Analysis seminar

September 09, 2013, Helsinki, Finland

Extension of isotone mappings

Oleksiy Dovgoshey

aleksdov@gmail.com

Let (X, \preceq_X) and (Y, \preceq_Y) be posets (partially ordered sets). A mapping $f: X \to Y$ is **isotone** (= order preserving) if

$$(x \preceq_X y) \Rightarrow (f(x) \preceq_Y f(y)), \quad \forall x, y, \in X.$$

An isotone mapping $f : X \to Y$ is an **isomorphism** (of posets X and Y) if f is bijective and the inverse mapping f^{-1} is also isotone.

(本間) (本語) (本語)

Let (X, \preceq_X) be a poset and let $A \subseteq X$. We define the **suborder** \preceq_A as the restriction of \preceq_X to A:

 $(x \preceq_A y) \Leftrightarrow (x \preceq_X y) \text{ and } x, y \in A.$

Then (A, \preceq_A) is a subposet of (X, \preceq_X) . We write $(A, \preceq_A) \subseteq (X, \preceq_X)$ if (A, \preceq_A) is a subposet of (X, \preceq_X) . Let us denote by $\mathbf{S}_{\mathbf{A}}$ the class of all posets (X, \preceq_X) with

$$(A, \preceq_A) \subseteq (X, \preceq_X).$$

▲御を ▲道を ▲道を

If $f : A \to Y$ is an isotone mapping, $(X, \preceq_X) \supseteq (A, \preceq_A)$ and there is an isotone mapping $\Psi : X \to Y$ such that

 $\Psi(x) = f(x)$

for every $x \in A$, then we say that Ψ is an **isotone extension** of f on the set X.

Problem. Find conditions under which isotone mappings admit isotone extensions.

The problems of isotone extensions of mappings are usually considered under some algebraic or topological conditions. See, for example

- Andrew A. Burbanks, Roger D. Nussbaum, Colin T. Sparrow, "Extension of order-preserving maps on a cone", Proc. Roy. Soc. Edinburg Sect. A., 133:1 (2003), 35–59.
- E. Minguzzi, "Compactification of closed preordered spaces", Appl. Gen. Topol., **13:2** (2012), 207–223.

Complete lattices and isotone extensions

A poset (Y, \preceq_Y) is a **complete lattice** if the least upper bound of A, $\sup_Y A$, and the greatest lower bound of A, $\inf_Y A$, exist for every $A \subseteq Y$.

Theorem 1

A poset (Y, \preceq_Y) is a complete lattice if and only if for every isotone mapping $f : A \to Y$ and every $(X, \preceq_X) \supseteq (A, \preceq_A)$ there exists an isotone extension of f on the set X.

Complete lattices and isotone extensions

Theorem 1 and other theorems of the present talk were proved in the paper

• Oleksiy Dovgoshey, "Isotone extension of mappings", arXiv: 1306.1209 [mathCO] (in Russian).

Let $(A, \preceq_A) \subseteq (X, \preceq_X)$ and let $f : A \to Y$ be an isotone mapping. Let us denote by $\mathbf{C}_{\mathbf{f},\mathbf{X}}$ the set of all isotone extensions of the mapping f on the set X.

For $F, \Psi \in \mathbf{C}_{\mathbf{f}, \mathbf{X}}$ we write

 $F \preceq_{\mathbf{C}_{\mathbf{f},\mathbf{X}}} \Psi$ if and only if $F(x) \preceq_{Y} \Psi(x)$

for every $x \in X$.

The mapping $f^* \in \mathbf{C}_{\mathbf{f},\mathbf{X}}$ is the **largest extension** of f if the inequality $F \preceq_{\mathbf{C}_{\mathbf{f},\mathbf{X}}} f^*$ holds for every $F \in \mathbf{C}_{\mathbf{f},\mathbf{X}}$. Similarly $f_* \in \mathbf{C}_{\mathbf{f},\mathbf{X}}$ is the **smallest extension** of f if the inequality $f_* \preceq_{\mathbf{C}_{\mathbf{f},\mathbf{X}}} F$ holds for every $F \in \mathbf{C}_{\mathbf{f},\mathbf{X}}$. Let (Y, \preceq_Y) be a poset. For $y \in Y$ let

 $\uparrow y := \{ x \in Y : y \preceq_Y x \} \text{ and } \downarrow y := \{ x \in Y : x \preceq_Y y \}.$

These are the **principial up-set** and the **principial down-set** of (Y, \preceq_Y) generated by y.

・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ

Corollary 2

Let (Y, \preceq_Y) be a complete lattice and let $(A, \preceq_A) \subseteq (X, \preceq_X)$. The following propositions hold for every isotone $f : A \to Y$. (i) $\mathbf{C}_{\mathbf{f},\mathbf{X}}$ is a complete lattice and $f^*, f_* \in \mathbf{C}_{\mathbf{f},\mathbf{X}}$. (ii) We have

$$f^*(x) = \inf_Y \{ f(t) : t \in A \cap (\uparrow x) \}$$

and

$$f_*(x) = \sup_Y \{ f(t) : t \in A \cap (\downarrow x) \}$$

for every $x \in X$.

Complete lattices and isotone extensions

A poset Y is a lattice if for every nonvoid finite $A \subseteq Y$ there are sup_Y A and $\inf_Y A$.

Corollary 3

Let (Y, \preceq_Y) be a nonvoid lattice. If (A, \preceq_A) is a finite poset, then $\mathbf{C}_{\mathbf{f},\mathbf{X}} \neq \emptyset$ for every isotone $f : A \to Y$ and every $X \in \mathbf{S}_{\mathbf{A}}$.

Complete lattices and isotone extensions

Theorem 4

A poset (A, \preceq_A) is a complete lattice if and only if $\mathbf{C}_{\mathbf{f},\mathbf{X}}$ is nonvoid for every $X \in \mathbf{S}_{\mathbf{A}}$ and every isotone $f : A \to Y$. Let x and y be elements of a poset (P, \leq_P) .

The elements x and y are **comparable**, $x \bowtie y$, if $x \preceq_P y$ or

 $y \preceq_P x.$

A poset (P, \leq_P) is a **chain** if every two $x, y \in P$ are comparable. A poset (P, \leq_P) is said to be **connected** if for each pair of elements $x, y \in P$ there is a finite sequence

 $x \bowtie x_1 \bowtie \ldots \bowtie y$

of comparable elements.

A subposet (A, \preceq_A) of (P, \preceq_P) is an **irreducible component** of (P, \preceq_P) if (A, \preceq_A) is connected and the implication

$$((B, \preceq_B) \supseteq (A, \preceq_A)) \Rightarrow (B = A)$$

holds for every connected $(B, \preceq_B) \subseteq (P, \preceq_P)$.

Chains and isotone extensions

Theorem 5

Let (X, \preceq_X) be a poset. The following conditions are equivalent. (i) If (B, \preceq_B) is an irreducible component of (X, \preceq_X) , then there is a subposet C = C(B) of the poset \mathbb{Z} such that (C, \preceq_C) and (B, \preceq_B) are isomorphic. (ii) The set $\mathbf{C}_{\mathbf{f},\mathbf{X}}$ is nonvoid for every isotone mapping $f : A \to Y$. A subposet (B, \preceq_B) of a poset (P, \preceq_P) is **bounded above** if there is $p \in P$ such that the inequality $b \preceq_P p$ holds for every $b \in B$. The **top element** of the poset (P, \preceq_P) (often denoted by 1_P) is an element x of P such that $p \preceq_P x$ for every $p \in P$.

The **bounded below** subposets and the **bottom element** of P (often denoted by 0_P) are defined by a similar way.

Lemma 6 (to the Theorem 5)

The following conditions are equivalent for every chain (P, \preceq_P) . (i) There is a subposet (X, \preceq_X) of the poset \mathbb{Z} such that (P, \preceq_P) and (X, \preceq_X) are isomorphic. (ii) There is 1_A for every bounded above $(A, \preceq_A) \subseteq (P, \preceq_P)$ and

there is 0_B for every bounded below $(B, \preceq_B) \subseteq (P, \preceq_P)$.

The subposets of \mathbb{Z} are, in some sense, elementary blocks in the building of the scattered linearly ordered sets.

- P. Erdös, A. Hajnal, "On a classification of denumerable order types and an application to the partition calculus", Fund. Math., 51 (1962/1963), 117–129.
- F. Hausdorff, "Grundzüge einer Theorie der geordneten Mengen", Math. Ann., 65:4 (1908), 435–505.

Example 7

Let P be the set of all ordered pairs (m, n) with $m, n \in \mathbb{Z}$. Define the order \prec_P as $((m_1, n_1) \preceq_P (m_2, n_2)) \Leftrightarrow (m_1 \leq m_2 \text{ and } n_1 = n_2).$ Then the following conditions are equivalent for every poset (X, \preceq_X) . (i) (X, \preceq_X) is a countable poset such that for every $(A, \preceq_A) \subseteq (X, \preceq_X)$ and every poset (Y, \preceq_Y) each isotone mapping $f: A \to Y$ has an isotone extension on X. (ii) (X, \prec_X) is isomorphic to some $(B, \prec_B) \subset (P, \prec_P)$.

イロト イ押ト イヨト イヨト

Definition 8

A poset (Y, \preceq_Y) is a quasilattice if for all finite $A, B \subseteq Y$, which satisfy the condition $a \preceq_Y b$ for every $a \in A$ and $b \in B$, there is $y^* = y^*(A, B)$ such that

$$a \preceq_Y y^* \preceq_Y b$$

for every $a \in A$ and $b \in B$.

It is clear that every lattice is a quasilattice. Moreover, every finite quasilattice is a lattice.

Oleksiy Dovgoshey

Write
$$\mathbb{F}_{in} = \{A \subseteq \mathbb{N} : |A| < \infty\}.$$

Theorem 9

The following conditions are equivalent for every nonvoid poset (Y, \preceq_Y) .

(i) (Y, \preceq_Y) is a quasilattice.

(ii) If (A, \preceq_A) is finite and $(X, \preceq_X) \in \mathbf{S}_{\mathbf{A}}$, then every isotone

mapping $f: A \to Y$ has an isotone extension to X.

(iii) If (A, \preceq_A) is a finite subposet of $(\mathbb{F}_{in}, \subseteq)$, then every isotone

mapping $f: A \to Y$ has an isotone extension to $(\mathbb{F}_{in}, \subseteq)$.

Example 10 (The doubling of zero)

Let (\mathbb{R},\leq) be a set of all real numbers with the ordinary order relation \leq . Write

$$R = (\mathbb{R} \setminus \{0\}) \cup \{0_1, 0_2\}$$

where 0_1 and 0_2 are some points such that

 $(\mathbb{R} \setminus \{0\}) \cap \{0_1, 0_2\} = \emptyset.$

Example 10 (continuation)

Define \leq_R by the rule: $x \leq_R y$ means that

$$\begin{cases} x \le y, & \text{if } x, y \in \mathbb{R} \setminus \{0\} \\ x \le 0, & \text{if } y \in \{0_1, 0_2\}, x \in \mathbb{R} \setminus \{0\} \\ 0 \le y, & \text{if } x \in \{0_1, 0_2\}, y \in \mathbb{R} \setminus \{0\} \\ x = y, & \text{if } x, y \in \{0_1, 0_2\}. \end{cases}$$

The poset (R, \leq_R) is a qualattice but it is not a lattice.

Let α be an infinite cardinal number.

Definition 11

A poset (Y, \preceq_Y) is an α -quasilattice if for every two sets

 $A,B\subseteq Y$ with $|A|<\alpha$ and $|B|<\alpha$ the condition " $a\preceq_Y b$ holds

for every $a \in A$ and $b \in B$ " implies that there exists $y^* = y^*(A, B)$ such that the double inequality

$$a \preceq_Y y^* \preceq_Y b$$

holds for every $a \in A$ and $b \in B$.

Isotone extensions with restriction to cardinality

Remark

 (Y, \preceq_Y) is a quasilattice if and only if (Y, \preceq_Y) is an

 \aleph_0 -quasilattice, where $\aleph_0 = |\mathbb{N}|$ is the first infinite cardinal.

Let α be an infinite cardinal number.

Definition 12

A poset (P, \preceq_P) is α -universal if for every (X, \preceq_X) with $|X| < \alpha$ there is $(T, \preceq_T) \subseteq (P, \preceq_P)$ such that (X, \preceq_X) and (T, \preceq_T) are isomorphic.

Example 13

The poset $(\mathbb{F}_{in}, \subseteq)$ from Theorem 9 is \aleph_0 -universal.

イロト イ押ト イヨト イヨト

The examples of α -quasilattices are some universal posets which were studied in

- P. Grawley, R. Dean, "Free lattices with infinite operations", Trans. Amer. Math. Soc., 92 (1959), 35–47.
- N. Cuesta Dutari, "Ordinal algebra", Rev. Acad. Ci. Madrid, 48 (1954), 103–145.
- E. Harzheim, "Über universalgeordnete Mengen", Math. Nachr., 36 (1968), 195–213.
- D. Kurepa, "On universal ramified sets", Glasnic Mat.-Fiz.
 Astronom. Društvo Mat. Fiz. Ser. II., 18 (1963), 17–26.

Oleksiy Dovgoshey

Theorem 14

Let (Y, \preceq_Y) be a nonvoid poset, let α be an infinite cardinal number and let (P, \preceq_P) be an α -universal poset. The following conditions are equivalent.

(i) The poset (Y, \preceq_Y) is an α -quasilattice. (ii) If $f : A \to Y$ is isotone and $(A, \preceq_A) \subseteq (X, \preceq_X)$ with $|A| < \alpha$, then there is an isotone mapping $\Psi : X \to Y$ such that $\Psi|_A = f$. (iii) If $(A, \preceq_A) \subseteq (P, \preceq_P)$ and $|A| < \alpha$, then every isotone mapping $f : A \to Y$ has an isotone extension on the set P.

《曰》 《圖》 《臣》 《臣》

Complete local lattice and isotone extensions

Definition 15

A poset (Y, \preceq_Y) is a complete local lattice if every interval $[y_*, y^*] = \{y \in Y : y_* \preceq_Y y \preceq_Y y^*\}$ is a complete lattice whenever we have $y_* \preceq_Y y^*$. Let (A, \preceq_A) be a poset with the top element 1_A and the bottom element 0_A , $f : A \to Y$ be isotone, $(A, \preceq_A) \subseteq (X, \preceq_X)$ and let $\Phi \in \mathbf{C}_{\mathbf{f}, \mathbf{X}}$.

Definition 16

The extension Φ of the mapping f preserves the extrems (of f) if the double inequality

$$f(0_A) \preceq_Y \Phi(x) \preceq_Y f(1_A)$$

holds for every $x \in X$.

Complete local lattice and isotone extensions

Theorem 17

A nonvoid poset (Y, \preceq_Y) is a complete local lattice if and only if for every poset (X, \preceq_X) , every $(A, \preceq_A) \subseteq (X, \preceq_X)$ which has 1_A and 0_A and for each isotone mapping $f : A \to Y$ the set $\mathbf{C}_{\mathbf{f},\mathbf{X}}$ contains an element which preserves the extremes of f. The next theorem is a mixture of Theorem 15 and Theorem 18.

Theorem 18

Let α be an infinite cardinal number, (Y, \preceq_Y) be a nonovoid poset and let a poset (P, \preceq_P) be α -universal. The following conditions are equivalent.

(i) (Y, \preceq_Y) is a complete local lattice.

(ii) For every (X, \preceq_X) and every $(A, \preceq_A) \subseteq (X, \preceq_X)$ which has 1_A and 0_A and satisfies the inequality $|A| < \alpha$ each isotone mapping $f: A \to Y$ has an isotone extension which preserves the extremes of f.

Theorem 18 (continuation)

(iii) If $(A, \preceq_A) \subseteq (P, \preceq_P)$ and $1_A, 0_A \in A$ and $|A| < \alpha$, then for every isotone mapping $f : A \to Y$ there is $\Psi \in \mathbf{C}_{\mathbf{f},\mathbf{P}}$ such that the double inequality

$$f(0_A) \preceq_Y \Psi(x) \preceq_Y f(1_A)$$

holds for every $x \in P$.

Thank you for your attention!

< A >