Non-parametric Bayesian Hazard Regression for Chronic Disease Risk Assessment

Elja Arjas ${ }^{1}$ Olli Saarela ${ }^{2}$

${ }^{1}$ Oslo Centre for Biostatistics and Epidemiology (OCBE), Department of Biostatistics, University of Oslo, Norway
${ }^{2}$ Dalla Lana School of Public Health, University of Toronto, Ontario, Canada

36th Annual Conference of the International Society for Clinical Biostatistics

August 25, 2015, Utrecht

Risk and prediction

- 'Risk' is the probability of an adverse health related event occurring within a specified time frame, given the individual-level prognostic profile.
- 'Risk' is inherently unobservable: it can be understood as the limiting relative frequency of the adverse events in an infinite sequence of exchangeable instances with the same prognostic profile.
- In reality we only ever have a finite sequence of such observables: the prediction problem becomes a posterior predictive one, involving a probability statement about a future observable given the past ones.
- The commonly used term 'risk prediction' is a misnomer: what is predicted is not 'risk', but the occurrence of the outcome event itself.

Posterior predictive probabilities

- Let the pair (T_{i}, E_{i}) represent a time-to-event outcome, where $E_{i}=0$ means censoring, $E_{i}=1$ incident CVD event (fatal or non-fatal) and $E_{i}=2$ other (non-CVD) death.
- In addition, let X_{i} denote a vector of predictors.
- The observed data are $\mathcal{D} \equiv\left\{\left(T_{i}, E_{i}, X_{i}\right): i=1, \ldots, n\right\}$.
- Suppose we are interested in the s-year risk of an event of interest occurring to a further individual $i^{\prime} \notin\{1, \ldots, n\}$ with the covariate profile $x_{i^{\prime}}$.
- This could be naturally estimated through the posterior predictive probability

$$
\pi_{s}\left(x_{i^{\prime}}\right) \equiv P\left(0 \leq T_{i^{\prime}} \leq s, E_{i^{\prime}}=1 \mid x_{i^{\prime}}, \mathcal{D}\right)
$$

- The observations are connected through some vector of parameters ϕ, possibly infinite-dimensional.
- Note that the posterior predictive probability is not a function of ϕ.

Illustration: data generating mechanism

Inference

Posterior predictive inference

Monte Carlo integration

- Posterior predictive inferences require integration over the parameter (and possibly model) space.
- Suppose that $\lambda_{i 1}(t ; \phi)$ and $\lambda_{i 2}(t ; \phi)$ are the parametrized hazard functions for CVD and other mortality, respectively.
- The posterior predictive risk is then given by

$$
\begin{aligned}
& \pi_{s}\left(x_{i^{\prime}}\right)=E_{\phi \mid \mathcal{D}}\left[P\left(0 \leq T_{i^{\prime}} \leq s, E_{i^{\prime}}=1 \mid x_{i^{\prime}}, \phi\right)\right] \\
& =\int_{\phi} \int_{0}^{s} \lambda_{i^{\prime} 1}(t, \phi) \exp \left\{-\int_{0}^{t} \sum_{j=1}^{2} \lambda_{i^{\prime} j}(u ; \phi) \mathrm{d} u\right\} \mathrm{d} t P(\mathrm{~d} \phi \mid \mathcal{D})
\end{aligned}
$$

where $P(\mathrm{~d} \phi \mid \mathcal{D})$ is the posterior distribution of ϕ.

- Monte Carlo integration is well suited for evaluating such integrals; the $\lambda_{i j}(t ; \phi)$ s can be specified in a flexible non-parametric way to also integrate over the model space.

Monotonic regression

- If X_{i} are established risk factors of CVD, it may make sense to assume $\lambda_{i 1}(t ; \phi)$ to be monotonic with respect to the covariates.
- Saarela \& Arjas (2010) proposed a monotonic construction for regression functions based on marked point process realizations.
- With increasing number of support points, this can asymptotically approximate general monotonic relationships.
- Realizations are piecewise constant; monotonicity enforced through partial ordering constraints.

Saarela \& Arjas (2010)

$\mu_{1}=\sqrt{x_{1}}$
$\mu_{4}=0.25 x_{1}+0.25 x_{2}+0.5 \times 1_{\left\{x_{1}+x_{2}>1\right\}}$

$\mu_{2}=0.5 \mathrm{x}_{1}+0.5 \mathrm{x}_{2}$
$\mu_{3}=\min \left(x_{1}, x_{2}\right)$

$\mu_{5}=0.25 x_{1}+0.25 x_{2}+0.5 \times 1_{\left\{\min \left(x_{1}, x_{2}\right)>0.5\right\}}$
$\mu_{6}=1_{\left\{\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}<1\right\}} \times \sqrt{1-\left(x_{1}-1\right)^{2}-\left(x_{2}-1\right)^{2}}$

- Problem: in the survival analysis setting the posterior distribution is given by
$P(\mathrm{~d} \phi \mid \mathcal{D})$

$$
\stackrel{\phi}{\propto} \prod_{i=1}^{n}\left[\prod_{j=1}^{2} \lambda_{i j}(t, \phi)^{\mathbf{1}_{\left\{E_{i}=j\right\}}} \exp \left\{-\int_{0}^{T_{i}} \sum_{j=1}^{2} \lambda_{i j}(u ; \phi) \mathrm{d} u\right\}\right] P(\mathrm{~d} \phi)
$$

- If the hazard functions are non-parametrically specified, the presence of the integral over time in the survival contribution is a computational nuisance.
- This is especially the case in Markov chain Monte Carlo, where the likelihood needs to be evaluated numerous times (whenever a modification to the regression functions is proposed).

Case-base sampling

- As a solution, Saarela \& Arjas (2015) proposed to use case-base sampling of 'person-moments' (Hanley \& Miettinen, 2009).
- Here all outcome event person-moments are selected to constitute the case series, complemented by a randomly chosen set of base series person-moments, serving as controls.
- Now the hazard functions need to be evaluated only at the selected person-moments.
- The resulting partial likelihood is of a logistic/multinomial regression form with an offset term.
- The partial likelihood has the usual likelihood properties (Saarela 2015); its use in conjunction with MCMC inferences can be motivated asymptotically (cf. Chernozhukov \& Hong, 2003).

Study base

Case series

Base series

Non-parametric Bayesian Regression for Risk Assessment

- Let now \mathcal{S} represent a subset of the collection of all non-empty subsets of the covariates (including time scales) $z_{i}=\left(t, x_{i 1}, \ldots, x_{i p}\right)$, and let $S_{k} \in \mathcal{S}$.
- The cause-specific hazard functions could be specified as

$$
\lambda_{i}(t, \phi) \equiv \lambda\left(z_{i}, \phi\right)=\exp \left\{\phi_{0}+\sum_{k=1}^{|\mathcal{S}|} \phi_{k}\left(z_{i S_{k}}\right)\right\}
$$

where $S_{k} \in \mathcal{S}$ and $z_{i S_{k}} \equiv\left(z_{i l}: I \in S_{k}\right)$.

- The intercept term ϕ_{0} determines the absolute level of log-hazard, while the monotonic regression functions ϕ_{k} modify this additively, restricted by a sum-to-zero constraint.
- The number of the covariate packages $|\mathcal{S}|$ is determined a priori.

Model specification

- For example, a GAM-type structure

$$
\lambda\left(z_{i}, \phi\right)=\exp \left\{\phi_{0}+\sum_{k=1}^{p+1} \phi_{k}\left(z_{i k}\right)\right\}
$$

would be obtained by specifying $p+1$ packages each involving only a single covariate.

- To allow for interactions, the packages could be higher-dimensional, with the variable selection functionality of the Saarela \& Arjas (2010) algorithm taking care of the required dimension reduction.
- In principle it would be possible to specify only a single package with all $p+1$ covariates.
- However, then the inferences would likely be hampered by the curse of dimensionality, even with the monotonicity assumption.

Application

- Consider 10-year risk assessment of CVD given the classic risk factors (HDL cholesterol, non-HDL cholesterol, treated and untreated systolic blood pressure, daily smoking, prevalent diabetes) and Troponin I biomarker.
- We compare a conventional Troponin I marker with almost 80% zero measurements, and a high sensitive version with almost no zero measurements.
- Both have very right-skewed distribution.
- We consider models where the classic risk factors are entered as in the Framingham model (D'Agostino et al. 2008).
- Since we would have little prior idea how to model the association of Troponin markers, we apply non-parametric specifications to this task, also allowing for interaction with age (used as the time scale).

Model specification

- Consider the following specification of the CVD hazard function:

$$
\begin{aligned}
& \lambda_{i}(t ; \theta)=\exp \{ \phi_{0}+\phi_{1}\left(t, \text { troponin } \mathrm{I}_{i}\right) \\
&+\phi_{2} \times \text { HDL cholesterol }_{i} \\
&+\phi_{3} \times \text { non-HDL cholesterol }{ }_{i} \\
&+\phi_{4} \times \text { treated systolic blood pressure } \\
& i \\
&+\phi_{5} \times \text { untreated systolic blood pressure }_{i} \\
&+\phi_{6} \times \text { smoker }_{i} \\
&\left.+\phi_{7} \times \text { prevalent diabetes }_{i}\right\}
\end{aligned}
$$

- This was fitted to the earlier shown case-base sample selected from a 10-year follow-up cohort of 6000 25-75 year old men.
- A similar model was specified for other (non-CVD) mortality.

Non-parametric Bayesian Regression for Risk Assessment

Model complexity

Discrimination

Calibration

Cross-validated discrimination

Cross-validated calibration

Remarks

- The combination of monotonic regression and case-base sampling provides a computationally convenient way to fit flexible non-proportional hazard models.
- As an illustration, we modeled the joint effect of the Troponin I biomarker and age in predicting CVD incidence.
- The results reflected the fact that in healthy population cohorts, age is by far the strongest single predictor, with new markers, when added individually, contributing relatively little.
- More flexible model specifications could be applied also for the classic risk factors of CVD; log-linear additive effects for these resulted in less than perfect calibration.
- As a caveat, Bayesian model selection favours parsimonious models which may not result in optimal predictions in the typical training/validation setting.

References

- Chernozhukov V, Hong H (2003). An MCMC approach to classical estimation. Journal of Econometrics 115:293-346.
- D’Agostino Sr RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008). General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation 117:743-753.
- Hanley JA, Miettinen OS (2009). Fitting smooth-in-time prognostic risk functions via logistic regression. International Journal of Biostatistics 5, doi:10.2202/1557-4679.1125.
- Saarela O, Arjas E. (2010). A method for Bayesian monotonic multiple regression. Scandinavian Journal of Statistics 38:499-513, doi:10.1111/j.1467-9469.2010.00716.x
- Saarela O, Arjas E (2014). Non-parametric Bayesian hazard regression for chronic disease risk assessment. Scandinavian Journal of Statistics 42:609-626, doi:10.1111/s jos. 12125.
- Saarela O (2015). A case-base sampling method for estimating recurrent event intensities. Revision submitted.

