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The Kleinian group Γ.

I The base space is R̄n+1 = Rn+1 ∪ {∞}, n ≥ 3.
I The unit ball is Bn+1.
I The hyperbolic metric of Bn+1 is d.
I The unit sphere is Sn.

I Γ is a Kleinian group acting on Bn+1.
I Γ is discrete in Möb(R̄n+1) and γBn+1 = Bn+1 for all γ ∈ Γ.

I Any γ ∈ Γ is a hyperbolic isometry in Bn+1.
I Any γ ∈ Γ is a conformal automorphism on Sn.



The limit set L(Γ) and the set of discontinuity Ω(Γ).

I The limit set of Γ is

L(Γ) = Γx ∩ Sn,

where x ∈ Bn+1 is arbitrary.

I Let Γ be non-elementary, i.e. #L(Γ) = ∞.

I The set of discontinuity of Γ is

Ω(Γ) = Sn \ L(Γ).

I Suppose that Ω(Γ) , ∅.



Conical limit points of Γ.

I x ∈ L(Γ) is a conical limit point of Γ if the following is true.

I Let y ∈ Bn+1 and let R be a hyperbolic ray of Bn+1 with
endpoint x.

I Then there is a sequence (γi)i in Γ and t > 0 such that
limi→∞ γi(y) = x and d(γi(y),R) ≤ t for all i.

I Lc(Γ) is the set of conical limit points of Γ.

I It is always true that Lc(Γ) , ∅.



Bounded parabolic fixed points of Γ.

I x ∈ L(Γ) is a parabolic fixed point of Γ if x is the fixed point of
some parabolic element of Γ.

I The stabilizer of a parabolic fixed point x of Γ is

Γx = {γ ∈ Γ : γ(x) = x}.

I A parabolic fixed point x of Γ is bounded if (L(Γ) \ {x})/Γx is
compact.



Geometric finiteness and convex cocompactness.

I If L(Γ) can be written as a pairwise disjoint union

L(Γ) = Lc(Γ) ∪ Γp1 ∪ Γp2 ∪ . . . ∪ Γpm,

where p1, p2, . . . pm are bounded parabolic fixed points of Γ,
then Γ is geometrically finite.

I If Γ is geometrically finite and contains no parabolic elements,
i.e. if L(Γ) = Lc(Γ), then Γ is convex cocompact.



The exponent of convergence of Γ.

I If x, y ∈ Bn+1 and s ≥ 0, then the series

Ps
Γ(x, y) =

∑
γ∈Γ

e−sd(x,γ(y))

is called a Poincaré series of Γ.

I The divergence or convergence of Ps
Γ

(x, y) is independent of
x and y.

I We can define the exponent of convergence of Γ:

δΓ = inf
{
s ≥ 0 : Ps

Γ(x, y) < ∞ for some x, y ∈ Bn+1
}
.

I It is the case that δΓ ∈]0, n].



Conformal measures of Γ.

I A Borel measure µ is an s-conformal measure of Γ, s > 0, if
the following conditions are satisfied.

I µ is positive and finite.

I µ(R̄n+1 \ L(Γ)) = 0.

I If A ⊂ L(Γ) is µ-measurable and γ ∈ Γ, then

µ(γA) =

∫
A
|γ′|sdµ.

I (If x ∈ L(Γ), then γ′(x)/|γ′(x)| is an orthogonal matrix.)



Existence of conformal measures.

I If µ is an s-conformal measure of Γ, then s ≥ δΓ.

I If Γ is not convex cocompact, then there are s-conformal
measures of Γ for every s ≥ δΓ. (See [AFT] and [S].)

I If Γ is convex cocompact, then every s-conformal measure of
Γ is δΓ-conformal and such measures exist.

I Γ always has canonical δΓ-conformal measures called
Patterson-Sullivan measures.

I A δΓ-conformal measure of Γ is not necessarily a
Patterson-Sullivan measure. (See [FT].)



Nayatani’s metric tensors.

I Let µ be an s-conformal measure of Γ for some s ≥ δΓ.

I Denote by ge the standard euclidean metric tensor of Sn.

I The metric tensor gµ on Ω(Γ) is defined by

gµx =

(∫
L(Γ)

(
2

|x − y |2

)s

dµ(y)

)2/s

ge
x ,

where x ∈ Ω(Γ) is arbitrary.

I Tensors of the form gµ were introduced by Nayatani, see [N],
in the case where µ is a Patterson-Sullivan measure of Γ.

I But the definition is valid for any conformal measure of Γ!



The tensor gµ is Γ-invariant.

I We claim that γ∗gµ = gµ for any γ ∈ Γ.

I Write

λµ(x) =

(∫
L(Γ)

(
2

|x − y |2

)s

dµ(y)

)2/s

for every x ∈ Ω(Γ).

I It is the case that

γ∗gµ = γ∗(λµge) = (λµ ◦ γ)γ∗ge = (λµ ◦ γ)|γ′|2ge .

I We will show that λµ ◦ γ = λµ/|γ
′|2.



It is the case that λµ ◦ γ = λµ/|γ
′|2.

I If x ∈ Ω(Γ), then

(λµ ◦ γ)(x) =

(∫
γL(Γ)

(
2

|γ(x) − y |2

)s

dµ(y)

)2/s

=

(∫
L(Γ)

(
2

|γ(x) − γ(y)|2

)s

|γ′(y)|sdµ(y)

)2/s

=

(∫
L(Γ)

(
2

|γ′(x)||γ′(y)||x − y |2

)s

|γ′(y)|sdµ(y)

)2/s

=

(∫
L(Γ)

(
2

|x − y |2

)s
|γ′(y)|s

|γ′(x)|s |γ′(y)|s
dµ(y)

)2/s

=
λµ(x)

|γ′(x)|2
.



The sign of the scalar curvature of gµ.

I Suppose that µ is a Patterson-Sullivan measure of Γ.

I A direct computation (see [N]) shows that the sign of the
scalar curvature Sgµ of gµ is determined by δΓ.

I More precisely,

Sgµ = (n − 1)(n − 2 − 2δΓ)τµ,

where τµ > 0 is a function determined by µ.



The sign of the scalar curvature of gµ.

I Actually, Nayatani’s argument is valid if µ is any s-conformal
measure of Γ.

I Therefore,
Sgµ = (n − 1)(n − 2 − 2s)τµ.

I We conclude that Sgµ is positive, zero or negative if and only if
s < N, s = N or s > N, respectively, where N = (n − 2)/2.



The sign of the scalar curvature of gµ.

I For the moment, suppose that Γ is not convex cocompact.

I Recall that now there are s-conformal measures of Γ for every
s ≥ δΓ.

I We conclude that Γ always has tensors of the form gµ with
negative scalar curvature.

I Also, if δΓ < (n − 2)/2, then Γ has a tensor of the form gµ with
positive scalar curvature and another one with zero scalar
curvature.



Kleinian manifolds.

I Let O be a non-empty, open, connected and Γ-invariant
subset of Ω(Γ).

I Suppose that no non-trivial element in Γ has a fixed point in
O .

I Then M = O/Γ is a typical example of a locally conformally
flat Riemannian manifold.

I (Some of the results of this talk are true for a larger class of
Riemannian manifolds.)



Compact Kleinian manifolds.

I For the moment, suppose that M is compact.

I Let g1 and g2 be conformally equivalent metric tensors of M.

I Then the scalar curvature of g1 is positive everywhere, zero
everywhere or negative everywhere.

I Also, the sign of the scalar curvature of g2 is the same as that
of g1.



Compact Kleinian manifolds.

I Let µi be an si-conformal measure of Γ for some si ≥ δΓ,
where i = 1, 2.

I The tensors gµ1 and gµ2 are pointwise scalings of the standard
metric tensor of Sn, so they are conformally equivalent.

I The tensors gµ1 and gµ2 are Γ-invariant, so they can be
projected to metric tensors gµ1

M and gµ2
M of M.

I We conclude that the signs of the scalar curvatures of gµ1
M and

gµ2
M do not change in M and that these signs are equal.



Compact Kleinian manifolds.

I If Γ is convex cocompact, then s1 = δΓ = s2.

I If Γ is not convex cocompact, then s1 and s2 can be any
numbers in [δΓ,∞[.

I Recall that the sign of the scalar curvature of gµi
M , i = 1, 2, is

positive, zero or negative if and only if si < N, si = N or
si > N, respectively, where N = (n − 2)/2.

I We conclude that if δΓ ≤ (n − 2)/2, then s1, s2 ≤ (n − 2)/2.

I In other words, if δΓ ≤ (n − 2)/2, then Γ is convex cocompact.



Compact Kleinian manifolds.

I The above result can be generalized into the following
theorem.

I Suppose that Ω(Γ)/Γ has a non-empty compact component
and that δΓ ≤ (n − 2)/2. Then Ω(Γ) is connected and Γ is
convex cocompact.

I This theorem was originally proved by Izeki in [I], but our proof
is very simple compared to Izeki’s proof.



The isometry group of (M, gµM).

I We continue to consider the (possibly non-compact) Kleinian
manifold M = O/Γ endowed with the projected metric tensor
gµM obtained from an s-conformal measure µ of Γ.

I A diffeomorphism α : M → M is a conformal automorphism of
M if α∗gµM and gµM are conformally equivalent.

I If α : M → M is a gµM-isometry, then α∗gµM = gµM so α is a
conformal automorphism of M.

I We are interested in conditions which guarantee that every
conformal automorphism of M is a gµM-isometry.



Earlier results.

I Such conditions have been provided by Nayatani, Yabuki and
Matsuzaki in [N], [Y] and [MY].

I In the main results of these papers, only δΓ-conformal
measures of Γ are considered.

I The fundamental assumption (FA) in all of these papers is that
if µ1 and µ2 are any δΓ-conformal measures of Γ, then there is
a constant c > 0 such that µ2 = cµ1.

I Γ satisfies (FA) if PδΓ

Γ
(x, y) = ∞ for some x, y ∈ Bn+1.

I Γ satisfies the condition PδΓ

Γ
(x, y) = ∞ if Γ is geometrically

finite, for example.



Earlier results.

I The main implication of (FA) is that if α is a conformal
automorphism of M, then there is a constant cα > 0 such that
α∗gµM = cαgµM .

I After establishing the existence of cα, one can show that it is
actually the case that cα = 1.

I Nayatani showed in [N] that cα = 1 by assuming additionally
that the metric induced by gµM is complete.

I Yabuki showed in [Y] that cα = 1 by assuming additionally that
Γ is geometrically finite. (The induced metric may or may not
be complete in this case.)



Earlier results.

I Finally, Matsuzaki and Yabuki showed in [MY] that cα = 1
even if no additional assumptions are made.

I (The argument in [MY] uses special properties of the
Patterson-Sullivan measure construction so it cannot be
generalized into the context of this talk.)

I We will point out that it usually is unnecessarily restrictive to
consider only δΓ-conformal measures of Γ and that the
assumption (FA) is often unnecessarily strong.



Characterizing conformal automorphisms of M.

I Our discussion is based on the following characterization of
conformal automorphisms of M (see [N]).

I The normalizer of Γ in Möb(Bn+1) is

N(Γ) = {β ∈ Möb(Bn+1) : βΓβ−1 = Γ}.

I Write also
NO(Γ) = {β ∈ N(Γ) : βO = O}.



Characterizing conformal automorphisms of M.

I A mapping β ∈ NO(Γ) induces a mapping β̄ : M → M given by

β̄(Γx) = Γβ(x)

for every x ∈ O .

I A diffeomorphism α : M → M is a conformal automorphism of
M if and only if α = β̄ for some β ∈ NO(Γ).

I Moreover, two mappings β1, β2 ∈ NO(Γ) induce the same
conformal automorphism of M if and only if β2 = β1 ◦ γ for
some γ ∈ Γ.



Conformal images of conformal measures.

I If σ ∈ Möb(Bn+1), then the measure σs
∗µ defined by

σs
∗µ(A) =

∫
σ−1A
|σ′|sdµ

is an s-conformal measure of σΓσ−1.

I So if β ∈ N(Γ), then βs
∗µ is an s-conformal measure of Γ.

I Given σ ∈ Möb(Bn+1), then

µ(σA) =

∫
A
|σ′|sdµ,

where A is an arbitrary µ-measurable set, if and only if
σs
∗µ = µ. (In particular, γs

∗µ = µ for every γ ∈ Γ.)



The assumption (FA) is unnecessarily strong.

I For the moment, suppose that Γ satisfies the assumption (FA)
with respect to s-conformal measures.

I That is, suppose that if µ1 and µ2 are s-conformal measures
of Γ, then there is a constant c > 0 such that µ2 = cµ1.

I Therefore, if β ∈ N(Γ), there is a constant bβ > 0 such that
βs
∗µ = bβµ.

I The same argument which shows that γ∗gµ = gµ for every
γ ∈ Γ shows that β∗gµ = cβgµ for every β ∈ N(Γ), where
cβ = b−2/s

β .



The assumption (FA) is unnecessarily strong.

I We conclude that if (FA) is true, then β̄∗gµM = cβg
µ
M for every

β ∈ NO(Γ).

I Recall that this was the first main step of the arguments in [N],
[Y] and [MY].

I But we see that it is enough to assume that βs
∗µ = bβµ for

every β ∈ N(Γ) (or, more specifically, every β ∈ NO(Γ)).

I The results of [N] and [Y] can be generalized if (FA) is
replaced by this more general assumption.



Conformal measures on orbits of bounded parabolic fixed
points.

I We will show how to construct an s-conformal measure µ of Γ
satisfying βs

∗µ = bβµ for every β ∈ N(Γ) without assuming that
(FA) is true. (See [AFT] and [FT].)

I Suppose that p ∈ L(Γ) is a bounded parabolic fixed point of Γ.

I Suppose that s ≥ δΓ is such that Ps
Γ

(x, y) < ∞ for some
x, y ∈ Bn+1.

I Then the measure µp defined by

µp(p) = mp > 0 and µp(γ(p)) =

∫
{p}
|γ′|sdµp = |γ′(p)|smp ,

where γ ∈ Γ is arbitrary, is an s-conformal measure of Γ.



Conformal measures on orbits of bounded parabolic fixed
points.

I If q ∈ L(Γ) is any parabolic fixed point of Γ, there is a unique
integer kq ∈ {1, 2, . . . , n} called the rank of q.

I Suppose that every bounded parabolic fixed point of Γ of rank
kp is contained in Γp.

I Then it is easy to see that βs
∗µp = bβµp for every β ∈ N(Γ).

I It is possible that (FA) is not true in this situation.

I Indeed, if Γ has a bounded parabolic fixed point q with rank
kq , kp , we can construct the measure µq.



A more straightforward method.

I Instead of considering (FA) or its generalization, one can
simply attempt to construct an s-conformal measure µ of Γ
which satisfies βs

∗µ = µ for every β ∈ N(Γ).

I If N(Γ) is a Kleinian group, then L(N(Γ)) = L(Γ) and
δN(Γ) ≥ δΓ, and so any conformal measure of N(Γ) is a
suitable conformal measure of Γ.

I If N(Γ) is not a Kleinian group, we consider the action of Γ on
the unique Γ-invariant hyperbolic subspace HΓ of Bn+1 of
minimal dimension.

I The normalizer NHΓ of Γ|HΓ is a Kleinian group acting on HΓ,
and we can construct conformal measures of NHΓ which can
be extended into suitable conformal measures of Γ.



A more straightforward method.

I The above result can in fact be proved if N(Γ) is replaced by
the maximal group

A(Γ) = {β ∈ Möb(Bn+1) : βL(Γ) = L(Γ)}.

I Therefore, Γ has an s-conformal measure µ satisfying the
following.

I Let G be a Kleinian group acting on Bn+1 such that
L(G) = L(Γ).

I Suppose that N ⊂ Ω(G)/G is a Kleinian manifold of the same
form as M ⊂ Ω(Γ)/Γ.

I Then µ is an s-conformal measure of G and every conformal
automorphism of N is a gµN-isometry.



An explicit measure construction.

I The downside of the above general result is that we have very
little control over the constructed measures.

I For example, if µ is an s-conformal measure of Γ given by the
result, we know that s ≥ δΓ but very little else.

I We point out a situation where we have an explicit measure
construction.

I Let p ∈ L(Γ) be a bounded parabolic fixed point of Γ of rank
k ∈ {1, 2, . . . , n}.

I Let s ≥ δΓ be such that Ps
Γ

(x, y) < ∞ for some x, y ∈ Bn+1.



An explicit measure construction.

I Suppose that N(Γ)p is the pairwise disjoint union

N(Γ)p = Γp1 ∪ Γp2 ∪ . . . ∪ Γpm,

where p1 = p, p2, . . . , pm are bounded parabolic fixed points
of Γ of rank k .

I Then the measure µ defined by

µ(p) = 1 and µ(β(p)) =

∫
{p}
|β′|sdµ = |β′(p)|s ,

where β ∈ N(Γ) is arbitrary, is an s-conformal measure of Γ
which satisfies βs

∗µ = µ for every β ∈ N(Γ).



Geometrically finite groups.

I Suppose Γ is a geometrically finite group with parabolic
elements.

I Then the above construction is applicable for every s > δΓ.

I Since PδΓ

Γ
(x, y) = ∞ for every x, y ∈ Bn+1, the above

construction is not applicable if s = δΓ.

I However, the main results of [A-M2] imply that if µ is a
δΓ-conformal measure of Γ, then βδΓ

∗ µ = µ for every β ∈ A(Γ).
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