
Solving the weighted linear least squares
problem for LLRR and LLR

Petri Koistinen

June 12, 2006

When we calculate the LLRR estimate at evaluation point x we have to
solve the linear least squares problem

k∑
i=1

wi

(
yq(x,i) − β0 − βT xq(x,i)

)2
+ λβT β = min

β0,β
! (1)

Here xq(x,1), . . . , xq(x,k) are the k nearest neighbors (in the feature space)
for the evaluation point x; yq(x,1), . . . , yq(x,k) are the corresponding (scalar)
responses and w1, . . . wk are the weights which depend on the distances of
the neareast neighbors from x and also on the weight function used. The
weighted linear least squares problem for LLR is otherwise the same, but
there λ = 0. The prediction at x is then

m̂(x) = β̂0 + β̂x. (2)

For a fixed λ and for fixed weights (i.e., for a fixed k and weighting
function), the problem (1) can be solved readily in Matlab after one observes
that

k∑
i=1

wi

(
yq(x,i) − β0 − βT xq(x,i)

)2
+ λβT β = ‖Aβ̃ − z‖2, (3)

where

A =



√
w1

√
w1x

T
q(x,1)

...
...√

wk
√

wkx
T
q(x,k)

. . . . . . . . . . . . . . . .

0
√

λIs

 , z =


√

w1yq(x,1)
...√

wkyq(x,k)

. . . . . . . . . .
0s×1

 , β̃ =

[
β0

β

]
.

1



Here s is the dimension of x, Is is the s× s unit matrix and 0s×1 is the zero
vector with s components. Having calculated the matrix A and vector z, the
fitted β:s and the prediction at x could be calculated in Matlab as follows

beta_aug_fitted = A \ z;

y_pred = beta_aug_fitted’ * [1; x];

Solving the LLR problem is similar, but there we can omit the lowest block
from the matrix A and the vector z.

However, the actual implementations made available here solve the weighted
linear least squares problem in a numerically more stable and somewhat more
efficient way, which is based on the idea in Seifert & Gasser (2000, Section 2).
The crucial observation is that the original weighted least squares problem
can be substituted with the following problem

k∑
i=1

wi

(
yq(x,i) − β0 − βT (xq(x,i) − u)

)2
+ λβT β = min

β0,β
!, (4)

where u is an arbitrary (centering) vector, provided one uses

m̂(x) = β̂0 + β̂T (x− u). (5)

instead of (2) to calculate the prediction.
Now the idea is to choose the centering vector u so that the normal

equations associated with (4) for the constant β0 and the slope vector β
separate. The normal equations read[

β̂0

β̂

]
= (AT A)−1AT z,

where z is as before, but now A is given by

A =


√

w1
√

w1(xq(x,1) − u)T

...
...√

wk
√

wk(xq(x,k) − u)T

. . . . . . . . . . . . . . . . . . . . . . .

0
√

λIs

 (6)

Hence

AT A =

[ ∑k
i=1 wi

∑k
i=1 wi(xq(x,i) − u)T∑k

i=1 wi(xq(x,i) − u) S + λIs,

]
2



where S is the matrix

S =
k∑

i=1

wi(xq(x,i) − u)(xq(x,i) − u)T . (7)

We can arrange the off-diagonal blocks of AT A to vanish, if we choose u
as the weighted average of the nearest neighbors xq(x,i) using weights wi,

u =

∑k
i=1 wixq(x,i)∑k

j=1 wj

. (8)

With this choice in (5) and (7) we get, after some algebra,

m̂(x) =

∑k
i=1 wiyq(x,i)∑k

j=1 wj

+ (x− u)T (S + λIs)
−1

k∑
i=1

wi(xq(x,i) − u)yq(x,i).

Rewriting the last formula, we have

m̂(x) =
k∑

i=1

viyq(x,i), (9)

where the effective weights vi are given by

vi =
wi∑k

j=1 wj

+ wi(x− u)T (S + λIs)
−1(xq(x,i) − u) (10)

Since the effective weights do not depend on the y-part of the training data,
formula (9) is valid even when the responses y are vectors, and when the
same smoothing parameters are used for all the components of y.

References

Seifert B., & Gasser T. (2000), Data adaptive ridging in local polynomial
regression. Journal of Computational and Graphical Statistics, 9, 338–360.

3


