Measuring Triebel-Lizorkin fractional smoothness on domains in terms of first-order differences

Martí Prats

Martí Prats (mprats@mat.uab.cat) Aalto Yliopisto

Abstract. We give equivalent characterizations for a fractional Triebel-Lizorkin space $F_{p,q}^s(\Omega)$ in terms of first-order differences in a uniform domain Ω . The characterization is valid for any positive, non-integer real smoothness $s \in \mathbb{R}_+ \setminus \mathbb{N}$ and indices $1 \leq p < \infty$, $1 \leq q \leq \infty$ as long as the fractional part $\{s\}$ is greater than d/p - d/q.

Namely, $||f||_{F_{n,q}^s(\Omega)}$ is comparable to

$$\|f\|_{W^{\lfloor s\rfloor,p}(\Omega)} + \sum_{|\alpha|=\lfloor s\rfloor} \left(\int_{\Omega} \left(\int_{B(x,c\delta(x))\cap\Omega} \frac{|D^{\alpha}f(x) - D^{\alpha}f(y)|^{q}}{|x-y|^{\{s\}q+d}} \, dy \right)^{\frac{p}{q}} \, dx \right)^{\frac{1}{p}},$$

where $\delta(x)$ is the distance of x to the boundary of Ω .

Time permitting, we can discuss about the use of these norms to prove T1-type theorems for smooth CZO restricted to domains.