Solving the weighted linear least squares problem for LLRR and LLR

Petri Koistinen

June 12, 2006

When we calculate the LLRR estimate at evaluation point x we have to solve the linear least squares problem

$$
\begin{equation*}
\sum_{i=1}^{k} w_{i}\left(y_{q(x, i)}-\beta_{0}-\beta^{T} x_{q(x, i)}\right)^{2}+\lambda \beta^{T} \beta=\min _{\beta_{0}, \beta}! \tag{1}
\end{equation*}
$$

Here $x_{q(x, 1)}, \ldots, x_{q(x, k)}$ are the k nearest neighbors (in the feature space) for the evaluation point $x ; y_{q(x, 1)}, \ldots, y_{q(x, k)}$ are the corresponding (scalar) responses and $w_{1}, \ldots w_{k}$ are the weights which depend on the distances of the neareast neighbors from x and also on the weight function used. The weighted linear least squares problem for LLR is otherwise the same, but there $\lambda=0$. The prediction at x is then

$$
\begin{equation*}
\hat{m}(x)=\hat{\beta}_{0}+\hat{\beta} x . \tag{2}
\end{equation*}
$$

For a fixed λ and for fixed weights (i.e., for a fixed k and weighting function), the problem (1) can be solved readily in Matlab after one observes that

$$
\begin{equation*}
\sum_{i=1}^{k} w_{i}\left(y_{q(x, i)}-\beta_{0}-\beta^{T} x_{q(x, i)}\right)^{2}+\lambda \beta^{T} \beta=\|A \tilde{\beta}-z\|^{2} \tag{3}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cc}
\sqrt{w_{1}} & \sqrt{w_{1}} x_{q(x, 1)}^{T} \\
\vdots & \vdots \\
\sqrt{w_{k}} & \sqrt{w_{k}} x_{q(x, k)}^{T} \\
\cdots \cdots & \cdots \cdots \cdots \cdots \\
0 & \sqrt{\lambda} I_{s}
\end{array}\right], \quad z=\left[\begin{array}{c}
\sqrt{w_{1}} y_{q(x, 1)} \\
\vdots \\
\sqrt{w_{k}} y_{q(x, k)} \\
\cdots \cdots \cdots \cdots \\
0_{s \times 1}
\end{array}\right], \quad \tilde{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta
\end{array}\right] .
$$

Here s is the dimension of x, I_{s} is the $s \times s$ unit matrix and $0_{s \times 1}$ is the zero vector with s components. Having calculated the matrix A and vector z, the fitted β :s and the prediction at x could be calculated in Matlab as follows

```
beta_aug_fitted = A \ z;
y_pred = beta_aug_fitted' * [1; x];
```

Solving the LLR problem is similar, but there we can omit the lowest block from the matrix A and the vector z.

However, the actual implementations made available here solve the weighted linear least squares problem in a numerically more stable and somewhat more efficient way, which is based on the idea in Seifert \& Gasser (2000, Section 2). The crucial observation is that the original weighted least squares problem can be substituted with the following problem

$$
\begin{equation*}
\sum_{i=1}^{k} w_{i}\left(y_{q(x, i)}-\beta_{0}-\beta^{T}\left(x_{q(x, i)}-u\right)\right)^{2}+\lambda \beta^{T} \beta=\min _{\beta_{0}, \beta}!, \tag{4}
\end{equation*}
$$

where u is an arbitrary (centering) vector, provided one uses

$$
\begin{equation*}
\hat{m}(x)=\hat{\beta}_{0}+\hat{\beta}^{T}(x-u) . \tag{5}
\end{equation*}
$$

instead of (2) to calculate the prediction.
Now the idea is to choose the centering vector u so that the normal equations associated with (4) for the constant β_{0} and the slope vector β separate. The normal equations read

$$
\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} z,
$$

where z is as before, but now A is given by

$$
A=\left[\begin{array}{cc}
\sqrt{w_{1}} & \sqrt{w_{1}}\left(x_{q(x, 1)}-u\right)^{T} \tag{6}\\
\vdots & \vdots \\
\sqrt{w_{k}} & \sqrt{w_{k}}\left(x_{q(x, k)}-u\right)^{T} \\
\cdots \cdots & \cdots \cdots \cdots \cdots \cdots \cdots \\
0 & \sqrt{\lambda} I_{s}
\end{array}\right]
$$

Hence

$$
A^{T} A=\left[\begin{array}{cc}
\sum_{i=1}^{k} w_{i} & \sum_{i=1}^{k} w_{i}\left(x_{q(x, i)}-u\right)^{T} \\
\sum_{i=1}^{k} w_{i}\left(x_{q(x, i)}-u\right) & S+\lambda I_{s},
\end{array}\right]
$$

where S is the matrix

$$
\begin{equation*}
S=\sum_{i=1}^{k} w_{i}\left(x_{q(x, i)}-u\right)\left(x_{q(x, i)}-u\right)^{T} . \tag{7}
\end{equation*}
$$

We can arrange the off-diagonal blocks of $A^{T} A$ to vanish, if we choose u as the weighted average of the nearest neighbors $x_{q(x, i)}$ using weights w_{i},

$$
\begin{equation*}
u=\frac{\sum_{i=1}^{k} w_{i} x_{q(x, i)}}{\sum_{j=1}^{k} w_{j}} . \tag{8}
\end{equation*}
$$

With this choice in (5) and (7) we get, after some algebra,

$$
\hat{m}(x)=\frac{\sum_{i=1}^{k} w_{i} y_{q(x, i)}}{\sum_{j=1}^{k} w_{j}}+(x-u)^{T}\left(S+\lambda I_{s}\right)^{-1} \sum_{i=1}^{k} w_{i}\left(x_{q(x, i)}-u\right) y_{q(x, i)} .
$$

Rewriting the last formula, we have

$$
\begin{equation*}
\hat{m}(x)=\sum_{i=1}^{k} v_{i} y_{q(x, i)}, \tag{9}
\end{equation*}
$$

where the effective weights v_{i} are given by

$$
\begin{equation*}
v_{i}=\frac{w_{i}}{\sum_{j=1}^{k} w_{j}}+w_{i}(x-u)^{T}\left(S+\lambda I_{s}\right)^{-1}\left(x_{q(x, i)}-u\right) \tag{10}
\end{equation*}
$$

Since the effective weights do not depend on the y-part of the training data, formula (9) is valid even when the responses y are vectors, and when the same smoothing parameters are used for all the components of y.

References

Seifert B., \& Gasser T. (2000), Data adaptive ridging in local polynomial regression. Journal of Computational and Graphical Statistics, 9, 338-360.

