On lengths, areas and Lipschitz continuity of polyharmonic mappings

J. Chen
(Joint work with A. Rasila and X. Wang)

Department of Mathematics, Hunan Normal University,
China.

Email: jiaolongchen@sina.com

Seminar at Helsinki, Finland

File: "jiaolong_talk_final_Helsinki ".tex, printed: 11-4-2014, 15.09

Organization

(1) Part I Preliminaries
(2) Part II Main results
(3) References

PRELIMINARIES

Polyharmonic mappings

A complex-valued mapping F in a domain D is called polyharmonic (or p-harmonic) if F satisfies the polyharmonic equation $\Delta^{p} F=\Delta\left(\Delta^{p-1} F\right)=0$ for some $p \in \mathbb{N}^{+}$, where Δ is the usual complex Laplacian operator.

In a simply connected domain, a mapping F is polyharmonic if and only if F has the following representation:

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{k}(z)
$$

where each G_{k} is harmonic, i.e., $\Delta G_{k}(z)=0$ for $k \in\{1, \cdots, p\}$.

K-QUASIREGULAR

For a polyharmonic mapping F in \mathbb{D}, we use the following standard notations:

$$
\begin{aligned}
& \lambda_{F}(z)=\min _{0 \leq \theta \leq 2 \pi}\left|F_{z}(z)+e^{-2 i \theta} F_{\bar{z}}(z)\right|=\left|\left|F_{z}(z)\right|-\left|F_{\bar{z}}(z)\right|\right| \\
& \Lambda_{F}(z)=\max _{0 \leq \theta \leq 2 \pi}\left|F_{z}(z)+e^{-2 i \theta} F_{\bar{z}}(z)\right|=\left|\left|F_{z}(z)\right|+\left|F_{\bar{z}}(z)\right|\right|
\end{aligned}
$$

F is said to be K-quasiregular, $K \in[1, \infty)$, if for $z \in \mathbb{D}$, $\Lambda_{F}(z) \leq K \lambda_{F}(z)$.

Hadamard's THREE CIRCLES THEOREM

The classical theorem of three circles, also called Hadamard's three circles theorem, states that if f is an analytic function in the annulus $B\left(r_{1}, r_{2}\right)=\left\{z: 0<r_{1}<|z|=r<r_{2}<\infty\right\}$, continuous on $\overline{B\left(r_{1}, r_{2}\right)}$, and M_{1}, M_{2} and M are the maxima of f on the three circles corresponding to r_{1}, r_{2} and r, respectively, then

$$
M^{\log \frac{r_{2}}{r_{1}}} \leq M_{1}^{\log \frac{r_{2}}{r}} M_{2}^{\log \frac{r}{r_{1}}}
$$

DiAmeter

Let \mathbb{D}_{r} denote the disk $\{z:|z|<r, z \in \mathbb{C}\}$, and \mathbb{D} the unit disk \mathbb{D}_{1}. For a polyharmonic mapping F, we denote the diameter of the image set of $F\left(\mathbb{D}_{r}\right)$ by

$$
\operatorname{Diam} F\left(\mathbb{D}_{r}\right):=\sup _{z, w \in \mathbb{D}_{r}}|F(z)-F(w)|
$$

Theorem A (Poukka, 1907)

Suppose f is analytic in \mathbb{D}. Then for all positive integers n we have

$$
\frac{\left|f^{(n)}(0)\right|}{n!} \leq \frac{1}{2} \operatorname{Diam} f(\mathbb{D}) .
$$

Moreover, equality holds for some n if and only if $f(z)=f(0)+c z^{n}$ for some constant c of modulus $\operatorname{Diam} f(\mathbb{D}) / 2$.

LengTh

For $r \in[0,1)$, the length of the curve
$C(r)=\left\{w=F\left(r e^{i \theta}\right): \theta \in[0,2 \pi]\right\}$, counting multiplicity, is defined by

$$
I_{F}(r)=\int_{0}^{2 \pi}\left|d F\left(r e^{i \theta}\right)\right|=r \int_{0}^{2 \pi}\left|F_{z}\left(r e^{i \theta}\right)-e^{-2 i \theta} F_{\bar{z}}\left(r e^{i \theta}\right)\right| d \theta
$$

where F is a polyharmonic mapping defined in \mathbb{D}. In particular, let $I_{F}(1)=\sup _{0<r<1} I_{F}(r)$.

AREA

We use the area function $S_{F}(r)$ of F, counting multiplicity, defined by

$$
S_{F}(r)=\int_{\mathbb{D}_{r}} J_{F}(z) d \sigma(z)
$$

where $d \sigma$ denotes the normalized Lebesgue area measure on \mathbb{D}. In particular, we let

$$
S_{F}(1)=\sup _{0<r<1} S_{F}(r)
$$

Theorem B area version of the Schwarz lemma (Burckel, Marshall, Minda, Poggi-Corradini and RANSFORD, 2008)

Suppose f is analytic on the unit disk \mathbb{D}. Then the function $\phi_{\text {area }}(r):=\left(\pi r^{2}\right)^{-1} \operatorname{area} f\left(\mathbb{D}_{r}\right)$ is strictly increasing for $0<r<1$, except when f is linear, in which case $\phi_{\text {area }}$ is a constant.

Distance Ratio metric

For a subdomain $G \subset \mathbb{C}$ and for all $z, w \in G$, the distance ratio metric j_{G} is defined as

$$
j_{G}(z, w)=\log \left(1+\frac{|z-w|}{\min \{d(z, \partial G), d(w, \partial G)\}}\right)
$$

where $d(z, \partial G)$ denotes the Euclidean distance from z to ∂G.

Theorem C (F. W. Gehring, B. P. Palka and B. G. Osgood)

If G and G^{\prime} are proper subdomain of \mathbb{R}^{n} and if f is a Möbius transformation of G onto G^{\prime}, then for all $x, y \in G$

$$
m_{G^{\prime}}(f(x), f(y)) \leq 2 m_{G}(x, y)
$$

where $m \in\{j, k\}$.

IDEAS

First, we establish two Landau type theorems. We also show a three circles type theorem and an area version of the Schwarz lemma. Finally, we study Lipschitz continuity of polyharmonic mappings with respect to the distance ratio metric.

Theorem 1

Suppose that F is a polyharmonic mapping in \mathbb{D} of the form

$$
\begin{align*}
F(z) & =\sum_{n=1}^{p}|z|^{2(n-1)}\left(h_{n}(z)+\overline{g_{n}(z)}\right) \\
& =\sum_{n=1}^{p}|z|^{2(n-1)} \sum_{j=1}^{\infty}\left(a_{n, j} z^{j}+\overline{b_{n, j}} \bar{z}^{j}\right) \tag{1}
\end{align*}
$$

and all its non-zero coefficients $a_{n_{1}, j}, a_{n_{2}, j}$ and $b_{n_{1}, j}, b_{n_{2}, j}$ satisfy the condition:

Theorem 1

$$
\begin{equation*}
\left|\arg \left\{\frac{a_{n_{1}, j}}{a_{n_{2}, j}}\right\}\right| \leq \frac{\pi}{2},\left|\arg \left\{\frac{b_{n_{1}, j}}{b_{n_{2}, j}}\right\}\right| \leq \frac{\pi}{2} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{n=1}^{p}\left|a_{n, j}\right|, \sum_{n=1}^{p}\left|b_{n, j}\right| \leq \frac{\sqrt{p}}{2} \operatorname{Diam} F(\mathbb{D}) \tag{3}
\end{equation*}
$$

and

$$
\sum_{n=1}^{p}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) \leq \frac{\sqrt{2 p}}{2} \operatorname{Diam} F(\mathbb{D})
$$

for all $n \in\{1, \ldots, p\}, j \geq 1$. For $p=1$, the inequalities in (3) are sharp for the mappings $F(z)=C z^{n}$ and $F(z)=C \bar{z}^{n}$, respectively, where C is a constant.

Proof

Let

$$
\begin{aligned}
H(z) & :=F(z)-F\left(z e^{i \frac{\pi}{k}}\right) \\
& =\sum_{n=1}^{p}|z|^{2(n-1)} \sum_{j=1}^{\infty}\left(a_{n, j} z^{j}\left(1-e^{i \frac{\pi j}{k}}\right)+\overline{b_{n, j}} \bar{z}^{j}\left(1-e^{-i \frac{\pi j}{k}}\right)\right) .
\end{aligned}
$$

Obviously, $|H(z)| \leq \operatorname{Diam} F(\mathbb{D})$, and

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}|H(z)|^{2} d \theta \\
= & \sum_{\substack{1 \leq n_{1}, n_{2} \leq p}} \sum_{j=1}^{\infty}\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}+b_{n_{1}, j} \overline{b_{n_{2}, j}}\right)\left|1-e^{i \frac{\pi j}{k}}\right|^{2} r^{2\left(n_{1}+n_{2}+j-2\right)} \\
\leq & \operatorname{Diam}^{2} F(\mathbb{D}),
\end{aligned}
$$

Proof

Therefore,
$\sum_{1 \leq n_{1}, n_{2} \leq p}\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}+b_{n_{1}, j} \overline{b_{n_{2}, j}}\right)\left|1-e^{i \frac{\pi j}{k}}\right|^{2} r^{2\left(n_{1}+n_{2}+j-2\right)} \leq \operatorname{Diam}^{2} F(\mathbb{D})$, $1 \leq n_{1}, n_{2} \leq p$
for all $j \geq 1$. Set $k=j$, and let r tend to 1 . Then by the assumption (2), we get

$$
\sum_{n=1}^{p}\left(\left|a_{n, j}\right|^{2}+\left|b_{n, j}\right|^{2}\right) \leq \frac{1}{4} \operatorname{Diam}^{2} F(\mathbb{D})
$$

By Cauchy's inequality, we have

$$
\sum_{n=1}^{p}\left|a_{n, j}\right|, \sum_{n=1}^{p}\left|b_{n, j}\right| \leq \frac{\sqrt{p}}{2} \operatorname{Diam} F(\mathbb{D})
$$

Proof

and for all $j \geq 1, \sum_{n=1}^{p}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) \leq \frac{\sqrt{2 p}}{2} \operatorname{Diam} F(\mathbb{D})$.

Theorem 2

Suppose F is a K-quasiregular polyharmonic mapping in \mathbb{D} of the form (1), $I_{F}(1)<\infty$, and satisfies the condition:

$$
\begin{equation*}
\left|\arg \left\{\frac{a_{n_{1}, j}}{a_{n_{2}, j}}\right\}\right|=\left|\arg \left\{\frac{b_{n_{1}, j}}{b_{n_{2}, j}}\right\}\right|=0, \tag{4}
\end{equation*}
$$

for non-zero coefficients $a_{n_{1}, j}, b_{n_{1}, j}, a_{n_{2}, j}$, and $b_{n_{2}, j}$. Then for all $n \in\{1, \ldots, p\}, j \geq 1$,

$$
\left|a_{n, j}\right|+\left|b_{n, j}\right| \leq \frac{K l_{f}(1)}{2 \pi(n+j-1)}
$$

Proof

By a simple computation, we have

$$
\begin{aligned}
& F_{z}(z)=\sum_{n=1}^{p} \sum_{j=1}^{\infty}\left((n+j-1) a_{n, j} z^{n+j-2} \bar{z}^{n-1}+(n-1) \overline{b_{n, j}} z^{n-2} \bar{z}^{n+j-1}\right), \\
& F_{\bar{z}}(z)=\sum_{n=1}^{p} \sum_{j=1}^{\infty}\left((n-1) a_{n, j} z^{n+j-1} \bar{z}^{n-2}+(n+j-1) \overline{b_{n, j}} z^{n-1} \bar{z}^{n+j-2}\right) .
\end{aligned}
$$

Then for $j_{0} \geq 1$, we get that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{F_{z}(z)}{z^{j_{0}-1}} d \theta=\sum_{n=1}^{p}\left(n+j_{0}-1\right) a_{n, j_{0}} r^{2(n-1)}
$$

and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\overline{F_{\bar{z}}(z)}}{z^{j_{0}-1}} d \theta=\sum_{15 / 52}^{p}\left(n+j_{0}-1\right) r^{2(n-1)} b_{n, j_{0}}
$$

Proof

which give us

$$
\begin{align*}
& \left|\sum_{n=1}^{p}\left(n+j_{0}-1\right) a_{n, j_{0}} r^{2(n-1)}\right|+\left|\sum_{n=1}^{p}\left(n+j_{0}-1\right) b_{n, j_{0}} r^{2(n-1)}\right| \\
= & \left|\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{F_{z}(z)}{z^{j_{0}-1}} d \theta\right|+\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\overline{F_{\bar{z}}(z)}}{z^{j_{0}-1}} d \theta\right| \tag{5}\\
\leq & \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\Lambda_{F}(z)}{r^{j_{0}-1}} d \theta .
\end{align*}
$$

Proof

It follows from

$$
I_{F}(r)=r \int_{0}^{2 \pi}\left|F_{z}\left(r e^{i \theta}\right)-e^{-2 i \theta} F_{\bar{z}}\left(r e^{i \theta}\right)\right| d \theta \geq \frac{r}{K} \int_{0}^{2 \pi} \Lambda_{F}(z) d \theta
$$

that

$$
\begin{equation*}
\int_{0}^{2 \pi} \Lambda_{F}(z) d \theta \leq \frac{K I_{F}(r)}{r} \tag{6}
\end{equation*}
$$

Proof

(5) and (6) imply that

$$
\left|\sum_{n=1}^{p}\left(n+j_{0}-1\right) a_{n, j_{0}} r^{2(n-1)}\right|+\left|\sum_{n=1}^{p}\left(n+j_{0}-1\right) b_{n, j_{0}} r^{2(n-1)}\right| \leq \frac{K I_{F}(r)}{2 \pi r^{j_{0}}} .
$$

Let $r \rightarrow 1^{-1}$. The assumption (4) implies

$$
\begin{equation*}
\sum_{n=1}^{p}\left(n+j_{0}-1\right)\left(\left|a_{n, j_{0}}\right|+\left|b_{n, j_{0}}\right|\right) \leq \frac{K I_{F}(1)}{2 \pi} \tag{7}
\end{equation*}
$$

for all $j_{0} \geq 1$, and hence,

$$
\left|a_{n, j}\right|+\left|b_{n, j}\right| \leq \frac{K I_{F}(1)}{2 \pi(n+j-1)},
$$

for all $k \in\{1, \ldots, p\}, j \geq 1$. The proof of the theorem is complete.

LANDAU TYPE THEOREMS

Theorem 3

Suppose F is a polyharmonic mapping in \mathbb{D} of the form (1), $\lambda_{F}(0)=\alpha>0, \operatorname{Diam} F(\mathbb{D})<\infty$, and satisfies the condition (2) for its non-zero coefficients. Then F is univalent in the disk $\mathbb{D}_{r_{0}}$ and $F\left(\mathbb{D}_{r_{0}}\right)$ contains a univalent disk $\mathbb{D}_{\rho_{0}}$, where r_{0} is the least positive root of the following equation:
$\alpha=\frac{\sqrt{2 p}}{2} \operatorname{Diam} F(\mathbb{D})\left(\frac{2 r-r^{2}}{(1-r)^{2}}+\sum_{n=2}^{p} \frac{r^{2(n-1)}}{(1-r)^{2}}+2 \sum_{n=2}^{p} \frac{(n-1) r^{2(n-1)}}{1-r}\right)$,
and

$$
\rho_{0}=r_{0}\left(\alpha-\frac{\sqrt{2 p}}{2} \operatorname{Diam} F(\mathbb{D}) \frac{r_{0}}{1-r_{0}}-\frac{\sqrt{2 p}}{2} \operatorname{Diam} F(\mathbb{D}) \sum_{n=2}^{p} \frac{2 r_{0}^{2(n-1)}}{1-r_{0}}\right) .
$$

Proof

The proof of this result is similar to [3, Theorem 1], where $\left|a_{n, j}\right|+\left|b_{n, j}\right| \leq \frac{\sqrt{2 p}}{2} \operatorname{Diam} F(\mathbb{D})$ and $\lambda_{F}(0)=\alpha$ is used instead of $\left|a_{n, j}\right|+\left|b_{n, j}\right| \leq \sqrt{M^{4}-1} \cdot \lambda_{F}(0)$ for all $(n, j) \neq(1,1)$, and we omit it.

Example 1

Fix $n=4$. Let $\alpha=e^{2 \pi i / 4}$ be the primitive 4th root of unity, and $\beta=\sqrt{\alpha}=e^{\pi i / 4}$. Let

$$
f_{0}(z)=h_{0}(z)+\overline{g_{0}(z)}=\frac{1}{\pi} \sum_{k=0}^{3} \alpha^{k} \arg \left\{\frac{z-\beta^{2 k+1}}{z-\beta^{2 k-1}}\right\}
$$

be a harmonic mapping of the disk onto the domain inside a regular 4-gon with vertices at the 4th roots of unity (cf. [4, p. 59]).

Example 1

By calculations,

$$
h_{0}(z)=\sum_{k=0}^{\infty} \frac{4}{\pi(4 k+1)} \sin \left(\frac{\pi(4 k+1)}{4}\right) z^{4 k+1}
$$

and

$$
g_{0}(z)=\sum_{k=1}^{\infty} \frac{4}{\pi(4 k-1)} \sin \left(\frac{\pi(4 k-1)}{4}\right) z^{4 k-1}
$$

Let $F_{1}(z)=\frac{\sqrt{2} \pi}{4}\left(f_{0}(z)+i|z|^{2} f_{0}(z)\right)$ (see Figure 1). Obviously, $\lambda_{F_{1}}(0)=1, \operatorname{Diam} F_{1}(\mathbb{D})<\infty$ and the coefficients of F_{1} satisfy the condition (2) for all its non-zero coefficients. Then F_{1} is univalent in the disk $\mathbb{D}_{r_{1}}$ and $F_{1}\left(\mathbb{D}_{r_{1}}\right)$ contains a univalent disk $\mathbb{D}_{\rho_{1}}$,

Example 1

where r_{1} is the least positive root of the following equation:

$$
1-\frac{\sqrt{2 p}\left(r+r^{2}-r^{3}\right)}{(1-r)^{2}} \operatorname{Diam} F_{1}(\mathbb{D})=0
$$

and

$$
\rho_{1}=r_{1}\left(1-\frac{\sqrt{2 p}\left(r_{1}+2 r_{1}^{2}\right)}{2\left(1-r_{1}\right)} \operatorname{Diam} F_{1}(\mathbb{D})\right) .
$$

Theorem 4

Suppose F is a K-quasiregular polyharmonic mapping in \mathbb{D} of the form (1), $\lambda_{F}(0)=\alpha>0, I_{F}(1)<\infty$, and satisfies the condition (4) for its non-zero coefficients. Then F is univalent in the disk $\mathbb{D}_{r_{2}}$ and $F\left(\mathbb{D}_{r_{2}}\right)$ contains a univalent disk $\mathbb{D}_{\rho_{2}}$, where r_{2} is the least positive root of equation

$$
\alpha-\frac{K I_{F}(1)}{2 \pi(1-r)}\left(r+3 \sum_{n=2}^{p} r^{2(n-1)}\right)=0
$$

and

$$
\rho_{2}=\alpha r_{2}-\frac{K I_{F}(1)}{2 \pi}\left(\log \frac{1}{1-r_{2}}-r_{2}+2 \log \frac{1}{1-r_{2}} \sum_{n=2}^{p} r_{2}^{2(n-1)}\right) .
$$

Idea of Proof

For any $z_{1} \neq z_{2}$, where $z_{1}, z_{2} \in \mathbb{D}_{r}$ and $r \in(0,1)$ is a constant. It follows from (7) that

$$
\begin{aligned}
&\left|F\left(z_{1}\right)-F\left(z_{2}\right)\right| \geq\left|\int_{\left[z_{1}, z_{2}\right]} F_{z}(0) d z+F_{\bar{z}}(0) d \bar{z}\right| \\
&-\left|\int_{\left[z_{1}, z_{2}\right]}\left(F_{z}(z)-F_{z}(0)\right) d z+\left(F_{\bar{z}}(z)-F_{\bar{z}}(0)\right) d \bar{z}\right| \\
& \geq J_{1}-J_{2}-J_{3}-J_{4}, \text { where } \\
& J_{1}:=\left|\int_{\left[z_{1}, z_{2}\right]} h_{1}^{\prime}(0) d z+\overline{g_{1}^{\prime}(0)} d \bar{z}\right| \geq \lambda_{F}(0)\left|z_{1}-z_{2}\right|, \mid \\
& J_{2}:=\left|\int_{\left[z_{1}, z_{2}\right]}\left(h_{1}^{\prime}(z)-h_{1}^{\prime}(0)\right) d z+\left(\overline{g_{1}^{\prime}(z)}-\overline{g_{1}^{\prime}(0)}\right) d \bar{z}\right|,
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \leq\left|z_{1}-z_{2}\right| \frac{K I_{F}(1)}{2 \pi} \frac{r}{1-r}, \\
J_{3} & :=\left.\left|\int_{\left[z_{1}, z_{2}\right]} \sum_{n=2}^{p}\right| z\right|^{2(n-1)} h_{n}^{\prime}(z) d z+\sum_{n=2}^{p}|z|^{2(n-1)} \overline{g_{n}^{\prime}(z)} d \bar{z} \mid, \\
& \leq\left|z_{1}-z_{2}\right| \frac{K I_{F}(1)}{2 \pi} \cdot \sum_{n=2}^{p} \frac{r^{2(n-1)}}{1-r}, \\
J_{4} & :=\left.\left|\int_{\left[z_{1}, z_{2}\right]} \sum_{n=2}^{p}(n-1)\right| z\right|^{2(n-2)}\left(h_{n}(z)+\overline{g_{n}(z)}\right)(\bar{z} d z+z d \bar{z}) \mid \\
& \leq 2\left|z_{1}-z_{2}\right| \frac{K I_{F}(1)}{2 \pi} \cdot \sum_{n=2}^{p} \frac{r^{2(n-1)}}{1-r} .
\end{aligned}
$$

Proof

That is

$$
\left|F\left(z_{1}\right)-F\left(z_{2}\right)\right| \geq\left|z_{1}-z_{2}\right| \varphi(r)
$$

where

$$
\varphi(r)=\alpha-\frac{K I_{F}(1)}{2 \pi}\left(\frac{r}{1-r}+3 \sum_{n=2}^{p} \frac{r^{2(n-1)}}{1-r}\right)
$$

It is easy to see that the function $\varphi(r)$ is strictly decreasing for $r \in(0,1)$,

$$
\lim _{r \rightarrow 0+} \varphi(r)=\alpha \text { and } \lim _{r \rightarrow 1^{-}} \varphi(r)=-\infty
$$

Hence there exists a unique $r_{2} \in(0,1)$ satisfying $\varphi\left(r_{2}\right)=0$. This implies that F is univalent in $\mathbb{D}_{r_{2}}$.

Proof

For any w in $\left\{w:|w|=r_{2}\right\}$, we obtain

$$
\begin{aligned}
& |F(w)-F(0)| \\
= & \left|\int_{[0, w]} F_{z}(z) d z+F_{\bar{z}}(z) d \bar{z}\right| \\
\geq & \alpha r_{2}-\sum_{j=2}^{\infty}\left(\left|a_{1, j}\right|+\left|b_{1, j}\right|\right) r_{2}^{j}-2 \sum_{n=2}^{p} r_{2}^{2(n-1)} \sum_{j=1}^{\infty}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) r_{2}^{j} \\
\geq & \alpha r_{2}-\frac{K I_{F}(1)}{2 \pi} \sum_{j=2}^{\infty} \frac{r_{2}^{j}}{j}-2 \sum_{n=2}^{p} r_{2}^{2(n-1)} \sum_{j=1}^{\infty} \frac{K I_{F}(1)}{2 \pi} \frac{r_{2}^{j}}{j} \\
= & \alpha r_{2}-\frac{K I_{F}(1)}{2 \pi}\left(\log \frac{1}{1-r_{2}}-r_{2}+2 \log \frac{1}{1-r_{2}} \sum_{n=2}^{p} r_{2}^{2(n-1)}\right):=\rho_{2} .
\end{aligned}
$$

Proof

Obviously,

$$
\rho_{2}>r_{2}\left(\alpha-\frac{K I_{F}(1)}{2 \pi}\left(\frac{r_{2}}{1-r_{2}}+3 \sum_{n=2}^{p} \frac{r_{2}^{2(n-1)}}{1-r_{2}}\right)\right)=0 .
$$

The proof of the theorem is complete.

Example 2

Let $F_{2}(z)=z\left(1+|z|^{2}+|z|^{4}\right)$ be a K-quasiregular polyharmonic mapping. Since

$$
2\left|\frac{\partial F_{2}(z)}{\partial \bar{z}}\right|<\left|\frac{\partial F_{2}(z)}{\partial z}\right|
$$

then we can choose $K=3$. Obviously, $\lambda_{F_{2}}(0)=1, I_{F_{2}}(1)<\infty$ and the coefficients of F_{2} satisfy the condition (4) for all its non-zero coefficients.

Example 2

Then F_{2} is univalent in the disk $\mathbb{D}_{r_{3}}$ and $F_{2}\left(\mathbb{D}_{r_{3}}\right)$ contains a univalent disk $\mathbb{D}_{\rho_{3}}$, where r_{3} is the least positive root of equation

$$
1-\frac{K I_{F_{2}}(1)}{2 \pi(1-r)}\left(r+3 r^{2}+3 r^{4}\right)=0
$$

and

$$
\rho_{3}=r_{3}-\frac{K I_{F_{2}}(1)}{2 \pi}\left(\log \frac{1}{1-r_{3}}-r_{3}+2\left(r_{3}^{2}+r_{3}^{4}\right) \log \frac{1}{1-r_{3}}\right) .
$$

ThREE CIRCLES TYPE THEORE

Theorem 5

Fix $m \in(0,1)$. Suppose that F is a polyharmonic mapping of the form (1), $S_{F}\left(r_{1}\right) \leq m, S_{F}(1) \leq 1,\left|a_{n, j}\right| \geq\left|b_{n, j}\right|$ for all $n \in\{1, \cdots, p\}, j \geq 1$, and all its non-zero coefficients satisfy the condition:

$$
\begin{equation*}
\left|\arg \left\{\frac{a_{n_{1}, j}}{a_{n_{2}, j}}\right\}\right| \leq \frac{\pi}{2},\left|\arg \left\{\frac{b_{n_{1}, j}}{b_{n_{2}, j}}\right\}\right| \geq \frac{\pi}{2}, \text { where } n_{1} \neq n_{2} . \tag{8}
\end{equation*}
$$

Then for $r_{1} \leq r<1, S_{F}(r) \leq m^{\frac{\log r}{\log r_{1}}}$.

Proof

By a simple computation, we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F_{z}(z)\right|^{2} d \theta \\
= & \sum_{1 \leq n_{1}, n_{2} \leq p} \sum_{j=1}^{\infty}\left(\left(n_{1}-1\right)\left(n_{2}-1\right)\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}+b_{n_{1}, j} \overline{n_{n_{2}, j}}\right)\right. \\
& \left.+\left(j\left(n_{1}+n_{2}-2\right)+j^{2}\right) a_{n_{1}, j} \overline{a_{n_{2}, j}}\right) r^{2\left(n_{1}+n_{2}+j-3\right)}, \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F_{\bar{z}}(z)\right|^{2} d \theta \\
= & \sum_{1 \leq n_{1}, n_{2} \leq p} \sum_{j=1}^{\infty}\left(\left(n_{1}-1\right)\left(n_{2}-1\right)\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}+b_{n_{1}, j} \overline{b_{n_{2}, j}}\right)\right. \\
& \left.+\left(j\left(n_{1}+n_{2}-2\right)+j^{2}\right) b_{n_{1}, j} \overline{b_{n_{2}, j}}\right) r^{2\left(n_{1}+n_{2}+j-3\right)} .
\end{aligned}
$$

Proof

Therefore,

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left|F_{z}(z)\right|^{2}-\left|F_{\bar{z}}(z)\right|^{2}\right) d \theta \\
= & \sum_{1 \leq n_{1}, n_{2} \leq p} \sum_{j=1}^{\infty} j\left(n_{1}+n_{2}+j-2\right)\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}-b_{n_{1}, j} \overline{b_{n_{2}, j}}\right) r^{2\left(n_{1}+n_{2}+j-3\right)} \\
= & \sum_{n=1}^{p} \sum_{j=1}^{\infty} j(2 n+j-2)\left(\left|a_{n, j}\right|^{2}-\left|b_{n, j}\right|^{2}\right) r^{2(2 n+j-3)} \\
+ & 2 \sum_{1 \leq n_{1}<n_{2} \leq p} \sum_{j=1}^{\infty} j\left(n_{1}+n_{2}+j-2\right) \operatorname{Re}\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}-b_{n_{1}, j} \overline{b_{n_{2}, j}}\right) r^{2\left(n_{1}+n_{2}+j-3\right)} \tag{9}
\end{align*}
$$

It follows from the assumption (8) that

Proof

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left|F_{z}(z)\right|^{2}-\left|F_{\bar{z}}(z)\right|^{2}\right) d \theta \geq 0
$$

and hence

$$
\begin{aligned}
S_{F}(r)= & \int_{\mathbb{D}_{r}} J_{F}(z) d \sigma(z) \\
= & \frac{1}{\pi} \int_{0}^{r} \int_{0}^{2 \pi}\left(\left|F_{z}\left(\rho e^{i \theta}\right)\right|^{2}-\left|F_{\bar{z}}\left(\rho e^{i \theta}\right)\right|^{2}\right) d \theta \rho d \rho \\
= & \sum_{n=1}^{p} \sum_{j=1}^{\infty} j\left(\left|a_{n, j}\right|^{2}-\left|b_{n, j}\right|^{2}\right) r^{2(2 n+j-2)} \\
& +2 \sum_{1 \leq n_{1}<n_{2} \leq p} \sum_{j=1}^{\infty} j \operatorname{Re}\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}-b_{n_{1}, j} \overline{b_{n_{2}, j}}\right) r^{2\left(n_{1}+n_{2}+j-2\right)} \geq 0
\end{aligned}
$$

Proof

Let

$$
G(z)=\sum_{1 \leq n_{1}, n_{2} \leq p} \sum_{j=1}^{\infty} j\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}-b_{n_{1}, j} \overline{b_{n_{2}, j}}\right) z^{2\left(n_{1}+n_{2}+j-2\right)} .
$$

Then the maximum of G on \mathbb{D}_{r} is obtained on the real axis, that is $S_{F}(r)=G(r)=\max _{|z|=r}|G(z)|$, where $0<r_{1} \leq r<1$. Hence the result follows from Hadamard's theorem. As in [2, Theorem 1], the mapping $F(z)=\alpha z+\beta \bar{z}$, with $|\alpha|^{2}-|\beta|^{2}=1$ shows the sharpness.

Area version of the Schwarz lemma

Theorem 6

Suppose that F is a polyharmonic mapping of the form (1), $\left|a_{n, j}\right| \geq\left|b_{n, j}\right|$ for all $n \in\{1, \cdots, p\}, j \geq 1$, and all its non-zero coefficients satisfy the condition (8). Then the function $\phi_{\text {Area }}(r):=\left(\pi r^{2}\right)^{-1}$ Area $F\left(\mathbb{D}_{r}\right)$ is strictly increasing for $0<r<1$, except when $F(z)$ has the form (14), in which case $\phi_{\text {Area }}$ is a constant.

Proof

It follows from (9) that

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} J_{F}\left(r e^{i \theta}\right) r d \theta \\
= & \sum_{n=1}^{p} \sum_{j=1}^{\infty} j(2 n+j-2)\left(\left|a_{n, j}\right|^{2}-\left|b_{n, j}\right|^{2}\right) r^{2(2 n+j-2)-1}
\end{aligned}
$$

$$
\begin{equation*}
+2 \sum_{1 \leq n_{1}<n_{2} \leq p} \sum_{j=1}^{\infty} j\left(n_{1}+n_{2}+j-2\right) \operatorname{Re}\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}-b_{n_{1}, j} \overline{b_{n_{2}, j}}\right) r^{2\left(n_{1}+n_{2}+j-2\right)} \tag{11}
\end{equation*}
$$

Let

$$
A(r):=\operatorname{Area} F\left(\mathbb{D}_{r}\right)=\int_{0}^{2 \pi} \int_{0}^{r} J_{F}\left(\rho e^{i \theta}\right) \rho d \rho d \theta
$$

Since $S_{F}(r)=A(r) / \pi$, then the equations (10) imply that

Proof

$$
\begin{align*}
A(r)= & \pi \sum_{n=1}^{p} \sum_{j=1}^{\infty} j\left(\left|a_{n, j}\right|^{2}-\left|b_{n, j}\right|^{2}\right) r^{2(2 n+j-2)} \\
& +2 \pi \sum_{1 \leq n_{1}<n_{2} \leq p} \sum_{j=1}^{\infty} j \operatorname{Re}\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}-b_{n_{1}, j} \overline{b_{n_{2}, j}}\right) r^{2\left(n_{1}+n_{2}+j-2\right)} \tag{12}
\end{align*}
$$

Since

$$
\begin{aligned}
\frac{d A(r)}{d r} & =\frac{d}{d r} \int_{0}^{r} \int_{0}^{2 \pi} J_{F}\left(\rho e^{i \theta}\right) \rho d \theta d \rho \\
& =\int_{0}^{2 \pi} J_{F}\left(r e^{i \theta}\right) r d \theta
\end{aligned}
$$

Proof

$$
\begin{align*}
& \frac{d A(r)}{d r}-\frac{2 A(r)}{r} \\
& =2 \pi\left(\sum_{n=1}^{p} \sum_{j=1}^{\infty} j(2 n+j-3)\left(\left|a_{n, j}\right|^{2}-\left|b_{n, j}\right|^{2}\right) r^{2(2 n+j-2)-1}\right. \\
& +2 \sum_{1 \leq n_{1}<n_{2} \leq p} \sum_{j=1}^{\infty} j\left(n_{1}+n_{2}+j-3\right) \operatorname{Re}\left(a_{n_{1}, j} \overline{a_{n_{2}, j}}-b_{n_{1}, j} \overline{b_{n_{2}, j}}\right) r^{2\left(n_{1}+n_{2}+j-2\right.} \tag{13}
\end{align*}
$$

By simple calculations and the assumption, we get

$$
\frac{d}{d r} \phi_{\text {Area }}(r)=\frac{1}{\pi r^{2}}\left(\frac{d A(r)}{d r}-\frac{2 A(r)}{r}\right) \geq 0
$$

Proof

If $\phi_{\text {Area }}(r)$ is not strictly increasing, then there is $0<s<t<1$, such that $\phi_{\text {Area }}(r)=C$ for every $s \leq r \leq t$. This implies that $\phi_{\text {Area }}^{\prime}(r) \equiv 0$ on $[s, t]$, then $\frac{d A(r)}{d r} \equiv \frac{2 A(r)}{r}$ on $[s, t]$. By (13), we see F has the following form

$$
\begin{align*}
F(z)= & z \eta e^{i \theta_{1}}+\bar{z} \xi e^{i \varphi_{1}}+\sum_{k=2}^{\infty} \zeta_{1, k}\left(z^{k} e^{i \theta_{k}}+\bar{z}^{k} e^{i \varphi_{k}}\right) \tag{14}\\
& +|z|^{2} \sum_{k=1}^{\infty} \zeta_{2, k}\left(z^{k} e^{i\left(\theta_{k} \pm \frac{\pi}{2}\right)}+\bar{z}^{k} e^{i\left(\varphi_{k} \pm \frac{\pi}{2}\right)}\right)
\end{align*}
$$

where $\eta, \xi, \zeta_{1, k}, \zeta_{2, k} \geq 0$, and $\theta_{k}, \varphi_{k} \in \mathbb{R}$.

Moreover, by (13), we have

$$
\lim _{r \rightarrow 0} \phi_{\text {Area }}(r)=\lim _{r \rightarrow 0} \frac{\operatorname{Area} F\left(\mathbb{D}_{r}\right)}{\pi r^{2}}=J_{F}(0)
$$

Corollary

Suppose that F is a polyharmonic mapping of the form (1), $\left|a_{n, j}\right| \geq\left|b_{n, j}\right|$ for all $n \in\{1, \cdots, p\}, j \geq 1$, and all its non-zero coefficients satisfy the condition (2). If Area $F(\mathbb{D})=\pi$, then

$$
\text { Area } F\left(\mathbb{D}_{r}\right) \leq \pi r^{2}
$$

for every $0<r<1$.

LiPSChitz CONTINUITY

Now, we give a sufficient condition for a polyharmonic mapping to be a contraction, that is to have the Lipschitz constant at most 1.

Theorem 6

Let $F(z)$ be a polyharmonic mapping in \mathbb{D} of the form (1).
Suppose that there exists a constant $M>0$ such that $F(\mathbb{D}) \subset \mathbb{D}_{M}$ and

$$
\begin{equation*}
\sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) \leq M \tag{15}
\end{equation*}
$$

Then

$$
j_{\mathbb{D}_{M}}(F(z), F(w)) \leq j_{\mathbb{D}}(z, w)
$$

This inequality is sharp.

Proof

For $z, w \in \mathbb{D}$, let's assume that $|F(z)| \geq|F(w)|$ and $0<r=\max \{|z|,|w|\}$. Since

$$
\begin{aligned}
& |F(z)-F(w)| \\
= & \mid \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(a_{n, j}\left(|z|^{2(n-1)} z^{j}-|w|^{2(n-1)} w^{j}\right)\right. \\
& \left.+\overline{b_{n, j}}\left(|z|^{2(n-1)} \bar{z}^{j}-|w|^{2(n-1)} \bar{w}^{j}\right)\right) \mid \\
\leq & |z-w| \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(|z|^{2(n-1)} \frac{\left|z^{j}-w^{j}\right|}{|z-w|}\right. \\
& \left.+|w|^{j} \frac{|z|^{2(n-1)}-|w|^{2(n-1)}}{|z|-|w|}\right)\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \leq|z-w| \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(|z|^{2(n-1)} \sum_{0 \leq s+t \leq j-1}|z|^{s}|w|^{t}\right. \\
& \left.+|w|^{j} \sum_{0 \leq s+t \leq 2 n-3}|z|^{s}|w|^{t}\right)\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) \\
& \leq|z-w| \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) \sum_{s=0}^{2 n+j-3}|z|^{s}
\end{aligned}
$$

Proof

and

$$
\begin{aligned}
& M-|F(z)| \\
\geq & \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right)-\left.\left|\sum_{n=1}^{p}\right| z\right|^{2(n-1)} \sum_{j=1}^{\infty}\left(a_{n, j} z^{j}+\overline{b_{n, j}} \bar{z}^{j}\right) \mid \\
\geq & \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right)\left(1-|z|^{2 n+j-2}\right) \\
= & (1-|z|) \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) \sum_{i=0}^{2 n+j-3}|z|^{i},
\end{aligned}
$$

Proof

 then$$
\begin{aligned}
& j_{\mathbb{D}_{M}}(F(z), F(w)) \\
= & \log \left(1+\frac{|F(z)-F(w)|}{M-|F(z)|}\right) \\
\leq & \log \left(1+\frac{|z-w| \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) \sum_{s=0}^{2 n+j-3}|z|^{s}}{(1-|z|) \sum_{n=1}^{p} \sum_{j=1}^{\infty}\left(\left|a_{n, j}\right|+\left|b_{n, j}\right|\right) \sum_{i=0}^{2 n+j-3}|z|^{i}}\right) \\
= & \log \left(1+\frac{|z-w|}{1-|z|}\right) \\
\leq & j \operatorname{jd}(z, w) .
\end{aligned}
$$

As the proof in [8, Theorem 1], the mapping $F(z)=|z|^{2(p-1)} z^{j}$ or $F(z)=|z|^{2(p-1)} \bar{z}^{j}$ for $p, j \geq 1$, shows the sharpness.

In fact, for a harmonic mapping $f(z)$, the condition $|f(z)|<1$ is not sufficient for the inequality (15) to hold for the case $M=1$. For example, one may consider the mapping $f(z)=0.26 z+0.25 \bar{z}+0.25 i z^{2}-0.25 i \bar{z}^{2}$. Now, we study Lipschitz continuity of harmonic mappings f with respect to the distance ratio metric, without the condition (15).

Theorem 7

Let $f(z)=\sum_{j=1}^{p}\left(a_{j} z^{j}+\overline{b_{j}} \bar{z}^{j}\right)$ be a harmonic mapping in \mathbb{D} with $f(\mathbb{D}) \subset \mathbb{D}$. Then

$$
j_{\mathbb{D}}(f(z), f(w))<\frac{p \sqrt{2 p}}{2} \pi j_{\mathbb{D}}(z, w)
$$

Proof

Assume that $|f(z)| \geq|f(w)|$ and $r=\max \{|z|,|w|\}$. It follows from Cauchy's inequality and Parseval's relation

$$
\sum_{j=1}^{p}\left(\left|a_{j}\right|^{2}+\left|b_{j}\right|^{2}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(z)|^{2} \leq 1
$$

that

$$
\sum_{j=1}^{p}\left(\left|a_{j}\right|+\left|b_{j}\right|\right) \leq \sqrt{2 p \sum_{j=1}^{p}\left(\left|a_{j}^{2}\right|+\left|b_{j}^{2}\right|\right)} \leq \sqrt{2 p}
$$

Then,

$$
|f(z)-f(w)|=\left|\sum_{j=1}^{p}\left(a_{k}\left(z^{k}-w^{k}\right)+\overline{b_{k}}\left(\bar{z}^{k}-\bar{w}^{k}\right)\right)\right|
$$

Proof

$$
\begin{aligned}
& \leq p|z-w| \sum_{j=1}^{p}\left(\left|a_{j}\right|+\left|b_{j}\right|\right) \\
& \leq p \sqrt{2 p}|z-w|
\end{aligned}
$$

The Schwarz lemma implies that $1-|f(z)| \geq 1-\frac{4}{\pi} \arctan r$. Therefore,

$$
\begin{aligned}
j_{\mathbb{D}}(f(z), f(w)) & =\log \left(1+\frac{|f(z)-f(w)|}{1-|f(z)|}\right) \\
& \leq \log \left(1+p \sqrt{2 p} \frac{|z-w|}{1-\frac{4}{\pi} \arctan r}\right)
\end{aligned}
$$

Proof

$$
=\log \left(1+p \sqrt{2 p} \frac{|z-w|}{1-r} \frac{1-r}{1-\frac{4}{\pi} \arctan r}\right) .
$$

Let $\psi(r)=\frac{g(r)}{h(r)}$, where $g(r)=1-r, h(r)=1-\frac{4}{\pi} \arctan r$. Since $g(1)=h(1)=0, \frac{g^{\prime}(r)}{h^{\prime}(r)}=\frac{\pi\left(1+r^{2}\right)}{4}$ is strictly increasing with respect to r, then $\psi(r)$ is increasing from $[0,1)$ onto $\left[1, \frac{\pi}{2}\right)$. Hence,

$$
\dot{j}_{\mathbb{D}}(f(z), f(w))<\log \left(1+\frac{p \sqrt{2 p}}{2} \pi \frac{|z-w|}{1-r}\right) \leq \frac{p \sqrt{2 p}}{2} \pi j_{\mathbb{D}}(z, w)
$$

References I

嗇 R．B．Burckel，D．E．Marshall，D．Minda，P． Poggi－Corradini and T．J．Ransford，Area，capacity and diameter versions of Schwarz＇s Lemma．Conform．Geom．Dyn． 12 （2008），133－152．

Sh．Chen，S．Ponnusamy and A．Rasila，Lengths，areas and lipschitz－type spaces of planar harmonic mappings．
arXiv：1309．3767v1［math．CV］．
國 J．Chen，A．Rasila and X．Wang，Landau＇s theorem for polyharmonic mappings．J．Math．Anal．Appl． 409 （2014），934－945．

击 P．Duren，Harmonic mappings in the plane．Cambridge University Press，Cambridge， 2004.

國 F．W．Gehring and B．G．OsGood，Uniform domains and the quasihyperbolic metric．J．Analyse Math． 36 （1979），50－74．

References II

围 F．W．Gehring and B．P．Palka，Quasiconformally homogeneous domains．J．Analyse Math． 30 （1976），172－199．

固 K．A．Poukka，Über die größte Schwankung einer analytischen Funktion in einem Kreise．Arch．der Math．und Physik 11 （1907）， 302－307．

图 S．Simić，Lipschitz continuity of the distace ratio metric on the unit disk．Filomat 27：8（2013），1505－1509．

围 S．Simić，M．Vuorinen，and G．Wang，Sharp Lipschitz constants for the distance ratio metric．In press，Math．Scand．

围 R．M．Robinson，Hadamard＇s three circles theorem．Bull．Amer． Math．Soc． 50 （1944），795－802．

THANK YOU

