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Abstract
Let G Rn be a domain and let d1 and d2 be two metrics
on G. We compare the geometries defined by the two
metrics to each other for several pairs of metrics such
as the distance ratio metric, the triangular ratio metric
and the visual angle metric. Finally we apply our results
to study Lipschitz maps with respect to metrics.

This talk is based on [hvz]:
P. Hariri and M. Vuorinen, X. Zhang: Inequalities and
bilipschitz conditions for triangular ratio metric.
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Introduction
Several metrics have an important role in the
geometric function theory and in the study of
quasiconformal maps in the plane and space [G], [V1],
[GP] and [GO]. One of the key topics studied is uniform
continuity of quasiconformal mappings with respect to
metrics. Many authors have proved that these maps
are either Lipschitz or Hölder continuous with respect to
hyperbolic type metrics [GO, Vu1].
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J. Ferrand studies in [F1] the reverse question: does
Lipschitz continuity imply quasiconformality? A
negative answer was given in [FMV] in the case of a
conformally invariant metric introduced by Ferrand
[F1]. Our goal here is to continue this research and to
study similar questions for some other metrics. In
particular, we are interested in the visual angle metric
studied recently in [KLVW] and triangular ratio metric
from [CHKV].
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Triangular ratio metric

The triangular ratio metric is defined as follows for a
domain G ⊂ Rn and x, y ∈ G:

sG(x, y) = sup
z∈∂G

|x− y|

|x− z|+ |z − y|
∈ [0,1]. (1)
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Figure: Definition of sG(x, y)
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Visual angle metric

For a domain G Rn, n ≥ 2, and x, y ∈ G the visual angle
metric is defined by

vG(x, y) = sup{Ý(x, z, y) : z ∈ ∂G} ∈ [0, π]. (2)

∂G is not a proper subset of a line, see [KLVW, Lemma
2.8].
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Figure: Definition of vG(x, y)
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Hyperbolic metric

For the hyperbolic metric ρHn and ρBn by [B, p.35] we
have

chρHn(x, y) = 1+
|x− y|2

2xnyn
(3)

for all x, y ∈ Hn,

and by [B, p.40] we have

sh
ρBn(x, y)

2
=

|x− y|
Æ

1− |x|2
Æ

1− |y|2
(4)
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Distance ratio metric
For a domain G ⊂ Rn, x, y ∈ G, we define the j-metric by

jG(x, y) = log
�

1+
|x− y|

min{dG(x), dG(y)}

�

,

where dG(z) = d(z, ∂G).
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Quasihyperbolic metric

Let G be a proper subdomain of Rn . For all x, y ∈ G, the
quasihyperbolic metric kG is defined as

kG(x, y) = inf
γ

∫

γ

1

d(z, ∂G)
|dz|,

where the infimum is taken over all rectifiable arcs γ
joining x to y in G [GP].
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Point pair function

We define for x, y ∈ G Rn the point pair function

pG(x, y) =
|x− y|

Æ

|x− y|2 + 4d(x)d(y)
.

This point pair function was introduced in [CHKV] where
it turned out to be a very useful function in the study of
the triangular ratio metric. However, there are domains
G such that pG is not a metric.
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Lemma 2.7
Let G be a proper subdomain of Rn. If x, y ∈ G, then

th
jG(x, y)

2
=

|x− y|

|x− y|+ 2min{d(x), d(y)}

and

th
jG(x, y)

2
≤ sG(x, y) ≤

ejG(x,y) − 1

2
.
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Proof
For x, y ∈ G, let z ∈ ∂G satisfying d(x) = |x− z|. By
symmetry we may assume that d(x) ≤ d(y). For the
equality claim we see that

|x− y|

|x− y|+ 2d(x)
=

|x− y|/d(x)

|x− y|/d(x) + 2
=
ejG(x,y) − 1

ejG(x,y) + 1

=
ejG(x,y)/2 − e−jG(x,y)/2

ejG(x,y)/2 + e−jG(x,y)/2
= th

jG(x, y)

2
.
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For the first inequality we get by the triangle inequality

sG(x, y) ≥
|x− y|

|x− z|+ |z − y|
≥

|x− y|

|x− y|+ 2d(x)
= th

jG(x, y)

2
.
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For the second inequality, for every ϵ > 0 we choose
u ∈ ∂G, such that,

sG(x, y) ≤
|x− y|

|x− u|+ |y− u|
+ ϵ

≤
|x− y|

2|x− z|
+ ϵ

≤
ejG(x,y) − 1

2
+ ϵ .
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Letting ϵ→ 0, we have that

sG(x, y) ≤
ejG(x,y) − 1

2

and the proof is complete.
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Lemma 2.8
Let G be a proper subdomain of Rn. Then for all x, y ∈ G
we have

sG(x, y) ≤ 2th
jG(x, y)

2
.

Proof
We first consider the points x, y ∈ G satisfying
ejG(x,y) ≥ 3. We have that

2 th
jG(x, y)

2
=

2(ejG(x,y) − 1)

ejG(x,y) + 1
≥ 1 ≥ sG(x, y).
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We next suppose that ejG(x,y) < 3. In this case, it is clear
that

2 th
jG(x, y)

2
≥
ejG(x,y) − 1

2
,

which together with Lemma 2.7 implies the desired
inequality.

The sharpness of the inequality can be
easily verified by investigating the domain G = Rn \ {0}.
For any x ∈ G selecting y = −x gives sG(x, y) = 1 and
th jG(x,y)

2 = 1
2 .
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Lemma 2.9
Let G be a proper subdomain of Rn, then for all x, y ∈ G,

sG(x, y) ≤ 2pG(x, y).

Proof
Observe first that by Lemma 2.8

sG(x, y) ≤
2|x− y|

|x− y|+ 2d(x)
≤

2|x− y|
Æ

|x− y|2 + 4d(x)d(y)
,

where the second inequality follows from the inequality
d(y) ≤ d(x) + |x− y|. This completes the proof.
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Lemma 2.10
Let G be a proper subdomain of Rn, then for all x, y ∈ G,

th
jG(x, y)

2
≤ pG(x, y) ≤

p

2th
jG(x, y)

2
.

Proof
For the first inequality, by Lemma 2.7 the claim is
equivalent to

|x− y|

|x− y|+ 2d(x)
≤

|x− y|
Æ

|x− y|2 + 4d(x)d(y)
.

This, in turn, follows easily from the inequality
d(y) ≤ |x− y|+ d(x).
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For the second inequality if we assume d(x) ≤ d(y), then

pG(x, y) ≤
|x− y|

Æ

|x− y|2 + 4d(x)2
=

1
p

1+ 4u2

where u =
d(x)
|x−y| .

29/ 55 By P. Hariri, M. Vuorinen, X. Zhang Inequalities and bilipschitz conditions 22/55



Next again by Lemma 2.7

th
jG(x, y)

2
=

|x− y|/d(x)

|x− y|/d(x) + 2
=

1

1+ 2u
,

and thus

pG(x, y) ≤
1

p

1+ 4u2
≤

p
2

1+ 2u
=
p

2th
jG(x, y)

2
.
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Lemma 2.11

For x, y ∈ Bn we have vBn(x, y) ≥ th jBn (x,y)
2 .

Proof
By [HVW, Theorem 2.13] sBn(x, y) ≤ vBn(x, y), so the
result follows directly from Lemma 2.7.
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Theorem 2.12
For a convex domain G Rn and all x, y ∈ G we have

1

th
jG(x, y)

2
≤ sG(x, y) ≤

p

2th
jG(x, y)

2
,

and
2

vG(x, y) ≥
1
p

2
pG(x, y) ≥

1
p

2
sG(x, y).
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Proof
(1) The first inequality was proved in Lemma 2.7, and
the second inequality follows from Lemma 2.10 and
[CHKV, Lemma 3.4].

(2) By [VW, Theorem 3.16] we have for a convex
domain G

vG(x, y) ≥ arcsin
t

t+ 2
≥

t

t+ 2
,

where t = ejG(x,y) − 1, so

vG(x, y) ≥
ejG(x,y) − 1

ejG(x,y) + 1
= th

jG(x, y)

2
,

and the result follows by Lemma 2.10 and [CHKV,
Lemma 3.4].
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Theorem 2.13
Let G be a half space or a ball in the Euclidean space
Rn. Then for all x, y ∈ G

vG(x, y) ≥ pG(x, y) ≥ sG(x, y).
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Remark 2.14
For a general convex domain G ⊂ Rn, the inequality
vG ≥ pG may not hold. Consider the strip domain
S = {(x, y) ∈ R2 : −∞ < x <∞,−1 < y < 1} and two
points a = (0, t), b = (0,−t) for 0 < t < 1. Then it is easy
to see that

pS(a,b) =
t

Æ

t2 + (1− t)2
, and vS(a,b) = arcsin t.
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We see that

C := inf
t∈(0,1)

vS(a,b)

pS(a,b)
= 0.73707 · · · > 1/

p

2 = 0.707107 . . .

Actually, one can prove that for a general convex
domain G we have that

vG ≥ CpG, C = 0.73707 . . . (5)

The above example of the strip domain shows that the
constant C is best possible. Thus the inequality (5)
improves Theorem 2.12 (2).
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Lemma 2.16
For all x, y ∈ Hn

sHn(x, y) ≤ vHn(x, y) ≤ 4sHn(x, y).
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Lemma 2.17
Suppose that G Rn is a domain and x, y ∈ G. If there
exists λ ∈ (0,1) such that for all z ∈ G we have
x, y 6∈ B(z, λd(z)) then kG(x, y) ≥ log(1+ λ).

Lemma 2.18
Let G be a proper subdomain of Rn and let λ ∈ (0,1).
Then for all x, y ∈ B(z, λd(z))

kB(z,d(z))(x, y) ≤
1+ λ

1− λ
kG(x, y).
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Theorem 2.19

Let G ⊂ Rn, then sG(x, y) ≤ c th
�

1+λ
1−λkG(x, y)

�

for x, y ∈ G,

λ ∈ (0,1), c = 1
th( 1+λ

1−λ log(1+λ))
.
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Remark 2.20
A uniform domain G ⊂ Rn is a domain with the following
comparison property between the quasihyperbolic
metric and the distance ratio metric: there exists a
constant C > 1 such that, for all x, y ∈ G,

jG(x, y) ≤ kG(x, y) ≤ CjG(x, y).

Hence, this comparison property and the above results
inequalities yield numerous new inequalities between
the quasihyperbolic metric and the triangular ratio
metric or the visual angle metric in uniform domains.
See [GH], [GO].
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Theorem 3.1
Let G ⊂ Rn, then for all x, y ∈ G,

sG(x, y) ≥ sin
vG(x, y)

2
.
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Figure: Proof of Theorem 3.1
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Theorem 3.2

Let G ⊂ R2 be a domain such that ∂G satisfies the
nonlinearity condition, i.e. There exists δ ∈ (0,1), such
that for every z ∈ ∂G and for every r ∈ (0, d(G)) and for
every line L with L ∩ B(z, r) 6=∅, there exists
w ∈ (B(z, r) ∩ ∂G) \

⋃

y∈LB(y, δr). If x, y ∈ G and
sG(x, y) < 1 then

vG(x, y) > arctan
�

δ

6
sG(x, y)

�

.
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Figure: Proof of Theorem 3.2
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Lemma 3.3
Let G ⊂ Rn be a proper subdomain of Rn, x ∈ G and
y ∈ Bn(x,d(x)). Then

sin(vG(x, y)) ≤ sup
w∈∂G

|x− y|

|x− w|
=
|x− y|

d(x)
.

Theorem 3.4

Let G be a proper subdomain of R2. For x, y ∈ G,

sG(x, y) ≤
|x− y|/d(x)

1+ cos(vG(x, y)) +
q

(|x− y|/d(x))2 − sin2(vG(x, y))
.
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Remark 3.5
(1) If |x− y|/d(x) > 1 then the square root in Theorem
3.4 is clearly well-defined. In the case |x− y|/d(x) ≤ 1 it
follows from Lemma 3.3 that the square root is
well-defined, too.
(2) The inequalities in Theorem 3.4 are sharp in the
following sense: If vG(x, y) = 0, then
sG ≤ |x− y|/(|x− y|+ 2d(x)) which together with Lemma
2.7 actually gives sG(x, y) = |x− y|/(|x− y|+ 2d(x)); If
sG(x, y) = 1, then the inequality actually gives
vG(x, y) = π.
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Definition 3.6
Let δ ∈ (0,1/2). We say that a domain G ⊂ Rn satisfies
condition H(δ) if for every z ∈ ∂G and all r ∈ (0, d(G)/2)
there exists w ∈ Bn(z, r) ∩ (Rn \G) such that
Bn(w, δr) ⊂ Bn(z, r) ∩ (Rn \G).

Note that the condition H(δ) excludes domains whose
boundaries have zero angle cusps directed into the
domain. For instance B2 \ [0,1] does not satisfy the
condition H(δ). A similar condition has been studied
also in [MV] and [KLV].
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Note that the condition H(δ) excludes domains whose
boundaries have zero angle cusps directed into the
domain. For instance B2 \ [0,1] does not satisfy the
condition H(δ). A similar condition has been studied
also in [MV] and [KLV].

55/ 55 By P. Hariri, M. Vuorinen, X. Zhang Inequalities and bilipschitz conditions 40/55



Figure: Condition H(δ)
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Theorem 3.7

Let G ⊂ R2 be a domain satisfying the condition H(δ).
Then for all x, y ∈ G we have

sinvG(x, y) ≥
δ

2
th
jG(x, y)

2
.

57/ 55 By P. Hariri, M. Vuorinen, X. Zhang Inequalities and bilipschitz conditions 42/55



Figure: Power of point
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Väisälä [V2] has proved that an L−bilipschitz map with
respect to the quasihyperbolic metric is a
quasiconformal map with linear dilatation 4L2.
Motivated partly by his work we consider the bilipschitz
maps with respect to the triangular ratio metric, and
our result gives a refined upper bound L2 of the linear
dilatation in the case of Euclidean spaces.
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Theorem 4.1
Let G Rn be a domain and let f : G→ fG ⊂ Rn be a sense
preserving homeomorphism, satisfying L-bilipschitz
condition with respect to triangular ratio metric, i.e.

sG(x, y)/L ≤ sfG(f (x), f (y)) ≤ LsG(x, y),

holds for all x, y ∈ G. Then f is quasiconformal with
linear dilatation H(f ) ≤ L2.
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Corollary 4.3

Let G ⊂ Rn be a domain and let f : G→ fG ⊂ Rn be a
sense preserving homeomorphism, satisfying
L-bilipschitz condition with respect to distance ratio
metric or quasihyperbolic metric. Then f is
quasiconformal with linear dilatation H(f ) ≤ L2.
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Corollary 4.4

Let G ⊂ Rn be a domain and let f : G→ fG ⊂ Rn be a
sense preserving isometry with respect to triangular
ratio metric, distance ratio metric, or quasihyperbolic
metric. Then f is a conformal mapping. In particular, for
n ≥ 3 the mapping f is the restriction of a Möbius map.
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Thank you!
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