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Abstract. An algorithmic solution to Teichmüller’s extremal ring problem is given.

1 Introduction

A ring is a domain in the euclidean space Rn, n ≥ 2, characterized by the property that
its complement has two components in Rn. We let R(E, F ) stand for a ring domain
with complementary components E, F and denote its conformal capacity and modulus
by capR(E, F ) and modR(E, F ) , respectively. For these notions see F.W. Gehring [G].
The conformal capacity of a ring is a real number, which reflects the shape and relative
size of the components with respect to each other. We shall mainly consider the case
n = 2 and identify R2 with the complex plane C . For n = 2 a ring can be conformally
mapped onto an annulus {z ∈ C : 1 < |z| < t}; in this case the real numbers 2π/ log t
and log t are its capacity and modulus, respectively. Both capacity and modulus are
examples of conformal invariants, which are widely used in geometric function theory, see
for instance L.V. Ahlfors [A1], [A2], J. Jenkins [J], G.V. Kuz’mina [K1], [K2], O. Lehto
and K.I. Virtanen [LV].

The purpose of this paper is to study the following problem posed by O. Teichmüller,
one of the pioneers of geometric function theory and quasiconformal mappings, in 1938
in [T1, p. 638], [T2]. For z ∈ C \ {0, 1}, find the minimal capacity p(z) of all ring
domains with complementary components E, F such that 0, 1 ∈ E, z,∞ ∈ F. In other
words, Teichmüller considers the problem of evaluating the values of the function p :
C \ {0, 1} → (0,∞) defined for z ∈ C \ {0, 1} by

p(z) ≡ inf capR(E, F )(1.1)

where the infimum is taken over all rings R(E, F ) with 0, 1 ∈ E and z,∞ ∈ F . We call
p the Teichmüller function. We will give in this article an algorithmic solution to this
problem. Before we proceed to describe our main results, we give a brief review of some
earlier work.

The starting point of these developments was Teichmüller’s work, where he used a
symmetrization method to prove a lower bound for p(z). Note that Teichmüller considered
the modulus of a ring whereas we prefer the capacity. This leads to some minor notational
differences. For 0 < r < 1, set r′ =

√
1− r2 and

µ(r) =
π

2

K(r′)

K(r)
, K(r) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

,(1.2)
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τ2(t) = π/µ(1/
√

1 + t), t > 0.(1.3)

1.4. Theorem. [T1, p. 638] (1) For z ∈ R, z > 1,

p(z) = τ2(|z − 1|) .(1.5)

(2) For z ∈ C \ {0, 1},

p(z) ≥ max{τ2(|z − 1|), τ2(|z|)} = max{p(1 + |z − 1|), p(−|z|)} .(1.6)

The second part has a geometric interpretation: −|z| and 1 + |z − 1| are the points
where circles centered at 0 and 1 through z intersect the negative and positive x-axis,
resp. This geometric interpretation is one of the reasons for the several applications of
this result. It is also important to note that both lower bounds can be easily computed if
we use the arithmetic-geometric mean iteration of Gauss for the complete elliptic integral
K(r), see Section 5 below.

Teichmüller’s extremal problem for ring domains was the subject of many studies.
M. Schiffer [S] proved that a ring domain with minimal capacity exists and described its
shape in terms of a conformal mapping. Further results were obtained by H. Wittich [W]
and J. Krzyż [Kr]. A detailed description of the extremal ring domain with an explicit
formula for Teichmüller’s function in terms of complete elliptic integrals K of complex
arguments can be found in Chapter 5 of a book by G.V. Kuz’mina, in particular in [K1,
Theorem 5.2, p. 192].

1.7. Theorem. [K1, p. 192] For z ∈ C \ {0, 1},

p(z) =
2π

logM(2z − 1)
,(1.8)

where

logM(a) = πIm

{
i
K′(r)

K(r)

}
, r2 =

2

1 + a
.

Here the integrals K(r) and K′(r) ≡ K(
√

1− r2) are understood to be positive for
r2 ∈ (0, 1) with the explicit formula (1.2), defined for Im {r2} 6= 0 by analytic continuation
along any path not intersecting the real axis of the r2-plane, and defined for Im {r2} = 0
and r2 /∈ [0, 1] by analytic continuation along any path in the lower half-plane Im {r2} ≤
0 .

Unlike Teichmüller’s theorem 1.4 this result does not seem to have a geometric in-
terpretation. As far as we know, there is no simple way of proving Theorem 1.4 as a
corollary of Theorem 1.7. And it is not even clear how to use this result for the numerical
evaluation of the value p(z) for a given point z.

A. Yu. Solynin and M. Vuorinen proved in [SV] the following duplication formula for
the Teichmüller function. It will play a central role in this paper.
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1.9. Theorem. [SV, Theorem 1.7] For z ∈ I, I = {x + iy ∈ C | x ≥ 1/2, y ≥
0} \ {(1, 0)}, the function p(z) satisfies

p(z) = 2p(w4)

where w =
√
z +
√
z − 1, and the branches of the square roots are chosen so that 0 ≤

arg
√
z ≤ π/2 and 0 ≤ arg

√
z − 1 ≤ π when z ∈ I.

Kuz’mina’s recent survey [K2] of extremal problems of geometric function theory con-
tains a section, where she reviews what currently is known about Teichmüller’s problem
and provides relevant references.

The following theorem is crucial for this paper.

1.10. Theorem. For |z| > 1, we have the inequalities

p(−|z|) ≤ p(z) ≤ p(|z|) .(1.11)

Theorem 1.10 is part of the more general result Theorem 3.20. The lower bound
follows from Teichmüller’s Theorem 1.4 and is based on symmetrization. The upper
bound is due to Gehring, see the remarks following Theorem 3.20 below.

The bounds in (1.11) have explicit formulas, as we will see in Section 3, and it is also
known that p(z) is monotone when z moves along some arcs of algebraic plane curves,
see [K2], [SV], and references therein.

Theorem 1.10 is sharp in the sense that both bounds are attained, but however, at
different values of z. Furthermore, both bounds in Theorem 1.10 are asymptotically sharp
in the sense that for large |z| the relative error in (1.11) tends to zero.

1.12. Theorem. The relative error in (1.11) tends to 0, i.e.

(p(|z|)− p(−|z|))/p(|z|)→ 0 , |z| → ∞.(1.13)

In this paper we construct two sequences of continuous functions Lk : C \ {0, 1} →
(0,∞), Uk : C \ {0, 1} → (0,∞) such that

Lk ≤ p(z) ≤ Uk, k = 1, 2, 3, ... .(1.14)

For the sake of brevity we write in (1.14) and in what follows Lk, Uk instead of Lk(z), Uk(z) .
The definition of the sequences {Lk}, {Uk}, is given in Theorem 4.10. We write

L = lim
k→∞

Lk , U = lim
k→∞

Uk.(1.15)

One of the consequences of our main result, Theorem 4.10, states that these limits are
the same.
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1.16. Theorem. L = U = p(z).

Furthermore, we obtain an explicit estimate for the speed of convergence Uk−Lk → 0,
as k → ∞ , which shows that the convergence is uniform in compact subsets of C \
{0, 1} . Theorem 1.16 provides an algorithmic solution to Teichmüller’s problem. This
new solution complements the old solution given in Theorem 1.7 and has the following
interesting properties. The first property is that both sequences Lk, Uk depend only on
the sides |z|, |z − 1| of the triangle 0, 1, z . The second one is that the limiting process
in Theorem 1.16 gives a computationally effective method for the computation of the
numerical values of p(z) which only involves real numbers. A third property is that
some old estimates of capacities of ring domains now appear in a new light, because
even the first few majorant and minorant functions Uk and Lk provide new bounds for
Teichmüller’s function in terms of the usual comparison functions, elliptic integrals.

We have made an effort to present our solution to Teichmüller’s problem in a way as
selfcontained and as easily accessible as possible. Some notation is introduced in Section
2 and the necessary background information about Teichmüller’s function is given in
Section 3. In Section 5 we compare our approximation to another method of computing
Teichmüller’s function from [AVV].

The key ideas of this paper, which lead to the proofs of Theorems 1.16 and 4.10, may be
structured into three logical parts. The first idea is to repeatedly apply the duplication
formula for the function p in Theorem 1.9, due to A. Solynin and M. Vuorinen [SV,
Theorem 1.7].

The second idea is to use a lower and an upper bound for p(z) which are “accurate
enough” for large |z|. The simplest examples of such bounds are the bounds (1.11). The
third idea is to express the majorant and minorant function in (1.11) in terms of complete
elliptic integrals and other special functions. These formulas, in combination with the
properties of special functions from [AVV], enable us to prove the convergence of our
algorithm. For a more detailed description of these three ideas, see 4.2.

2 Notation

Several special functions will play a crucial role in this paper. Perhaps the most basic
of these is the hypergeometric function. Given complex numbers a, b, and c with c 6=
0,−1,−2, . . ., the Gaussian hypergeometric function is the analytic continuation to the
slit plane C \ [1,∞) of

F (a, b; c; z)= 2F1(a, b; c; z)≡
∞∑

n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1.(2.1)

Here (a, 0) = 1 for a 6= 0, and (a, n) is the shifted factorial function

(a, n) ≡ a(a+ 1)(a+ 2) · · · (a+ n− 1)(2.2)

for n = 1, 2, 3, . . .. An important special case is

K(r) =
π

2
F (

1

2
,
1

2
; 1; r2) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

,(2.3)
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which is called a complete elliptic integral of the first kind. In what follows the argument
is usually a real number with 0 ≤ r < 1 . For r ∈ [0, 1] we sometimes write r′ =

√
1− r2 .

We will make use of the growth estimate

log
4

r′
< K(r) < log

eπ/2

r′
(2.4)

for r ∈ (0, 1), from [AVV, Theorem 3.21 (3)].
We also write, for 0 < r < 1,

µ(r) =
π

2

K(r′)

K(r)
.(2.5)

The function µ(r) satisfies the following functional identities





µ(r)µ(r′) =
π2

4
,

µ(r)µ
(1− r

1 + r

)
=
π2

2
,

µ(r) = 2µ
( 2
√
r

1 + r

)
.

(2.6)

These functions have been studied systematically in [AVV]. We will require below for
instance the following formulas for 0 < r < 1 [AVV, p. 82 (5.9)]

µ′(r) = − π2

4rr′2K(r)2
,(2.7)

and [AVV, Theorem 5.13 (4) p. 84 and (5.30) ]

log
1 + 3r′

r
< arth

4
√
r′ < µ(r) < log

2(1 + r′)

r
.(2.8)

3 The Teichmüller function

3.1. The Teichmüller and Mori rings. The complementary components of the
Teichmüller ring are [−1, 0] and [s,∞], s > 0. The complementary components of the
Mori ring are [0,∞] and {eit : t ∈ [π− 2ϕ, π+ 2ϕ]} , where 2ϕ ∈ [0, π/2]. These two ring
domains are conformally equivalent to extremal rings for Teichmüller’s extremal problem
in particular cases, see [K1, p. 192], which we shall now describe. The first particular
extremal ring for p(z) is the Teichmüller ring, when z ∈ R \ [0, 1], while the second one
is the Mori ring when Re {z} = 1

2
.

For t > 0 the capacity τ2(t) of the Teichmüller ring can be expressed by [K1, p. 192],
[Vu2, 5.60 (1)] as

τ2(t) =
π

µ(1/
√

1 + t)
= p(1 + t) = p(−t),(3.2)
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whereas the capacity of Mori’s ring has the form [AVV, Theorem 8.54], [LV, p. 59]

ν2(ϕ) =
2π

µ(sin(ϕ))
= p(

1

2
+ i

1

2 tan(2ϕ)
) .(3.3)

These canonical ring domains have several applications to quasiconformal mappings, see
e.g. [A1] and [LV].

3.4. Lemma. For t > 0,

τ ′2(t) = − π

2tK
(√

t
1+t

)2 .(3.5)

In particular, both τ2(t) and |τ ′2(t)| are strictly decreasing on (0,∞) and tend to zero as
t→∞, and for 0 < t < s,

π(s− t)
2sK

(√
s

1+s

)2 < τ2(t)− τ2(s) <
π(s− t)

2tK
(√

t
1+t

)2 .(3.6)

Proof. The formula (3.5) follows from (2.7) and (3.2). The second part of the
lemma follows from [AVV, Theorem 3.21 (2)] and (3.6) follows from the mean value
theorem and (3.5). �

3.7. The duplication formula for τ2(t). On the basis of the duplication formula for
Teichmüller’s function in Theorem 1.9 it is clear that there exists a duplication formula
for τ2(t) too. Following [AVV, 5.19] we will give below in (3.8)-(3.10) this formula in a
form which is more convenient for our purposes than using Theorem 1.9 directly. The
definition (3.2) combined with the identities (2.6) for the function µ(r) yield the following
expedient formulas

2π

µ(1/s)
= 2τ2(s2 − 1) = τ2

(
(s− 1)2

4s

)
, s > 1 ,(3.8)

τ2

(
s− 1

2

)
= 2τ2((s+

√
s2 − 1)2 − 1), s > 1,(3.9)

τ2(s) = 2τ2((
√
s+
√
s+ 1)4 − 1), s > 0.(3.10)

3.11. Lemma. For s > 1, let t = s+
√
s2 − 1 . Then

τ2(
s− 1/2

2
) < 2 τ2(t2) < τ2(

s− 1

2
) .(3.12)
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Proof. Fix s > 1. The upper bound follows from (3.9) because τ2 is strictly de-
creasing by Lemma 3.4. Observing that s = (1 + t2)/(2t) we see by (3.8) that the lower
bound is equivalent to

τ2(
s− 1/2

2
) = τ2(

1 + t2 − t
4t

) < 2τ2(t2) = τ2(
(
√

1 + t2 − 1)2

4
√

1 + t2
)

and further to

u ≡ t4

(
√

1 + t2 + 1)2
√

1 + t2
<

1 + t2 − t
t

.

Because (1 + t)
√

1 + t2 > 1 + t2 for all t > 0, we see that

t4 (1 + t)

(
√

1 + t2 + 1)2 (1 + t2)
<

t4 (1 + t)

(1 + t)2 (1 + t2)
<

1 + t2 − t
t

,

where the third inequality follows after some elementary manipulation. �

3.13. The tilde operation. From the definition it is clear that Teichmüller’s
function has the following symmetries: the values at z ∈ C \ {0, 1} and z1 are the same if
z1 is obtained from z by a reflection in the real axis or in the line {z : Re{z} = 1/2}. Thus
all the values of p(z) are determined by the values of p(z) in the set I as defined in Theorem
1.9. We now define an argument reduction operation, which for each z ∈ C\{0, 1} defines
its representative in I . For z ∈ C \ {0, 1}, denote

z̃ = |Re {z} − 1/2|+ 1/2 + i|Im {z}|.(3.14)

Then z̃ ∈ I and
{|z|, |z − 1|} = {|z̃|, |z̃ − 1|}(3.15)

since the mapping z 7→ z̃ consists of possibly one reflection in the real axis and possibly
one reflection in the line {x+iy ∈ C | x = 1/2}. Note that p(z̃) = p(z) for all z ∈ C\{0, 1} .

The duplication transformation z 7→ w(z)4 ≡ (
√
z +
√
z − 1)4 from Theorem 1.9 will

have a crucial role in the sequel. In particular, we will need the following formulas.

3.16. Lemma. [BV, (2.8), (2.9)] Let z ∈ C \ {0, 1}, r = |z| and s = |z − 1|. Then

|w(z)|4 = (r + s+
√

(r + s)2 − 1)2,(3.17)

and
|w(z)4 − 1| = 4

√
rs (r + s+

√
(r + s)2 − 1).(3.18)

If we set z0 = z̃, zk+1 = w̃(zk)4, then p(z) = 2kp(zk) and

{|zk+1|, |zk+1 − 1|} = {(|zk|+ |zk − 1|+
√

(|zk|+ |zk − 1|)2 − 1)2,(3.19)

4
√
|zk||zk − 1| (|zk|+ |zk − 1|+

√
(|zk|+ |zk − 1|)2 − 1)}

with |zk+1| ≥ |zk+1 − 1|.

7



Proof. For the proof of (3.17) we proceed as follows:

|w(z)|2 = |√z +
√
z − 1|2

= (
√
z +
√
z − 1)(

√
z̄ +
√
z̄ − 1)

=
√
z
√
z̄ +
√
z − 1

√
z̄ − 1 + (

√
z
√
z̄ − 1 +

√
z̄
√
z − 1)

= r + s+ (
√
z
√
z̄ − 1 +

√
z̄
√
z − 1)

= r + s+

√
z(z̄ − 1) + z̄(z − 1) + 2

√
z(z̄ − 1)z̄(z − 1)

= r + s+

√
zz̄ + (zz̄ − z − z̄) + 2

√
r2s2

= r + s+
√
r2 + (zz̄ − z − z̄) + 2rs

= r + s+
√
r2 + s2 − 1 + 2rs

= r + s+
√

(r + s)2 − 1 .

On the other hand, w(z)2 = z + z − 1 + 2
√
z
√
z − 1. Therefore

w(z)4 − 1 = (w(z)2 − 1)(w(z)2 + 1)

= 2(z − 1 +
√
z
√
z − 1) 2(z +

√
z
√
z − 1)

= 4(z − 1 +
√
z
√
z − 1)(z +

√
z
√
z − 1)

= 4(z(z − 1) + z
√
z
√
z − 1 + (z − 1)

√
z
√
z − 1)

= 4
√
z
√
z − 1(2

√
z
√
z − 1 + z + (z − 1))

= 4
√
z
√
z − 1w(z)2 .

Hence |w(z)4 − 1| = 4
√
rs (r + s+

√
(r + s)2 − 1).

Now (3.19) follows from (3.17) and (3.18) with (3.15). The last claim follows from
the fact that zk+1 ∈ I. �

Note that it follows from (3.17) that w maps the segment [0, 1] into the unit cir-
cumference, because r + s = 1 at the points of this segment and that |zk| > 1 for all
k = 1, 2, 3, ...

Teichmüller’s problem also makes sense in Rn, n > 2, and in this case we denote Teich-
müller’s function by pn(z), z ∈ Rn \ {0, e1}, where ei is the ith coordinate unit vector in
Rn. In dimensions n > 2 much less is known than for n = 2 about the conformal capacity
in general and Teichmüller’s function in particular. For instance, there is no formula
for pn(z), n > 2, like the formula in Theorem 1.7. The methods applied to the case
n > 2 are often geometric in character and use e.g. the symmetrization and polarization
methods, see F. W. Gehring [G], M. Vuorinen [Vu2, Chapter 8], D. Betsakos [Be], and
D. Betsakos and M. Vuorinen [BV]. Many upper and lower bounds have been found
for pn(z) in terms of the sides of the triangle with vertices at 0, e1, z. Symmetrization is
a transformation that to each ring domain in Rn associates another ring domain in Rn
with specific rules. Teichmüller proved that the capacity of a ring domain in C decreases
under symmetrization and this method was extended by Gehring [G] to the case of R3 .
The reader interested in the applications of symmetrization methods to complex analysis
is referred to a survey of A. Baernstein [Ba].
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3.20. Theorem. For z ∈ Rn, |z| > 1, the following inequalities hold:

τn(|z|) = pn(−|z| e1) ≤ pn(z) ≤ pn(|z| e1) = τn(|z| − 1) ,(3.21)

where τn(t), t > 0, is the capacity of the Teichmüller ring in Rn with complementary
components [−e1, 0] and {se1 : s ≥ t}. The lower and upper bounds in (3.21) hold with
equality if z = −se1, s > 0, or z = se1, s > 1, respectively. Furthermore, for z ∈
Rn \ {0, e1}, the upper bound may be refined to

pn(z) ≤ τn

( |z|+ |z − e1| − 1

2

)
≤ τn(|z| − 1) ,(3.22)

with equality in the first inequality both for z = −se1, s > 0, and z = se1, s > 1.

Proof. The lower bound in (3.21) is due to Teichmüller [T1] for n = 2 , Gehring for
n = 3 [G], and G. D. Mostow [M] for n ≥ 4. The upper bound in (3.21) was conjectured
by Vuorinen and its proof, first published in [Vu1, Lemma 2.58], is due to Gehring (the
same proof is also given in [Vu2, Lemma 5.27]). The inequality (3.22) was proved by
Vuorinen in [Vu3]. �

Refined versions of (1.11) for the dimensions n ≥ 2 were proved in [BV], and [Be].

Proof of Theorem 1.12 . The proof follows from (3.21) and Lemma 3.4 . �

3.23. Open problem. Find a duplication formula like the one in Theorem 1.9 for
pn.

The next result, which deals with the case n = 2, shows that the maximal and minimal
values of p on an ellipse with foci at 0 and 1 occur at the end points of the semiaxes. The
minimal value, attained at the end point of a smaller semiaxis, corresponds to the case
when the extremal ring is Mori’s ring. The maximal value is attained at the end point
of a greater semiaxis and corresponds to Teichmüller’s ring. This well-known result was
also used in [SV].

3.24. Lemma. Let z ∈ C\{0, 1} and let w1 be the point of intersection of an ellipse
through z with foci at 0, 1 with the positive real axis and w2 the point of intersection of
this ellipse with the line x = 1

2
in the upper half plane. If s = |z|+ |z − 1|, then

p(w2) ≤ p(z) ≤ p(w1)(3.25)

with
p(w1) = τ2((s− 1)/2) = 2τ2((s+

√
s2 − 1)2 − 1),(3.26)

and

p(w2) =
2π

µ
(√

1
2s(s+

√
s2−1)

) = 2τ2((s+
√
s2 − 1)2) > τ2(

s− 1/2

2
).(3.27)
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Proof. Let z ∈ C \ {0, 1}. By symmetry we may assume that Re{z} ≥ 1/2 and
Im{z} ≥ 0. Assume first that z 6∈ [1/2, 1). Then, by [SV, 1.5.], p(w1) ≥ p(z) ≥ p(w2)
where z and w1, w2 are on the same ellipse with foci at 0 and 1, Im{w2} is maximal,
Im{w1} = 0, Re{w1} = (s + 1)/2. Because p(w1) = τ2((s − 1)/2) by (3.2), the upper
bound follows from (3.9). Note that the upper bound also follows from (3.22). It remains
to prove the lower bound. Clearly Re{w2} = 1/2. If z ∈ [1/2, 1), then we use the formula
(1.8) together with the fact [SV, (3.21)] that logM(a) is decreasing for a ∈ (0, 1) to
obtain

p(z) =
2π

logM(2z − 1)
≥ 2π

logM(0)
= p(1/2) = 2 τ2(1) = 4.

Hence also in this case we may write p(z) ≥ p(w2) with w2 = 1/2.
Now |w2| = |w2 − 1| = s/2. Denote v = Im {w2}. Then v2 + (1/2)2 = (s/2)2 and it

follows that v = (
√
s2 − 1)/2. Hence w2 = (1 + i

√
s2 − 1)/2.

Let α be the angle between the segments [w2, 0] and [w2, 1]. By (3.3) we get

ν2(α) = 2π/µ(sinα) = 2τ2(1/ sin2 α− 1).

We have

cos 2α =
v

u
=

√
s2 − 1

s
and by elementary trigonometry

sin2 α =
1− cos 2α

2
=

(
1−
√
s2 − 1

s

)
/2

and

1

sin2 α− 1
=

1− sin2 α

sin2 α

=

(
2−

(
1−
√
s2 − 1

s

))
/

(
1−
√
s2 − 1

s

)

=
s+
√
s2 − 1

s−
√
s2 − 1

= (s+
√
s2 − 1)2.

Hence by (3.12)

p(z) ≥ p(w2) = 2τ2((s+
√
s2 − 1)2) > τ2(

s− 1/2

2
) . �

3.28. Particular cases of p(z). We know by (3.2) and (3.3) expressions for p(z)
in terms of well-known functions in the two particular cases z > 1 and Re {z} = 1/2 . For
later use, we record one more such case from [SV, p. 4107, (3.21)] : if 0 < x < 1, then

p(x) = 2
K(
√
x)2 + K(

√
1− x)2

K(
√
x)K(

√
1− x)

=
4

π

(
µ(
√

1− x) + µ(
√
x)
)

(3.29)

= τ2(
1− x
x

) + τ2(
x

1− x) .

In particular, p((1/2, 0)) = 4 . Observe that some additional particular cases will follow,
if we apply the duplication transformation in Theorem 1.9.
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4 Convergence

4.1. The sequence (zk). Throughout this section we shall assume that z ∈ C \ {0, 1}
is fixed. We set z0 = z̃, zk+1 = w̃(zk)4, k = 0, 1, 2, ... where ˜ is the mapping defined in
(3.14) and w is the duplication transformation from Theorem 1.9. In this section we will
give an iterative algorithm, defined in terms of the sequence (zk), for the computation of
p(z) and prove the convergence of the algorithm.

4.2. Preliminary considerations. As already noted in Theorem 3.20, the lower
and upper bounds in (3.21) hold with equality for certain specific choices of the argument
z, i.e. the inequality is sharp. We will show next that this inequality also is asymptotically
sharp for large |z| . To clarify this statement observe first that both bounds of inequality
(3.21) have the same limit 0 when |z| → ∞. Next introduce the notation

εn(t) ≡ (τn(t)− τn(t + 1))/τn(t) , t > 0 .(4.3)

With this notation we see that εn(|z| − 1) is an upper bound for the relative error in
(3.21). From (3.2), (2.5), (3.5), and the mean value theorem we get

ε2(t) ≤ π

2tK(
√
t/(t+ 1))2

µ(1/
√
t + 1)

π
=
π

4

1

tK(
√
t/(t+ 1))K(1/

√
t + 1)

.(4.4)

It follows from [AVV, Lemma 3.32 (1)] that this last function is monotone decreasing on
[1,∞) with limit 0 as t→∞. Thus the relative error in (3.21) tends to 0 when |z| → ∞
and inequality (3.21) is asymptotically sharp for large |z| .

The bounds for the function p(z) that we will give in this paper are based on this
observation and on the duplication formula p(z) = 2kp(zk), k = 0, 1, 2, ... Note that the
relative error in the estimate (3.21) for p(zk) is much smaller than p(z), provided that
|zk| is much larger than |z|. Instead of applying (3.21) directly to the estimation of p(z)
we may apply it to p(zk) . A possible drawback in this idea is that the growth of the
coefficient 2k may spoil the increased accuracy given by the duplication formula, unless
there is a suitable balance. It is our goal in this section to show that such a balance holds
and hence the idea works.

We first obtain a growth estimate for the sequence (zk) in 4.1.

4.5. Lemma. If we write Mk = 1
16

exp
(
2k+1π/p(z)

)
, then for all k = 0, 1, 2, ... we

have
Mk ≤ |zk| ≤ 1 +Mk.(4.6)

Proof. Suppose first that |zk| > 1. It follows from (3.21) that

τ2(|zk|) ≤ p(zk) ≤ τ2(|zk| − 1) .(4.7)

Then, from (2.8) and (3.2) we get

π

log(2(
√

1 + t+
√
t))
≤ τ2(t) ≤ π

log(
√

1 + t+ 3
√
t)
.(4.8)

11



The inequalities (4.7) and (4.8) together give

π

log(4
√
|zk|)

≤ p(zk) ≤
π

log(4
√
|zk| − 1)

.(4.9)

Next, the duplication formula gives p(z) = 2kp(zk) which together with (4.9) gives the
desired inequality. It remains to consider the case |zk| < 1. The above proof of the lower
bound in (4.6) is valid in this case, too. Hence it remains to consider the upper bound
in (4.6), but it holds trivially in this case. �

It follows from Lemma 4.5 that zk →∞ as k →∞.

4.10. Theorem. Let z ∈ C \ {0, 1} and let (zk) be the sequence from 4.1. Let
Uk ≡ 2k τ2(|zk| − 1), Lk ≡ 2k τ2(|zk|), k = 1, 2, . . . (recall that |zk| > 1 for k = 1, 2, 3, . . .).
Then for all k = 1, 2, . . .,

Lk ≤ p(z) ≤ Uk,(4.11)

and

Uk − Lk ≤
2k−1 π

(|zk| − 1)K
(√

|zk|−1
|zk|

)2 <
2−k−2 p(z)2

|zk| − 1
.(4.12)

If k is so large that 2k ≥ p(z), then

Uk − Lk ≤ 21−k p(z)2exp

(
−2k+1π

p(z)

)
.(4.13)

Proof. The inequality (4.11) follows from Theorem 1.9 and (3.21). The formula
(3.5) gives

2k τ2(|zk| − 1)− 2k τ2(|zk|) <
2k π

2(|zk| − 1) K(
√

(|zk| − 1)/|zk|)2
.

Next, by (2.4) and Lemma 4.5 we get K(
√

(|zk| − 1)/|zk|) > 2k+1π/p(z) and (4.12)
follows. These inequalities also give

(|zk| − 1)K

(√
|zk| − 1

|zk|

)2

≥
(

1

16
exp

(
2k+1π

p(z)

)
− 1

)(
2k+1π

p(z)

)2

.

Next, because 2k ≥ p(z) we have

1

16
exp

(
2k+1π

p(z)

)
− 1 >

1

32
exp

(
2k+1π

p(z)

)

which together with the earlier results completes the proof of (4.13). �

The following lemma will be applied in the monotonicity proof below.
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4.14. Lemma. If z ∈ C \ {0, 1} with Re {z} ≥ 1/2, then for r = |z| and s = |z − 1|
we have that

(r + s+
√

(r + s)2 − 1)2 < (
√
r +
√
r + 1)4 − 1(4.15)

and that
16rs < (

√
r +
√
r + 1)4 − 1.(4.16)

Proof. Since Re {z} ≥ 1/2, we have r ≥ s and it follows that

(r + s+
√

(r + s)2 − 1)2 ≤ (2r +
√

(2r)2 − 1)2

= 8r2 + 4r
√

(2r)2 − 1− 1

< 8r2 + 4r
√

(2r)2 − 1

= 16r2 − 1 = (2
√
r)4 − 1

< (
√
r +
√
r + 1)4 − 1

and that

(
√
r +
√
r + 1)4 − 1 = (2r + 2

√
r(r + 1) + 1)2 − 1

> (4r + 1)2 − 1

= 16r2 + 8r

≥ 16rs. �

We summarize the results of this section in the following theorem.

4.17. Theorem. Let z ∈ C \ {0, 1} and let (zk) be the sequence from 4.1. Then for
all k = 1, 2, . . .,

Lk ≡ 2k τ2(|zk|) ≤ p(z) ≤ 2k τ2(|zk| − 1) ≡ Uk(4.18)

and the sequences (Lk), (Uk) both converge to p(z). Moreover, Lk < Lk+1 and Uk ≥ Uk+1.

Proof. The formula (4.18) and the convergence were proved in Theorem 4.10.
Denote rk = |zk|, sk = |zk − 1|, vk = rk + sk, wk = rksk, tk =

√
wk, and Ak =

vk +
√
v2
k − 1. We prove that for k ∈ N \ {0}, Lk < Lk+1. By Theorem 3.16 this is to say

that
2τ2(max{A2

k, 4tkAk}) > τ2(rk).

By (3.10) we see that
τ2(rk) = 2τ2((

√
rk +

√
rk + 1)4 − 1).

Hence we need to prove that

max{A2
k, 4tkAk} < (

√
rk +

√
rk + 1)4 − 1.

In the case when A2
k ≥ 4tkAk this holds by (4.15) since zk ∈ I. Assume then that

4tkAk > A2
k. Then, by (4.15), Ak <

√
(
√
rk +

√
rk + 1)4 − 1, so after squaring it is

enough to prove that
16rksk < (

√
rk +

√
rk + 1)4 − 1.

13



But this is true by (4.16).
It remains to prove that Uk ≥ Uk+1 for k = 1, 2, . . .. This is equivalent to

τ2(rk − 1) ≥ 2τ2(max{A2
k, 4tkAk} − 1).

Using (3.9) we see that

2τ2(max{A2
k, 4tkAk} − 1) ≤ 2τ2(A2

k − 1)

= τ2

(
vk − 1

2

)
,

so it suffices to prove that

rk − 1 ≤ vk − 1

2
,

or equivalently,
rk ≤ sk + 1,

which is true by the triangle inequality. �

4.19. Theorem. Let z ∈ C \ {0, 1} and let (zk) be the sequence from 4.1. Then for
all k = 1, 2, . . .,

lk ≡ 2k+1 τ2((|zk|+ |zk − 1|+
√

(|zk|+ |zk − 1|)2 − 1)2)

≤ p(z) ≤ 2k τ2(
|zk|+ |zk − 1| − 1

2
) ≡ uk(4.20)

and the sequences (lk), (uk) both converge to p(z). Moreover, lk ≥ Lk, uk ≤ Uk, and
uk ≥ uk+1.

Proof. We use the notation from the proof of Theorem 4.17.
The inequalities in (4.20) follow from Theorem 1.9 with Lemma 3.24 and (3.22).
By the triangle inequality we have that rk ≤ sk + 1, which implies that

τ2

(
rk + sk − 1

2

)
≤ τ2(rk − 1),

which is to say that uk ≤ Uk for all k = 1, 2, . . .. Again, by the triangle inequality,
sk ≤ rk + 1. We apply (3.9) to obtain

2τ2

((
vk +

√
v2
k − 1

)2
)

= τ2

(
vk − 1

2

)
≥ τ2(rk),

which implies that lk ≥ Lk for all k = 1, 2, . . .. Hence the convergence follows from
Theorem 4.17.

The claim uk ≥ uk+1 is equivalent to

τ2

(
vk − 1

2

)
≥ 2 τ2

(
vk+1 − 1

2

)
.
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We have that rk+1 = max{A2
k, 4tkAk} ≥ A2

k. Hence, by (3.9) we get

τ2

(
vk − 1

2

)
= 2 τ2

((
vk +

√
v2
k − 1

)2

− 1

)

= 2 τ2(A2
k − 1)

≥ 2 τ2(rk+1 − 1).

Thus it is enough to show that

rk+1 − 1 ≤ vk+1 − 1

2
=
rk+1 + sk+1 − 1

2
,

which is equivalent to
rk+1 ≤ sk+1 + 1.

This holds by the triangle inequality. �

5 The algorithm

The purpose of this section is to express the iterative procedure in Section 4 as an al-
gorithm that could be easily implemented in a programming language. Because this
algorithm will involve also the function τ2(t) and hence complete elliptic integrals, we
also briefly recall classical facts about the numerical computation of these functions; see
the software supplement to [AVV] for more details.

5.1. The arithmetic-geometric mean. The arithmetic-geometric mean of posi-
tive numbers a, b is the limit

AG(a, b) = lim an = lim bn,(5.2)

where a0 = a, b0 = b, and for n = 0, 1, 2, 3, ...,

an+1 = A(an, bn) ≡ (an + bn)/2, bn+1 = G(an, bn) ≡
√
anbn,

are the arithmetic and geometric means of an and bn, resp. It is a basic fact that if
0 < b < a, then bn < bn+1 < an+1 < an for all n = 0, 1, 2, ...

More than two centuries ago, the identity

AG(1, r′) =
π

2K(r)
, 0 < r < 1 ,(5.3)

was used by Lagrange and Gauss for the numerical computation of complete elliptic
integrals, see [AVV, 4.16, p. 79].

If we combine (2.5), (5.3), and (3.2), then we get the following corollary.
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5.4. Corollary. For z ∈ {x ∈ R : x > 1} we have the following formula

p(z) = τ2(|z| − 1) =
2AG(1, r)

AG(1, r′)
=

2F (1
2
, 1

2
; 1; 1

z
)

F (1
2
, 1

2
; 1; z−1

z
)
, r = 1/

√
z.(5.5)

5.6. Remark. An algorithm for the computation of Teichmüller’s function was
given in a software supplement to [AVV]. This algorithm was based on an extension of
Corollary 5.4 to the case of complex argument and seemed to be adequate for numerical
purposes. However, no formal justification or convergence proof like the above theorem
was given for that algorithm. As far as we know, Theorems 4.10 and 5.10 below give the
first rigorously proved algorithm for the computation of the values of Teichmüller’s func-
tion. Note also that complex numbers are not used in the iteration step of the algorithm,
but only their absolute values.

5.7. The algorithm. We consider the sequence 4.1, use the notation from the
proof of Theorem 4.17, and set yk =

√
|zk|+

√
|zk − 1|. An elementary calculation using

(3.19) shows that
|zk+1|+ |zk+1 − 1| − 1

2
= y2

kAk − 1.

Furthermore, we have that

|zk| = max{A2
k−1, 4tk−1Ak−1}

for k = 2, 3, . . .. Hence we may write the following algorithm for the computation of Lk,
lk, Uk, and uk.

r = |z|;

s = |z - 1|;

for j = 1 to k do

t = sqrt{rs};

y = sqrt{r} + sqrt{s};

A = r + s + sqrt{(r + s)^2 - 1};

r = A^2;

s = 4tA;

end for;

v = y^2 A - 1;

w = (r + s + sqrt{(r + s)^2 - 1})^2;

rr = max{r,s};

L_k = 2^k tau_2(rr);

l_k = 2^(k+1) tau_2(w);

U_k = 2^k tau_2(rr-1);

u_k = 2^k tau_2(v);

16



Note that the iterative step of our algorithm only uses basic arithmetic operations of
real numbers. At the end of the algorithm we compute the function τ2(t) at four different
arguments. For that purpose Corollary 5.4 is used.

Instead of using a fixed number k of iterations, we can control the number of iterations
by using a stopping criterion based on an accuracy requirement as follows. Recall that
by (4.12),

Uk − Lk ≤
2k−1 π

(|zk| − 1)K
(√

|zk|−1
|zk|

)2 .(5.8)

Using (2.4), we see that for r > 1, t =
√

(r − 1)/r,

K(t)2 >

(
log

4√
1− t2

)2

= (log(4
√
r))2.

This together with (5.8) implies that

Uk − Lk <
2k−1 π

(|zk| − 1) log(4
√
|zk|)2

.

Since zk ∈ I for all k ∈ N, we see that after each iteration of the algorithm, we have
|zk| = max{r, s}. If we use, say, the limit limk→∞ Lk to compute p(z), and require an
accuracy of acc, the algorithm takes the following form.

r = |z|;

s = |z - 1|;

kp = 0.5;

do

kp = 2kp;

t = sqrt{rs};

A = r + s + sqrt{(r + s)^2 - 1};

r = A^2;

s = 4tA;

while kp*pi/((max(r,s)-1)log(4sqrt(max(r,s)))^2) >= acc;

rr = max{r,s};

L_k = 2^k tau_2(rr);

5.9. Explicit estimates for convergence. It follows from [K1, Corollary 5.4, p.
206] that for t ∈ (0, 1/2), p(1 + teiθ) increases with θ on (0, π) . Therefore it is clear that
for ε ∈ (0, 1/2) the largest values of p(z) in Cε ≡ C \ (B2(0, ε) ∪ B2(1, ε)) are attained at
(ε, 0) and (1− ε, 0) , where we write B2(a, r) = {z ∈ C : |z − a| < r} , for a ∈ C, r > 0.
By (3.29) we see that

sup{p(z) : z ∈ Cε} = p(1− ε) = τ2(ε/(1− ε)) + τ2((1− ε)/ε) .

A computation based on (5.5) shows that p((0.97, 0)) < 5 and hence

p(z) < 5 for all z ∈ Cε1, ε1 = 0.03 .
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From (4.12) and (4.6) we conclude that

Uk − Lk <
13 · 2−k
|zk| − 1

< 52 · 2−ke−2k ≡ δk

all z ∈ Cε1. Because δk < 10−13 for all z ∈ Cε1 and k ≥ 5 , the algorithm in Theorem 4.10
converges very fast in Cε1. This argument proves the following theorem.

5.10. Theorem. For all initial values z ∈ Cε1 , ε1 = 0.03 , the iteration in Theorem
4.10 satisfies

Uk − Lk < 10−13 for all k ≥ 5 .

5.11. Practical implementations. We have implemented the new algorithm on

two platforms, namely C++ and Mathematicar. The source code for test programs on
both platforms is available from

http://mat-173.math.helsinki.fi/teich.html.

This page also contains WWW-interfaces to some executable programs related to the
function p.

Running the above mentioned test programs with several different parameter config-
urations shows that, to compute p(z), the new algorithm takes only 50− 60% of the time
taken by the algorithm implemented in the software supplement to [AVV].

6 Epilogue

The approximation procedure, which was on the basis of Theorem 4.10, is largely inde-
pendent of the particular form of the function p(z) to which it was applied. It is our aim
here to outline a general form of this approximation procedure.

Our goal is to study an unknown continuous function ρ : C→ (0,∞) and we want to
express its values in terms of a known homeomorphism τ : (0,∞)→ (0,∞) . We assume
that τ is decreasing with τ(t)→ 0, t→∞, and

τ(|z|) ≤ ρ(z) ≤ τ(|z| − 1)(6.1)

for all z ∈ C, |z| > 1 . The main property of the function ρ is that it satisfies a functional
equation: there exists a number c ∈ (1,∞) and for each z ∈ C a sequence (zk) such that

ρ(z) = ckρ(zk) , k = 1, 2, 3, . . .(6.2)

and
ck(τ(|zk| − 1)− τ(|zk|))→ 0 as k →∞ .(6.3)

Then it is clear by the proof of Theorem 4.10 that for a fixed z ∈ C the limit of
ckτ(|zk|) exists and equals ρ(z).
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