L?(D).

Lemma 2.1 Assume that the covariance operator K of a random field F' on
the open bounded set D C R™ has a uniformly bounded kernel (denoted also
by) K:

|K(z,y)] < C <oo for every z,y € D.

Then the realizations of F' belong almost surely to (,, L?(D).

Proof. This is an immediate consequence of [5]. A simple direct proof
of this result is can also be obtained by approximating first K by smooth
covariances and observing that in that case E (|| E||,)” = ¢, [, | K (z,z)[P/*dz.
U

We next analyze the singularity of the covariance operator

Proposition 2.2 The Schwartz kernel of the covariance operator C' is reg-
ular and may be decomposed as

C(Jﬁ,y) = CO(xay) 10g|$ - y| + Tl(‘ray)a

where ¢y € C°(D x D) and the term r, satisfies

71 € L'(RY), (10)
and, consequently
sup |ri(z,y)| < oc. (11)
zyeD

Above Ty denotes the Fourier transform of vy with respect to both variables
x,y.

Proof. By definition, C(x,y) is corresponds to a (compactly supported)
classical pseudodifferential operator in the class S72(R? x R?) with the (z, £)-
kernel a(z,&) = pu(z)(1 — ¥())[€]72 + b(x, ), where the smooth cutoff ¢ €
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C$°(R?) equals 1 near the origin, and b € S_;2 . We obtain

comp-*

27°C(a.y) = (o) |

@€ (1 —ap(€))|€|2de +/ eV a(x, £)d¢
R2
= I(z,y) + ra(z, ),

R2

where the asymptotics of I is well known, and it may be clearly written in
the desired form co(z,y)log|z — y| + r(z,y). In order to analyze the rest
term 7o(x,y), write R(z,y) = ro(z,z — y), and observe that (10) follows
as soon as we show that R is integrable. A simple computation (c.f. [18,
p.69]) shows that R is the Fourier transform of the symbol b with respect
to x. Since the support of b is compact with respect to z, and we have
the uniform estimates [92b(z,€)| < Co(1 + [€])73, a > 0, it follows that
|Fob(n,€)| < C(1+|z|)3(1+ |€])=3. This verifies that R € L'. As (10) implies
(11), the proof of is complete. [
Let us then prove

Theorem 2.3 Almost surely g(w) € W=P(D) for alle > 0 and 1 < p < oo.

Proof. Recall that for given s € R the Bessel potential J° provides an
isomorphism J* : W' (R?) — W'sP(R?) for all t € R and 1 < p < oo.
Moreover, J° is a pseudodifferential operator, whence it preserves singular
supports. Thus it is enough to verify that locally the covariance of J¢q has a
uniformly bounded kernel for any small € > 0. That is, by letting J;,. stand
for a suitable localization of J° we have to study the kernel J; .CJ; . It is
well known that for small € > 0 we have

c
J(z,y) =

—+ S

|$_y|275 + (x’y)’

where S has a lower order singularity. Now the claim follows by combining
Proposition 2.2 and the fact

|
/ | 0g2|_335||dx < 00
B(0,R) |z]

for any radius R > 0. O

In Section 5 we will make use of the the fact that there are finite dimen-
sional Gaussian variables that may be used to approximate the potential ¢
in the norm.
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Lemma 2.4 Let ¢ > 0 and p € (1,00). Then there is a sequence of finite
dimenstonal Gaussian random distributions q, such that for almost every
realization it holds that

lim ||¢g — ¢u|lw-=» =0
n—o0

Proof. The space W=5P(R?) has a Schauder basis since, by the action of
J¢, it is isomorphic to LP(R?). Thus there are finite dimensional projections
P, : W=5P(R?) — W~*P(R?) with uniformly bounded norm and such that
P,f — f in norm as n — oo for all f € W~P(R?). The finite dimensional
approximations are now obtained by the simply taking ¢, = P,q. U

Remark. By e.g. applying Fejer summation in a local Fourier-development
one obtains also approximations g, that work simultaneously for all p, €, but
we do not need this.

3 Direct scattering from distributional po-
tential.

3.1 Unique continuation for distributional potentials

We showed in the previous chapter that the random potential g(w) belongs
with probability one to the Sobolev space W~P(D) for all 1 < p < oo and
€ > 0. Consequently, we need to study the existence and properties of the
solution for the Schrodinger equation for such irregular potentials. In this
section we accomplish this by considering scattering from a deterministic non-
smooth potential go € W~P(D), and the obtained results have independent
interest.

The direct scattering theory from a potential that is in a weighted L2
space is classical 8c.f. [4],[2]). For the L? scattering theory the key tool is
the unique continuation of the solution. Jerison and Kenig shoved in [20]
that the strong unique continuation principle for LP-potentials in R” holds
for p > n/2 and fails for p < n/2 in dimensions n > 2. In dimension two the
unique continuation holds in a space of functions that is close to L' [20]. For
Sobolev space potentials, the selfadjointness of the operator has been studied
for [35]. Below in Lemma 3.2 we show a positive result for negative index
Sobolev spaces.
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More precisely, we study the scattering problem

(A —qot+ k2)u = (Sy
{(% ~ i) u(z) = ofja| ) 12

where the potential gy € Wgel (R?), p~' + (p) ™' =1, 1 < p < 2. We claim

comp

that the problem (12) is equivalent to the Lippmann-Schwinger equation

@) = un(e) = [ Bula = ly)uts)dy. (13)

In the proof we show that the pointwise product gyu in the integrand of
(13) is well defined and that the integral exist in the sense of distributions. We
will then show that (13) has a unique solution u € W 2(R?). The starting
point is the unique continuation principle. For completeness we formulate it
in dimension n. Roughly speaking, it says that if u is a compactly supported
solution of the Schrédinger equation with gg € W™ r > n/2 and € is small
then » must vanish identically. It appears to the authors that this result
could also be obtained as a special case of D. Tataru’s and H. Koch’s recent
unique continuation results based on L? Carleman estimates [22]. In our
case, we present a direct and simple proof for unique continuation. We start
by observing that known pointwise multiplication results allow us to define
the product distribution gyu.

Lemma 3.1 Assume that u € WEP(R), o € WP (R"), 1 < p < oo,

loc comp

€ > 0. Then the product qou s well-defined as an element of Wc;f;l’;(R”),
where p = Q;—fl and
|lgous|[w-<o(py < cllgol lw—er (Ul lwezn(p)- (14)

Proof: Take ¢ € C$°(R™) to be a test function. By duality, the product
qou € D'(R?) is a well defined through

(%Ua ¢> = <QOa QSU’) (15)
when ¢y € W52 (R?) and u € WP(R?). By using Bony’s paraproducts one

comp loc
can verify the following pointwise multiplier estimate in Sobolev spaces ([52,

pp. 105])

|dullwern) < ¢ (0]l oy llullwer oy + uller )l @llwers(p)) (16)
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for 1/p = 1/r1 + 1/re. From (15), and (16) with r, = ry = 2p it readily

follows by duality that gou € W o, where p = %. O

Lemma 3.2 (Unique continuation principle in to an interior domain)

Assume that p' € (n/2,00), together with 0 < ¢ < 3(2 — I%) Let gy €

W_oP (R*). Ifu € W™ (R™) is compactly supported and satisfies the Schrod-

comp loc
mger equation

(A—q+k)u=0 (17)
in the weak sense, then u = 0 identically.
Proof: To prove the unique continuation we use the well-known tech-

niques of exponentially growing solutions for the Schrédinger equation, cf.
[51], [32], [33], [16]. To this end we write the equation

(A +k*)u = qu
as ' '
(A +2iC-V)e %y = e “%qu,

where ¢ € C" is such that ¢ - ( = k2. Since u is supposed to have a compact
support we have v := e~ %%y € W5% (R?). For v we obtain the equation

comp
v = Ge(qov) (18)
where the Faddeev operator G; is defined as the Fourier multiplier
-1 .
grace)

It is well known (see for example the proof of Theorem 4.1 in [37]) that for
0<s<i

Ge(f) (@) = F(

c
||g4||Hgs(D)—>H+s(D) < ml,gs (19)

where H*(D) = W*2(D) and Hg(D) = W*(D) are L*-based Sobolev spaces.
By [21],
G¢: L' (D) — L™ (D), (20)
2n

for r = =% if n > 3 and for r > 1 for n = 2. We continue first in the case
n > 3. Interpolation of (19) and (20 yields

||GC||WO—E7I3(D)_)WE,2p(D) < C|C|_(1_28)9 (21)
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where € = fls and § = 1 — 5. Finally, (14),(18), and (21) show that

C
o] [weze(py < RG2G |[v][wesr(p) (22)

Now if p' > n/2 and 0 < e < 1/2— 75 = 5 we conclude that v and hence
u must vanish identically. Finally in the case n = 2 we interpolate (19) and

(20) for » > 1 and by letting r — 1 the same conclusion follows. 0

3.2 Existence and uniqueness for solutions of the scat-
tering problem

Theorem 3.3 For gy € Wc;f;g(R"), withn > 2, p' € (n/2,00), and 0 <
2 1

€< (2 - 17), the Lippmann-Schwinger-equation (13) has a unique solution

u e WP (R).

loc

Proof: Let D be a bounded domain such that supp (go) C D. Consider the
equation (13) in W? (D). Since the operator Hy,

Hof = ®p * f (23)

defines a bounded operator Hy : Hy*(D) — H*(D) for s < 1 we see from
Sobolev embedding and Rellich’s compact embedding theorem that

Hy : Wy “P(D) — W*(D)

compactly. This and Lemma 3.2 give that the operator K : W (D) —
We(D), Kf = Hyqof is compact, as well.
Thus by Fredholm’s alternative it is enough to show that in W% (D) the
homogeneous equation
u = Hyqou (24)

has only the trivial solution v = 0. If v € W*(D) satisfies (24) then u
belongs to Schwartz class 8’ and by taking the Fourier transform we obtain
that in the sense of distributions

(A + B)u(z) = gou (25)

In particular 4 must be smooth in R® \ D and satisfy (A + k?)u = 0 there.
Note that by (24) the values of u in D define u all over in R™.
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By Rellich’s lemma (cf. [9]) and unique continuation principle it is enough
to show that the far field uo, of u, defined by

B eik|w| T no1)/2

as |r| — oo, vanishes for u.
Take r > 0 so large that D C B(0,r). By Green’s formula for any
¢ € CP(R™) we have

62 ds = / (Vé - Vi +TAe) da. (26)
= OV je|<r
Note that ~
Au = (g — k*)u € W “P(R?) + WP (R). (27)

This implies that Vu € L2 and that u and Au belong locally to spaces that
are dual to each other. Thus by approximating u by smooth functions we
get from (26) that

Im e u%ﬂ ds =Im e (|Vul* + uAu) dz (28)
=Im " (IVul® + (g0 — k*)|ul?) dz = 0.
Thus _
/w:T ( (%UZ-I-kQ\uF) ds:/wzr %u—ikuz ds — 0

as r — 0o. Especially,
/ ul? ds =/ ueo(O)? ds(0) + ofr) — 0
|z|=r Sn—1

as r — oo. This is possible only if u., = 0. Thus the assertion is proven. [

Theorem 3.4 For qo € W_ 2 (R"), with n > 2, p' € (n/2,00), and 0 <

comp
2 1

€ < 2z~ 17), the scattering problem (12) is equivalent to the Lippmann-

Schwinger-equation and has thus a unique solution u € Wlf;fp (R™).

17



Proof: As reasoned in the proof of the previous theorem a solution of
Lippmann-Schwinger-equation satisfies (12). Suppose u € W2 (R*) (S is
a solution of (12). We need to show that

4a(z) = / iz — y)ao(y)uly) dy. (20)

Since (A+k?)us = qou € W 5P (R*) and ®p(x—-) € WS (R) and both
functions are real-analytic outside a large ball we have from (12) in the sense

of distributions that
/ Pp(z — y) (A + k*)us(y) dy = Hy(qou). (30)
ly|<r

Denote the operator that operates to us in the left hand side of (30) by 7.
Now for ¢ € C*(R"),

0 0
To=o+ [l —u)griew i)~ [ G i) dst)
Thus
0
w@)+ [ o) ) ds) - G1)

0
_ A/:T ar—(y)q)k(x — y)us(y) ds(y) = Hy(qou).

From the radiation condition it follows that the difference of the boundary
integrals in (31) approaches to zero as 7 — 0o. This proves (29) and hence
the theorem 0

3.3 The Born series.

Next we return to case n = 2. Note that in this case the conditions p’ > n/2
and 0 < e < 3 — 7 take the form

1
l<p<oo, O<e< —.
2p

We are back to our basic situation (Assumption 1.3) and consider again
random ¢ for which the results of Section 2 may be specified to yield that a.s.

18



q € WP (R?) for some 1 < p < 00,0 < § < %. Thus results of preceding
subsection take place a.s.

By iterating the Lippmann-Schwinger equation, we can formally represent
u as the Born series,

’U,(.T, Y, k) = ’U,()(-T, Y, k) + Ul(.T, Y, k) + ’U,Q(.Z', Y, k) +... (32)

where
’U,()(-T, Y, k) = (I)k(x - y): (33)
Unp1 = (A + E* +10) " (quy). (34)

For future purposes we show that almost surely the series (32) converges
uniformly in the measurement domain U. Recall that supp(q) C D, where
D C R? is bounded, and that U C R? is a bounded domain with positive
distance to D.

Theorem 3.5 For any € > 0 there exist C = C(€) such that

o

Z sup |un(z,y, k)| < Ck—5/%te
n=3 z,yelU
holds with probability one.

The main difficulties are collected in

Lemma 3.6 For any deterministic potential gy € Wofs’p,(D) ,p> 1, the ntt
order term u, in the Born series satisfies

sup |un(z,y, k)| < CTEYZ e
z,yeU

where
en=5s—1+1/p+2n(s+ (1 —1/p)).

Before we prove Lemma 3.6 we show how Theorem 3.5 follows from it.

The strategy is to take s > 0 small and p close to one to keep ¢, small in
Lemma 3.6.
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Proof of Theorem 3.5.  Since with probability one ¢ € W, ** (D), for
any s > 0 and 1 < p < oo, we denote s—l—l—% =€ and 2(s+2(1—-1/p)) = e
and we can take ¢; > 0 and €; > 0 arbitrarily small. Thus by Lemma 3.6

(e, 5 k)l [Lewxe) < Crgl/2tra—n(l-e)

and consequently

e 1
E .- 3p—5/2+(ec1+3e2) _ —
— Hun( ) 7k)HL°°(U><U) < C° e 1 = Cke-1
proving the claim. O

For the proof of Lemma 3.6 we need two estimates for the convolution
with the Hankel function. Define the operator H; by

(@) = [ (o= 9)fw)dy
Then for 0 < s <1l and 1 <p <2 <r we have
Hy : Wy*P(D) — W*"(D) & L*>(U)

with norm estimates

||Hk||WO_S“’(D)_>Ws,r(D) < Ck_1+2(s+(1/p_1/7“)) (35)

and
||HkHWO_s’p(D)—)L°°(U) S Ok71+8+2/p (36)

These estimates follow from the proof of Theorem 3.1 in [37].

Finally, we consider the operator K that combines the multiplication
operator with ¢ to Hy i.e. Kyf = Hy(qf). By (35) and Lemma 3.2 in the
previous chapter we obtain for p > 1 that K : W*?(D) — W*?(D) and
Ky : W*?(D) — L*°(U) with

||'[(v||VV“;’2P—)VVS’2]J S C|k|_1+2(8+(1_1/p))’ (37)
||K||W5‘2P—>L°° S C|k‘1+25*1/p. (38)

Proof of Lemma 3.6. Assume y € U and define the function f, by
fy(2) = @z — )
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Recall that supp (¢) C D and dist (U, D) =: d > 0. We make use of the

estimates for 1 < p < oo
sup| | fy||Lo(p) < Ck™2,
yeU

sup||Af, ||y < CKY2.
yeU

These estimates interpolate for 0 < s <1 to
1w < CR71250.

To see that (39) holds recall that

C d C
HO0) < =, |=HY —.

t
Then by denoting R = sup{|y — 2| : y € U,z € D} we have

/ [fy(2)[Pdz < / &, (v)Pdu,

d<|u|<R

(B)] <

< Cpk—p/Q(Rl—pﬂ _ dl—p/Z) = COkP/?

(39)

(40)

where C' is independent of y. Similarly we obtain (40) from (42). Finally,

since
we get from (37), (38) and (41) that

lun (4 W) ooy < 1K lweonos ool | K [[fysnwan| [ fyl s

VAN

Cnk1—|—25—l/pk(n—l)(—1—|—2(s—|—(1—l/p)))k—1/2—|—s.

Here the constant C' is independent of y and thus the desired estimate follows.

O

4 Microlocal analysis and the asymptotic in-

dependence of the first term

In the proof of our main result we need to establish asymptotic independence
for the first terms in the Born series, corresponding to different values of k.
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The verification of this fact and leads to estimation of certain oscillatory
integrals, and needs a fairly involved computation. As a useful tool we apply
the calculus of conormal distributions, and we compute the leading order
of the (self-)covariance of the first term in Born series. The results of this
section will be applied in later sections 6 and 7 below.

As the first term in Born series is

w@ k)= [ e =)o@z - y)ds

we start with the asymptotics of ®x(z) = iHél)(k\z\), when £ — oco. It is
given by
1, 1 .
By (2) = [ =T F(t) = >0 43
o(2) ,/k‘z‘e G FO ;f , . 43
where fy = \/Ls? and f; are constants which the actual values are not impor-

tant for us in the sequel. The series (43) and its derivative have the property
that for N > 1 (c.f. [1, formulae 9.1.27, 9.2.7-9.2.10])

N
[F(t) =) fit?]| < 20tV + 20 fagatV?, t> 0, (44)
j=0

d Al
Z(F() = > fit)| S 2N + D)l fwa |t + 2N +2)| fvsaltN, £> 0.
§=0
Using first m terms in the asymptotics of @, we write
ui(z,y, k) = ui'(z,y, k) + 0™ (2, y, k) (45)

where
Wz, y, k) = / Sz — 2)g(2) B (= — y) dz,
D
O (2) = (k|2)) 2 ®E DN g (k| 2]) 7
j=0

1

Here, |k| > 1, and for k& < 0 we define the square root by k~2 = —i|k| 2.
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We remark that the case m = 2 suffices for our purposes.
Next we denote by O((1 + |k1 — ko|) ™™ (1 + |k1 + k2|)™") functions
h(z,y, k1, ko) which satisfy an estimate of the form

\h(2,y, k1, k)| < C(1+ [k — kaf) ™ (1 + [k + kaf) ™

for z,y € U and ky, ke € R, |ky|, |k2| > 1 where C' is independent of z,y, k1,
and ky. Next we prove the asymptotic expansion for the covariance of u*
proving that the fields u{* with different frequencies are asymptotically inde-
pendent. We emphasize that formula (48) below is crucial for construction
of p(z) in Section 7.

Proposition 4.1 Let m > 0. In the decomposition (45) ui*(x,y, k) satisfies

|E (ui(z, y, k)ui (2, y, ko) | < Co(1 + [ka| + [ko]) (1 + k1 — ko)™, 1> 0

(46)
for any n > 1, |ki|, |ke| > 1, and z,y € U. Moreover, it satisfies the asymp-
totics

1

E (4™ Tl i o)) — — (4
(U’l (xvyvkl)ul (mvyakZ)) Rm(xayaklka)l + (kl + k.2)4 ( 7)
= 0((1 -+ |]€1 — k2|)_n(1 -+ |k1 + k2|)_5), n > 0.
Here Ry (x,y, k1, k2) is a bounded smooth function with
Ron(z, 7, b, ) = l/ M2 o+ k). (48)
Y 2 Jp2 |z — )2
Proof. We see that
E (UT(QS, Y, kl)ugn(xa Y, kZ)) = Z Ijl,jz,ll,lz (kla ko, , y) (49)
J1,52,01,l2=0
where
]jl,jz,ll,lz (kla kQa z, y) = (50)
fififu T, ik (521 |+]21 =y )—ika(fo—z2l + 22—])
ki+]1 +J2 k%—Hl +12 2
E
(g(21)q(22)) —dzdz.

. . l =
@ — 2[4 |2y — gt |z — 2[Rz — g
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Observe that the correctness of the above computation follows directly from
the definition (2), by noting that E (¢(21)g(22)) refers to the distribution
kernel of the covariance operator of the field ¢, and the integral refers to
the appropriate pairing. In our case, however, according to Proposition 2.2
the covariance operator has a regular kernel C(zy, 25). Thus we may replace
E (¢(z1)q(22)) by C(z1, 22) in the expression (50) and do standard integration
there.

Assumption 1.3 yields that C(z1, z3) is the Schwartz kernel of is a pseu-
dodifferential operator C' with a classical symbol c(z, €) € Sy (R? x R?), the
principal symbol of C'is ?(z,€) = u(z)(1+]£?) 1, and C(z1, 20) is supported
in D x D. Whence we may write (c.f. [18])

O, ) = / e o € de. (51)
R2

Note that all symbols appearing below will be classical symbols [18].

In order to obtain uniform estimates with respect to variables z and y
we introduce them as variables in the covariance in the following way. We
define the function

Ci(z1, 29, 2,y) = C(21, 20)0(2)0(y) (52)

where 0§ € C°(R?) equals to one in the domain U and has its support outside
D.
The formula (51) leads to

Cl (217 22,1, y) = / 6i(z1_z2).§cl (217 z,Y, é-) d§ (53)

R2

where the symbol ¢; (21, z,y,&) € Sig(Rﬁ x R?) has the principal symbol

cﬁj(zlax’yag) = :U/(Zl) 9(.’1))9(3})

1
T+ e
Observe that formally ¢; € S; §((D x R*) x R?), but we consider it extended
by zero to values z; ¢ D. By definition, (53) means that Ci(z1, 22, z,y) is a
conormal distribution in R® of Hormander type having conormal singularity
on the surface S; = {(z1,29,7,y) € R® : 2 — 20 = 0}. Using notations of
[18], when X C R™ and S C X is a smooth submanifold of X, we denote
by I(X;S) the distributions in D'(X) that are smooth in X \ S and has a
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conormal singularity near S. The set of distributions in I(X; S) supported
in a compact subset of X is denoted by I.pmy(X;S). Let D C R® be an open
set containing D x D X supp (6) x supp (6) so that C; € Iomp(D;S1 N D).

We use the fact that conormal distributions are invariant in change of
coordinates. Actually, we plan to consider several different coordinates.

The first set of coordinates that we consider are (V, W, z,y), defined as
V =2 — 2z and W = 2z; + z,. Denote by n the change of coordinates
n: (V,W,z,y) — (21, 22, 2,y). We consider the pull-back Co = n*(C;). Then
the direct substitution shows that

ColV, W, 2, y) = / Vo (V, W, 2y, €) de, (54)
R2

62(‘/7 Waxayag) = 01(21(‘/, vaay)ax:yag)

which means that Cy € I(R®; Sy) where Sy = {(V,W,z,y) : V = 0}.

To find out how the symbol transforms in the change of coordinates, we
have to represent Co(V, W, z,y) with a symbol that does not depend on V.
Because of the special form of the surface Sy = {V = 0} we can use the
representation theorem for conormal distribution [18, Lemma 18.2.1], and
represent Co(V, W, z,y) with a symbol that is independent of V:

Co(V.W,ay) = [ Sl Wim,p,€)de, (55)
R2
where
03(VV: T,Y, 5) ~ Z<_ZDV7 D§>l62(‘/: I/Va x,Y, §)|V:0 € Sig(R6 X RQ)
1=0

In particular, we see that c3(W, z,y, &) has the principal symbol

AW, 2,y,€) = ulzr(V,W,2,9)) (1 + [€]*)0(2)0(y) ], _, - (56)

The second set of coordinates that we consider are (v, w,z,y) defined
below. For this, consider the phase of the oscillatory integrals (50) and
denote

The idea is change the coordinates so that ¢(z1,z,y) — ¢(2e,z,y) will be
a coordinate. We will do this change of coordinates in two steps. First we
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change the coordinates (21, 2, z,y) to (Z1, Zs, x,y), where Z; = Z;(x,y, 2;) €
R2, j = 1,2 are related to ellipses having focal points in z and y. More
precisely, we write

Zj = (tj,s;) € R, (58)
t':_¢ Zj, T, Y), S':_¢ %j, T, Y) arcsinie; - - ’
= g0 m0). 8 = 5oz, my)-arcsin(er g Eg T

where e; = (1,0). In other words, here ¢; correspond to the semi-major axis
of the ellipse having focal points x and y and containing the point z;. The
variable s; specifies the angle of the normal vector of the ellipse with the
x-axis at the point z;. Since domain U is convex and D is simply connected,
our definition of the new coordinates is well-posed in a neighborhood of the
domain D.

Second we change from (7, Z,,x,y), to coordinates (v,w,z,y) where
v =241 — Zy, w = Z; + Zy. Together, above steps define the coordinates
(v,w,z,y) and the map 7 : (v,w,z,y) — (21,22, 2,y). Note that the first
component of v(z1, 22, x,y) equals to ¢(z1,x,y) — d(29, 2, y).

To simplify the notations, we denote X; = D, X, = n7'(D) and X3 =
77!1(D) so that 7 : X3 — X; and n : X, — X;. We are ready to represent
the conormal distribution C (21, 22, z, y) in coordinates (v, w, z, y) as the pull-
back distribution Cy = 7*(C}) € I(X3; 53 N X3), S35 = {(v,w,z,y) : v =0}.
By the invariance of conormal distributions under the change of variables we
may write

Icomp(Xl; Sl N Xl)

/ \
Icomp(XQ;SQ ﬂXQ) Icomp(X3;S3 ﬂXg)

To apply this diagram and the integral representation (55) of Cy € I pmp(X2; SoN
X5), consider the transformation x = n~to7. We will below use [18, Theorem
18.2.9.], to provide a representation for pull-back Cy, = k*Cs. Since surfaces
Sy and S3 have the special form Sy = {V = 0} and S3 = {v = 0}, and &
maps S3 N X3 onto S; N X5, we obtain

Cu(v, w, 2,y) = / ey, 7,1, €) de, (59)

R2
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where ¢4(w,z,y,€) € S, (RS x R?) is a symbol satisfying
C4(waxay7§) = (60)
C3(K)2(U, w,x, y), ((K’Ill(va w, T, y))il)tg)‘det Klll(va w, T, y)‘il‘vzo + T(wa T, Y, g)

Here, r(w, z,y,§) € Sig(Rﬁ x R?) and the coordinate transform x is decom-
posed to two parts, the R?-valued function xi(v,w,z,y) = V(v,w, z,y) and
the Ré-valued function ko(v,w,z,y) = (W (v,w,,y),z,y). This yields for
the differential ' of x the corresponding representation

! !
oo ().
Ka1 Ko
We note that the transformation rule in x* in [18, Theorem 18.2.9] is
presented for half-densities. However, formula (60) that is the transformation
rule for distributions is obtained directly from the proof of [18, Theorem
18.2.9.]

Plugging the principal symbol of c3(z, ) given in (56) to formula (60),
we see that the principal symbol of ¢;(w, z,y, &) is

w,z,y,8) = plz(v,w, 2,9)(1+ (1 (v, w,2,9))7)EN) T,
-0(2)0(y)J (w, z, y)
where J(w,z,y) = |det&},(0,w,z,y)| *. Note that for y = x the matrix
k11(0,w, z,z) is unitary and its determinant J(w,z,z) is equal to one.
We are ready to compute the asymptotics of I, j, 1, 1, (k1, ko, z,y). We
denote j = (j1, jo, 1, ls). By writing the integral I; in coordinates (v, w, z,y)
we obtain

Ijl;jz,ll,lz (kla kz, xz, y) = (61)
— k1(1+j1+j2)k2(1+11+l2)/ exp(i((k1 + k2)61. v+ (/ﬁ — kg)el- w))

R4

2

) 04(U7 w, T, y)Hj(’Ua w, T, y) dvdw

where e; = (1,0) is the unit vector and

-

Hj(v,w,x,y) =

_ fj1fj2fl1flz i det (T,(U,w;xay))




where z1 = z1(v,w, z,y) and 25 = 25(v, w, z, ).

Since H7 is smooth in X in all variables and class I(R®; S3) is closed in
multiplication with a smooth function, we have Cy(v, w, x,y) HE(U, w,x,Y) €
I(R®; S3). To evaluate the oscillatory integrals (61) in a convenient way,
we need to represent this conormal distribution with a symbol that does
not depend on v. Again, by using the representation theorem of conormal
distribution [18, Lemma 18.2.1], we obtain

Ci(v,w,x,y) B (0, w, 2, y) = / ¢4 (w, 2, y, €) de (62)
]RQ

where

cg(waxayag) ~ Z(—iDv,Dg}l(c4(w,x,y,{)Hj(v,w,x,y))\vzo E Sig(RG X R2)
=0

In particular, we see that cg (w,z,y,&) has the principal symbol

P 0,,9,€) = nlaa(0,0,2,) 1+ (s 0, 0,2,) 7)™
0(x)0(y) J(w, z,y)H (v,w, z,7) ) (63)

v=0

Plugging (62) to (61) and using Fourier inversion formula we obtain
Ij‘(lﬁ, kQ, Z, y) = (64)
(27)2k1_(1+j1+j2)k2_(1+l1+l2)(Twcg)((kz —ki)er, z,y, — (k1 + k2)ei)

where F,, denotes the Fourier transform in w-variable,

fwcg(n,x,y,ﬁ)z/ el (w, z,y, €) dw
R2

As the symbol cg(w,x, y,€) is C*° smooth and compactly supported in
(x,y,w)-variables, we see that

4

1Dyl (w,x,y,8)| < Co(l+ €))7

for all || > 0, where C,, is independent of (w,x,y) € R®. This implies after
n integrations by parts
1

—j1—jJ2—13,—41—€>—1 1 _ -n
T+ [k + B2 £ (1 Ik = ke

|I;(k17 k27 z, y)| S Cn

28



for all n > 0. By considering separately the cases |k; — ka| < |k1 + k2|/2 and
|k1 — ka| > |k1 + k2|/2 one deduces the estimate

| L(ky, kg, 2, y)| < CL(L+ [k — ko) (14 [k + ko) 49270720 0> 0.(65)

This proves the estimate (46).
We denote 0 = (0,0,0,0). Since for j # 0

Lk, kay 2, y) = O((1+ [ky + ko) (1 + [y — ko) ™).

Thus, in order to establish (47) it is enough to consider Io(ky, ko, x,y). To
obtain the leading order asymptotics of Iy, we consider the contributions of
the principal symbol and the lower order remainder terms separately. Write

cg(w’ ‘/E’ y’ 6) = cgp(w’ ./I;, yi 6) + c?"(w’ ‘/E’ y’ 6)’

where ¢, (w,z,y,£) € Sig(Rﬁ x R?) is smooth and compactly supported in
(w, z,y)-variables. Thus |D%c,(w, z,y,&)| < Cu(1+|€]) 2 for all multi-indices
« and we infer as above that

|(Fuwer) (ke — kr)er, z,y, — (k1 + ka)eq)|
= O((1+ |k + k2) (1 + [k — k2))™™), n>0.

Thus the contribution of ¢, to Iy is estimated by the right hand side of (47).
Hence we need only to consider the principal part. To this end, we substitute
the principal symbol (63) to formula (64) to get

IO(kl,kQ,CC,y) = (66)
= 4n’ky 'k, 0(2)0(y)-
M(Z1(0,w,x,y))HO(O,w,x,y)J(w,x,y))
- Fu - b — F)er) 4
( 1+ |k + ko |2| (K4, (0, w, z,y))~1)tes |2 ((k2 1)e1)
+O((1+ [ky + ko) (1 + |ky — ka|)™), n > 0.

Since for a = |((x};(0,w,z,y)) " )e;1|? it holds for large k; + ko that

1 1 = . ,
= ke ko) (—q) I
1+ (ky + k2)2a (ki + ko)? j:o( 1+ k2) ™7 (—a)™,
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we get after integrating by parts n times in w-variable in (66) the needed
formula (47) with

Ron(z,y, k1, ko) = 47k k3 (1 + |k + ks [?)- (67)
u(zl(O,w,x,y))HO(O,w,x,y)J(w,w,y)>
'Fw k — k (&
( (7, 0, w2, 9) el (k2 = k)e)

by considering separately the cases |ky — ko| < |k + ko|/2 and |ky — k| >
|k1 + ko|/2. Moreover, when y = z and k; = ky = k we have that x!; is
unitary, J(w,z,z) = 1, det (7' (v, w,z,y)) = i and %(’U,’w,.f,.’b)'v:o = 2.
Thus, formula (66) implies that

1 1
Ron(z, 3,k k) = ELM(ZI)W dz

which verifies (48). Thus lemma is proven. [

Lemma 4.2 In the decomposition (45) the random variable b™(x,y, k) sat-
isfies a.s. the condition

0™ (2,9, k)| < Cru(L+[K)T7™, 2,y €U, k>0 (68)
where the constant Cy, depends only on W, "' (D)-norm of q(z,w) and m.

Proof. By (44), || B (- —2)|lwe(p) + ||®F (- —y)l[wiee(p)y < ckM? for k > 1,
x,y € U. This implies
6™ (2, y, )| < lally-22(py ([1@h(- —2) = @F (- =) [wroo() | | Pr (- =y)|[wre(p) +

#1187 =) [wree(o) [ ) = BP (- —2) o)
< CTIanHWO_I’l(D)(l + k)

Here W; "'(D) denotes the closure of smooth functions in the corresponding
norm. This proves the lemma. [

The above results have the following corollary that plays an important
role in sequel.

Corollary 4.3 Assume that ki,ko > 1 and x,y € U. Then
E (|Re (K2 (2, y, k) Re (B30T (3, 3, k2)))) < Ca(1+ [k — ko)™, 1> 0,

where C,, is independent of x,y € U, and one may replace one or both of the
real parts by imaginary parts.
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Proof. Observe that v (z,y, k1) = u*(x,y, —k1) where u; is exactly like
u1, the only difference being that the coeflicients f; have been replaced new
coefficients having the same absolute values as f;. Thus for ki, ks > 1 the
exact analogue of the proof of Lemma 4.1 yields for abritrary n > 1 that

‘E(k‘%ﬂ{n(.’lj,y,kl)k§UT($,y,k2))‘ < |E(k%u§”(x,y,k1)k§ﬂ§"(x,y,—kQ))\
< Co(1+ [y + ko)™

Moreover, we obtain directly from Lemma 4.1
|E (k{ul (,y, ko) k3ut (,y, k)| < Cu(l + [k — ko)

When kqi,ks > 1 we have that |k; + ko|™ < |k; — ko|™™. The claim now
follows by simply observing that we may recover all the products ac, ad, bc
and bd as linear combinations of real or imaginary parts of the numbers
(a +b)(c £+ id) = (ac F bd) + i(bc £ ad). This proves the claim. [

5 Behaviour of the second term

In this quite long section we consider the second term uy of the Born series for
the solution u. We first derive formulae for the second moment of uq(z, y, k).
They are rather obvious in the formal level but need to be justified in our
situation. The second subsection is devoted to estimates, which show that wu,
is small compared to u; as k — oo, at least in the level of second moments.
The analysis at this point turns out to be surprisingly involved, and we obtain
only estimates in the mean with respect to x and y, which, however, suffice
for our purposes.

Later we will need additional information on the tail behaviour of the
distribution of us. This is the topic of the third subsection, which provides
Wiener chaos type exponential tail estimates for suitable integral means re-
lated to the second term. Finally, Theorem 5.12 applies these results to
provide the desired decay along the whole spectrum of frequencies: one has
that almost surely limy_, o, k*|us(z,y, k)|? = 0, which holds true in the mean
sense which respect to x and y.

5.1 Representing the covariance of the second term
Our first aim is to obtain formulas for E |uy(z,y, k)[%. As uy is bilinear with
respect to ¢ we need to be able to compute expectations for products of four
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Gaussian variables. The following Lemma is a special case of the well-know
formulae but we include the simple proof in Appendix B for the readers
convenience.

Lemma 5.1 Assume that (X1, X2, X3, X4) is a real centered Gaussian ran-
dom vector with the covariance structure E X;X; = b;; for i,5 € {1,2,3,4}.
Then

E X1 XoX3Xy = bi1gbss + b13bos + b14bas.

In order to apply the above to uy we first consider us . that is obtained by
replacing ¢ by the standard mollification ¢. := g*p., where p.(z) = ¢~ ?p(x/¢)
and p € Cg°(R?) is radially symmetric function that satisfies [ p(z)dz = 1.
Let us denote the operator that corresponds to the mollification by M, : f +—
f * p-. The covariance operator of ¢. equals C. = M.CM,. This entails that
C. has a smooth compactly supported kernel, and hence we may obviously
write

E [us,e (2, y,k)|* = /D e /D Qi (x — 21) P (21 — 22) P22 — y) Pr(x — 21)-

: (I)k(gl - 22)(I)k(§2 - y)E(qg (21)%(22)%(51)%(52)) dz1 dzo dZy dzy

whence an application of the previous lemma yields that

E |u2,€($? Y, k)|2 =

/D 5 ./D(Pk(x )Pz — )8k (20 — ¥)Be(T — ) Br(Br — 5) Bk (Ba — 3)-

- (05(,21, 29)Col1, 52) + Col(21, 2)Cu(E1, 22) + Caa, 21)05(22,22))-
. ledZZ déldgg

We aim to take the limit ¢ — 0 inside the above integral, whose integrand
we denote by I.(z1, 22, Z1, Z2). The same integrand with C' in place of C, is
denoted by I. Clearly lim, ,oC.(z1,22) = C(z1,29) for almost all (z1, 23).
Moreover, clearly for any p > 1 the norm ||C¢||z»(pxp) is uniformly bounded
with respect to ¢ € (0,1). One also has that ®(-) € L}  for all p € (1, 00).
Hence, as D is bounded, we may apply Holders inequality to deduce that
|l Ze|l2(psy < C' < oo independently of €. This shows that the functions I,
are uniformly integrable, and an application of Vitali’s convergence theorem

yields that

lim E\ug’g(x,y, l{])‘Q :/ [(21,22,21,22) ledZQ déldgg
D4

e—0t
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It remains to show that im E |ug (7, y,k)[> = E|ua(z,y, k)% To that
end, note first that lim._,o us (2, y, k) = u(z,y, k) almost surely, as we have
lim. 0 ||ge — ¢||w-s» = 0 for any 6 > 0 and p > 1 almost surely by Theorem
2.3 (compare the proof of Lemma 5.8 below). Let us also observe that there
is an analogous formula to E |ug.(z,y, k)|*, which is similar to (69) and uses
an analogue of Lemma 5.1 — there just appear fourfold products of C.-terms
and longer products of Hankel functions. Just as before, an applications
of Holder’s inequality shows that E |us(x,y, k)|[* < C < oo, uniformly with
respect to €. Hence we may apply uniform integrability again to obtain

E |ug.(z,y, k)\2 = lim E|ug.(z,y, k)\2 = / I(21, 29, Z1, Z9) dz1dzo dZ1dZs.
=0t D4

5.2 The estimate for the second moment

Let z,y € U. By the last formula of the previous subsection there is the
equality

E|u2(x,y,k)|2 = (69)

/D 5 ./Dq)k(a:  2)Bu(1 — 29) 0k (25 — 1) Bk (@ — 51 )Bk (1 — 5) Bk (B — 1)

(0(21, 22)0(21, 22) + 0(21, 22)0(21, 2’2) + C(Zl, 21)0(22, 22)) ledZQ ledZQ
= Jl + J2 + JQ

where J; corresponds to the term involving the factor C'(z1, 22)C(21, 22), and
Jo, J3 are defined accordingly. We will estimate the right hand side of the
corresponding equality that is obtained from the above one by integrating
both sides with respect to z and y over the measurement domain. This
will be done separately for the terms J;, + = 1,2, 3. The main result of this
subsection is Theorem 5.5 below.

We begin with Ji, since this is the easiest one, and it also gives an idea
of the techniques used for the more unyielding terms .J, J3. For that end, we
use in addition to the operator Hy defined in formula (23) the operator

Tu(x) = / C(z, 2)u(z) dz.
D
We also recall a localized version of the classical estimate of Agmon [2]:

|| Hi || 22(B(0, )~ 22 (BO,R) < ¢(R)k™" for R >0 (70)
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(c.f. [37] for a simple proof of this result).

Lemma 5.2 Assume that 2 < p < 4. For any ball B(0,R) C R? there is
¢ =c(R,p) < oo such that

H(I)kHLP(B(O,R)) < ck™'? forall k > 1.

Proof. By using the asymptotics |®(s)| < c(k|s|)~*/? (which is fairly crude
near the origin) we obtain

R R
||®k¢||;l[)/p B(0.R S |(I)]c(7')|p’f' dT S CPk—p/Z SI_P/Z dS.
(B(0,R)) 0 )

O

The estimate for J; is contained in the following lemma. Observe, that it

does not deal with fixed z,y € U, but rather integral averages of the second
moment over (z,y) € U x U.

Lemma 5.3 There is a constant ¢ > 0 such that for all k > 1 it holds that
[Tl i xy < k>

Proof. Denote b(21,22) = C(21,22)Pr(21 — 20) for 21,20 € D and let ¢ €
(0,1/2). By Lemma 5.2 we have for suitable Ry > 0 that

[ [ 10— )P < |0 @y < 1R,
D JD

Moreover, by Proposition 2.2 it it clear that ||C(z1,22)||r(pxp) < oo for
all p < oo. Let us denote by B the operator with the kernel 5. By the

Holder inequality we can estimate for Hilbert-Schmidt norm of the operator
B:L?(D) — L?(D) by

1/2
1Bllus = ( [ \b(zl,z2>|2dz1dz2)
D JD

1/2 B
< (NOPIgasrer oyl el = VP llprsememy) < ek M2, (71)

Finally, we denote the kernel of the operator H,BH}, by a(x,y) for z,y € U
and combine (70) together with (71) to estimate

/ / (2, )| dedy = / / ale,y)Pdady = | HuBH, | <
UJU UJU
< (||Hk||L2(U)_>L2(D))2(||B||H5)2(||Hk||L2(D)_,L2(U))2 < Ck™°.
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The above proof does not directly extend to estimate J, or Js, since they

contain cross-terms which do not allow us to write the integrand as square of a

kernel. However, the same idea works after we make an asymptotic separation
of the variables in the cross terms, as given by the following proposition.

Proposition 5.4 Fize > 0. There in a positive constant C(g) such that for
any k > 1 one may decompose the covariance in two parts

C(Zl, 22) = Sk(Zl, 22) + Rk(Zl, 22) (72)

with supp(Sk), supp(Rr) C D x D, and such that for z1,z9 € D one may
write

Sz = [ eBnc (6, 0) (73)
(61162)€R4
where the positive measure uy satisfies

/ dun(€1, &) < cle)ke. (74)
(€1,82)€R?

Moreover, given any m,£ > 1 the remainder term Ry satisfies
/ |Ri(21, 25)|™dzrdzy < (e, m, 1)k™% (75)
DxD

Proof. According to Proposition 2.2 we may write
C (21, 29) = co(21, 22) log |21 — 22| + 71(21, 22),

where ¢y € C3°(R*) and the Fourier transform of r; is integrable over R*.
Hence, as soon as we prove the decomposition for the function c¢q(z1, 22) log |21 —
2o/, the term 71 may be immersed to the term Sy, and we obtain the desired
decomposition. We thus consider only the logarithmic summand.

Recall that (in dimension 2, see [17]) F(log(1/]-])) = co|&|72+c1¢, where
the first term is understood in the sense of a Hadamard principal value. Let
1 € C3°(R?) satisfy ¥(z) =1 on B(0,2 + 2diam(D)). One obtains

F(plog(1/| - ) = (&) +v2(E) €], (76)
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where 1)1, 19 are smooth, 1, is compactly supported, 1), is supported outside
the origin and satisfies ||1)2]|00 < C. Let (ds)s>0 be a smooth approximation
of delta-distribution so that [z, ¢ =1 and 55(5) = (Z((Sf). We assume that ¢
is radially symmetric and decreasing with supp(¢)C B(0, 1). Let us write

A(z) = ¢5(2) * (¥(2) log(1/]z])) and  B(z) = ¢(2)log(1/]z]) — A(2),

where ¢ has the value
d = exp(—k°).

Finally, we choose
Sk(21, 22) = co(21, 22) A(21 — 22), (77)

which also automatically defines the remainder term Ry, in the decomposition
of ¢y(21, 22) log |21 — 23]
We first verify that Sy satisfies (73). For k > 1 we have

Al = [ 102(6) + va( el lBlexp(—k)6) de

€12 /°° dt
< c+c/ d¢ <c+c2n
gz1 1+ lexp(—k)¢[? 1 t(1+ exp(—2k*)t?)

+ / N U e
= CcTC — % CK™.
exp(_ks) t(l + t2) o

Hence the (4-dimensional) Fourier-transform of the function A(z; — z) is
a measure with total variation less than ck®. Thus the same estimate holds
true (with possibly different ¢) for the function Sy, as the Fourier transform
of ¢o(z1, z2) is obviously integrable. The inverse Fourier transform formula
now yields the representation (73).

Let us next treat Rg. Since t(z; — 29) = 1 for 21,29 € D we have
Ry (21, 22) = co(21, 22) B(21 — 22), whence it is enough to show for all m, ¢ > 1
that

|B(2)[™dz = o(k™*). (78)

Denote f(z) = 9 (2z)log(1/|z|) and fs(z) = (¢s * f)(2), so that
B(2) = f(2) = fs(2).
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In order to estimate B(z) we use the fact that supp(¢) C B(0, 1) and assume
first that |z| > 2v/6. The very definition of convolution yields that

c
f(z) = fs(z)] < sup [f(w)—f(2)| <6 sup [Df(w)| <5 sup —
w2/ <6 w2 <5 jw—z| <6 |W]
< 2eV/3.
Hence (recall also that 1) has compact support)
/ B(2)["dz = c6™'2 = cexp(—mk® /2) = o(k~) (79)
|z|>2v/8

for all m, ¢ > 1.
Next, if 26 < |z| < 2v/§ we clearly have |fs(z)| < log(1/|2/2|) and for
|z| < 20 it obviously holds that |fs5(2)| < |f5(0)]. One has

£5(0)] < (0/52)/<510g(1/|2\)dz < clog(1/9).

Moreover, [, log™(1/]z[)dz < Cu?log™(1/u) for u < 1/2. By combining
these facts with the crude estimate |f(2) — f5(2)| < |f(2)| + |f5(2)| we see
that

/ i |B(2)[™dz < CSlog™(1/6) + 6*log™(1/6) = O(k™) (80)
2[<2V6

for all m, ¢. U
We are now ready to extend Lemma 5.3 to cover the whole second mo-
ment.

Theorem 5.5 For any € > 0 there is the estimate
||]E ‘U’Q(xﬂy: k)|2||L1(U><U) S Ck75+6 fOI‘ k 2 1.

Proof. By Lemma 5.3 it is enough to consider the term J, that corresponds
to the cross term
C(Zl, 22)0(21, 22),

as the analysis of the second cross term Jj3 is completely analogous.
Fix ¢ € (0,1/8) and let £ > 1 be arbitrary. According to the Proposition
5.4 we may write

C(#1, 22)C (21, 22) = Sk(21, Z2) Sk (21, 22) + h(21, 21, 22, Z2),
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where
h(z1, 21, 22, Z2) = Ry (21, 22)Sk(Z21, 22)+Sk (21, 22) R (21, 22)+ Rk (21, Z22) Ry (1, 22).

Let us first treat the contribution of the part that corresponds to h. By (73)
and (74) one has || S|l < Ck*. Hence (75) and the Holder inequality yield
that

Ihllzops) = o(k™) (81)

for all p,£ > 1. We shall denote by N the operator on L*(D x D) with the
kernel

n(z1, 21, 22, Z2) 1= @y (21 — 22) Pr(Z1 — Z2) (21, 21, 22, Z2).

The obvious higher integrability bounds for the function ® (21 —z9)®x(Z1 — 22)
and (81) enable us to estimate the Hilbert-Schmidt norm of the operator N:

INllas = [Inllz.oe = o(k™) (82)

for all £ > 1.
Define the operator R : L?(U) — L?*(Dx D) that has the kernel r(zy, Zo, y),
where

r(22, Z2,y) = Pr(20 — y)Pu(22 — ¥).
By e.g. estimating the Hilbert-Schmidt norm we see easily that
| Rl 2@y~ r2(pxp) = O(1) (83)

with respect to k (actually, by a more careful analysis one obtains the esti-
mate O(k~3/2), but we shall not need it)
The term corresponding to A may be written in the form

w(x,y):/D.../D@k(x—zl)ék(zl—zQ)ék(zg—y)-

. @k(.T — él)q)k(él — 22)¢k(22 — y)h(zl, 21, 29, ZQ)dzleQ déldgg,

whence we observe that w is the kernel of the operator R'NR, where R’ is
the transpose of the operator R. Hence

[wllz2@xoy = IR NRlls < IR[Nllzsl Bl = o(k™) (84)
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for all £ > 1 by (82) and (83). A fortiori, as U is bounded we obtain for any
{>1

[w|| 2wy = o(k~°). (85)

We consider the term containing the product Sk(z1, 22)Sk (21, 22). By (73)
we may write

Sk(Zl, 52)516(21, Z2) = /( . eifl-2161'52-2261'53-51ei§4-Z2d'ulk(€1’ fQ)d,uk(fg,, 64)
§1,...,§4 €R

and the corresponding part of Jo may be written in the form

W(.’E, y) = / H(‘T’ Y, 515 e a£4)d/j’k(€1; 52)d/1’k(§3a 64);
(€1,--,€4)ERS

where

H(‘,L'ayagla"w@l) (86)
= / / O (z — zl)eifl'“(bk(zl — zg)ei@"”@k(zQ — y)dz1dzy
pJp

X / / (I)k(.’lf — Zl)eiég-:ﬁq)k(gl — 22)6i52'52q)k(§2 — y)d21d22
pJp
According to (74) we obtain

IWllzrwxoy < (c(€))’k*  sup  H(, &, &)lwxey. (87)

(fl""5£4)ER8

By definition one has H(x,y,&y,...,&) = HyHy, where

Hl(xa Y- 54)
= / / Bp(z — 20)e Dy (21 — 22)e%4 2Dy (29 — y)dz1d2s
pJD

and H is defined analogously from (86). As in the proof of Lemma 5.3 we
see that the Hilbert-Schmidt norm of the kernel

t(21, 20) = €5 D (21 — 29)e"?
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is bounded by Ck*~'/?, uniformly with respect to all &. Hence, again as in
the proof of Lemma 5.3 we obtain the uniform (in the &;) estimate

I H1( 5 & e s E)lleuxy < ck™2,

Since a similar estimate is valid for Hy we obtain by the Cauchy-Schwartz
inequality that ||H(-,-,&1, ..., &)L @wxv) < ¢k°, and combining this with
(87) yields finally

Wl wxoy < Ok*7°,

This proves the claim since we may take € > 0 as small as we wish. [

5.3 Wiener chaos type estimates for the tails

Here we establish Wiener Chaos type tail estimates for the second term. This
is needed in order to be able to provide estimates for the second term over
the whole set of frequencies in Theorem 5.12 below, which is the key result
of whole present section. In principle, these results can be deduced from
the well-known estimates for random variables belonging to given levels in
the Wiener Chaos decomposition (c.f. e.g. [30, Chapter 3.2]). However, to
make all the details transparent, we give a self-contained treatment based
on finite-dimensional approximation. Proofs of certain basicly well-known
lemmata are presented in Appendix B.

Before we continue, it is perhaps of interest to note that there is an
obvious temptation to consider us as a bilinear form on a suitably chosen
Sobolev space, and apply well-known tail estimates for the norms of Banach
space valued Gaussian random variables. However, this approach seems to
yield estimates that are far from what is needed; actually the averaging over
z,y € U in the previous subsection does the trick.

For random variables Y we shall denote ||Y||, = (E|Y[P)}/?. Let us start
with the tail behaviour of a quadratic form of Gaussian variables.

Lemma 5.6 Let Y = szzl a;x Xk X, where the aj, are complex constants
and (X1,...,X,) is a centered Gaussian vector in R*. Then 'Y satisfies the
distribution inequality

)
81l

PY] > A) < 12exp( for any A > 0, (88)

where the right had side is interpreted as zero if Y =0 a.s.
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Observe that the above estimate does not depend on n.
Proof. See Appendix B. O

Let us say that a (complex-valued) square-integrable random variable X
belongs to the class A if X satisfies the distribution inequality of Lemma 5.6
(observe that according to our interpretation X € A also in the case where
X vanishes almost surely).

Lemma 5.7 Let X, € A for k =1,2,... and assume that X, — X almost
surely as k — oo, where the limit random variable X 1is finite almost surely.
Then X € A.

Proof. See Appendix B. [
The term uy is definitely not a finite bilinear form of Gaussian variables,
but it may be approximated by such ones.

Lemma 5.8 For each k > 0 there is a sequence of finite bilinear forms
Yy of independent Gaussian variables such that almost surely us(x,y, k) =
lim; o Yj all z,y € U.

Proof. Recall that
us(z,y, k) = / / i — 21)a(2) B (21 — 2)a(22) By (22 — y) derdz
D JD

with the proper interpretation. In other words, we may express us as the
duality pairing
uz(z,y, k) = (A, 9),
where
A=z —-)q() and  g=Hy(q®(- —y))

Above the operator Hj is defined as before. Let now R > 0 be such that
UUD c B(0,R). Now Hj : Wy "*(B(0,R)) — W"2(B(0,R)) directly
from the Fourier-transform definition of Hy. Let us denote by u%(x, y, k), A,
and g, the corresponding quantities that are obtained as we replace ¢ by
the finite-dimensional approximation ¢, provided by Lemma 2.4 in the case
e =1 and p = 2. Then u%(z,y, k) is a finite bilinear form of components of
a Gaussian vector and ||\, — Al|w-1.2 — 0 as n — oo. Moreover, we have
lgn — gllw12 — 0 and by duality it follows that v (z,y,k) — ua(zx,y,k)
almost surely (independently of z,y). O
The combination of the last two lemmata give us
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Corollary 5.9 For each k > 0 and z,y € U we have uy(z,y,k) € A. O

We shall denote for k£ > 0
20 =K [ [ us(o., ) Paody.
vJu

Our aim is to estimate the tail distribution of Z(k) by establishing bounds
for its moments. Write for that end

Z(k) = k* /U /U b(z, y)H*(x,y)dzdy,

where b(z,y) = E |uz(z, y, k)|* = ||ua(z,y, k)||3 and

H*(z,y) = |uz (@, y, k)|/l[uz(z, y, ) |2

in case||uz(x,y, k)|l2 > 0, and set H(z,y) = 0 otherwise. Then we have for
all z,y € U that

H(z,y) € A and E|H(z,y)|* < 1.
Lemma 5.10 IfY € A and ||Y||s <1, then
V2]l <1000 - ((2n))/" as n=1,2,....

Proof. Recall that we have P(|Y| > \) < 12exp(—)\/8). Hence

E(YP™) = 2n / N AP(Y] > A)dA < 24n / NE-Lg-Magy
0 0
= 24n8”"T(2n) = 12 - 8*"(2n)..

Just observe that 121/764 < 1000. O
We are now prepared to bound the moments of Z(k). An application of
(an integral form) of Minkowsky’s inequality yields that

1Z(8) ] < &' / / bz, ) I (2, ) lnddy < 1000 A((20)1)™,

A:k4//|b(x,y)\dacdy.
vJu
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In the above (and similar) computations we may use the Fubini theorem,
as the needed joint measurability is a consequence of continuity of uy with
respect to k. Assuming that A is finite we thus have

E (Z(k)/A)" < 1000"(2n)!

so that

E cosh(%\/ (k)/10004) <y 27"

n=0

Thus Eexp(:4/Z(k)/10004) < 4 and P(3/Z(k)/10004 > X) < 4e ™.

Hence we have proven the estimate

P(Z(k)> ) < 4exp(——\/)\/ )s

which is trivially true also in the case A = oc.

An application of Theorem 5.5 from the previous subsection yields that
A < Ck™'/? (actually the decay k°~' is also true, but we do not need that
here). By combining this with the just proven inequality we obtain

Proposition 5.11 There is a constant C' such that for all k, X > 0 there is
the estimate

P(k4/ / lus(z, y, k)| ?dzdy > \) < dexp(—CA\Y2EL*),
vJu

We are finally able to settle the asymptotics of the second term.
Theorem 5.12 Almost surely limy_,o k* [, [, [ua(, y, k)|*dzdy = 0.

Proof. We first practice uninteresting technicalities to verify that there is
an index m; > 0 such that the simple estimate

|—UJ2(ng y, k)| < CA+ k)T (89)

holds, where C' is uniform over z,y € U and k > 1 for any fixed realization of
the potential g. Towards (89), recall that %Hél)(z) = —Hfl)(z), and we see

that %Hél)(k|z|) = |2|H® (k|z|). ;From this and the well known asymptotics
of Hankel-functions and their derivatives is easily verified that

||—‘I’k( VOl a-1r2wy < k™, k>1
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with some ¢;. On the other hand, from the definition of H; we see that
Hy = k™?V,H\Vi);, where Vj is the dilation operator (Vif)(z) = f(kz).
Obviously £Vj, = k=*(z - V)V, = k~'v(z - V), and we may compute

0 1
i From asymptotics of Hankel functions, we see that || Hy| |H3(B(0,R))_>Hs (B(0,R))
grows at most polynomially in £ for any s and R > 0. Hence we infer that

0
I %Hk ”HS(B(O,R))—>Hs+2(B(O’R)) < ckb

with some £5. All in all, using the notation of Lemma 5.10, we have that both
1(Z)? gl 172y and ”(%)j)\”HO_IN(U) grow at most polynomially for j = 0, 1.
As us = (), g) we obtain (89).

Obviously we also have Z (k) < C(w)(1 + k)™ for some my > 0, whence
the boundedness of the domain U and the Cauchy-Schwartz inequality yield
an integer ¢ > 0 so that

d%Z(kﬂ < C(1+k)*

Choose k; = j/(*+2) The Proposition 5.11 yields for every e > 0 that

ZP(Z(kj) >¢) < ZQexp(—051/2jl/(4(4+2))) < 0o,

7j=1 7j=1
The Borel-Cantell lemma then shows that

lim Z(k;) =0 almost surely.

Jj—o0
On the other hand, if k; < k < k;j4; we have

\Z (k) — Z(k;)| C(1+ kj1) (kjsr — ky)
Cljﬁ/(2+2)((j + 1)1/(E+2) . jl/(ﬁ+2))

C//je/(Z+2)j—1+1/(Z+2) — C«//j—l/(z+2) -0

IANINIA

as j — oo, which finishes the proof of the Theorem. [
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6 Convergence of ergodic averages of data

Now we are ready to analyze the measurement m(x,y,w). First, since the
function flK k*|us(z,y, k,w)[* in Definition 7 is non-negative, the exis-
tence of the distribution limit (7) is equivalent to the existence of limits

(90)
W) = gim s [ ([ [ Wte e o) do ) an

for ¢, € C§°(U). Moreover, if these limits exists, knowledge of measurement
m(z,y,w) is equivalent to knowing M (¢, 1, w) for all ¢, ¢ € C§°(U). Observe
that

M(Cbﬂﬁaw) = <m(= "w)a PR 1/)>

In this section we will finally identify the outcome of the measurement in
a form that contains explicitly the unknown parameter p(z). At the same
time this will show that the measurement is well-defined. All this is contained
in the following Theorem.

Theorem 6.1 Almost surely the limit (90) exist for every ¢,¢ € C§(U)
and has the value

M(,,w) = / / Ro(z, y) (2 (y) dady, (91)

where Ry(x,y) is a smooth function on U x U, given by the formula (47) with
m = 2.

Recall that we have the relation Ry(x,y) = limy_,o k* Ro(x, y, k, k), where
Ry(z,y, k, k) is defined by the formula (67) in Section 4. The values Ry(z,y)
can be expressed in terms of the function p, which shows that the above
result reduces the determination of p to a deterministic problem.

Before giving the proof of we first describe the philosophy behind Theorem
6.1 and establish some auxiliary results. Using decomposition (45) with
m = 2 we write

Us(.’E, Y, k) = U’%(xa Y, k) + U’Q(xa Y, k) + UR(iana k)a
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where up = b® + (uz + ug + ...) stands for the rest term. The Fourier and
stochastic analysis of the previous section actually shows that the second
term is negligible. The contribution of the rest term ug is likewise zero,
which is is a consequence of Theorem 3.5 and Lemma 4.2, which actually
were results of purely deterministic analysis. Finally we shall establish below
an ergodic behaviour for the first term u{* with respect to k, that is based
on Lemma 4.1 from Section 4, which in turn were obtained by a microlocal
analysis of the covariance operator.

To be more specific, the analytic estimates of Section 4 imply that the
expectation E k*|uT(z,y, k)|? tends uniformly over z,y € U to a limit as k —
oo. In addition, the same estimates also show that the terms kuf(z,y, k)
and k2uT(z,y, ky) become asymptotically independent as ko grows towards
infinity (see the figure below). This makes us to expect that one might recover
limy o0 E [k*uT(z,y, k)|? as a suitable ergodic average, in view of the strong
law of large numbers. In what follows we will make this precise.

lui(z, , k, wo) |k?

VAT AN A AV ARV

(I (I

Almost uncorrelated

We start by recording a simple lemma.
Lemma 6.2 Let X and Y be zero-mean Gaussian random variables. Then

E(X>-EXH)H(Y?-EY?)=2(EXY)%
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Proof. By scaling one may obviously assume that EX? = EY?2 = 1. De-
note EXY = cosa € [—1,1]. Then (X,Y) ~ (X, cos(a)X + sin(a)Y”) holds
in distribution, where Y’ is an independent copy of X. The result follows
now by a straightforward computation. O

We recall the law of large numbers in a form that is suitable our purposes.
The following is obtained e.g. as an immediate corollary of [10].

Theorem 6.3 Let X;, t > 0 be a real valued stochastic process with contin-
uous paths. Assume that for some positive constants c¢,e > 0 the condition

‘EXtXt—I—T| S C(]_ —+ 7’)76

holds for all t,r > 0. Then almost surely

1 [k
—/ Xydt -0 as K — oc.
K Ji

However, we are not able to apply this directly since we do not possess good
enough estimates for covariances Eul*(z1, y1, k1)ul* (29, yo, ko) for arbitrary
x1,T2, Y1, Y2 € U. For this reason, in the following Proposition we show that
the classical argument can be modified to yield the ergodicity in our case.
For reader’s convenience, the details of the modification are presented.

Proposition 6.4 Almost surely one has for all ¢,y € C§°(U) that

dm s [ ([ ] e ot dey) a
= [ [ Ratamota)viy) dody.

Proof. Recall that according to Lemma 4.1 we have
Ry(z,y) = lim E (K*uf"(z,y, k)[*)-
Let us define for £ > 0 the random variable X (k) by setting
Xw) = [ [ (@ BE — B, 0o dedy
The convergence of k*E |uT(x,y, k)| = R (z,y) is uniform with respect to
x and y, according to Lemma 4.1. Hence it is clear that the claim follows as

we show that limg o o7 [ X (k)dk = 0.
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For that end we write

Y(z,y, k) == k*(jui*(z,y, k) [ — E |u" (2,9, k)[*)
= k4 ((Re UT(.T, Y, k))z - E (Re UT(.Z‘, Y, k))2)+
+(Im UT(.T, Y, k))2 —E (Im ugn(x7 Y, k))2)) :

Now Corollary 4.3 together with Lemma 6.2 yields that

C
E|\Y(z,y, k)Y (2,9, ko)|? < —————,
| ( ) 1) ( Y 2)| = 1+|k‘1—]€2|2
which estimate is uniform over z,y € U. Given any positive integer m > 1
we thus have

Py 2

/ Y(z,y, k)dk
1

1

E
m2—1

1 m2 m2
= (m2 —1)2 /1 /1 E(Y(z,y, k)Y (2,9, k2))dk1dky

1 m* o pm C C
< - S < —
= (m?2— 1)2/1 /1 2 —kz\2+1dkldl‘“2 “m2 -1

where the constants are uniform with respect to z,y € U. In other words,
by denoting by {2 the underlying probability space we have

2

1 m )
I /1 Y (2, y, k)dk o) < C(m? —1)71/2

Hence an application of the Minkowski inequality (and the boundedness of
the functions ¢ and ) shows that

1
m2—1

o0 2
1 m
E (§ j|m2_1/1 X(k)dkP) < 00,
m=2

which immediately yields the partial result

I / X (k)dk|| 120y < C(m? —1)7"2.
1

A fortiori,

. 1
lim
m—oo m2 — 1

m2
/ X(k)dk =0 almost surely; (92)
1
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that is, convergence for an increasing sequence of K:s. In order to obtain the
full result we assume that m? < K < (m+ 1)? (now m = m(K)) and argue
in a standard manner

o KX(k)dk— 21 m2X(k)dl<:|
=y ;

om + 1
< (mjl — |/ X(k dk|+—|/ X (k)dk|.

As K — oo the first term tends to zero by (92). The second term is bounded
by the random variable

1 (m+1)?
Z(m) = / X (k)| dk.

m2 —1

In order to estimate Z(m) we observe first that ||Y (x,y, k)||r2(q) is bounded
by a finite constant, let us call it A, that is independent of x, y, k. Hence the
Minkowski inequality yields

(m+1)?

C
1Z(m)|| 20y < CAdzdydk < —

This forces E Y~ , |Z(k)|* < oo, whence limy,_,o Z(m) = 0 almost surely.

Together with the previous estimates this proves the claim and finishes
the proof of our Theorem for fixed ¥ and ¢. That the claim holds almost
surely for arbitrary ¢ and ¢ is easily deduced by first considering a dense
denumerable set G of functions in C§°(U). In this context it is useful to
observe that we actually get a variant of the statement of the Proposition,
where 1, ¢ are replaced by ||?¥||«||®]|cc On the right hand side, and lim by
lim sup on the left hand side. [

We are ready for

Proof of Theorem 6.1. We simply collect our previous estimates for the
terms in the decomposition

Us(.’L', Y, k) = UT(@", Y, k) + UQ(.’E, Y, k) + UR(xa Y, k)
Let ¢, € C§°(U) be given. As 9 and ¢ are bounded, Theorem 5.12 verifies

that almost surely

lim / / K lus(z, 9, K)|20(@)i(y)dady = 0. (93)

k—o0 U
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In a similar vain, Theorem 3.5 and Lemma 4.2 show that (93) remains true
if ugy is replaced by the residual term ug. These estimates can be of course
be averaged over frequencies yielding

dm e [ ([ [0eate o + (09

 un(e, g, k) )p()(y) dwdy) dk = 0.

The desired statement now follows directly by combining (94) and Proposi-
tion 6.4, as the possible cross terms may be estimated with the aid of the
Cauchy-Schwartz inequality in the space [1, K| x U x U equipped with the
weight ¢(z)y(y)/(K—1) if ¢,¢ > 0, and the general case follows immediately
form this. [

7 Conclusion: proof of Theorem 1.4

The results obtained so far (Theorem 6.1 from the previous section) prove
directly parts (i) and (ii) of our main result, Theorem 1.4: the measurements
are almost surely well defined and can be expressed in the form

M($,1,w) = /U /U Ro(e, 9)d(2)b(y)dedy forall ¢,4 € CF(U).

It remains to prove part (iii) of the Theorem, which deals with the recov-
ery of p from the measurements. For that end, recall first that the results of
Section 4 imply that Ry is continuous on U x U. We fix zy € U and a standard
bumb function ¢y € Cy(R?), and choose in the above formula ¢(z)¥(y) =
n* o (n(z — o)) po(n(y — yo)), with n > 1. Since n*o(n(z — z0))po(n(y — o))
tends weak™ (in the sense of measures) to d,,(x)d., (y) as n — 0o, we see that

Lemma 7.1 The measurements M (¢, ,w) for ¢,¢ € C(U) determine al-
most surely the backscattering coefficient Re(x,x) = mo(z, ).

Observe that also the measurements in the above Lemma correspond, in a
sense, to backscattering data.
According to formula (48) in Section 4 the following equality holds

Rg(x,:c)zl/ b (2)dz

2 Jp |:13—z|2'u
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Hence, in order to prove part (iii) of our main result, we are left with a
deconvolution problem: the values of the convolution

Ky(z) = (h*p)(2), h(z) = 57—
2|7

are known in a open set U that has a positive distance to the support of

p € C(R?), and we are to show that this knowledge is enough to recover p.

For that end, observe first that

r 4p?
lalP ot

A

Thus our data determines also the convolutions
1
ALKy (z) = /D m#(z) dz

for p> 1 and x € U. Let us denote
Sr) = ¢ n)de,
|z—z|=T

which correspond to the Radon transform along circles. Fix any z € U. It
follows that we are able to recover the integrals

[ e

72

where Q(t) = ‘;:0 a;t’, p > 0. The support of the continuous function
r — S(z,r) lies in a finite interval [a,b] with a,b > 0, and obviously the
functions of the form Q(1/r?) are dense in C([a, b]). Thus the function S(z,r)
is uniquely determined for all r > 0.

The observation that we just made can be stated in another form: the
data yields the knowledge of integrals of u over all circles that are centered
in the open set U. This is a classical problem of integral geometry, of the
Radon type, which can be solved by a simple manner. Namely, let g(z) =
exp(—|z|%/2) for z € R?, and observe that knowing the integrals over the
above mentioned circles we may compute the values convolution g * y in the
set U. However, g is clearly real analytic and the set U is open, whence we
know g* p everywhere. As the Fourier transform of g is smooth and non-zero

51



all over R?, it follows that we can recover p uniquely. This completes the
proof of our main result. [

Remark 1. We have assumed that the potential is Gaussian and centered.
It is possible to dispense with the assumption that Eq = 0 in Theorem 1.4.
Namely, assume that Eq = p € C§°(D) and denote by gy = g — b the random
potential with zero expectation. Then

E (¢(21)q(22)) = E (g0(21)d0(22)) + p(21)p(22)- (95)

Next we analyze how the above proof should be modified for this case.
Clearly, the fact that ¢ € Wy *P(D) a.s. given in Section 2 is valid. Thus
the results for the direct scattering problem given in Section 3 are valid
without any change, and we see in particular that the higher order Born
terms u3 + u4 + ... do not contribute to measurement (7).

In Section 4, where we analyze the first order Born term, we can obtain
the essential formula (64) just like before. When the term p(z1)p(z2) in
formula (95) is added to the covariance operator, we see that this causes
only a S;5° perturbation for the symbol of the covariance operator C; and

thus also for the symbol ¢ (w, z, y,€). Hence, continuing after formula (64)
just as in the proof of Proposition 4.1, we see that proposition 4.1 is valid
without any change.

Next we analyze 2nd order Born term uy. When the term p(z;)p(22) in
formula (95) is added to the covariance operator we see that E (g(21)q(z2))
has the same form as given before in Proposition 2.2. Using this, we see that
all conclusions given for us in Section 5 are valid.

Since the behaviour of all Born terms uq, us,us,... are same as in the
case where E ¢ = 0 and since by the stationary phase method Eu?(z,y, k) =
o(k—*°), we obtain Theorem 1.4 by finishing the proof as in Sections 6 and 7.

Remark 2. It is interesting to compare (non-) stability of deterministic
and stochastical inverse problems. In Theorem 1.4 the operator 7" is lin-
ear and thus the reconstruction of y requires solving of a linear ill-posed
inverse problem. More precisely, by the observations in the present section,
T corresponds to a Radon transform over circles, which gives a pretty clear
picture of the ill-posedness. This is markedly different to the corresponding
deterministic problems: Let us assume that in addition to the amplitude
lus(x,y, k)| we are also given the phase. Then one can in principle find from
the extended data us(z,y,k), z,y € U, k € R, the solution u,(z,y, k) for
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z,y € R2\ D, k € R, by using analytic continuation. After this, by taking a
suitable limit |z|, |y| — oo with = |z|w and y = |y|w one can obtain from
the asymptotics of the solution the far field data ux (6, w, k). As a final step
the Fourier transform of ¢(§) is obtained from u. (0, w, k) by letting k£ — oo
and keeping (0, w, k) on the manifold k(0 — w) = £ (see e.g. [40, pp. x-
xi|, or [51] for an alternative solution based on exponentially growing plane
waves). The procedure just described is remarkably instable and presumes
considerably more information on data.

Appendix A: Markov random fields

We follow here the monograph of Rozanov [45] and recall in more detail the
relation of local operators Markov random fields.

As in Section 1.2 we consider a bounded domain D C R and a Gaus-
sian centered random variable ¢ having values in D’(D). We simply call ¢ a
field on D. The Markov property of ¢ was defined previously in Definition
1.1. One can also characterize the Markov property in terms of conditional
independence. Recall that of three sub-g-algebras ;, + = 0,1,2 of X the
o-algebras »; and Y, are called conditionally independent with respect to
Y if the conditional probabilities satisfy

P(A1 ﬂ A2|Eo) - P(A1|E())P(A2‘Eo)

for any A; € ¥y and Ay € ¥y, Let 5, SQLS'E be as in Section 1.2. Thus, S; C
D is an arbitrary open subset, So = D\ Si, and S, = {z € D|d(x,05:) < €}.
We have

Theorem 7.2 A generalized random field q is Markov, if and only if the o-
algebras B(S) and B(Ss) are conditionally independent with respect to B(S,),
for any S1, Sy and S, as above.

The above claim follows readily from the definition and basic properties of
the the conditional probability and generalized random variable. We refer
to [45, pp.b4, 56, 97| for the proof and the definition of a Gaussian Markov
fields.

In order to be able to express the Markov property in terms of the co-
variance operator we need to introduce the notion of a biorthogonal field p.
Thus, a centered Gaussian field p on D is biorthogonal to the field ¢ if

E ((g, Y1) (P, ¥2)) = (1, 92), i € C3°(D) ,i=1,2, (96)
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and, in addition there is the equality H,(D) = H,(D). Here, given a field 7
on D and open subset S C D we denote

H,(S) = span{(n, ¢)|¢ € C5°(5)},

where the closure in taken in L?((2), i.e. in the space of square integrable
random variables. By the definition, the biorthogonal function is unique, and
the covariance operator C, can be thought as a (partial) inverse operator of
the covariance operator C, of our original field. We have the following:

Theorem 7.3 If the field g is Markov, then the covariance operator C, of the

biorthogonal field is local in the sense that (Cpipr,P2) = 0 if 11,19 € C°(D)
have disjoint supports.

See [45, pp.112-113] for this fact.

In order to obtain a converse statement we must assume slightly more
than just biorthogonality from the relation between ¢ and p. That is, p must
be dual to q. Let us define H(S) = (.. Hy(S:), where the intersection is
taken over all e-neighborhoods S, of the subset S C D. The biorthogonal
field p is the dual field of q if the equality

Hy(S) = HS(D\ S)* (97)

holds for all open subsets S C D. There are useful sufficient conditions ([45,
Lemma 1-2, pp. 108-109]) for the duality to hold. We then have (c.f. [45,
Theorem on p. 112]) the converse result

Theorem 7.4 Assume that the field p is dual to the field q (i.e. (97) holds).
Then q is Markov if the covariance operator C, is local.

Put together, if the duality holds, then the Markov property is equivalent to
the locality of the dual field.

By using above results, one easily verifies that there are always Markov
fields ¢ on D such that the inverse of the covariance operator C'° ' = C, has
the principal part —a(z)A, assuming that a € C*°(D) satisfies infp a(z) > 0.
Actually, by considering the operator —V - a(z)V, we obtain this statement
easily from the following result in [45].
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Theorem 7.5 Assume that the covariance operator C, of the biorthogonal
field p s a partial differential operator of order 20 > 1 with smooth coeffi-
cients, and it satisfies the coercivity inequality (c > 0)

(@p0:0) > ¢ 1D0l72p): @ € CF(D).
laj<t

Then the field q is Markov.

See [45, Theorem 3 p.129] for this statement.

Appendix B: Lemmata on bilinear forms of
Gaussian variables.

Proof of Lemma 5.1.  Since g is Gaussian, we know that
EX;...Xy) = c/ T1To2324 f (x)dz,
R4

where f(q) = e ®'#%/2 and B;; = b;;. By taking Fourier transform we see
that
0 0 -

As

~ 0 bii&;
_ —(B¢,g)/2 -3 bij&igi/2 1JSJ —bij€&i& /2
= e , e i = e ,
f&) =c 5 >
we may compute derivatives of fat zero and observe that only those terms
are non-zero where every second derivative 'hits’ to the exponential function

and every second to the factors £;. By this manner one deduces the formula
E(X1...Xy4) = c3(biabss + b13bas + brabos),

and the constant cs is easily evaluated by choosing (X7,...,X4) to be the
standard normal distribution in R*. [

Proof of Lemma 5.6. By Gram-Schmidt orthogonalization procedure
we can rewrite Y as a bilinear form of orthonormal, and hence independent
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Gaussian variables. We may thus assume that the X;:s are i.i.d. standard
Gaussians. Let us first consider the case where the coefficients a; are real.
Then we may assume that a;x = a;, whence the corresponding bilinear form

may be diagonalized:
V=) MO b X))
k=1 j=1

where A\, € R for all £ and [b;] is an orthogonal matrix. Hence, by writing

D bkX; =Y
7j=1
we have .
Y =) M)
k=1
where the Y, are i.i.d. Gaussian random variables.

Observe that (Y)? has the density function (2m)~"/2e=2/2271/2x g o) (2).
Let a < 1/2. We may compute

1 [o.¢]
EetYs — = =12z =1/2 3. (1- 2a)_1/2.
V2 /0

This was evaluated by the substitution x = u/(1/2 — a). Hence, for |a| <

(1/2) max(|A1|7*, ..., [An|™") we obtain by independence
E (e +e ) =[]0 - 2Ma)™ 2 + [](1 + 22a) 712 (98)
k=1 k=1

Observe that
EY?=E) M@Z-1)+> a?=23 22+ (3 W)’

where we used the facts EY? =1 and EY}! = 3.

By scaling it is enough to consider the case ||Y'||2 = 1. The last computa-
tion we made shows that it is enough to prove a uniform tail estimate under
the assumption

DoNFID ML (99)
k=1 k=1
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Especially, we then have |\;| < 1 for all k.
For |z| < 1/2 it holds that log(l + ) > z — 2%, or in other words
—3log(1 — z) < 2(x + ?). Hence, by choosing a = 1/4 in (98) we obtain

n n n

[T~ 2272 = exp(3" 5 Tos(1 — A/2)) < exp(D (e + X)) < e

k=1 k=1 k=1
The same computation yields that [[;_, (1 + Ax/2)"%/2 < e. Hence
E (e¥/* + e7Y/%) < 2e.

This shows that P(]Y| > X) < 2ee~*/*. By considering Y/||Y]|2 we obtain
(without assuming that ||Y||s = 1) the inequality

P(Y| > A) < (2e)e M4Vl

(the case ||Y]|s = 0 being trivial). In order to finally obtain the statement of
the Lemma we apply this separately to the imaginary and real parts of Y by
using the inequality P(|Y| > A) < P(|ReY| > A\/2) + P(|ImY| > A/2). O

Proof of Lemma 5.7.  We consider separately two cases.

1. supg || Xk|l2 =0 < 0.

Under this assumption the variables X} are uniformly integrable; we have
for all kK and A > 0
P(| Xk > A) < 12exp(—A/8b)

(we may clearly assume that b > 0). Hence we infer that
| Xkl|l2 = | X2 as &k — oo, (100)
in particular X € L2 Moreover, Fatou’s lemma yields for any ¢ > 0 that

P(X|> ) = E(qaxeo X)) < E(iminfxen o [Xi)

e— )
_ . _ < i
lim P(IX| > A —e) < klinso12e"p(8||xk||z)
e— A\
= 12ex .
P

Since ¢ > 0 was arbitrary we obtain the claim and case 1 is settled.
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2. supy [ Xill2 = oo

In this case we may select a subsequence, that we still denote by (X}), such
that || Xg|l2 > k. Write Yy = X;/||Xk||2- Then Yy, € A and ||Yy|]2 = 1 for
all k£, whence be are back in case 1. Combined with (100) this shows that
the square integral of the pointwise limit of Y, equals 1. However, this is a
contradiction, since this limit is zero a.s. by the assumption. Thus case 2
cannot occur at all. [
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