Local flatness geometry and fractal dimensions

Vesa Ala-Mattila
vesa.ala-mattila@helsinki.fi

Analysis seminar
University of Helsinki
December 2, 2013

Fractal dimensions

- Let X be a non-empty and compact subset of \mathbb{R}^{n} with Hausdorff dimension $\delta>0$.
- Recall that $\delta=\inf \left\{s: m_{s}(X)=0\right\}$, where m_{s} is the standard Hausdorff measure obtained using the gauge function $t \mapsto t^{s}$.
- The Minkowski dimension has a number of equivalent definitions. We will use the definition

$$
\begin{equation*}
\operatorname{dim}_{M}(X)=\lim _{t \rightarrow 0} \frac{\log \left|\mathcal{B}_{X}^{t}\right|}{\log t^{-1}} \tag{0.1}
\end{equation*}
$$

where \mathcal{B}_{X}^{t} is a maximal t-packing of X, i.e. a set of pairwise disjoint balls $B^{n}(x, t), x \in X$, which contains at least as many balls as any other such set.

Fractal dimensions

- If the limit in (0.1) does not exist, one can consider the upper and lower Minkowski dimensions
(0.2)

$$
\overline{\operatorname{dim}}_{M}(X)=\limsup _{t \rightarrow 0} \frac{\log \left|\mathcal{B}_{X}^{t}\right|}{\log t^{-1}}
$$

and
(0.3)

$$
\underline{\operatorname{dim}}_{M}(X)=\liminf _{t \rightarrow 0} \frac{\log \left|\mathcal{B}_{X}^{t}\right|}{\log t^{-1}}
$$

- It is true in general that

$$
\begin{equation*}
\delta \leq \underline{\operatorname{dim}}_{M}(X) \leq \overline{\operatorname{dim}}_{M}(X) \tag{0.4}
\end{equation*}
$$

Local flatness geometry and fractal dimensions

- The local flatness geometry and the fractal dimensions of X are connected.
- For example, Mattila and Vuorinen proved the following result.
- Let $k \in\{1,2, \ldots, n-1\}, \varepsilon \in] 0,1\left[\right.$ and $t_{0}>0$.
- We say that X has the $\left(k, \varepsilon, t_{0}\right)$-linear approximation property if for all $x \in X$ and $t \in] 0, t_{0}$ [there is a k-dimensional plane V through x such that

$$
\begin{equation*}
X \cap B^{n}(x, t) \subset\left\{y \in \mathbb{R}^{n}: d_{\mathrm{euc}}(y, V) \leq \varepsilon t\right\} . \tag{0.5}
\end{equation*}
$$

- It is the case that if X has the $\left(k, \varepsilon, t_{0}\right)$-linear approximation property and ε is small enough, then

$$
\begin{equation*}
\overline{\operatorname{dim}}_{M}(X) \leq k+c \varepsilon^{2} \tag{0.6}
\end{equation*}
$$

where $c>0$ is a constant.

Local flatness geometry and fractal dimensions

- There are also converse results.
- For example, Bishop and Jones showed that if $n=2$ and $k=1$ and X is connected and uniformly k-wiggly everywhere, i.e. the intersection of X with any small ball with center in X is never close to a piece of a line, then $\delta>1$, and this result can be generalized to higher dimensions.
- We will assume that X has a complicated flatness behaviour, e.g. that of the limit set of a non-elementary geometrically finite Kleinian group containing parabolic elements.
- Our goal is to generalize a result of Stratmann and Urbański which shows that, under certain circumstances, it is the case that $\operatorname{dim}_{M}(X)=\delta$.

Flatness functions γ_{k}

- Given $k \in\{1,2, \ldots, n\}$, denote by γ_{k} the k-dimensional flatness function of X defined in the following way.
- Let $x \in \mathbb{R}^{n}$ and $t>0$ be such that $B^{n}(x, t) \cap X \neq \emptyset$.
- Let $\mathcal{F}(x, t)$ be the set of all k-spheres and k-planes of \mathbb{R}^{n} intersecting $B^{n}(x, t)$.
- Let ρ be the euclidean Hausdorff metric in the space of all non-empty and compact subsets of \mathbb{R}^{n}.
- Define
(0.7) $\quad \gamma_{k}(x, t)=\frac{1}{t} \inf _{V \in \mathcal{F}(x, t)} \rho\left(\bar{B}^{n}(x, t) \cap X, \bar{B}^{n}(x, t) \cap V\right)$.

The gauge function ψ

- Let $x \in \mathbb{R}^{n}$ and $t>0$ be such that $B^{n}(x, t) \cap X \neq \emptyset$.
- Define
(0.8)

$$
\psi(x, t)=t^{\delta} \prod_{k=1}^{n} \gamma_{k}(x, t)^{\delta-k}
$$

- (If $B^{n}(x, t) \cap X$ contains exactly on point, set $\psi(x, t)=0$. Otherwise it is the case that $\gamma_{k}(x, t)=0$ for at most one k, and so $\psi(x, t)$ is well-defined.)

The measure μ

- Let μ be the measure supported by X which is obtained from either the modified covering or the modified packing measure construction using the gauge function ψ.
- The modified covering measure is constructed in the following way.
- Let $A \subset X$.
- Given $\varepsilon>0$ and $v \in] 0,1$ [, we say that a countable collection \mathcal{T} of closed balls $\bar{B}^{n}(x, t)$ is an (ε, v)-covering of A if the union of the balls in \mathcal{T} covers $\left.A, x \in \mathbb{R}^{n}, t \in\right] 0, \varepsilon[$, and $\bar{B}^{n}(x, v t) \cap X \neq \emptyset$.
- Define

$$
\begin{equation*}
\mu_{\varepsilon}^{v}(A)=\inf _{\mathcal{T}} \sum_{\bar{B}^{n}(x, t) \in \mathcal{T}} \psi(x, t), \tag{0.9}
\end{equation*}
$$

where \mathcal{T} varies in the collection of all (ε, v)-coverings of A.

The measure μ

- To obtain the final measure, define
(0.10)

$$
\mu(A)=\sup _{\varepsilon>0, v \in] 0,1[} \mu_{\varepsilon}^{v}(A)
$$

- The modified packing construction is obtained from the standard packing construction in a similar way.
- We assume that μ is non-trivial and bounded.
- There are situations where μ is equal to the standard Hausdorff measure, the standard packing measure or both (up to multiplicative constants), but there are situations where the standard Hausdorff measure of X is 0 and the standard packing measure is ∞.

The flat points of X

- Assume that there exists a countable non-empty subset $P \subset X$, the set of flat points of X, satisfying the following conditions.
- There is a collection $\left\{H_{p}: p \in P\right\}$ of horoballs of the upper half-space \mathbb{H}^{n+1} with pairwise disjoint euclidean closures, where H_{p} is based at p.
- The euclidean radius of H_{p} is denoted by r_{p}.
- There is a constant $c_{\gamma}>0$ satisfying the following.

The flat points of X

- Let $x \in \mathbb{R}^{n}$ and $\left.t \in\right] 0,1\left[\right.$ be such that $\bar{B}^{n}(x, t / 2) \cap X \neq \emptyset$.
- If $(x, t) \notin H_{p}$ for all $p \in P$, then

$$
\begin{equation*}
c_{\gamma}^{-1} \leq \gamma_{k}(x, t) \leq c_{\gamma} \tag{0.11}
\end{equation*}
$$

for all $k \in\{1,2, \ldots, n\}$.

- If $(x, t) \in H_{p}$ for some $p \in P$, then
(0.12) $\quad e^{-d\left((x, t), \partial H_{p}\right)} / c_{\gamma} \leq \gamma_{k_{p}}(x, t) \leq c_{\gamma} e^{-d\left((x, t), \partial H_{p}\right)}$,
where $k_{p} \in\{1,2, \ldots, n\}$ is a unique number associated to p, and
(0.13)

$$
c_{\gamma}^{-1} \leq \gamma_{k}(x, t) \leq c_{\gamma}
$$

for every $k \in\{1,2, \ldots, n\} \backslash\left\{k_{p}\right\}$.

The connection between μ and γ_{k}

- Let $x \in \mathbb{R}^{n}$ and $\left.t \in\right] 0,1\left[\right.$ be such that $\bar{B}^{n}(x, t / 2) \cap X \neq \emptyset$
- Suppose that there is a constant $c_{\mu}>0$ such that
(0.14) $\quad \psi(x, t) / c_{\mu} \leq \mu\left(B^{n}(x, t)\right) \leq c_{\mu} \psi(x, t)$.
- By adjusting c_{μ}, we obtain that
(0.15)

$$
t^{\delta} / c_{\mu} \leq \mu\left(B^{n}(x, t)\right) \leq c_{\mu} t^{\delta}
$$

if $(x, t) \notin H_{p}$ for all $p \in P$, and that (0.16)

$$
t^{\delta} e^{d\left((x, t), \partial H_{p}\right)\left(k_{p}-\delta\right)} / c_{\mu} \leq \mu\left(B^{n}(x, t)\right) \leq c_{\mu} t^{\delta} e^{d\left((x, t), \partial H_{p}\right)\left(k_{p}-\delta\right)}
$$

if $(x, t) \in H_{p}$ for some $p \in P$.

The case $X=L(G)$

- Suppose for the moment that X is the limit set $L(G)$ of a non-elementary geometrically finite Kleinian group G containing parabolic elements.
- In this case, P is the set of parabolic fixed points of G.
- Every non-empty set $\left\{p \in P: k_{p}=k\right\}, k \in\{1,2, \ldots, n\}$, is dense in X.
- Let X_{0} be the set of points $x \in X$ satisfying the following. If $x \in X_{0}, k \in\{1,2, \ldots, n\}$ is such that $k_{p}=k$ for some $p \in P$, and $\varepsilon>0$, then $\gamma_{k}\left(x, t_{x}\right) \leq \varepsilon$ for some $t_{x}>0$. Then $\mu\left(X_{0}\right)=\mu(X)$.
- Let X_{1} be the set of points $x \in X$ for which there is a constant $c_{x}>0$ such that $\gamma_{k}(x, t) \geq c_{x}$ for all $k \in\{1,2, \ldots, n\}$ and $t \in] 0,1\left[\right.$. Then the Hausdorff dimension of X_{1} is δ.
- The local flatness geometry of X can therefore be rather complicated.

Lemma 1

- Claim:

Let $\alpha>0$. Then the collection of balls

$$
\left\{B^{n}\left(p, \sqrt{\alpha r_{p}}\right): p \in P, r_{p}>\alpha\right\}
$$

is pairwise disjoint.

- Proof:

Let $x \in \mathbb{R}^{n}$. Suppose $x \in B^{n}\left(p, \sqrt{\alpha r_{p}}\right)$ for some $p \in P$ with $r_{p}>\alpha$. Then

$$
\begin{aligned}
\left|(x, \alpha)-\left(p, r_{p}\right)\right|^{2} & =|x-p|^{2}+\left(\alpha-r_{p}\right)^{2} \\
& =\left(|x-p|^{2}-\alpha r_{p}\right)+\left(\alpha^{2}-\alpha r_{p}\right)+r_{p}^{2} \\
& <r_{p}^{2},
\end{aligned}
$$

and so $(x, \alpha) \in H_{p}$. The claim follows since the horoballs in $\left\{H_{q}: q \in P\right\}$ have pairwise disjoint closures.

Lemma 2

- Let $\lambda \in] 0,1[$ and $k \in\{1,2, \ldots, n\}$.
- Define
(0.17) $\quad P_{\lambda}^{k}(i)=\left\{p \in P: k_{p}=k, \lambda^{i}<r_{p} \leq \lambda^{i-1}\right\}$
for every $i \in \mathbb{Z}$.
- Claim:

There is a constant $c_{\lambda}^{k}>0$ such that
(0.18)

$$
\left|P_{\lambda}^{k}(i)\right| \leq c_{\lambda}^{k} \lambda^{-i \delta}
$$

for every $i \in \mathbb{Z}$.

The proof of Lemma 2

- The horoballs in $\left\{H_{p}: p \in P\right\}$ have pairwise disjoint closures and X is compact, so the radii $r_{p}, p \in P$, have an upper bound.
- It follows that $\left|P_{\lambda}^{k}(i)\right|=0$ for all small enough i, and so the claim is trivial if $i \in\{0,-1,-2, \ldots\}$.
- Let $i \in\{1,2, \ldots\}$. Write $\alpha=\lambda^{i}$.
- Now

$$
\left|P_{\lambda}^{k}(i)\right|=\sum_{p \in P: k_{p}=k, \alpha<r_{p} \leq \alpha / \lambda} 1 \leq \sum_{p \in P: \alpha<r_{p}} 1 \leq \sum_{p \in P: \alpha<r_{p}}\left(\sqrt{\frac{r_{p}}{\alpha}}\right)^{k_{p}} .
$$

The proof of Lemma 2

- On the other hand,

$$
\begin{aligned}
\mu(X) & \geq \sum_{p \in P: \alpha<r_{p}} \mu\left(B^{n}\left(p, \sqrt{\alpha r_{p}}\right)\right) \\
& \geq c_{\mu}^{-1} \sum_{p \in P: \alpha<r_{p}} \sqrt{\alpha r_{p}} e^{d\left(\left(p, \sqrt{\alpha r_{p}}\right), \partial H_{p}\right)\left(k_{p}-\delta\right)} \\
& =c_{\mu}^{-1} \sum_{p \in P: \alpha<r_{p}}{\sqrt{\alpha r_{p}}}^{\delta} e^{\left(k_{p}-\delta\right) \log \frac{2 r_{p}}{\sqrt{\alpha r_{p}}}} \\
& \geq \frac{1}{2^{\delta} c_{\mu}} \sum_{p \in P: \alpha<r_{p}} \sqrt{\alpha r_{p}^{2}}{ }^{2 \delta-k_{p} r_{p}^{k_{p}-\delta}} \\
& =\frac{1}{2^{\delta} c_{\mu}} \sum_{p \in P: \alpha<r_{p}} \frac{\alpha^{\delta} r_{p}^{\delta}}{\sqrt{\alpha r_{p}} r_{p}^{k}} \frac{r_{p}^{k_{p}}}{r_{p}^{\delta}} \\
& =\frac{\alpha^{\delta}}{2^{\delta} c_{\mu}} \sum_{p \in P: \alpha<r_{p}}\left(\sqrt{\frac{r_{p}}{\alpha}}\right)^{k_{p}} .
\end{aligned}
$$

The proof of Lemma 2

- We conclude that

$$
\left|P_{\lambda}^{k}(i)\right| \leq \frac{2^{\delta} c_{\mu} \mu(X)}{\alpha^{\delta}}=c_{\lambda}^{k} \lambda^{-i \delta}
$$

The main theorem

- Claim: $\operatorname{dim}_{M}(X)=\delta$.
- Since $\delta \leq \underline{\operatorname{dim}}_{M}(X) \leq \overline{\operatorname{dim}}_{M}(X)$, our task is to show that $\overline{\operatorname{dim}}_{M}(X) \leq \delta$.

The easy case

- Suppose first that $k_{p} \geq \delta$ for all $p \in P$.
- Then (0.15) and (0.16) imply that
(0.19)

$$
\mu\left(B^{n}(x, t)\right) \geq t^{\delta} / c_{\mu}
$$

for all $x \in X$ and $t \in] 0,1[$.

- Let $t>0$ be small and let \mathcal{B}_{X}^{t} be a maximal t-packing of X.

The easy case

- Now

$$
\mu(X) \geq \sum_{B^{n}(x, t) \in \mathcal{B}_{x}^{t}} \mu\left(B^{n}(x, t)\right) \geq c_{\mu}^{-1} t^{\delta}\left|\mathcal{B}_{X}^{t}\right|,
$$

so

$$
\log \left|\mathcal{B}_{X}^{t}\right| \leq \delta \log t^{-1}+\log c_{\mu} \mu(X)
$$

- We conclude that

$$
\overline{\operatorname{dim}}_{M}(X)=\limsup _{t \rightarrow 0} \frac{\log \left|\mathcal{B}_{X}^{t}\right|}{\log t^{-1}} \leq \delta,
$$

which implies that $\operatorname{dim}_{M}(X)=\delta$.

The harder case

- Suppose that there is $p \in P$ with $k_{p}<\delta$.
- Let $K \subset\{1,2, \ldots, n\}$ be the set of numbers $k<\delta$ such that there is $p \in P$ with $k_{p}=k$.
- Let $k_{\text {min }}=\min \left\{k_{p}: p \in P\right\}$.
- Fix a small number $\varepsilon>0$ and a large number $M>0$.

The harder case

- Let $t>0$ be small and let $\mathcal{B}_{X}^{t}=\left\{B^{n}\left(x_{i}, t\right): i \in I\right\}$ be a maximal t-packing of X.
- Our aim is to show that there is a constant $c_{\varepsilon}>0$ such that (0.20) $\quad\left|\mathcal{B}_{X}^{t}\right| \leq c_{\varepsilon} t^{-\left(\delta+\varepsilon\left(\delta-k_{\text {min }}\right)\right)}$.
- Once we have this result, we can argue as above to conclude that $\overline{\operatorname{dim}}_{M}(X) \leq \delta+\varepsilon\left(\delta-k_{\text {min }}\right)$, which implies that $\overline{\operatorname{dim}}_{M}(X) \leq \delta$ and so $\operatorname{dim}_{M}(X)=\delta$.

A division of the index set I

- Write

$$
I=I_{1} \cup I_{2} \cup \bigcup_{k \in K} \bigcup_{j=1}^{\infty} J_{j}^{k},
$$

where:

$$
I_{1}=\left\{i \in I: \text { either }\left(x_{i}, t\right) \notin H_{p} \text { for all } p \in P\right.
$$ or $\left(x_{i}, t\right) \in H_{p}$ for some $p \in P$ such that $k_{p} \notin K$, or $\left(x_{i}, t\right) \in H_{p}$ for some $p \in P$ such that $k_{p} \in K$ and $\left.d\left(\left(x_{i}, t\right), \partial H_{p}\right) \leq M\right\}$.

A division of the index set I

$$
\begin{aligned}
I_{2}= & \left\{i \in I:\left(x_{i}, t\right) \in H_{p} \text { for some } p \in P \text { such that } k_{p} \in K\right. \text { and } \\
& \left.M<d\left(\left(x_{i}, t\right), \partial H_{p}\right) \leq \varepsilon \log t^{-1}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
J_{j}^{k}= & \left\{i \in I:\left(x_{i}, t\right) \in H_{p} \text { for some } p \in P \text { such that } k_{p}=k,\right. \\
& d\left(\left(x_{i}, t\right), \partial H_{p}\right)>\varepsilon \log t^{-1}, \text { and } d\left(\left(x_{i}, t\right), \partial H_{p}\right) \in[j, j+1[\} .
\end{aligned}
$$

The number of elements in I_{1} and I_{2}

- Now

$$
\mu(X) \geq \sum_{i \in l_{1}} \mu\left(B^{n}\left(x_{i}, t\right)\right) \gg t^{\delta}| |_{1} \mid,
$$

and so $\left|I_{1}\right| \ll t^{-\delta}$.

- On the other hand, (suppose that $\left(x_{i}, t\right) \in H_{p_{i}}$ in the following)

$$
\begin{aligned}
\mu(X) & \geq \sum_{i \in I_{2}} \mu\left(B^{n}\left(x_{i}, t\right)\right) \gg \sum_{i \in I_{2}} t^{\delta} e^{\left(k_{p_{i}}-\delta\right) \varepsilon \log t^{-1}} \\
& \geq t^{\delta} e^{\left(k_{\min }-\delta\right) \varepsilon \log t^{-1}}\left|I_{2}\right|=t^{\delta+\varepsilon\left(\delta-k_{\text {min }}\right)}\left|I_{2}\right|,
\end{aligned}
$$

and so $\left|I_{2}\right| \ll t^{-\left(\delta+\varepsilon\left(\delta-k_{\min }\right)\right)}$.

The number of elements in J_{j}^{k}

- For the time being, fix $k \in K$ and $j \in\{1,2, \ldots\}$.
- Suppose that $i \in J_{j}^{k}$ and assume that $\left(x_{i}, t\right) \in H_{p}$.
- Note that now $\varepsilon \log t^{-1}<j+1$.
- The ratio r_{p} / t obtains its minimum when $x_{i}=p$.
- If $x_{i}=p$, then $d\left(\left(x_{i}, t\right), \partial H_{p}\right)=\log \left(2 r_{p} / t\right)>M$.
- We conclude that $r_{p}>t$ in every case.

The number of elements in J_{j}^{k}

- Fix $\lambda \in] 0,1[$.
- Let $m_{t} \in\{1,2, \ldots\}$ be the smallest integer such that $\lambda^{m_{t}} \leq t$.
- Then

$$
\frac{\log t^{-1}}{\log \lambda^{-1}} \leq m_{t}<\frac{\log t^{-1}}{\log \lambda^{-1}}+1
$$

- Let $m_{0} \in \mathbb{Z}$ be such that $r_{q} \leq \lambda^{m_{0}-1}$ for all $q \in P$.
- Note that $p \in \bigcup_{m=m_{0}}^{m_{t}} P_{\lambda}^{k}(m)$.
- Write $d_{i}=e^{-d\left(\left(x_{i}, t\right), \partial H_{p}\right)}$ and observe that $\left(x_{i}, t\right) \in S^{n}\left(\left(p, d_{i} r_{p}\right), d_{i} r_{p}\right)$.
- It follows that

$$
B^{n}\left(x_{i}, t\right) \subset B^{n}\left(p, 3 d_{i} r_{p}\right) \subset B^{n}\left(p, 3 e^{-j} r_{p}\right)
$$

The number of elements in J_{j}^{k}

- We can now conclude that

$$
\begin{aligned}
\mu\left(\bigcup_{i \in J_{j}^{k}} B^{n}\left(x_{i}, t\right)\right) & \leq \mu\left(\bigcup_{m=m_{0}}^{m_{t}} \bigcup_{p \in P_{\lambda}^{k}(m)} B^{n}\left(p, 3 e^{-j} r_{p}\right)\right) \\
& \leq \sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} \mu\left(B^{n}\left(p, 3 e^{-j} r_{p}\right)\right) \\
& \ll \sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} e^{-j \delta} r_{p}^{\delta} e^{j(k-\delta)} \\
& =\sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} r_{p}^{\delta} e^{-j(2 \delta-k)} \\
& \leq e^{-j(2 \delta-k)} \sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} \lambda^{(m-1) \delta}
\end{aligned}
$$

The number of elements in J_{j}^{k}

- Continuing the estimate:

$$
\begin{aligned}
\mu\left(\bigcup_{i \in J_{j}^{k}} B^{n}\left(x_{i}, t\right)\right) & \ll e^{-j(2 \delta-k)} \sum_{m=m_{0}}^{m_{t}} \sum_{p \in P_{\lambda}^{k}(m)} \lambda^{(m-1) \delta} \\
& =e^{-j(2 \delta-k)} \sum_{m=m_{0}}^{m_{t}}\left|P_{\lambda}^{k}(m)\right| \lambda^{(m-1) \delta} \\
& \ll e^{-j(2 \delta-k)} \sum_{m=m_{0}}^{m_{t}} \lambda^{-m \delta} \lambda^{(m-1) \delta} \\
& \ll e^{-j(2 \delta-k)} m_{t}<e^{-j(2 \delta-k)}\left(\frac{\log t^{-1}}{\log \lambda^{-1}}+1\right) \\
& \ll e^{-j(2 \delta-k)} \log t^{-1}<e^{-j(2 \delta-k)} \varepsilon^{-1}(j+1)
\end{aligned}
$$

The number of elements in J_{j}^{k}

- We have shown that

$$
\mu\left(\bigcup_{i \in J_{j}^{k}} B^{n}\left(x_{i}, t\right)\right) \ll e^{-j(2 \delta-k)} \varepsilon^{-1}(j+1) .
$$

- On the other hand,

$$
\mu\left(\bigcup_{i \in J_{j}^{k}} B^{n}\left(x_{i}, t\right)\right)=\sum_{i \in J_{j}^{k}} \mu\left(B^{n}\left(x_{i}, t\right)\right) \gg t^{\delta} e^{-j(\delta-k)}\left|J_{j}^{k}\right| .
$$

- We obtain that $\left|J_{j}^{k}\right| \ll \varepsilon^{-1} j e^{-j \delta} t^{-\delta}$.

The number of elements in I

- All in all, we can conclude that

$$
\left|\bigcup_{k \in K} \bigcup_{j=1}^{\infty} J_{j}^{k}\right| \ll \varepsilon^{-1} t^{-\delta} \sum_{j=1}^{\infty} j e^{-j \delta} \ll \varepsilon^{-1} t^{-\delta} .
$$

- We have shown that there is a constant $c_{\varepsilon}>0$ such that

$$
\mid \| \leq c_{\varepsilon} t^{-\left(\delta+\varepsilon\left(\delta-k_{\min }\right)\right)} .
$$

- We noted earlier that this implies that $\operatorname{dim}_{M}(X)=\delta$.

Notes on references

- The papers by Bishop \& Jones and Mattila \& Vuorinen, for example, discuss results connecting local flatness geometry and fractal dimensions.
- The local flatness geometry of limit sets of non-elementary geometrically finite Kleinian groups is studied in my PhD thesis.
- Lemmas 1 and 2 are simplified versions of results in the paper by Stratmann \& Velani.
- The proof of the main theorem is a minor modification of the main argument of the paper by Stratmann \& Urbański.

References

- Ala-Mattila V. : Geometric characterizations for Patterson-Sullivan measures of geometrically finite Kleinian groups, Ann. Acad. Sci. Fenn. Math. Diss. 157 (2011), 120 pp.
- Bishop C. and Jones P. : Wiggly sets and limit sets, Ark. Mat. 35 (1997), 201-224.
- Mattlla P. and Vuorinen M. : Linear approximation property, Minkowski dimension, and quasiconformal spheres, J. London Math. Soc. (2) 42 (1990), 249-266.
- Stratmann B. and Urbański M. : The box-counting dimension for geometrically finite Kleinian groups, Fund. Math. 149 (1996), 83-93.
- Stratmann B. and Velani S. : The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3) 71 (1995), 197-220.

Thanks!

