Non-parametric Bayesian Hazard Regression for Chronic Disease Risk Assessment

Elja Arjas¹ Olli Saarela²

¹Oslo Centre for Biostatistics and Epidemiology (OCBE), Department of Biostatistics, University of Oslo, Norway

> ²Dalla Lana School of Public Health, University of Toronto, Ontario, Canada

36th Annual Conference of the International Society for Clinical Biostatistics

August 25, 2015, Utrecht

・ 同 ト ・ ヨ ト ・ ヨ ト

Risk and prediction

- 'Risk' is the probability of an adverse health related event occurring within a specified time frame, given the individual-level prognostic profile.
- 'Risk' is inherently unobservable: it can be understood as the limiting relative frequency of the adverse events in an infinite sequence of exchangeable instances with the same prognostic profile.
- In reality we only ever have a finite sequence of such observables: the prediction problem becomes a *posterior predictive* one, involving a probability statement about a future observable given the past ones.
- The commonly used term 'risk prediction' is a misnomer: what is predicted is not 'risk', but the occurrence of the outcome event itself.

ヘロト ヘワト ヘビト ヘビト

Posterior predictive probabilities

- Let the pair (T_i, E_i) represent a time-to-event outcome, where $E_i = 0$ means censoring, $E_i = 1$ incident CVD event (fatal or non-fatal) and $E_i = 2$ other (non-CVD) death.
- In addition, let X_i denote a vector of predictors.
- The observed data are $\mathcal{D} \equiv \{(T_i, E_i, X_i) : i = 1, \dots, n\}$.
- Suppose we are interested in the *s*-year risk of an event of interest occurring to a further individual *i*' ∉ {1,..., *n*} with the covariate profile *x*_{i'}.
- This could be naturally estimated through the posterior predictive probability

$$\pi_{\boldsymbol{s}}(\boldsymbol{x}_{i'}) \equiv \boldsymbol{P}(0 \leq T_{i'} \leq \boldsymbol{s}, \boldsymbol{E}_{i'} = 1 \mid \boldsymbol{x}_{i'}, \mathcal{D}).$$

- The observations are connected through some vector of parameters φ, possibly infinite-dimensional.
- Note that the posterior predictive probability is not a function of ϕ .

Illustration: data generating mechanism

Non-parametric Bayesian Regression for Risk Assessment

Inference

Non-parametric Bayesian Regression for Risk Assessment

ヘロト 人間 とくほとくほとう

Posterior predictive inference

Non-parametric Bayesian Regression for Risk Assessment

★ E → ★ E →

ъ

Monte Carlo integration

- Posterior predictive inferences require integration over the parameter (and possibly model) space.
- Suppose that λ_{i1}(t; φ) and λ_{i2}(t; φ) are the parametrized hazard functions for CVD and other mortality, respectively.
- The posterior predictive risk is then given by

$$\pi_{\boldsymbol{s}}(\boldsymbol{x}_{i'}) = \boldsymbol{E}_{\phi \mid \mathcal{D}}[\boldsymbol{P}(0 \leq T_{i'} \leq \boldsymbol{s}, \boldsymbol{E}_{i'} = 1 \mid \boldsymbol{x}_{i'}, \phi)]$$

=
$$\int_{\phi} \int_{0}^{\boldsymbol{s}} \lambda_{i'1}(t, \phi) \exp\left\{-\int_{0}^{t} \sum_{j=1}^{2} \lambda_{i'j}(\boldsymbol{u}; \phi) \,\mathrm{d}\boldsymbol{u}\right\} \,\mathrm{d}t \, \boldsymbol{P}(\mathrm{d}\phi \mid \mathcal{D}),$$

where $P(d\phi \mid D)$ is the posterior distribution of ϕ .

 Monte Carlo integration is well suited for evaluating such integrals; the λ_{ij}(t; φ)s can be specified in a flexible non-parametric way to also integrate over the model space.

- If X_i are established risk factors of CVD, it may make sense to assume λ_{i1}(t; φ) to be monotonic with respect to the covariates.
- Saarela & Arjas (2010) proposed a monotonic construction for regression functions based on marked point process realizations.
- With increasing number of support points, this can asymptotically approximate general monotonic relationships.
- Realizations are piecewise constant; monotonicity enforced through partial ordering constraints.

ヘロト ヘアト ヘビト ヘビト

Saarela & Arjas (2010)

 $\mu_5 = 0.25x_1 + 0.25x_2 + 0.5 \times 1_{\{\min(x_1, x_2) > 0.5\}} \quad \mu_6 = 1_{\{(x_1-1)^2 + (x_2-1)^2 < 1\}} \times \sqrt{1 - (x_1-1)^2 - (x_2-1)^2}$

 $\mu_4 = 0.25x_1 + 0.25x_2 + 0.5 \times 1_{\{x_1+x_2>1\}}$

Non-parametric Bayesian Regression for Risk Assessment

Posterior distribution

 Problem: in the survival analysis setting the posterior distribution is given by

$$P(\mathrm{d}\phi \mid \mathcal{D}) \\ \stackrel{\phi}{\propto} \prod_{i=1}^{n} \left[\prod_{j=1}^{2} \lambda_{ij}(t,\phi)^{\mathbf{1}_{\{E_{i}=j\}}} \exp\left\{ -\int_{0}^{T_{i}} \sum_{j=1}^{2} \lambda_{ij}(u;\phi) \,\mathrm{d}u \right\} \right] P(\mathrm{d}\phi).$$

- If the hazard functions are non-parametrically specified, the presence of the integral over time in the survival contribution is a computational nuisance.
- This is especially the case in Markov chain Monte Carlo, where the likelihood needs to be evaluated numerous times (whenever a modification to the regression functions is proposed).

・ 同 ト ・ ヨ ト ・ ヨ ト

Case-base sampling

- As a solution, Saarela & Arjas (2015) proposed to use case-base sampling of 'person-moments' (Hanley & Miettinen, 2009).
- Here all outcome event person-moments are selected to constitute the case series, complemented by a randomly chosen set of base series person-moments, serving as controls.
- Now the hazard functions need to be evaluated only at the selected person-moments.
- The resulting partial likelihood is of a logistic/multinomial regression form with an offset term.
- The partial likelihood has the usual likelihood properties (Saarela 2015); its use in conjunction with MCMC inferences can be motivated asymptotically (cf. Chernozhukov & Hong, 2003).

くロト (過) (目) (日)

Study base

Non-parametric Bayesian Regression for Risk Assessment

æ

Case series

Non-parametric Bayesian Regression for Risk Assessment

Base series

Non-parametric Bayesian Regression for Risk Assessment

Packaging of covariates

- Let now S represent a subset of the collection of all non-empty subsets of the covariates (including time scales) z_i = (t, x_{i1},..., x_{ip}), and let S_k ∈ S.
- The cause-specific hazard functions could be specified as

$$\lambda_i(t,\phi) \equiv \lambda(z_i,\phi) = \exp\left\{\phi_0 + \sum_{k=1}^{|S|} \phi_k(z_{iS_k})
ight\},$$

where $S_k \in S$ and $z_{iS_k} \equiv (z_{il} : l \in S_k)$.

- The intercept term ϕ_0 determines the absolute level of log-hazard, while the monotonic regression functions ϕ_k modify this additively, restricted by a sum-to-zero constraint.
- The number of the covariate packages |S| is determined a priori.

Model specification

• For example, a GAM-type structure

$$\lambda(z_i, \phi) = \exp\left\{\phi_0 + \sum_{k=1}^{p+1} \phi_k(z_{ik})
ight\}$$

would be obtained by specifying p + 1 packages each involving only a single covariate.

- To allow for interactions, the packages could be higher-dimensional, with the variable selection functionality of the Saarela & Arjas (2010) algorithm taking care of the required dimension reduction.
- In principle it would be possible to specify only a single package with all p + 1 covariates.
- However, then the inferences would likely be hampered by the curse of dimensionality, even with the monotonicity assumption.

Application

- Consider 10-year risk assessment of CVD given the classic risk factors (HDL cholesterol, non-HDL cholesterol, treated and untreated systolic blood pressure, daily smoking, prevalent diabetes) and Troponin I biomarker.
- We compare a conventional Troponin I marker with almost 80% zero measurements, and a high sensitive version with almost no zero measurements.
- Both have very right-skewed distribution.
- We consider models where the classic risk factors are entered as in the Framingham model (D'Agostino et al. 2008).
- Since we would have little prior idea how to model the association of Troponin markers, we apply non-parametric specifications to this task, also allowing for interaction with age (used as the time scale).

くロト (過) (目) (日)

Model specification

Consider the following specification of the CVD hazard function:

 $\lambda_i(t; \theta) = \exp\{\phi_0 + \phi_1(t, \operatorname{troponin} I_i) + \phi_2 \times \operatorname{HDL} \operatorname{cholesterol}_i + \phi_3 \times \operatorname{non-HDL} \operatorname{cholesterol}_i + \phi_4 \times \operatorname{treated} \operatorname{systolic} \operatorname{blood} \operatorname{pressure}_i + \phi_5 \times \operatorname{untreated} \operatorname{systolic} \operatorname{blood} \operatorname{pressure}_i + \phi_6 \times \operatorname{smoker}_i + \phi_7 \times \operatorname{prevalent} \operatorname{diabetes}_i\}.$

- This was fitted to the earlier shown case-base sample selected from a 10-year follow-up cohort of 6000 25-75 year old men.
- A similar model was specified for other (non-CVD) mortality.

Model fit

Non-parametric Bayesian Regression for Risk Assessment

<ロト <回 > < 注 > < 注 > 、

æ

Model complexity

Total number of support points used

Non-parametric Bayesian Regression for Risk Assessment

・ロト ・回ト ・ヨト ・ヨト

æ

Discrimination

False negative probability

Non-parametric Bayesian Regression for Risk Assessment

ヘロト ヘ回ト ヘヨト ヘヨト

ъ

Calibration

ъ

Cross-validated discrimination

False negative probability

Non-parametric Bayesian Regression for Risk Assessment

э

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cross-validated calibration

Non-parametric Bayesian Regression for Risk Assessment

Remarks

- The combination of monotonic regression and case-base sampling provides a computationally convenient way to fit flexible non-proportional hazard models.
- As an illustration, we modeled the joint effect of the Troponin I biomarker and age in predicting CVD incidence.
- The results reflected the fact that in healthy population cohorts, age is by far the strongest single predictor, with new markers, when added individually, contributing relatively little.
- More flexible model specifications could be applied also for the classic risk factors of CVD; log-linear additive effects for these resulted in less than perfect calibration.
- As a caveat, Bayesian model selection favours parsimonious models which may not result in optimal predictions in the typical training/validation setting.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

= 990

References

- Chernozhukov V, Hong H (2003). An MCMC approach to classical estimation. *Journal of Econometrics* 115:293–346.
- D'Agostino Sr RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008). General cardiovascular risk profile for use in primary care: the Framingham heart study. *Circulation* 117:743–753.
- Hanley JA, Miettinen OS (2009). Fitting smooth-in-time prognostic risk functions via logistic regression. International Journal of Biostatistics 5, doi:10.2202/1557-4679.1125.
- Saarela O, Arjas E. (2010). A method for Bayesian monotonic multiple regression. Scandinavian Journal of Statistics 38:499–513, doi:10.1111/j.1467-9469.2010.00716.x
- Saarela O, Arjas E (2014). Non-parametric Bayesian hazard regression for chronic disease risk assessment. *Scandinavian Journal of Statistics* 42:609–626, doi:10.1111/sjos.12125.
- Saarela O (2015). A case-base sampling method for estimating recurrent event intensities. Revision submitted.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで