Coefficient estimates and the Fekete-Szegö problem for certain classes of polyharmonic mappings

Jiaolong Chen
joint work with A. Rasila and X. Wang
jiaolongchen@sina.com
Department of Mathematics, Hunan Normal University, China.

October 7, 2013, Helsinki, Finland

Abstract

We give coefficient estimates for a class of close-to-convex harmonic mappings, and discuss the Fekete-Szegö problem of it. We also introduce two classes of polyharmonic mappings $\mathcal{H S}_{p}$ and $\mathcal{H C}_{p}$, consider the starlikeness and convexity of them, and obtain coefficient estimates on them. Finally, we give a necessary condition for a mapping F to be in the class $\mathcal{H C}_{p}$.

Main references

Main references

[AZ] Y. AvcI and E. ZŁOTKIEwICZ, On harmonic univalent mappings. Ann. Univ. Mariae Curie Skłodowska (Sect A) 44 (1990), 1-7.
[BP] S. V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univalent mappings and hypergeometric mappings. arXiv:1109.0925v2.
[CS] J. G. Clunie and T. Sheil-Small, Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. 9 (1984), 3-25.
[DU] P. Duren, Harmonic Mappings in the Plane. Cambridge University Press, Cambridge, 2004.

Main references

[FS] M. FEKETE and G. SzEGÖ, Eine bemerkung über ungerade schlichte functionen. J. London Math. Soc. 8 (1933), 85-89. [PO] C. Pommerenke, Univalent Functions. [QW] J. QIAO and X. WANG, On p-harmonic univalent mappings (in Chinese). Acta Math. Sci. 32A (2012), 588-600.

Polyharmonic mappings

- A complex-valued mapping F in a domain D is called polyharmonic (or p-harmonic) if F satisfies the polyharmonic equation $\Delta^{p} F=\Delta\left(\Delta^{p-1} F\right)=0$ for some $p \in \mathbb{N}^{+}$, where $\Delta^{1}:=\Delta$ is the usual complex Laplacian operator.

Polyharmonic mappings

- In a simply connected domain, a mapping F is polyharmonic if and only if F has the following representation:

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{k}(z)
$$

where each G_{k} is harmonic, i.e., $\Delta G_{k}(z)=0$ for $k \in\{1, \cdots, p\}$.

Polyharmonic mappings

- \mathbb{D} denote the unit disk $\{z:|z|<1, z \in \mathbb{C}\}$.
- It is known that the mappings G_{k} can be expressed as the form $G_{k}=h_{k}+g_{k}$ for $k \in\{1, \ldots, p\}$, where all h_{k} and g_{k} are analytic in \mathbb{D}.
- Obviously, for $p=1$ (resp. $p=2$), F is a harmonic (resp. biharmonic) mapping.

the class \mathcal{A}

- \mathcal{A} debote the class of functions of the form

$$
\text { (1) } \quad f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}
$$

which are analytic in \mathbb{D}.

- Denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions $f \in \mathcal{A}$, which are univalent.

the class \mathcal{S}_{H}

- \mathcal{S}_{H} denote the class consisting of univalent harmonic mappings in \mathbb{D}. Such mappings can be written in the form

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=z+\sum_{j=2}^{\infty} a_{j} z^{j}+\sum_{j=1}^{\infty} \overline{b_{j} z^{j}} \tag{2}
\end{equation*}
$$

with $\left|b_{1}\right|<1$.

- Let \mathcal{S}_{H}^{*} and \mathcal{C}_{H} be the subclasses of \mathcal{S}_{H}, where the images of $f(\mathbb{D})$ are starlike and convex, respectively.
- If $b_{1}=0$, then $\mathcal{S}_{H}, \mathcal{S}_{H}^{*}$ and \mathcal{C}_{H} reduce to the classes \mathcal{S}_{H}^{0}, $\mathcal{S}_{H}^{0, *}$ and \mathcal{C}_{H}^{0}, respectively.

the class \mathcal{S}_{H}

- It is well known that the coefficients of every starlike mapping $f \in \mathcal{S}_{H}^{*, 0}$ of the form (2) satisfy the sharp inequalities

$$
\left|a_{j}\right| \leq \frac{(2 j+1)(j+1)}{6},\left|b_{j}\right| \leq \frac{(2 j-1)(j-1)}{6},\left|\left|a_{j}\right|-\left|b_{j}\right|\right| \leq j
$$

$$
\text { for } j=2,3, \ldots
$$

- The coefficients of each mapping $f \in \mathcal{C}_{H}^{0}$ satisfy the sharp inequalities

$$
\left|a_{j}\right| \leq \frac{j+1}{2}, \quad\left|b_{j}\right| \leq \frac{j-1}{2}, \quad \text { and } \quad \| a_{j}\left|-\left|b_{j}\right|\right| \leq 1
$$

for $j=2,3, \ldots$

Fekete-Szegö problem

A classical theorem of Fekete and Szegö [FS] states that for $f \in \mathcal{S}$ of the form (1), the functional $\left|a_{3}-\lambda a_{2}^{2}\right|$ satisfies the following inequality:

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq\left\{\begin{array}{lr}
3-4 \lambda, & \lambda \leq 0 \\
1+2 e^{-\frac{2 \lambda}{1-\lambda}}, & 0 \leq \lambda \leq 1 \\
4 \lambda-3, & \lambda \geq 1
\end{array}\right.
$$

Fekete-Szegö problem

- This inequality is sharp in the sense that for each real λ there exists a function in \mathcal{S} such that equality holds.
- Thus the determination of sharp upper bounds for the nonlinear functional $\left|a_{3}-\lambda a_{2}^{2}\right|$ for any compact family \mathcal{F} of functions in \mathcal{A} is often called the Fekete-Szegö problem for \mathcal{F}.
- Many researchers have studied the Fekete-Szegö problem for analytic close-to-convex mappings. A natural question is whether we can get similar generalizations to harmonic close-to-convex mappings.

Characterizations of starlikeness and convexity

- We say that a univalent polyharmonic mapping F with $F(0)=0$ is starlike with respect to the origin if the curve $F\left(r e^{i \theta}\right)$ is starlike with respect to the origin for each $r \in(0,1)$.
- If F is univalent, $F(0)=0$ and $\frac{\partial}{\partial \theta}\left(\arg F\left(r e^{i \theta}\right)\right)>0$ for $z=r e^{i \theta} \neq 0$, then F is starlike with respect to the origin.
- A univalent polyharmonic mapping F with $F(0)=0$ and $\frac{\partial}{\partial \theta} F\left(r e^{i \theta}\right) \neq 0$ whenever $r \in(0,1)$, is said to be convex if the curve $F\left(r e^{i \theta}\right)$ is convex for each $r \in(0,1)$.
- If F is univalent, $F(0)=0, \frac{\partial}{\partial \theta} F\left(r e^{i \theta}\right) \neq 0$ whenever $r \in(0,1)$, and $\frac{\partial}{\partial \theta}\left[\arg \left(\frac{\partial}{\partial \theta} F\left(r e^{i \theta}\right)\right)\right]>0$ for $z=r e^{i \theta} \neq 0$, then F is convex.

The class \mathcal{H}_{p}

\mathcal{H}_{p} denote the set of polyharmonic mappings F in \mathbb{D} with the form:

$$
\begin{align*}
F(z) & =\sum_{k=1}^{p}|z|^{2(k-1)}\left(h_{k}(z)+\overline{g_{k}(z)}\right) \tag{3}\\
& =\sum_{k=1}^{p}|z|^{2(k-1)} \sum_{j=1}^{\infty}\left(a_{k, j} z^{j}+\overline{b_{k, j}} \overline{z^{j}}\right),
\end{align*}
$$

where $a_{1,1}=1,\left|b_{1,1}\right|<1$.

The classes $\mathcal{H S}_{p}$ and $\mathcal{H C}_{p}$

In [QW], J. Qiao and X. Wang introduced the class $\mathcal{H} \mathcal{S}_{p}$ of polyharmonic mappings F of the form (3) satisfying the condition

$$
\text { (4) }\left\{\begin{array}{c}
\sum_{k=1}^{p} \sum_{j=2}^{\infty}(2(k-1)+j)\left(\left|a_{k, j}\right|+\left|b_{k, j}\right|\right) \\
\leq 1-\left|b_{1,1}\right|-\sum_{k=2}^{p}(2 k-1)\left(\left|a_{k, 1}\right|+\left|b_{k, 1}\right|\right), \\
0 \leq\left|b_{1,1}\right|+\sum_{k=2}^{p}(2 k-1)\left(\left|a_{k, 1}\right|+\left|b_{k, 1}\right|\right)<1,
\end{array}\right.
$$

The classes $\mathcal{H} S_{p}$ and $\mathcal{H C} \mathcal{C}_{p}$
subclass $\mathcal{H C}_{p}$ of $\mathcal{H} \mathcal{S}_{p}$, where

$$
\text { (5) }\left\{\begin{array}{c}
\sum_{k=1}^{p} \sum_{j=2}^{\infty}\left(2(k-1)+j^{2}\right)\left(\left|a_{k, j}\right|+\left|b_{k, j}\right|\right) \\
\leq 1-\left|b_{1,1}\right|-\sum_{k=2}^{p}(2 k-1)\left(\left|a_{k, 1}\right|+\left|b_{k, 1}\right|\right), \\
0 \leq\left|b_{1,1}\right|+\sum_{k=2}^{p}(2 k-1)\left(\left|a_{k, 1}\right|+\left|b_{k, 1}\right|\right)<1 .
\end{array}\right.
$$

Remark

- For $p=1$, the classes $\mathcal{H S}_{p}$ and $\mathcal{H C}_{p}$ reduce to $\mathcal{H S}$ and $\mathcal{H C}$, respectively.
- For any $F \in \mathcal{H} \mathcal{S}_{p}$, we have $|F(z)|<2|z|$ for $z \in \mathbb{D}$.

Theorem (J. Qiao and X. Wang)
Suppose $F \in \mathcal{H} \mathcal{S}_{p}$. Then F is univalent and sense preserving in \mathbb{D}.

coefficient estimates for a class of close-to-convex harmonic mappings

Theorem (S. Bharanedhar and S. Ponnusamy)

Let $f=h+\bar{g}$ be a harmonic mapping of \mathbb{D}, with $h^{\prime}(0) \neq 0$, which satisfies

$$
\text { (6) } \quad g^{\prime}(z)=e^{i \theta} z h^{\prime}(z) \text { and } \operatorname{Re}\left(1+z \frac{h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>-\frac{1}{2}
$$

for all $z \in \mathbb{D}$. Then f is a univalent close-to-convex mapping in D.

- \mathcal{F} denote by the class of harmonic mapping f in \mathbb{D} of the form (2), satisfying (6).
- Let \mathcal{H} and \mathcal{G} be the subclasses of \mathcal{F}, where

$$
\mathcal{H}=\{F=h+\bar{g}: F \in \mathcal{F} \text { and } g \equiv 0\}
$$

and

$$
\mathcal{G}=\{F=h+\bar{g}: F \in \mathcal{F} \text { and } h \equiv 0\} .
$$

Question

- Can we consider the Fekete-Szegö problem of the class of harmonic mapping \mathcal{F} ?

Lemma

The classes \mathcal{H}, \mathcal{G} and \mathcal{F} are compact.
Theorem 1
Let f be of the form (2) satisfying (6). Then

$$
\left|a_{j}\right| \leq \frac{j+1}{2} \text { and }\left|b_{j}\right| \leq \frac{j-1}{2}
$$

for all $j=1,2, \ldots$.

Theorem 2

Let f be of the form (2) and satisfy (6). Then

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \max \left\{\frac{1}{2}, \frac{|8-9 \lambda|}{4}\right\} \quad \text { and } \quad\left|b_{3}-\lambda b_{2}^{2}\right| \leq 1+\frac{|\lambda|}{4}
$$

for all $\lambda \in \mathbb{R}$.

Remark

- If $\frac{|8-9 \lambda|}{4}<\frac{1}{2}$, then

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \frac{1}{2}
$$

Equality is attained if we choose $a_{2}=0$ and $a_{3}= \pm \frac{1}{2}$.

- If $\frac{|8-9 \lambda|}{4} \geq \frac{1}{2}$, then

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \frac{|8-9 \lambda|}{4}
$$

Choosing $a_{2}= \pm \frac{3}{2}$ and $a_{3}=2$ in shows that the result is sharp.

Remark

- If $\lambda \geq 0$, then equality in $\left|b_{j}\right| \leq \frac{j-1}{2}$ is attained when $b_{3}=-e^{2 i \theta}$, i.e. $a_{2}=-\frac{3}{2} e^{i \theta}$.
- If $\lambda<0$, then equality in $\left|b_{j}\right| \leq \frac{j-1}{2}$ is attained when $b_{3}=e^{2 i \theta}$, i.e. $a_{2}=\frac{3}{2} e^{i \theta}$.
- Both equalities in Theorem 2 are attained when $a_{2}=\frac{3}{2}$ and $b_{3}=e^{i \theta}$ or $a_{2}=-\frac{3}{2}$ and $b_{3}=-e^{i \theta}$, but only in the case $|8-9 \lambda| \geq 2$ and $\theta=2 k \pi$, where $k \in \mathbb{Z}$.

Geometric properties

Theorem 3

Each mapping $F \in \mathcal{H} \mathcal{S}_{p}$ is starlike with respect to the origin.

Theorem 4

Each mapping $F \in \mathcal{H C}_{p}$ is convex.

Example

Let $F_{1}(z)=z+\frac{1}{3} \bar{z}+\frac{1}{6}|z|^{2} \bar{z}$. Then F_{1} is convex.

Coefficient estimates for two classes of polyharmonic mappings

Theorem 5

The coefficients of every mapping $F \in \mathcal{H} \mathcal{S}_{p}$ satisfy the sharp inequalities

$$
\text { (7) } \quad \sum_{k=1}^{p}\left(\left|a_{k, j}\right|+\left|b_{k, j}\right|\right) \leq \frac{1}{j}
$$

for all $j=2,3, \ldots$.

Proof

Let $F \in \mathcal{H} \mathcal{S}_{p}$ be of the form (3). By (4), we have

$$
\begin{aligned}
& \sum_{k=1}^{p} j\left(\left|a_{k, j}\right|+\left|b_{k, j}\right|\right) \\
\leq & \sum_{k=1}^{p} \sum_{j=2}^{\infty}(2(k-1)+j)\left(\left|a_{k, j}\right|+\left|b_{k, j}\right|\right) \leq 1 .
\end{aligned}
$$

It follows that

$$
\sum_{k=1}^{p}\left(\left|a_{k, j}\right|+\left|b_{k, j}\right|\right) \leq \frac{1}{j}
$$

for $j=2,3, \ldots$

Example

- Let $F_{2}(z)=z+\frac{z^{j}}{j} e^{i \varphi}$ for all $j=2,3, \ldots$ and $\varphi \in \mathbb{R}$. Then $F_{2} \in \mathcal{H S}$ is univalent, sense preserving and starlike with respect to the origin. Obviously, the coefficients of F_{2} satisfy (7).

Remark

- The above example shows that the coefficient estimate in Theorem 5 is sharp for $p=1$.

Theorem 6

The coefficients of each mapping $F \in \mathcal{H C}_{p}$ satisfy the sharp inequalities

$$
\text { (8) } \quad \sum_{k=1}^{p}\left(\left|a_{k, j}\right|+\left|b_{k, j}\right|\right) \leq \frac{1}{j^{2}}
$$

for $j=2,3, \ldots$.

Example

- Let $F_{3}(z)=z+\frac{z^{j}}{j^{2}} e^{i \varphi}$ for all $j=2,3, \ldots$ and $\varphi \in \mathbb{R}$. Then $F_{3} \in \mathcal{H C}$ is univalent, sense preserving and convex harmonic mapping. Obviously, the coefficients of F_{3} satisfy (8).

Remark

- This example shows that the coefficient estimate in Theorem 6 is sharp for $p=1$.

Proposition 1

In [CS], Clunie and Sheil-Small obtained the following result:
Proposition 1 ([CS, Lemma 5.11]) If $f=h+\bar{g} \in \mathcal{C}_{H}$, then there exist angles α and β such that

$$
\operatorname{Re}\left\{\left(e^{i \alpha} h^{\prime}(z)+e^{-i \alpha} g^{\prime}(z)\right)\left(e^{i \beta}-e^{-i \beta} z^{2}\right)\right\}>0
$$

for all $z \in \mathbb{D}$.

Question

- The question is whether we obtain a generation of Proposition 1 to the class polyharmonic.

Theorem 7

If $F \in \mathcal{H C} C_{p}$ and $a_{k, 1}=0$ for $k \in\{2, \ldots, p\}$, then there exist angles α and β such that

$$
\begin{gathered}
\operatorname{Re}\left\{\left(e^{i \alpha} \sum_{k=1}^{p}|z|^{2(k-1)} h_{k}^{\prime}(z)+e^{-i \alpha} \sum_{k=1}^{p}|z|^{2(k-1)} g_{k}^{\prime}(z)\right)\right. \\
\left.\times\left(e^{i \beta}-e^{-i \beta} z^{2}\right)\right\}>0
\end{gathered}
$$

for all $z \in \mathbb{D}$.

proof

Let $F \in \mathcal{H C}_{p}$ be of the form (3), fix $r \in(0,1)$, and let

$$
\begin{aligned}
F_{r}(z) & =\sum_{k=1}^{p} r^{2(k-1)}\left(h_{k}(z)+\overline{g_{k}(z)}\right) \\
& =\sum_{j=1}^{\infty} \sum_{k=1}^{p}\left(a_{k, j} r^{2(k-1)} z^{j}+\overline{b_{k, j}} r^{2(k-1)} \overline{z^{j}}\right), z \in \mathbb{D} .
\end{aligned}
$$

Then F_{r} is harmonic. By the hypothesis and (5), $F \in \mathcal{H C}_{p}$ implies

proof

$$
\begin{aligned}
& \quad \sum_{j=2}^{\infty} j^{2}\left|\sum_{k=1}^{p} a_{k, j} r^{2(k-1)}\right|+\sum_{j=2}^{\infty} j^{2}\left|\sum_{k=1}^{p} b_{k, j} r^{2(k-1)}\right| \\
& \leq 1-\left|\sum_{k=1}^{p} b_{k, j} r^{2(k-1)}\right|
\end{aligned}
$$

i.e., $F_{r} \in \mathcal{C}_{H}$ (see [AZ]). Then Proposition 1 implies that there exist angles α and β such that

proof

$$
\begin{gathered}
\operatorname{Re}\left\{\left(e^{i \alpha} \sum_{k=1}^{p} r^{2(k-1)} h_{k}^{\prime}(z)+e^{-i \alpha} \sum_{k=1}^{p} r^{2(k-1)} g_{k}^{\prime}(z)\right)\right. \\
\left.\left(e^{i \beta}-e^{-i \beta} z^{2}\right)\right\}>0
\end{gathered}
$$

for all $z \in \mathbb{D}$. Let $r=|z|$. The result is proved.

Example

- Obviously, the mapping $F_{1}(z)=z+\frac{1}{3} \bar{z}+\frac{1}{6}|z|^{2} \bar{z} \in \mathcal{H C}_{2}$. Let $\alpha=\beta=0$. Then F_{1} satisfies the inequality in Theorem 7.
- However, the mapping $F_{4}(z)=z+\frac{1}{9}|z|^{2} z+\frac{1}{4} \bar{z}+\frac{1}{9}|z|^{2} \bar{z}$ $\in \mathcal{H C}_{2}$ also satisfies the inequality in Theorem 7 for $\alpha=\beta=0$ with $a_{2,1}=\frac{1}{9}$.

Remark

- The proof of Theorem 7 request an additional assumption, it is not know if all $F \in \mathcal{H C} \mathcal{C}_{p}$ satisfy the inequality.

THANK YOU

