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A. We define Sobolev capacity on the generalized Sobolev space W1,p(·)(�n). It
is a Choquet capacity provided that the variable exponent p : �n → [1,∞) is bounded
away from 1 and∞. We discuss the relation between the Hausdorff dimension and the
Sobolev capacity. As another application we study quasicontinuous representatives in
the space W1,p(·)(�n).

1. I

In the beginning of the last decade Kováčik and Rákosnı́k introduced variable expo-
nent Lebesgue and Sobolev spaces as a new method for dealing with non-linear Dirich-
let boundary value problems with nonstandard growth and coercivity assumption, see
[KR] for details. Another area where these spaces have found applications is the study
of electrorheological fluids, see the papers by Diening alone [Die1] and with Růžička
[DR] on the role of variable exponent in this context. The same spaces appear also in
the study of variational integrals with non-standard growth, see [Zhi], [Mar] and [AM].

In fact, generalized Lebesgue and Sobolev spaces are special cases of so-called
Orlicz-Musielak spaces, and in this form their investigation goes back a bit further,
to Hudzik [Hud] and Musielak [Mus]. It seems, however, that there is good reason to
study the particular spaces introduced by Kováčik and Rákosnı́k [KR], and in recent
years several papers have appeared along this line of investigation; it is now known that
generalized Lebesgue and Sobolev spaces satisfy several of the properties of their clas-
sical equivalents. Let us mention some recent advances. Edmunds and Rákosnı́k [ER2]
showed that the Sobolev embedding theorem holds provided that the variable exponent
is Lipschitz continuous; Pick and Růžička [PR] showed that in some cases the Hardy-
Littlewood maximal operator is not bounded whereas Diening [Die2] showed that in
other cases it is (unfortunately, there is a gap between the necessary and sufficient con-
ditions here).

Sobolev capacity for fixed exponent spaces has found a great number of uses, see for
instance the monographs by Maz’ya [Maz], Evans and Gariepy [EG], and Heinonen,
Kilpeläinen, and Martio [HKM]. Nevertheless, this tool has not previously been con-
sidered in connection with variable exponent Sobolev spaces. Our purpose, then, is to
generalize the Sobolev capacity to the variable exponent case, and, more importantly,
show that this generalization makes sense, at least when 1 < ess inf p 6 ess sup p < ∞:
in Corollary 3.3 we show that the Sobolev p(·)-capacity is an outer measure and in
Corollary 3.4 we show that it is a Choquet capacity. We also derive several results that
illustrate the utility of the Sobolev capacity. In Section 4 we show that the capacity is
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related to the Hausdorff dimension of a set. In Section 5 we show that every Sobolev
function has a quasicontinuous representative in the variable exponent case provided
that C∞(�n) is dense in W1,p(·)(�n). This allows us to derive an estimate of the capacity
of level sets of variable exponent Sobolev functions.

2. D   

We denote by �n the Euclidean space of dimension n > 2. For x ∈ �n and r > 0
we denote an open ball with center x and radius r by B(x, r). We will next introduce
variable exponent Sobolev spaces in �n; note that we nevertheless use the standard
definitions of the spaces Lp(Ω) and W1,p(Ω) in the fixed exponent case p > 1 with open
Ω ⊂ �n.

Let p : �n → [1,∞) be a measurable function (called the variable exponent on
�n). Throughout this paper the function p always denotes a variable exponent; also,
we define p+ = ess supx∈�n p(x) and p− = ess infx∈�n p(x). We define the generalized
Lebesgue space Lp(·)(�n) to consist of all measurable functions u : �n → � such that
%p(·)(λ u) =

∫
�n |λ u(x)|p(x) dx < ∞ for some λ > 0. The function %p(·) : Lp(·)(�n) →

[0,∞) is called the modular of the space Lp(·)(�n). One can define a norm, the so-called
Luxemburg norm, on this space by the formula ‖u‖p(·) = inf{λ > 0 : %p(·)(u/λ) 6 1}, see
[KR]. With regards to the relationship between the modular and the norm, Kováčik and
Rákosnı́k [KR, (2.11)] showed that %p(·)(u) 6 ‖u‖p(·) if ‖u‖p(·) 6 1.

The generalized Sobolev space W1,p(·)(�n) is the space of measurable functions u :
�n → � such that u and the distributional gradient ∇u = (∂1u, . . . , ∂nu) are in Lp(·)(�n).
The function %1,p(·) : W1,p(·)(�n) → [0,∞) is defined as %1,p(·)(u) = %p(·)(u) + %p(·)(∇u).
The norm ‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·) makes W1,p(·)(�n) a Banach space.

The corresponding local spaces Lp(·)
loc (�n) and W1,p(·)

loc (�n) are defined as follows: a
function u is in Lp(·)

loc (�n) if
∫

G
|u(x)|p(x) dx < ∞ for every bounded open subset G of �n,

and a function u is in W1,p(·)
loc (�n) if both u and ∇u are in Lp(·)

loc (�n).
Let us conclude this section by proving some simple but quite useful results.

2.1. Lemma. We have Lp(·)
loc (�n) ⊂ L1

loc(�
n) and W1,p(·)

loc (�n) ⊂ W1,1
loc (�n).

Proof. Follows directly from [KR, Theorem 2.8] since p(x) > 1 for every x ∈ �n. �

We show next that the generalized Sobolev space W1,p(·)(�n) is a lattice. This prop-
erty is well known in the usual fixed exponent case, see [EG, Section 4.7] or [HKM,
Section 1].

2.2. Theorem. If u, v ∈ W1,p(·)(�n), then min(u, v) and max(u, v) are in W1,p(·)(�n) with

(2.3) ∇max(u, v)(x) =


∇u(x) for a.e. x ∈ {u > v}
∇v(x) for a.e. x ∈ {v > u}

and

(2.4) ∇min(u, v)(x) =


∇u(x) for a.e. x ∈ {u 6 v}
∇v(x) for a.e. x ∈ {v 6 u}.

In particular, |u| belongs to W1,p(·)(�n) and |∇|u|| = |∇u| a.e.
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Proof. It is clear that it suffices to consider the claims for max(u, v) since min(u, v) =

−max(−u,−v). Fix a point x ∈ �n. By Lemma 2.1 we know that u|B(x,1) ∈ W1,1(B(x, 1))
and so it follows from [HKM, Theorem 1.20] that

(2.5) ∇max(u, v)(y) =


∇u(y) for a.e. y ∈ {B(x, 1) : u > v}
∇v(y) for a.e. y ∈ {B(x, 1) : v > u}.

We may cover �n by a countable set of unit radius balls; since a countable union of
measure zero sets has measure zero as well, we see that (2.3) holds.

We next note that %p(·)(max(u, v)) 6 %p(·)(u) + %p(·)(v) and, using inequality (2.5),
%p(·)(∇max(u, v)) 6 %p(·)(∇u) +%p(·)(∇v). It thus follows that max(u, v) ∈ W1,p(·)(�n). �

2.6. Lemma. Let p+ < ∞ and u j, v j ∈ W1,p(·)(�n) for j = 1, 2, . . .. Assume further that
the sequence

(
%p(·)(u j)

)∞
j=1 is bounded. If %p(·)(u j − v j)→ 0 as j→ ∞, then

|%p(·)(u j) − %p(·)(v j)| → 0 as j→ ∞.
Proof. We have

|v j|p(x) = |v j − u j + u j|p(x) 6 2p+ |v j − u j|p(x) + 2p+ |u j|p(x)

and so it follows that %p(·)(u j − v j) + %p(·)(u j) > 2−p+

%p(·)(v j). This means that
(
%p(·)(u j)

)
j

is also a bounded sequence; let us choose c > 0 such that %p(·)(u j) 6 c as well as
%p(·)(v j) 6 c for every j.

For each M > 0 we have

%p(·)(u j) − %p(·)(v j) =

∫

�n
|u j(x)|p(x) − |v j(x)|p(x) dx

=

∫

�n
|u j(x) − v j(x) + v j(x)|p(x) − |v j(x)|p(x) dx

6
∫

�n
(1 + M)p(x)−1|u j(x) − v j(x)|p(x) +

(
(1 + 1

M )p(x)−1 − 1
)|v j(x)|p(x) dx

= (1 + M)p+−1%p(·)(u j − v j) +
(
(1 + 1

M )p+−1 − 1
)
%p(·)(v j),

where the inequality follows from [MZ, Lemma 1.1]. Swapping u j and v j gives a similar
inequality, and combining the inequalities gives

|%p(·)(u j) − %p(·)(v j)| 6 (1 + M)p+−1%p(·)(u j − v j) +
(
(1 + 1

M )p+−1 − 1
)(
%p(·)(u j) + %p(·)(v j)

)
.

Let ε > 0 be given. Since %p(·)(u j) + %p(·)(v j) 6 2c, we can choose M so that

((
1 + 1

M

)p+−1 − 1
)(
%p(·)(u j) + %p(·)(v j)

)
6 ε

2 .

We can then choose j so large that

(1 + M)p+−1%p(·)(u j − v j) 6 ε
2

and so we get |%p(·)(u j) − %p(·)(v j)| 6 ε. Since ε was arbitrary, this means that |%p(·)(u j) −
%p(·)(v j)| → 0, which was to be shown. �
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3. S p(·)-

For E ⊂ �n we denote

Sp(·)(E) = {u ∈ W1,p(·)(�n) : u > 1 in an open set containing E}.
The Sobolev p(·)-capacity of E is defined by

Cp(·)(E) = inf
u∈Sp(·)(E)

∫

�n

(
|u(x)|p(x) + |∇u(x)|p(x)

)
dx.

In case Sp(·)(E) = ∅, we set Cp(·)(E) = ∞. Functions u ∈ Sp(·)(E) are said to be p(·)-
admissible for the set E. Note that the full notation used above can be abbreviated as
Cp(·)(E) = inf %1,p(·)(u) where the infimum is taken over all p(·)-admissible functions for
the set E.

The Sobolev p(·)-capacity enjoys all relevant properties of general capacities; specif-
ically, it will be seen that Cp(·)(E) defines a Choquet capacity under mild conditions
on the exponent p. We start with some properties that hold for arbitrary measurable
exponents p : �n → [1,∞).

3.1. Theorem. The set function E 7→ Cp(·)(E) has the following properties:

(i) Cp(·)(∅) = 0.
(ii) If E1 ⊂ E2, then Cp(·)(E1) 6 Cp(·)(E2).

(iii) If E is a subset of �n, then

Cp(·)(E) = inf
E⊂U

U open

Cp(·)(U).

(iv) If E1 and E2 are subsets of �n, then

Cp(·)(E1 ∪ E2) + Cp(·)(E1 ∩ E2) 6 Cp(·)(E1) + Cp(·)(E2).

(v) If K1 ⊃ K2 ⊃ . . . are compact, then

lim
i→∞

Cp(·)(Ki) = Cp(·)


∞⋂

i=1

Ki

 .

Proof. Assertion (i) is clear by the definition, since the constant function u ≡ 0 belongs
to Sp(·)(∅).

To prove (ii), let E1 ⊂ E2. Then Sp(·)(E1) ⊃ Sp(·)(E2), and hence by definition

Cp(·)(E1) = inf
u∈Sp(·)(E1)

%p(·)(u) 6 inf
u∈Sp(·)(E2)

%p(·)(u) = Cp(·)(E2).

To prove (iii), let E ⊂ �n be arbitrary. Obviously,

Cp(·)(E) 6 inf
E⊂U

U open

Cp(·)(U).

Fix ε > 0. There exists a function u ∈ S p(·)(E) such that E ⊂ int{u > 1} and

Cp(·)
(

int{u > 1}) 6
∫

�n

(
|u(x)|p(x) + |∇u(x)|p(x)

)
dx 6 Cp(·)(E) + ε,

and the claim follows.
To prove (iv), let ε > 0. As above, choose u1 ∈ Sp(·)(E1) such that E1 ⊂ int{u1 > 1}

and ∫

�n

(
|u1(x)|p(x) + |∇u1(x)|p(x)

)
dx 6 Cp(·)(E1) + ε.
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Choose also u2 ∈ Sp(·)(E2) such that E2 ⊂ int{u2 > 1} and
∫

�n

(
|u2(x)|p(x) + |∇u2(x)|p(x)

)
dx 6 Cp(·)(E2) + ε.

We have max(u1, u2) ∈ Sp(·)(E1 ∪ E2) and min(u1, u2) ∈ Sp(·)(E1 ∩ E2) and, by Theo-
rem 2.2, ∫

�n
|∇max(u1, u2)(x)|p(x) dx +

∫

�n
|∇min(u1, u2)(x)|p(x) dx

=

∫

�n
|∇u1(x)|p(x) dx +

∫

�n
|∇u2(x)|p(x) dx.

Consequently

Cp(·)(E1 ∪ E2) + Cp(·)(E1 ∩ E2) 6 %1,p(·)(u1) + %1,p(·)(u2) 6 Cp(·)(E1) + Cp(·)(E2) + 2ε,

from which (iv) follows as ε tends to zero.
To prove (v), let K1 ⊃ K2 ⊃ . . . be compact. Since

⋂∞
i=1 Ki ⊂ K j for each j = 1, 2, . . .,

property (ii) gives

Cp(·)


∞⋂

i=1

Ki

 6 lim
i→∞

Cp(·)(Ki).

To prove the opposite inequality, choose any open set U with
⋂

i Ki ⊂ U. Because every
Ki is compact (so that

⋂
i Ki is compact, as well), there is a positive integer k such that

Ki ⊂ U for all i > k. Thus
lim
i→∞

Cp(·)(Ki) 6 Cp(·)(U),

and by property (iii)

lim
i→∞

Cp(·)(Ki) 6 Cp(·)


∞⋂

i=1

Ki

 .

�

Properties (i), (ii), and (iii) from the previous theorem yield that the Sobolev p(·)-
capacity is an outer capacity. In order to get the remaining Choquet property (that is,
(vi) in the next theorem) we need an extra assumption for the variable exponent:

3.2. Theorem. If 1 < p− 6 p+ < ∞, then the set function E 7→ Cp(·)(E) has the
following additional properties:

(vi) If E1 ⊂ E2 ⊂ . . . are subsets of �n, then

lim
i→∞

Cp(·)(Ei) = Cp(·)


∞⋃

i=1

Ei

 .

(vii) If Ei ⊂ �n for i = 1, 2, . . ., then

Cp(·)


∞⋃

i=1

Ei

 6
∞∑

i=1

Cp(·)(Ei).

Proof. To prove (vi), denote E =
⋃∞

i=1 Ei. Note first that (ii) implies that

lim
i→∞

Cp(·)(Ei) 6 Cp(·)(E).

We will prove the opposite inequality. We may assume that limi→∞Cp(·)(Ei) < ∞. Let
ui ∈ Sp(·)(Ei) and %1,p(·)(ui) 6 Cp(·)(Ei) + 2−i for every i = 1, 2, . . .. Since W1,p(·)(�n) is
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reflexive [KR, Corollary 2.7] and the sequence (ui) is bounded in W1,p(·)(�n), there is a
subsequence of (ui) which converges weakly to a function u ∈ W1,p(·)(�n). By the Mazur
lemma there is a sequence (v j) converging strongly to u such that every v j is a convex
combination of the ui’s, i > j. Since E j ⊂ E j+1 ⊂ . . ., it follows that E j ⊂ int{v j > 1},
and we obtain

%1,p(·)(v j) 6 sup
i> j

%1,p(·)(vi) 6 sup
i> j

(
Cp(·)(Ei) + 2−i

)
6 lim

i→∞
Cp(·)(Ei) + 2− j.

By considering a subsequence if necessary, we may assume that ‖v j+1 − v j‖1,p(·) 6 2− j.
We set

w j = v j +

∞∑

i= j

|vi+1 − vi|,

and observe that w j ∈ W1,p(·)(�n). Since w j > supi> j{vi}, we see that w j > 1 on the open
set ∞⋃

i= j

int{vi > 1} ⊃ E,

so w j ∈ Sp(·)(E). This yields Cp(·)(E) 6 %1,p(·)(w j) for j = 1, 2, . . .. We also find that

‖w j − v j‖1,p(·) 6
∞∑

i= j

‖vi+1 − vi‖1,p(·) 6
∞∑

i= j

2−i = 2− j+1,

and hence
%1,p(·)(w j − v j) 6 ‖w j − v j‖1,p(·) → 0 as j→ ∞.

Since
%1,p(·)(v j) 6 lim

i→∞
Cp(·)(Ei) + 2− j,

Lemma 2.6 yields

Cp(·)(E) 6 %1,p(·)(w j)→ lim
i→∞

Cp(·)(Ei) as j→ ∞.
This completes the proof of (vi).

It remains to prove (vii). From (iv) it follows by induction that

Cp(·)


k⋃

i=1

Ei

 6
k∑

i=1

Cp(·)(Ei)

for any finite family of subsets E1, E2, . . . , Ek in �n. Since
⋃k

i=1 Ei increases to
⋃∞

i=1 Ei,
(vi) implies (vii). This completes the proof of Theorem 3.2. �

By the definition of outer measure, properties (i), (ii), and (vii) of the p(·)-capacity
yield:

3.3. Corollary. If 1 < p− 6 p+ < ∞, then the Sobolev p(·)-capacity is an outer measure.

A set function which satisfies the capacity properties (i), (ii), (v), and (vi) is called a
Choquet capacity, see [Cho]. We therefore have the following result:

3.4. Corollary. Let 1 < p− 6 p+ < ∞. Then the set function E 7→ Cp(·)(E), E ⊂ �n, is
a Choquet capacity. In particular, all Suslin sets E ⊂ �n are capacitable, this is,

Cp(·)(E) = inf
E⊂U

U open

Cp(·)(U) = sup
K⊂E

K compact

Cp(·)(K).
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We can derive a weak form of the subadditivity (property (vii)) even if we dispense
with the lower bound assumption on the variable exponet p.

3.5. Lemma. Suppose that p+ < ∞. If every Ei is a subset of �n with Cp(·)(Ei) = 0,
i = 1, 2, . . ., then

Cp(·)


∞⋃

i=1

Ei

 = 0.

Proof. Fix 0 < ε < 1. Since %1,p(·)(ui) → 0 if and only if ‖ui‖1,p(·) → 0 [KR, (2.28)], we
find a sequence (ui) with ui ∈ Sp(·)(Ei) and ‖ui‖1,p(·) 6 ε 2−i. Define vi = u1 + . . . + ui.
Then (vi) is a Cauchy sequence and since W1,p(·)(�n) is complete [KR, Theorem 2.5],
there exists v ∈ W1,p(·)(�n) such that vi → v.

Let us show that v ∈ Sp(·)
(⋃∞

i=1 Ei
)
, at least after a redefinition of v in a set of measure

zero. Let Ui = int{ui > 1}. We show that v > 1 almost everywhere in an open set⋃∞
i=1 Ui ⊃ ⋃∞

i=1 Ei. Suppose this were not so. Then there exists a set N and an index i
such that v|N < 1 and |N ∩ Ui| > 0. It follows that

∫

N∩Ui

|1 − v(x)|p(x) dx > 0.

But v j(x) > 1 for x ∈ N ∩ Ui for all j > i, which contradicts the fact that v j → v.
Therefore v ∈ Sp(·)

(⋃n
i=1 Ei

)
. We find that

‖v‖1,p(·) 6 lim sup
i→∞

‖vi‖1,p(·) 6
∞∑

i=1

‖ui‖1,p(·) 6 ε.

Therefore

Cp(·)


∞⋃

1=1

Ei

 6 %1,p(·)(v) 6 ‖v‖1,p(·) 6 ε

which proves the claim, since ε was arbitrary. �

We say that the variable exponent p : �n → [1,∞) satisfies the density condition
if C∞(�n) ∩ W1,p(·)(�n) is dense in W1,p(·)(�n), see Section 5 for details and further
references. If p satisfies the density condition, we achieve the following result which
allows us to consider only a limited class of p(·)-admissible functions in the definition
of the Sobolev p(·)-capacity.

3.6. Lemma. Let p : �n → [1,∞) satisfy the density condition. If K is compact, then

Cp(·)(K) = inf
u∈S∞p(·)(K)

∫

�n

(
|u(x)|p(x) + |∇u(x)|p(x)

)
dx,

where S∞p(·)(K) = Sp(·)(K) ∩C∞(�n).

Proof. Let u ∈ Sp(·)(K). We choose a sequence of functions ϕ j ∈ C∞(�n) converging
to u in W1,p(·)(�n). Let U be an open bounded neighborhood of K such that u > 1 in
U. Let ψ ∈ C∞(�n), 0 6 ψ 6 1, be such that ψ = 1 in �n \ U and ψ = 0 in an open
neighborhood of K. Then it is seen that the functions ψ j = 1 − (1 − ϕ j)ψ converge to u
in W1,p(·)(�n). This establishes the assertion since ψ j ∈ S∞p(·)(K). �
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4. p(·)-C  H 

In this section we study how the variable Sobolev capacity relates to the Hausdorff
measures. The following lemma follows easily from the definition of the capacity.

4.1. Lemma. Every measurable set E ⊂ �n satisfies |E| 6 Cp(·)(E).

Proof. If u ∈ Sp(·)(E), then there is an open set O ⊃ E such that u > 1 in O and hence

|E| 6 |O| 6
∫

�n
|u(x)|p(x)dx 6

∫

�n
|u(x)|p(x) + |∇u(x)|p(x)dx.

We obtain the claim by taking the infimum over all p(·)-admissible functions for E. �

The s-dimensional Hausdorff measure of a set E ⊂ �n is denoted by Hs(E), see [EG,
Section 2.1] or [Mat].

4.2. Theorem. If E ⊂ �n with Cp(·)(E) = 0, then

(i) Hs(E) = 0 for all s > n − p−, and
(ii) Hn−1(E) = 0 for compact E with p− = 1.

Proof. Let r > 0, and let ui ∈ W1,p(·)(�n), i = 1, 2, . . ., be such that E ⊂ int{ui > 1} and∫

�n
|ui(x)|p(x) + |∇ui(x)|p(x)dx < 2−i.

Let φ be a Lipschitz function with φ = 1 in B(0, r), φ = 0 in�n \B(0, 2r) and 0 6 φ 6 1.
Then by the Hölder inequality φui ∈ W1,p−

0 (B(0, 2r)) ⊂ W1,p−(�n). We thus obtain
Cp−(E ∩ B(0, r)) = 0. It then follows by subadditivity that C p−(E) = 0. But we know
from [EG, Theorem 4, p. 156, and Theorem 3, p. 193] that this implies (i) and (ii),
respectively. �

4.3. Corollary. Suppose that p− > n, and let E ⊂ �n. If Cp(·)(E) = 0, then E = ∅.
Proof. Since H0 is a counting measure [EG, Theorem 2, p. 63], the claim follows
directly from Theorem 4.2(i). �

4.4. Theorem. Suppose that p+ < n, and let E ⊂ �n. If Hn−p+

(E) = 0, then Cp(·)(E) = 0.

Proof. It follows from [EG, Theorem 4, p. 156] that C p+(E) = 0. Thus there exists a
sequence v j ∈ Sp+(E) such that %1,p+(v j) → 0 as j → ∞. Let φ be a Lipschitz function
with φ = 1 in B(0, r), φ = 0 in�n\B(0, 2r), and 0 6 φ 6 1. Then φv j ∈ W1,p+

0 (B(0, 2r)) ⊂
W1,p+

(�n) and by [KR, Theorem 2.8] we obtain

‖φv j‖1,p(·) 6 (1 + |B(0, 2r)|)‖φv j‖1,p+ .

This yields φv j ∈ W1,p(·)(�n) and so it follows that φv j ∈ Sp(·)(E ∩ B(0, r)). Since
%1,p(·)(φv j)→ 0 as j→ ∞, we obtain Cp(·)(E ∩ B(0, r)) = 0, which implies the result by
subadditivity, Lemma 3.5. �

Recall that the Hausdorff dimension of a set A ⊂ �n is defined in terms of the Haus-
dorff measure by

dimH(A) = inf{s > 0 : Hs(A) = 0},
see [Mat] for details. We define a local version of the Hausdorff dimension, which
allows us to take into account the variability of the exponent to derive a sharper version
of Theorem 4.2(i).
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The local Hausdorff dimension of a set A ⊂ �n is defined to be a function dimH(A, ·) :
�n → [0,∞) given for x ∈ �n by

dimH(A, x) = lim inf
r→0

{s > 0 : Hs(A ∩ B(x, r)) = 0}.
Before stating our result on the local Hausdorff dimension of zero capacity sets, let us
illustrate the utility of this concept; the next result shows that dimH(A, ·) allows us to
estimate the Hausdorff dimension of arbitrary subsets of A.

4.5. Lemma. For B ⊂ A ⊂ �n we have dimH(B) 6 sup
x∈B

dimH(A, x).

Proof. Fix s > supx∈B dimH(A, x). It follows from the definition of the local dimension
that for every x ∈ B there exists an rx > 0 such that dimH(A∩B(x, rx)) < s so that Hs(A∩
B(x, rx)) = 0. From the open cover

⋃
x∈B B(x, rx) we can choose a countable subcovering

of B,
⋃∞

i=1 B(xi, rxi). It follows by subadditivity that Hs(A∩⋃∞i=1 B(xi, rxi)) = 0, and since
B ⊂ A∩⋃∞

i=1 B(xi, rxi), it follows by monotony that Hs(B) = 0. Therefore dimH(B) < s
and so it follows that dimH(B) 6 supx∈B dimH(A, x). �

The following example shows that the inequality in the previous lemma can be sharp
and that the local Hausdorff dimension needs not be continuous.

4.6. Example. We write e1 = (1, 0) and e2 = (0, 1). Let A = [−e1, e1] ∪ B(e2, 1) and
B = [−e1, e1]. Then clearly dimH(A, x) = 1 for x ∈ [−e1, e1] \ {0} but dimH(A, 0) = 2, a
discontinuity. Moreover, dimH(B) = 1 < 2 = supx∈B dimH(A, x).

4.7. Theorem. Let p : �n → [1,∞) be continuous. If E ⊂ �n with Cp(·)(E) = 0, then
p(x) 6 n and dimH(E, x) 6 n − p(x) for every x ∈ E.

Proof. Suppose that p(x) > n for some x ∈ E. Then there exists a ball B(x, r) such that
p(y) > (n + p(x))/2 for all y ∈ B(x, r). Let φ be a Lipschitz function with 0 6 φ 6 1,
φ = 1 in B(x, r

2 ), and φ = 0 outside of B(x, r). We define a new variable exponent
q : �n → [1,∞) given by

q(y) =


p(y) for y ∈ B(x, r),
n+p(x)

2 otherwise.

Now, if u ∈ Sp(·)(E), then φu ∈ Sq(·)(E ∩ B(x, r
2)) and, moreover, %1,q(·)(φu) 6 c %1,p(·)(u),

where the constant c > 0 does not depend on u. It follows that

Cq(·)(E ∩ B(x, r
2 )) 6 c Cp(·)(E) = 0.

Since ess inf q(x) = (n+ p(x))/2 > n, it follows from Theorem 4.2(iii) that E∩B(x, r
2 ) =

∅. But E ∩ B(x, r
2 ) contains x; this contradiction shows that the assumption p(x) > n

was false.
To prove the second statement of the theorem, fix x ∈ E and ε > 0. Let r > 0 be such

that |p(y) − p(x)| < ε for all y ∈ B(x, r). Like above we define a new variable exponent

q(y) =


p(y) for y ∈ B(x, r),

p(x) − ε otherwise;

arguing as above it follows by Theorem 4.2(i) that Hs(E ∩ B(x, r/2)) = 0 for s >
n − p(x) + ε and so dimH(E ∩ B(x, r)) 6 n − p(x) + ε. Letting r → 0 we see that
dimH(E, x) 6 n− p(x) + ε. Since ε was arbitrary, this further implies that dimH(E, x) 6
n − p(x), which was to be shown. �
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5. p(·)-Q

The following two results are analogous to the results by Kinnunen and Martio stated
on metric measure spaces in the fixed exponent case [KM, Theorem 3.3 and Corol-
lary 3.7]. Our proofs are easy modifications of their proofs.

We say that a claim holds p(·)-quasieverywhere if it holds everywhere except in a set
of p(·)-capacity zero.

5.1. Lemma. Let 1 < p− 6 p+ < ∞. For each Cauchy sequence of functions in C(�n)∩
W1,p(·)(�n) there is a subsequence which converges pointwise p(·)-quasieverywhere in
�n. Moreover, the convergence is uniform outside a set of arbitrary small p(·)-capacity.

Proof. Let (ui) be a Cauchy sequence in C(�n) ∩W1,p(·)(�n). We assume without loss
of generality, by considering a subsequence if necessary, that ‖ui − ui+1‖1,p(·) 6 4−i for
every i = 1, 2, . . .. We denote

Ei = {x ∈ �n : |ui(x) − ui+1(x)| > 2−i}.
for i = 1, 2, . . . and

F j =

∞⋃

i= j

Ei.

Using Theorem 2.2 it is easy to show that v = 2i|ui − ui+1| ∈ W1,p(·)(�n) and by as-
sumption we have ‖v‖1,p(·) 6 2−i. It was shown in [KR, (2.11)] that %p(·)(u) 6 ‖u‖p(·) if
‖u‖p(·) 6 1. It follows that

Cp(·)(Ei) 6 %1,p(·)(v) 6 2i‖ui − ui+1‖1,p(·).

The subadditivity of the p(·)-capacity, Theorem 3.2(vii), implies that

Cp(·)(F j) 6
∞∑

i= j

Cp(·)(Ei) 6
∞∑

i= j

2−i 6 21− j.

Hence we obtain

Cp(·)


∞⋂

j=1

F j

 6 lim
j→∞

Cp(·)(F j) = 0.

Since (ui) converges pointwise in �n \ ⋂∞j=1 F j, we have proved the first claim of the
lemma. Moreover, we have

|ul(x) − uk(x)| 6
k−1∑

i=l

|ui(x) − ui+1(x)| 6
k−1∑

i=l

2−i < 21−l

for every x ∈ �n \ F j and every k > l > j. Therefore the convergence is uniform in
�n \ F j. �

The variable exponent p : �n → [1,∞) is said to satisfy the density condition if the
set C∞(�n)∩W1,p(·)(�n) is dense in W1,p(·)(�n). The extent of the validity of the density
condition is still an open problem, however, Edmunds and Rákosnı́k [ER2, Theorem 1]
have proven that the following condition is sufficient: for every x ∈ �n there exists a
number h(x) > 0 and a vector ξ(x) ∈ �n \ {0} such that

(i) h(x) < |ξ(x)| 6 1, and
(ii) p(x) 6 p(x + y) for a.e. x ∈ �n and y ∈ ⋃

0<t61
B(tξ(x), th(x)).
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We say that a function u : �n → � is p(·)-quasicontinuous if for every ε > 0 there
exists an open set O with Cp(·)(O) < ε such that u is continuous in�n \O. The following
result gives a sufficient setting to guarantee that a p(·)-quasicontinuous representative
exists.

5.2. Theorem. Let p : �n → [1,∞) satisfy the density condition with 1 < p− 6 p+ < ∞.
For each u ∈ W1,p(·)(�n) there is a p(·)-quasicontinuous function v ∈ W1,p(·)(�n) such
that u = v almost everywhere in �n.

Proof. Let u ∈ W1,p(·)(�n). It follows from the density condition that there exist func-
tions ui ∈ C∞(�n) ∩ W1,p(·)(�n) such that ui → u in W1,p(·)(�n). It follows from
Lemma 5.1 that the sequence converges uniformly outside a set of arbitrarily small ca-
pacity. But uniform convergence implies continuity of the limit and so we get a function
continuous outside a set of arbitrarily small capacity, as was to be shown. �

Next we show that every quasicontinuous Sobolev function satisfies a weak type
capacity inequality; the proofs follow the ideas from the book by Malý and Ziemer
[MZ, Lemmata 2.21 and 2.22].

5.3. Lemma. Let p+ < ∞, and let E be a subset of �n. Suppose that u ∈ W1,p(·)(�n) is a
nonnegative p(·)-quasicontinuous function such that u > 1 on E. Then for every ε > 0
there exists a function v ∈ S p(·)(E) such that %1,p(·)(u − v) < ε.

Proof. Let 0 < δ < 1, and let O ⊂ �n be an open set such that u is continuous in
�n \O and Cp(·)(O) < δ. Moreover, let w ∈ S p(·)(O) be such that %1,p(·)(w) < δ, and write
v = (1 + δ)u + |w|. Using Theorem 2.2 it is easy to show that v ∈ W 1,p(·)(�n). The set

G = {x ∈ �n \ O : u(x) > 1} ∪ O

is open, contains E, and v > 1 on G, thus v ∈ S p(·)(E). Using the power mean inequality
|w + δu|p(·) 6 2p+−1(|w|p(·) + |δu|p(·)) we obtain

%1,p(·)(u − v) =

∫

�n
|w(x) + δ u(x)|p(x) + |∇(w(x) + δ u(x))|p(x) dx

6 2p+−1(%1,p(·)(w) + δp−%1,p(·)(u)) < 2p+−1
(
δ + δp−%1,p(·)(u)

)
.

Letting δ→ 0 completes the proof of Lemma 5.3. �

5.4. Theorem. Let p+ < ∞. If u ∈ W1,p(·)(�n) is a p(·)-quasicontinuous function and
λ > 0, then

Cp(·)({x ∈ �n : |u(x)| > λ}) 6
∫

�n

∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

+
∣∣∣∣
∇u(x)
λ

∣∣∣∣
p(x)

dx.

Proof. By Theorem 2.2, |u| ∈ W1,p(·)(�n) and |∇|u|| = |∇u|. By Lemma 5.3, there is a
sequence v j ∈ Sp(·)

({x ∈ �n : |u(x)|
λ

> 1}) such that

%1,p(·)
( |u|
λ
− v j

)
→ 0 as j→ ∞.

Hence we obtain by Lemma 2.6 that

%1,p(·)(v j)→ %1,p(·)
( |u|
λ

)
as j→ ∞.

�
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[PR] Luboš Pick and Michael Růžička: An example of a space Lp(x) on which the Hardy-Littlewood

maximal operator is not bounded, Expo. Math. 19 (2001), 369–371.
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