On a class of elliptic problems with critical growth in the gradient

Antonio J. Fernández
University of Bath, Bath (UK)

Abstract

This talk focus on the existence and multiplicity of solutions for a boundary value problem of the form $$
\left\{\begin{aligned} -\Delta u & =c(x) u+\mu(x)|\nabla u|^{2}+h(x), & & \text { in } \Omega, \\ u & =0, & & \text { on } \partial \Omega . \end{aligned}\right.
$$

Solutions are searched in the function space $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ where $\Omega \subset \mathbb{R}^{N}, N \geq 2$, is a bounded domain with smooth boundary. It is assumed that c, h belong to $L^{p}(\Omega)$ for some $p>N / 2$ and μ belongs to $L^{\infty}(\Omega)$.

In the case where $c(x) \leq \alpha_{0}<0$, now referred to as the coercive case, this problem has been studied since the 80 's and the existence of a unique solution is the rule. Recently, other cases (in particular assuming that $c(x) \geq 0$ or that $c(x)$ changes sign) started to be considered. We shall present some of the main contributions in these non-coercive cases. We will see that both existence and uniqueness may now be lost.

The talk is based in joints works with Colette De Coster (Université Polytechnique des Hauts-de-France, Valenciennes (France)) and Louis Jeanjean (Université de Franche-Comté, Besançon (France)).

