Local flatness geometry and fractal dimensions

Vesa Ala-Mattila vesa.ala-mattila@helsinki.fi

Analysis seminar University of Helsinki December 2, 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fractal dimensions

- Let X be a non-empty and compact subset of \mathbb{R}^n with Hausdorff dimension $\delta > 0$.
- ▶ Recall that $\delta = \inf\{s : m_s(X) = 0\}$, where m_s is the standard Hausdorff measure obtained using the gauge function $t \mapsto t^s$.
- The Minkowski dimension has a number of equivalent definitions. We will use the definition

(0.1)
$$\dim_M(X) = \lim_{t\to 0} \frac{\log |\mathcal{B}_X^t|}{\log t^{-1}},$$

where \mathcal{B}_{X}^{t} is a maximal *t*-packing of *X*, i.e. a set of pairwise disjoint balls $B^{n}(x, t), x \in X$, which contains at least as many balls as any other such set.

Fractal dimensions

If the limit in (0.1) does not exist, one can consider the upper and lower Minkowski dimensions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

(0.2)
$$\overline{\dim}_{M}(X) = \limsup_{t \to 0} \frac{\log |\mathcal{B}_{X}^{t}|}{\log t^{-1}}$$

and

(0.3)
$$\underline{\dim}_{M}(X) = \liminf_{t \to 0} \frac{\log |\mathcal{B}_{X}^{t}|}{\log t^{-1}}.$$

It is true in general that

(0.4)
$$\delta \leq \underline{\dim}_{M}(X) \leq \overline{\dim}_{M}(X).$$

Local flatness geometry and fractal dimensions

- The local flatness geometry and the fractal dimensions of X are connected.
- ► For example, Mattila and Vuorinen proved the following result.
- Let $k \in \{1, 2, ..., n-1\}, \varepsilon \in]0, 1[$ and $t_0 > 0$.
- We say that X has the (k, ε, t₀)-linear approximation property if for all x ∈ X and t ∈]0, t₀[there is a k-dimensional plane V through x such that

$$(0.5) X \cap B^n(x,t) \subset \{y \in \mathbb{R}^n : d_{euc}(y,V) \le \varepsilon t\}.$$

It is the case that if X has the (k, ε, t₀)-linear approximation property and ε is small enough, then

(0.6)
$$\overline{\dim}_M(X) \leq k + c\varepsilon^2,$$

where c > 0 is a constant.

Local flatness geometry and fractal dimensions

- There are also converse results.
- For example, Bishop and Jones showed that if n = 2 and k = 1 and X is connected and uniformly k-wiggly everywhere, i.e. the intersection of X with any small ball with center in X is never close to a piece of a line, then δ > 1, and this result can be generalized to higher dimensions.
- We will assume that X has a complicated flatness behaviour, e.g. that of the limit set of a non-elementary geometrically finite Kleinian group containing parabolic elements.
- Our goal is to generalize a result of Stratmann and Urbański which shows that, under certain circumstances, it is the case that $\dim_M(X) = \delta$.

Flatness functions γ_k

- Given k ∈ {1, 2, ..., n}, denote by γ_k the k-dimensional flatness function of X defined in the following way.
- Let $x \in \mathbb{R}^n$ and t > 0 be such that $B^n(x, t) \cap X \neq \emptyset$.
- Let 𝓕(𝑥, 𝑘) be the set of all 𝑘-spheres and 𝑘-planes of ℝ^𝑘 intersecting 𝑘(𝑥, 𝑘).
- Let ρ be the euclidean Hausdorff metric in the space of all non-empty and compact subsets of Rⁿ.
- Define

(0.7)
$$\gamma_k(x,t) = \frac{1}{t} \inf_{V \in \mathcal{F}(x,t)} \rho(\bar{B}^n(x,t) \cap X, \bar{B}^n(x,t) \cap V).$$

The gauge function ψ

- Let $x \in \mathbb{R}^n$ and t > 0 be such that $B^n(x, t) \cap X \neq \emptyset$.
- Define

(0.8)
$$\psi(x,t) = t^{\delta} \prod_{k=1}^{n} \gamma_k(x,t)^{\delta-k}.$$

(If Bⁿ(x, t) ∩ X contains exactly on point, set ψ(x, t) = 0.
Otherwise it is the case that γ_k(x, t) = 0 for at most one k, and so ψ(x, t) is well-defined.)

The measure μ

- Let μ be the measure supported by X which is obtained from either the modified covering or the modified packing measure construction using the gauge function ψ.
- The modified covering measure is constructed in the following way.
- Let $A \subset X$.
- Given ε > 0 and v ∈]0, 1[, we say that a countable collection *T* of closed balls Bⁿ(x, t) is an (ε, ν)-covering of A if the union of the balls in *T* covers A, x ∈ ℝⁿ, t ∈]0, ε[, and Bⁿ(x, vt) ∩ X ≠ Ø.
- Define

(0.9)
$$\mu_{\varepsilon}^{v}(A) = \inf_{\mathcal{T}} \sum_{\bar{B}^{n}(x,t)\in\mathcal{T}} \psi(x,t),$$

where \mathcal{T} varies in the collection of all (ε, v) -coverings of A.

The measure μ

To obtain the final measure, define

(0.10)
$$\mu(A) = \sup_{\varepsilon > 0, v \in]0,1[} \mu_{\varepsilon}^{v}(A).$$

- The modified packing construction is obtained from the standard packing construction in a similar way.
- We assume that μ is non-trivial and bounded.
- There are situations where μ is equal to the standard Hausdorff measure, the standard packing measure or both (up to multiplicative constants), but there are situations where the standard Hausdorff measure of X is 0 and the standard packing measure is ∞ .

The flat points of X

- Assume that there exists a countable non-empty subset P ⊂ X, the set of flat points of X, satisfying the following conditions.
- There is a collection {*H_p* : *p* ∈ *P*} of horoballs of the upper half-space ℝⁿ⁺¹ with pairwise disjoint euclidean closures, where *H_p* is based at *p*.

- The euclidean radius of H_p is denoted by r_p.
- There is a constant $c_{\gamma} > 0$ satisfying the following.

The flat points of X

- ▶ Let $x \in \mathbb{R}^n$ and $t \in]0, 1[$ be such that $\overline{B}^n(x, t/2) \cap X \neq \emptyset$.
- ▶ If $(x, t) \notin H_p$ for all $p \in P$, then

$$(0.11) c_{\gamma}^{-1} \leq \gamma_k(x,t) \leq c_{\gamma}$$

for all $k \in \{1, 2, ..., n\}$.

• If $(x, t) \in H_p$ for some $p \in P$, then

$$(0.12) \qquad e^{-d((x,t),\partial H_{\rho})}/c_{\gamma} \leq \gamma_{k_{\rho}}(x,t) \leq c_{\gamma}e^{-d((x,t),\partial H_{\rho})},$$

where $k_p \in \{1, 2, ..., n\}$ is a unique number associated to p, and

$$(0.13) c_{\gamma}^{-1} \leq \gamma_k(x,t) \leq c_{\gamma}$$

for every $k \in \{1, 2, \ldots, n\} \setminus \{k_p\}$.

The connection between μ and γ_k

- ▶ Let $x \in \mathbb{R}^n$ and $t \in]0, 1[$ be such that $\overline{B}^n(x, t/2) \cap X \neq \emptyset$
- Suppose that there is a constant $c_{\mu} > 0$ such that

(0.14)
$$\psi(x,t)/c_{\mu} \leq \mu(B^{n}(x,t)) \leq c_{\mu}\psi(x,t).$$

• By adjusting c_{μ} , we obtain that

$$(0.15) t^{\delta}/c_{\mu} \le \mu(B^n(x,t)) \le c_{\mu}t^{\delta}$$

if
$$(x, t) \notin H_p$$
 for all $p \in P$, and that
(0.16)
 $t^{\delta} e^{d((x,t),\partial H_p)(k_p-\delta)}/c_{\mu} \le \mu(B^n(x,t)) \le c_{\mu}t^{\delta} e^{d((x,t),\partial H_p)(k_p-\delta)}$

if $(x, t) \in H_p$ for some $p \in P$.

The case X = L(G)

- Suppose for the moment that X is the limit set L(G) of a non-elementary geometrically finite Kleinian group G containing parabolic elements.
- ► In this case, *P* is the set of parabolic fixed points of *G*.
- ► Every non-empty set {*p* ∈ *P* : *k_p* = *k*}, *k* ∈ {1, 2, ..., *n*}, is dense in *X*.
- ▶ Let X_0 be the set of points $x \in X$ satisfying the following. If $x \in X_0$, $k \in \{1, 2, ..., n\}$ is such that $k_p = k$ for some $p \in P$, and $\varepsilon > 0$, then $\gamma_k(x, t_x) \le \varepsilon$ for some $t_x > 0$. Then $\mu(X_0) = \mu(X)$.
- Let X_1 be the set of points $x \in X$ for which there is a constant $c_x > 0$ such that $\gamma_k(x, t) \ge c_x$ for all $k \in \{1, 2, ..., n\}$ and $t \in]0, 1[$. Then the Hausdorff dimension of X_1 is δ .
- The local flatness geometry of X can therefore be rather complicated.

Lemma 1

Claim:

Let $\alpha > 0$. Then the collection of balls

$$|B^n(p, \sqrt{\alpha r_p}) : p \in P, r_p > \alpha\}$$

is pairwise disjoint.

Proof:

Let $x \in \mathbb{R}^n$. Suppose $x \in B^n(p, \sqrt{\alpha r_p})$ for some $p \in P$ with $r_p > \alpha$. Then

$$\begin{aligned} |(x,\alpha) - (p,r_p)|^2 &= |x - p|^2 + (\alpha - r_p)^2 \\ &= (|x - p|^2 - \alpha r_p) + (\alpha^2 - \alpha r_p) + r_p^2 \\ &< r_p^2, \end{aligned}$$

and so $(x, \alpha) \in H_p$. The claim follows since the horoballs in $\{H_q : q \in P\}$ have pairwise disjoint closures.

Lemma 2

• Let $\lambda \in]0, 1[$ and $k \in \{1, 2, ..., n\}.$

Define

(0.17)
$$P_{\lambda}^{k}(i) = \{ p \in P : k_{p} = k, \lambda^{i} < r_{p} \le \lambda^{i-1} \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for every $i \in \mathbb{Z}$.

Claim:

There is a constant $c_{\lambda}^{k} > 0$ such that

 $|P_{\lambda}^{k}(i)| \leq c_{\lambda}^{k} \lambda^{-i\delta}$

for every $i \in \mathbb{Z}$.

The proof of Lemma 2

- The horoballs in {*H_p* : *p* ∈ *P*} have pairwise disjoint closures and *X* is compact, so the radii *r_p*, *p* ∈ *P*, have an upper bound.
- It follows that |P^k_λ(i)| = 0 for all small enough i, and so the claim is trivial if i ∈ {0, −1, −2, ...}.

• Let
$$i \in \{1, 2, \ldots\}$$
. Write $\alpha = \lambda^i$.

Now

$$|P_{\lambda}^{k}(i)| = \sum_{p \in P: k_{p} = k, \alpha < r_{p} \le \alpha/\lambda} 1 \le \sum_{p \in P: \alpha < r_{p}} 1 \le \sum_{p \in P: \alpha < r_{p}} \left(\sqrt{\frac{r_{p}}{\alpha}}\right)^{k_{p}}$$

The proof of Lemma 2

On the other hand,

$$\begin{split} \mu(X) &\geq \sum_{p \in P: \alpha < r_p} \mu(B^n(p, \sqrt{\alpha r_p})) \\ &\geq c_{\mu}^{-1} \sum_{p \in P: \alpha < r_p} \sqrt{\alpha r_p} \delta e^{d((p, \sqrt{\alpha r_p}), \partial H_p)(k_p - \delta)} \\ &= c_{\mu}^{-1} \sum_{p \in P: \alpha < r_p} \sqrt{\alpha r_p} \delta e^{(k_p - \delta) \log \frac{2r_p}{\sqrt{\alpha r_p}}} \\ &\geq \frac{1}{2^{\delta} c_{\mu}} \sum_{p \in P: \alpha < r_p} \sqrt{\alpha r_p}^{2\delta - k_p} r_p^{k_p - \delta} \\ &= \frac{1}{2^{\delta} c_{\mu}} \sum_{p \in P: \alpha < r_p} \frac{\alpha^{\delta} r_p^{\delta}}{\sqrt{\alpha r_p}^{k_p}} \frac{r_p^{k_p}}{r_p^{\delta}} \\ &= \frac{\alpha^{\delta}}{2^{\delta} c_{\mu}} \sum_{p \in P: \alpha < r_p} \left(\sqrt{\frac{r_p}{\alpha}} \right)^{k_p}. \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

The proof of Lemma 2

We conclude that

$$|\mathcal{P}_{\lambda}^{k}(i)| \leq rac{2^{\delta}c_{\mu}\mu(X)}{lpha^{\delta}} = c_{\lambda}^{k}\lambda^{-i\delta}.$$

The main theorem

- Claim: dim_M(X) = δ .
- Since $\delta \leq \underline{\dim}_M(X) \leq \overline{\dim}_M(X)$, our task is to show that $\overline{\dim}_M(X) \leq \delta$.

The easy case

- Suppose first that $k_p \ge \delta$ for all $p \in P$.
- Then (0.15) and (0.16) imply that

$$(0.19) \qquad \qquad \mu(B^n(x,t)) \ge t^{\delta}/c_{\mu}$$

for all $x \in X$ and $t \in]0, 1[$.

• Let t > 0 be small and let \mathcal{B}_X^t be a maximal *t*-packing of *X*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The easy case

Now

$$\mu(X) \geq \sum_{B^n(x,t)\in \mathcal{B}^t_X} \mu(B^n(x,t)) \geq c_{\mu}^{-1} t^{\delta} |\mathcal{B}^t_X|,$$

SO

$$\log |\mathcal{B}_X^t| \le \delta \log t^{-1} + \log c_\mu \mu(X).$$

We conclude that

$$\overline{\dim}_{M}(X) = \limsup_{t \to 0} \frac{\log |\mathcal{B}_{X}^{t}|}{\log t^{-1}} \leq \delta,$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

which implies that $\dim_M(X) = \delta$.

The harder case

- Suppose that there is $p \in P$ with $k_p < \delta$.
- Let K ⊂ {1,2,..., n} be the set of numbers k < δ such that there is p ∈ P with k_p = k.

- Let $k_{\min} = \min\{k_p : p \in P\}$.
- Fix a small number $\varepsilon > 0$ and a large number M > 0.

The harder case

- ► Let t > 0 be small and let $\mathcal{B}_X^t = \{B^n(x_i, t) : i \in I\}$ be a maximal *t*-packing of *X*.
- Our aim is to show that there is a constant $c_{\varepsilon} > 0$ such that

$$(0.20) |\mathcal{B}_{X}^{t}| \leq c_{\varepsilon} t^{-(\delta + \varepsilon(\delta - k_{\min}))}.$$

• Once we have this result, we can argue as above to conclude that $\overline{\dim}_M(X) \le \delta + \varepsilon(\delta - k_{\min})$, which implies that $\overline{\dim}_M(X) \le \delta$ and so $\dim_M(X) = \delta$.

ション キョン キョン キョン しょう

A division of the index set I

Write

$$I = I_1 \cup I_2 \cup \bigcup_{k \in K} \bigcup_{j=1}^{\infty} J_j^k,$$

where:

$$I_{1} = \{i \in I : \text{either } (x_{i}, t) \notin H_{p} \text{ for all } p \in P, \\ \text{or } (x_{i}, t) \in H_{p} \text{ for some } p \in P \text{ such that } k_{p} \notin K, \\ \text{or } (x_{i}, t) \in H_{p} \text{ for some } p \in P \text{ such that } k_{p} \in K \\ \text{and } d((x_{i}, t), \partial H_{p}) \leq M\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A division of the index set I

$$I_2 = \{i \in I : (x_i, t) \in H_p \text{ for some } p \in P \text{ such that } k_p \in K \text{ and} \\ M < d((x_i, t), \partial H_p) \le \varepsilon \log t^{-1}\}.$$

$$J_j^k = \{i \in I : (x_i, t) \in H_p \text{ for some } p \in P \text{ such that } k_p = k, \\ d((x_i, t), \partial H_p) > \varepsilon \log t^{-1}, \text{ and } d((x_i, t), \partial H_p) \in [j, j + 1[\}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

The number of elements in I_1 and I_2

Now

$$\mu(X) \geq \sum_{i \in I_1} \mu(B^n(x_i, t)) \gg t^{\delta} |I_1|,$$

and so $|I_1| \ll t^{-\delta}$.

▶ On the other hand, (suppose that $(x_i, t) \in H_{p_i}$ in the following)

$$\begin{split} \mu(X) &\geq \sum_{i \in I_2} \mu(B^n(x_i, t)) \gg \sum_{i \in I_2} t^{\delta} e^{(k_{p_i} - \delta)\varepsilon \log t^{-1}} \\ &\geq t^{\delta} e^{(k_{\min} - \delta)\varepsilon \log t^{-1}} |I_2| = t^{\delta + \varepsilon(\delta - k_{\min})} |I_2|, \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

and so $|I_2| \ll t^{-(\delta + \varepsilon(\delta - k_{\min}))}$.

- For the time being, fix $k \in K$ and $j \in \{1, 2, \ldots\}$.
- Suppose that $i \in J_i^k$ and assume that $(x_i, t) \in H_p$.
- Note that now $\varepsilon \log t^{-1} < j + 1$.
- The ratio r_p/t obtains its minimum when $x_i = p$.
- If $x_i = p$, then $d((x_i, t), \partial H_p) = \log(2r_p/t) > M$.

• We conclude that $r_p > t$ in every case.

- Fix *λ* ∈]0, 1[.
- Let $m_t \in \{1, 2, ...\}$ be the smallest integer such that $\lambda^{m_t} \leq t$.

Then

$$\frac{\log t^{-1}}{\log \lambda^{-1}} \leq m_t < \frac{\log t^{-1}}{\log \lambda^{-1}} + 1.$$

- Let $m_0 \in \mathbb{Z}$ be such that $r_q \leq \lambda^{m_0-1}$ for all $q \in P$.
- Note that $p \in \bigcup_{m=m_0}^{m_t} P_{\lambda}^k(m)$.
- ▶ Write $d_i = e^{-d((x_i,t),\partial H_p)}$ and observe that $(x_i, t) \in S^n((p, d_i r_p), d_i r_p)$.
- It follows that

$$B^n(x_i,t) \subset B^n(p,3d_ir_p) \subset B^n(p,3e^{-j}r_p).$$

We can now conclude that

$$\begin{split} \mu \left(\bigcup_{i \in J_{j}^{k}} B^{n}(x_{i}, t) \right) &\leq \mu \left(\bigcup_{m=m_{0}}^{m_{t}} \bigcup_{p \in P_{\lambda}^{k}(m)} B^{n}(p, 3e^{-j}r_{p}) \right) \\ &\leq \sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} \mu (B^{n}(p, 3e^{-j}r_{p})) \\ &\ll \sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} e^{-j\delta}r_{p}^{\delta}e^{j(k-\delta)} \\ &= \sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} r_{p}^{\delta}e^{-j(2\delta-k)} \\ &\leq e^{-j(2\delta-k)} \sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} \lambda^{(m-1)\delta} \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Continuing the estimate:

$$\begin{split} \mu \left(\bigcup_{i \in J_j^k} B^n(x_i, t) \right) &\ll e^{-j(2\delta - k)} \sum_{m=m_0}^{m_t} \sum_{p \in P_\lambda^k(m)} \lambda^{(m-1)\delta} \\ &= e^{-j(2\delta - k)} \sum_{m=m_0}^{m_t} |P_\lambda^k(m)| \lambda^{(m-1)\delta} \\ &\ll e^{-j(2\delta - k)} \sum_{m=m_0}^{m_t} \lambda^{-m\delta} \lambda^{(m-1)\delta} \\ &\ll e^{-j(2\delta - k)} m_t < e^{-j(2\delta - k)} \left(\frac{\log t^{-1}}{\log \lambda^{-1}} + 1 \right) \\ &\ll e^{-j(2\delta - k)} \log t^{-1} < e^{-j(2\delta - k)} \varepsilon^{-1}(j+1). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We have shown that

$$\mu\left(\bigcup_{i\in J_j^k} B^n(x_i,t)\right) \ll e^{-j(2\delta-k)}\varepsilon^{-1}(j+1).$$

On the other hand,

$$\mu\left(\bigcup_{i\in J_j^k} B^n(x_i,t)\right) = \sum_{i\in J_j^k} \mu(B^n(x_i,t)) \gg t^{\delta} e^{-j(\delta-k)} |J_j^k|.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• We obtain that $|J_j^k| \ll \varepsilon^{-1} j e^{-j\delta} t^{-\delta}$.

The number of elements in *I*

All in all, we can conclude that

$$\left|\bigcup_{k\in K}\bigcup_{j=1}^{\infty}J_{j}^{k}\right|\ll\varepsilon^{-1}t^{-\delta}\sum_{j=1}^{\infty}je^{-j\delta}\ll\varepsilon^{-1}t^{-\delta}.$$

• We have shown that there is a constant $c_{\varepsilon} > 0$ such that

$$|I| \leq c_{\varepsilon} t^{-(\delta + \varepsilon(\delta - k_{\min}))}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• We noted earlier that this implies that $\dim_M(X) = \delta$.

Notes on references

- The papers by Bishop & Jones and Mattila & Vuorinen, for example, discuss results connecting local flatness geometry and fractal dimensions.
- The local flatness geometry of limit sets of non-elementary geometrically finite Kleinian groups is studied in my PhD thesis.
- Lemmas 1 and 2 are simplified versions of results in the paper by Stratmann & Velani.
- The proof of the main theorem is a minor modification of the main argument of the paper by Stratmann & Urbański.

References

- ALA-MATTILA V. : Geometric characterizations for Patterson-Sullivan measures of geometrically finite Kleinian groups, Ann. Acad. Sci. Fenn. Math. Diss. 157 (2011), 120 pp.
- BISHOP C. AND JONES P. : Wiggly sets and limit sets, Ark. Mat. 35 (1997), 201-224.
- MATTILA P. AND VUORINEN M. : Linear approximation property, Minkowski dimension, and quasiconformal spheres, J. London Math. Soc. (2) 42 (1990), 249-266.
- STRATMANN B. AND URBAŃSKI M. : The box-counting dimension for geometrically finite Kleinian groups, Fund. Math. 149 (1996), 83-93.
- STRATMANN B. AND VELANI S. : The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3) 71 (1995), 197-220.

Thanks!

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@