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PRELIMINARIES

POLYHARMONIC MAPPINGS

A complex-valued mapping F in a domain D is called
polyharmonic (or p-harmonic) if F satisfies the polyharmonic
equation APF = A(AP~1F) =0 for some p € N*, where A is the
usual complex Laplacian operator.

In a simply connected domain, a mapping F is polyharmonic if and
only if F has the following representation:

p
F(z) =) |2P*D6i(2),
k=1

where each Gy is harmonic, i.e., AGk(z) =0 for k € {1,--- | p}.
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K-QUASIREGULAR
For a polyharmonic mapping F in D, we use the following standard
notations:

Ar(2) = min |Fo(z) + e 2Fe(2)] = ||Fe(2)]| - |2,

—2i6
Ae(z) = max |F:(z) + e *"Fx(2) = |IF(2)] + | Fz(2)]].

F is said to be K-quasiregular, K € [1,0), if for z € D,
/\F(Z) < K)\F(Z).




HADAMARD’S THREE CIRCLES THEOREM

The classical theorem of three circles, also called Hadamard's three
circles theorem, states that if f is an analytic function in the
annulus B(r,n) ={z:0<n < |z| =r < rn < oo}, continuous
on B(ri, r), and My, My and M are the maxima of f on the three
circles corresponding to r1, r» and r, respectively, then

n log 2 log =
M%n < MM,




DIAMETER

Let D, denote the disk {z : |z| < r,z € C}, and D the unit disk
D;. For a polyharmonic mapping F, we denote the diameter of the
image set of F(D,) by

DiamF(D,) := sup |F(z) — F(w)|.

z,weD,

THEOREM A (POUKKA, 1907)

Suppose f is analytic in D. Then for all positive integers n we have

|f(”)(0)| 1 .
- = 7 < — .
py 2Dlamf(]D))

Moreover, equality holds for some n if and only if
f(z) = f(0) + cz" for some constant ¢ of modulus Diamf(DD)/2.




LENGTH

For r € [0,1), the length of the curve

C(r) = {w = F(re®®) : 6 € [0,27]}, counting multiplicity, is
defined by

27 . 27 . . .
I (r) = / |dF (re®)| = r / |Fu(re™®) — e=2 Fy(rei®)|do,
0 0

where F is a polyharmonic mapping defined in ID. In particular, let
IF(1) = supgr<1 IF(r).




AREA

We use the area function Sp(r) of F, counting multiplicity, defined
by
Se(r) = [ Je(2)do(),
D,

where do denotes the normalized Lebesgue area measure on D. In
particular, we let

Sr(1) = sup Sg(r).

0<r<1

THEOREM B AREA VERSION OF THE SCHWARZ LEMMA
(BURCKEL, MARSHALL, MINDA, POGGI-CORRADINI AND

RANSFORD, 2008)

Suppose f is analytic on the unit disk D. Then the function
Barea(r) := (mr?) tareaf(D,) is strictly increasing for 0 < r < 1,
except when f is linear, in which case ¢area is a constant.




DISTANCE RATIO METRIC

For a subdomain G C C and for all z, w € G, the distance ratio

metric jg is defined as

o 2
Jje(z,w) = log (1 el A, d(w,aG)}) ’

where d(z,0G) denotes the Euclidean distance from z to 0G.

THEOREM C (F. W. GEHRING, B. P. PALKA AND B. G.

OSGOOD)

If G and G’ are proper subdomain of R” and if f is a Mobius
transformation of G onto G, then for all x, y € G

mG’(f(X)7 f(y)) < 2mG(X7y)>

where m € {j, k}.
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IDEAS

First, we establish two Landau type theorems. We also show a
three circles type theorem and an area version of the Schwarz
lemma. Finally, we study Lipschitz continuity of polyharmonic
mappings with respect to the distance ratio metric.

THEOREM 1

| A\

Suppose that F is a polyharmonic mapping in D of the form

ZIZI“ Y (hn(2) + £n(2))

S ) S a0z + Bl
n=1 j=1

and all its non-zero coefficients aj, j, an,j and by, j, by, satisfy
the condition:
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THEOREM 1

Then

Z‘an,ﬂ Zlan’ <5 D'amF( ): (3)

and )
V2p ..
" (lan,| + Ibngl) < YZEDiamF(D)
n=1
forall n€{1,...,p}, j > 1. For p =1, the inequalities in (3) are
sharp for the mappings F(z) = Cz" and F(z) = CZ", respectively,
where C is a constant.




PROOF

Let

H(z) :=F(z) — F(ze'*)

P 00 |
= Z |Z|2(n—1) E (andzf 1 —el% ) + an?j(l _ e_,'%)> .
n=1

Jj=

Obviously, |[H(z)| < DiamF(D), and

i/%r |H(z)[>d6

Z Z al‘ll,_lang,_/ + bnl’_,bnz",) ‘1 — e k

1<n,m<p j=1
<Diam?F (D),

2("1+n2+1 2)




PRrROOF

Therefore,

p2(m+m+j=2) < Diam2F( D),

. i 12
Z (anhjrz,j+ bnl,jban) ‘1 _ %

1<ny,m<p

for all j > 1. Set k =, and let r tend to 1. Then by the
assumption (2), we get

p
> (1ansl? +18n,?) < §Diam?F(D).

n=1

By Cauchy's inequality, we have

Z|and| Z|b,w| < DlamF(]D)




PROOF

and for all j > 1, S°P_, (|an | + |bnj]) < Y22DiamF (D).

THEOREM 2
Suppose F is a K-quasiregular polyharmonic mapping in D of the
form (1), Ig(1) < oo, and satisfies the condition:

. b :
ol o
n,J n2,J

for non-zero coefficients a,, j, by, j, an,, and by, j. Then for all
ne{l,....p},j>1,

Kl (1)
9 bpj| £ ———————.




By a simple computation, we have

p oo
Z > ((n+j—1)ang”+f—22”‘1+(n—1)mz"—22”+f—1),
n=1 j=1

00
Z ((n_1)anJZn+j—12n—2+(n+j_1)mzn—12n+j—2)‘
j=1

n=1 j=
Then for jo > 1, we get that
1 %" F,(2)

e -1 2(n—1)
o | oerdo= ;"+Jo )anjs :

and ,
" F‘(Z) 2(n—1)
27r i d0 = Z(n +jo—1)r bnjy,

lengths, areas and Lipschitz continuity




PROOF

which give us

p P
Z(n +Jo— 1)an,j0r2(n_1) + Z(n +Jo — l)anor2(n_1)
n=1 n=1
1 [ F,(2) 1 [ F(z) (5)

27
<L / () 4o,
0

~or ro—1




e

It follows from

27 27
() = r / Fulre) — 2 Fo(re)|d0 > / Ar(2)do,
0 0

that

/2ﬂ/\ (2)do < K’F( ).
0



PROOF

(5) and (6) imply that

p
Z(n +Jo — 1)an0r2("_1)

n=1

p
Z(n +Jjo— l)anJorz("_l)

n=1

_l’_

Let r — 171, The assumption (4) implies

P

. Kl (1)
S (n+o = D[ans| + Ibasl) < =
n=1

for all jo > 1, and hence,
Kig(1)
. | <
|an,j| + [bn,j| < 2n(n+j— 1)’

for all k € {1,...,p}, j > 1. The proof of the theorem is complete.

” K/F(f)
~ 2mrdo

(7)
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LANDAU TYPE THEOREMS

THEOREM 3

Suppose F is a polyharmonic mapping in D of the form (1),
Ar(0) = a > 0, DiamF (D) < oo, and satisfies the condition (2)
for its non-zero coefficients. Then F is univalent in the disk Dy,
and F(D,) contains a univalent disk D,;, where rg is the least
positive root of the following equation:

V2p .. 2r — r? 2 Pl P (n—1)r2n=
a=YLpiamFm) [ ==—5 + poy
2 (1—r)? —(1- r)? ; 1—r
and
V2p . o V2p.. & T
= — YPpiamF(D — YPpiamF(D
) ro<a 5 Diam ( )l—ro 5 Diam ( )nz:; -

)

v
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The proof of this result is similar to [3, Theorem 1], where
lanj| + |bnj| < @DiamF(]D)) and Ar(0) = « is used instead of

lan,j| + bnj| < VM*—1-Xg(0) for all (n,j) # (1,1), and we omit

ExXAMPLE 1

—+
N 5
<
Y

Fix n = 4. Let a = e2™/4 be the primitive 4th root of unity, and
= @ = . L
7 — 182k+1
fo(z) = ho(2) + go(z Za arg{w

be a harmonic mapping of the disk onto the domain inside a
regular 4-gon with vertices at the 4th roots of unity (cf. [4, p. 59]).




[N
S

ExXAMPLE 1
By calculations,

i": 4k+1) : (7r(4k4+ 1))z4k+1

k=0

and

e 4 . (7(4k —1) _
gO(Z)_;wmk—l) s'"( 4 >Z4k -

Let F1(z) = Y22 (fy(2) + i|z|2fo(z)) (see Figure 1). Obviously,

Ar (0) = 1, DiamF1(D) < oo and the coefficients of Fy satisfy the
condition (2) for all its non-zero coefficients. Then F; is univalent
in the disk D,, and F1(ID,) contains a univalent disk D,




ExXAMPLE 1

where ry is the least positive root of the following equation:

o) 2 _ .3
o V2P =) e A(D) = 0,

(1-rp
and 5 02
pP1=n"n (1 — %Diamﬁ(ﬂ))) 0

5
-15 -10 -05 00 05 10 15




Part | Preliminaries
Part Il Main results
References

THEOREM 4

Suppose F is a K-quasiregular polyharmonic mapping in D of the
form (1), Ar(0) = a > 0, Ir(1) < oo, and satisfies the condition
(4) for its non-zero coefficients. Then F is univalent in the disk
D, and F(D,,) contains a univalent disk I,,, where r> is the least
positive root of equation

Kl ( o
27r(2f— )< +3Zr2( 1)>

and

Kir(1) 1 1 & ot
pQ:arz—T(long—rz—i—Qlogl rzzrz(n ) .

n=2

y
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IDEA OF PROOF

For any z; # z, where z;, zo € D, and r € (0,1) is a constant. It
follows from (7) that

|F(z1) — F(z2)] > ‘/[Z . F,(0)dz + Fz(0)dz

/[z . (Fo(2) — F(0))dz + (Fz(z) — F=(0))dz

> h—Jo— J3— Jy, where

5= / K, (0)dz + g](0)dz| > Ar(0)|z1 — 2],
[21,20]

b o= ‘/[ ](h’l(z)—h'l(o))dz+(g{(Z)—g{(O))Cf )
21,22




PROOF

Kl (1
S PRl
iy
W |f
[z1.22] =2
Kl
< |z — 2| ;i)
by = /
[z1.22] =2
Kle(1
< 2|z — 2 F)

Z |2V hp(2)dz + Z |22 Vg (2)dz

r
1—7r’

Z(n —1)|z[X"=2) (ho(2) + gn(2)) (Zdz + 2dZ)

r2(n—1)

21

p
n=2

1—r"




PROOF

That is

|F(z1) — F(22)| > |21 — z2]ep(r),

where

B Kl (1) r P pAn-1)
plr) =a—— (1—r+3’Z T )

n=2

It is easy to see that the function ¢(r) is strictly decreasing for
re (0,1),

l — d i = —o0.
Jim o(r) =aand lim o(r)=—oo

Hence there exists a unique r» € (0, 1) satisfying ¢(r2) = 0. This
implies that F is univalent in D,,.




PROOF

For any w in {w : |w| =}, we obtain
|F(w) — F(0)]

_ ‘ / Fo(2)dz + F(z)dZ
o]

o0 P o0
2(n—1 j
> an— Y (larl+ b)) =23 AN (lang| + bas)r
j=2 n=2 j=1
Kie(l) e~ & 2(n-1) Kig(1) )
> arn — -
- 2 2T Jz:; j nz: 2 Z 2 _j
Kig(1 1 1 <
= arg—ﬁ log—— — n +2log 22(" 1) = ps.
2m 1-n l—r




PROOF

Obviously,
K/F(].) ro d r22("_1)
_ A E =0.
p2>l’2(04 2T <l—r2+3n:21—r2

The proof of the theorem is complete.

EXAMPLE 2

Let F(z) = z(1 + |z|? + |z|*) be a K-quasiregular polyharmonic
mapping. Since

0F>(z) 0F»(2)
0z 0z
then we can choose K = 3. Obviously, Ar,(0) =1, /r,(1) < co and

the coefficients of F; satisfy the condition (4) for all its non-zero
coefficients.

9

d

< ‘




Then F is univalent in the disk D, and F»(ID,,) contains a
univalent disk ID,,, where r3 is the least positive root of equation

1— —2"7_(r+ AL =
27— 1) (r 3r° 4+ 3r ) 0,

and

Kig, (1) 1 1
p3:r3—# Iong@—r3—|—2(r3?+r34)log1_r3 )




THREE CIRCLES TYPE THEORE

|

THEOREM

Fix m € (0,1). Suppose that F is a polyharmonic mapping of the
form (1), Se(r) < m, Sp(1) <1, |an| > |bn | for all
ne{l,---,p}, j>1, and all its non-zero coefficients satisfy the
condition:

s
arg{ "“H =
an,.j 2’

log r

Then for n <r <1, Se(r) < mﬁf_l.

arg { Z”M H > g, where ny # np.  (8)

n2,J




PROOF

By a simple computation, we have

1 2 )
o | IF2Ra

> 3 ((m = 1)(n2 = 1)(am 77 + oy brmy)

1<ny,m<p j=1
+ (j(nl Ty — 2) +j2)an1J_an2,j> r2(n1+n2+j—3),
1

2w
o | IR

Z Z ( m — 1)(n2 — 1)(an, j@nyj + by jbm, j)

1<n;,m<p j=1

o (j(m + n2 = 2) + 12) by gy ) P 3),




PROOF

Therefore,

1 27

> [ (F@F - F(2)%)d0
0

o
= Z Zj(fh + Mo + j — 2)(any j3my — by jbuyy) r(m 23
1<n,m<p j=1

p
:Z ZJ(2” +J - 2)(|an,_/|2 — ’bn,_/‘z) r2(2”+j—3)

n=1 j=1
o0 .
+2 Z Zj(lh +n+j— 2)Re(an1Jaan - bnlan2J) pAmtragti—3)

1<m<n<p j=1
9)

It follows from the assumption (8) that




PROOF

1 2w

o | (F(2)P = |F(2)?)db > 0,
0

and hence

Se(r) = [ Jr(z)do(z2)
D,

1 rop2m ) '
:;/0 /0 (|Fz(Pela)|2 - |Fz(pe'0)‘2)d0pdp

p oo
=" j(lanjl? — [bn[?) ACrtH=2)
n=1 j=1
o
+2 > > jRe(an, j@m — by jbnyy) M) >0,
1<m<m<p j=1
(10)




PROOF
Let

o
G(2)= D > i(amydmy — bny jbmy ) 22T 2),

1<n,m<p j=1

Then the maximum of G on DD, is obtained on the real axis, that is
Se(r) = G(r) = max;—, |G(z)|, where 0 < r; < r < 1. Hence the
result follows from Hadamard's theorem. As in [2, Theorem 1], the
mapping F(z) = az + 8z, with |a|2 — |3|> = 1 shows the
sharpness.




AREA VERSION OF THE SCHWARZ LEMMA

THEOREM 6

Suppose that F is a polyharmonic mapping of the form (1),

lanj| > |bnj| forall n€ {1,--- ,p}, j > 1, and all its non-zero
coefficients satisfy the condition (8). Then the function

Darea(r) = (mr?)~AreaF(ID,) is strictly increasing for 0 < r < 1,
except when F(z) has the form (14), in which case ¢area is a
constant.




It follows from (9) that
1 2w

_ i0
or /. Je(re'”)rd6

p oo
- Z ZJ(Q” +J - 2)(|an,1|2 - |bn’J|2) r2(2”+j—2)—1
n=1 j=1

12 Z Z.j(nl +m+j— 2)Re(a,,hjr2d- = bn1an2J) p2(nitn2

1<m<n<p j=1
(11)

Let ) .
A(r) := AreaF(D,) = / / Je(pe')pdpdf.
0 0

Since Sg(r) = A(r)/m, then the equations (10) imply that

PROOF

Hj—2)




PROOF

p o0
A(r) =m > > j(lanjl? — [bnyl?) rPPmH=2)

(0.0)
[ i ) p2(m+n2+j—2
+2m Z ZJRe(anlajan2J - bnl,jbnzj)r (mtn2+) )
1<m<m<p j=1

(12)

Since

dA(r) _d [T [
ar _dr/o/o Jr(pe')pdbdp

2m
=/ Je(re®)rdé,
0




p oo

=2 Z ZJ(Z" +J- yang‘z ‘an|2) A

n=1 j=1

o
+2 3 Y il ma ) = 3)Re(an, jngg — b b ) HEI
1<m<n<p j=1

(13)

By simple calculations and the assumption, we get

& omml) =y (2 - 20

dr r




PROOF

If ®area(r) is not strictly increasing, then there is 0 < s < t < 1,
such that ¢aea(r) = C for every s < r < t. This implies that

Pnrea(r) =0 on [s, t], then %ﬁr) = #U) on [s, t]. By (13), we see
F has the following form

o
F(Z) =z¢7ei91 + Eé-eﬂpl 4 Z Cl,k(zkeiek + Ekeigok)
k=2

5o (14)
+12P> " Gu (Zkei(ekig) + 7ke"(‘”i%)> ,
k=1

where 1, &, C1k, (2.6 > 0, and 0y, ¢, € R.




Moreover, by (13), we have

AreaF(D,)

= = I (0).

lim parea(r) = lim
r—0 r—0

COROLLARY

Suppose that F is a polyharmonic mapping of the form (1),
lanj| > |bnj| forall ne {1,--- p}, j > 1, and all its non-zero
coefficients satisfy the condition (2). If AreaF (D) = , then

AreaF(D,) < 7r?

for every 0 < r < 1.
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LIPSCHITZ CONTINUITY

Now, we give a sufficient condition for a polyharmonic mapping to
be a contraction, that is to have the Lipschitz constant at most 1.

THEOREM 6

Let F(z) be a polyharmonic mapping in D of the form (1).
Suppose that there exists a constant M > 0 such that F(D) C Dy
and

p oo

> (lanjl + lbagl) < M. (15)

n=1 j=1

Then
Joy (F(2), F(w)) < jp(z,w).

This inequality is sharp.
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PROOF

For z,w € D, let's assume that |F(z)| > |F(w)| and
0 < r = max{|z|, |w|}. Since

|F(2) = F(w)]

I3 (angllzi D2 D

n=1 j=1
+nj(12P0 02— w2V )|

SR z(n—1)|ZJ“ ”J‘
<Jz—wld > |2 Te=w]

n=1 j=1
|Z|2(n—1) _ |W|2(n—1)

+wl
|z| — |w|

) (lanjl + 1bnjl)




PROOF

p oo
<lz=w Y D 1P STz w

n=1 j=1 0<s+t<j—1

+Hwl Y [2FIwl* | (Jang] + bagl)

0<s+t<2n-3
2n+j—3
<|z - w] ZZ |anj| + | bn,jl) Z 2|7,
n=1 j=1




PROOF

and
— [F(2)l

p o d > g — 5
> ZZ (lanJ| + |an|) - Z |Z|2(n_1) Z (angJ + anEJ)

n=1 j=1 n=1 j=1

p oo _
>33 (lanil + 1baiD(1 — [22772)

n=1 j=1

2n+j—-3
(1 2D Y S (angl + o) > k.
n=1 j=1




PRrOOF

then

Jou(F(2), F(w))
=log <1 + —’FA(/IZ) — F(W)‘)

TG

< (1 I el D EE )

= 2n+j-3 |_);
(2D s Salfondl + 160 2257 2

g (14122

—Iog<1+ 1=z

<n(z, w).

As the proof in [8, Theorem 1], the mapping F(z) = |z|?(P~1 2/ or
F(z) = |z|*P=1Z for p, j > 1, shows the sharpness.




In fact, for a harmonic mapping f(z), the condition |f(z)| < 1 is
not sufficient for the inequality (15) to hold for the case M = 1.
For example, one may consider the mapping

f(z) = 0.26z + 0.25Z + 0.25iz> — 0.25iz%. Now, we study Lipschitz
continuity of harmonic mappings f with respect to the distance
ratio metric, without the condition (15).

Let f(2) = 37, (ajz/ + bjZ/) be a harmonic mapping in D with
f(D) C D. Then

(@), f(w)) < PP

7T_]]D)(Z w).




PROOF

Assume that |f(z)| > |f(w)| and r = max{|z|,|w|}. It follows
from Cauchy’s inequality and Parseval's relation

P 1 21
S (lasl + i) —/ ) <1
le 271' 0

that
> (ajl +15) < |20 (122 + [82) < /2p.
Jj=1 j=1
Then,
p —_
f(2) — f(w)| = Z (ak(zk — Wk) + bk(Ek - Wk))
j=1




PROOF

p
<plz —w| Y _ (3] + |b;])

j=1
<pv/'2p|z — wl|.

The Schwarz lemma implies that 1 — |f(z)| > 1 — 2 arctanr.
Therefore,

Jin(f(2), f(w)) =log (1 u %)

<Iog(1+p\/_ 2wl )

arctan r




o | 14 pr = L=C
e Y 1—r 1—%arctanr ’

Let ¢(r) = %%, where g(r) =1—r, h(r) =1— % arctanr. Since

g(1) = h(1) =0, i:gg = “(IT’er) is strictly increasing with respect
to r, then ¢(r) is increasing from [0, 1) onto [1, 7). Hence,

Jn(F(z), f(w)) < log (1+ Pv2p |21__VrV|) < *é_

jp(z, w).
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