The infinite Hilbert matrix on spaces of analytic functions

Santeri Miihkinen¹,

¹ Department of Mathematics and Statistics, University of Reading, Reading, UK

The (finite) Hilbert matrix is arguably one of the single most well-known matrices in mathematics. The infinite Hilbert matrix \mathcal{H} was introduced by David Hilbert around 120 years ago in connection to his double series theorem. It can be interpreted as a linear operator on spaces of analytic functions by its action on their Taylor coefficients. The boundedness of \mathcal{H} on the Hardy spaces H^p for $1 and Bergman spaces <math>A^p$ for $2 was established by Diamantopoulos and Siskakis. The exact value of the operator norm of <math>\mathcal{H}$ acting on the Bergman spaces A^p for $4 \leq p < \infty$ was shown to be $\frac{\pi}{\sin(2\pi/p)}$ by Dostanic, Jevtic and Vukotic in 2008. The case 2 was an open problem until in 2018 it was shown by Bozin and Karapetrovic that the norm has the same value also on the scale <math>2 . In this talk, we review some of the old results and consider the still partly open problem regarding the value of the norm on weighted Bergman spaces. We also consider a generalised Hilbert matrix operator and its (essential) norm. The talk is partly based on a joint work with Mikael Lindström, David Norrbo and Niklas Wikman (Åbo Akademi).