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Risk and prediction

‘Risk’ is the probability of an adverse health related event
occurring within a specified time frame, given the
individual-level prognostic profile.
‘Risk’ is inherently unobservable: it can be understood as
the limiting relative frequency of the adverse events in an
infinite sequence of exchangeable instances with the same
prognostic profile.
In reality we only ever have a finite sequence of such
observables: the prediction problem becomes a posterior
predictive one, involving a probability statement about a
future observable given the past ones.
The commonly used term ‘risk prediction’ is a misnomer:
what is predicted is not ‘risk’, but the occurrence of the
outcome event itself.
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Posterior predictive probabilities

Let the pair (Ti ,Ei) represent a time-to-event outcome,
where Ei = 0 means censoring, Ei = 1 incident CVD event
(fatal or non-fatal) and Ei = 2 other (non-CVD) death.
In addition, let Xi denote a vector of predictors.
The observed data are D ≡ {(Ti ,Ei ,Xi) : i = 1, . . . ,n}.
Suppose we are interested in the s-year risk of an event of
interest occurring to a further individual i ′ /∈ {1, . . . ,n} with
the covariate profile xi ′ .
This could be naturally estimated through the posterior
predictive probability

πs(xi ′) ≡ P(0 ≤ Ti ′ ≤ s,Ei ′ = 1 | xi ′ ,D).

The observations are connected through some vector of
parameters φ, possibly infinite-dimensional.
Note that the posterior predictive probability is not a
function of φ.
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Illustration: data generating mechanism
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Inference
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Posterior predictive inference
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Monte Carlo integration

Posterior predictive inferences require integration over the
parameter (and possibly model) space.
Suppose that λi1(t ;φ) and λi2(t ;φ) are the parametrized
hazard functions for CVD and other mortality, respectively.
The posterior predictive risk is then given by

πs(xi ′) = Eφ|D[P(0 ≤ Ti ′ ≤ s,Ei ′ = 1 | xi ′ , φ)]

=

∫
φ

∫ s

0
λi ′1(t , φ)exp

−
∫ t

0

2∑
j=1

λi ′j(u;φ) du

 dt P(dφ | D),

where P(dφ | D) is the posterior distribution of φ.
Monte Carlo integration is well suited for evaluating such
integrals; the λij(t ;φ)s can be specified in a flexible
non-parametric way to also integrate over the model space.
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Monotonic regression

If Xi are established risk factors of CVD, it may make sense
to assume λi1(t ;φ) to be monotonic with respect to the
covariates.
Saarela & Arjas (2010) proposed a monotonic construction
for regression functions based on marked point process
realizations.
With increasing number of support points, this can
asymptotically approximate general monotonic
relationships.
Realizations are piecewise constant; monotonicity
enforced through partial ordering constraints.
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Saarela & Arjas (2010)

x1

0.2

0.4

0.6

0.8

x2

0.2

0.4

0.6

0.8

m
u

0.0

0.2

0.4

0.6

0.8

1.0

µ1 = x1

x1

0.2

0.4

0.6

0.8

x2

0.2

0.4

0.6

0.8

m
u

0.0

0.2

0.4

0.6

0.8

1.0

µ2 = 0.5x1 + 0.5x2

x1

0.2

0.4

0.6

0.8

x2

0.2

0.4

0.6

0.8

m
u

0.0

0.2

0.4

0.6

0.8

1.0

µ3 = min(x1, x2)

x1

0.2

0.4

0.6

0.8

x2

0.2

0.4

0.6

0.8

m
u

0.0

0.2

0.4

0.6

0.8

1.0

µ4 = 0.25x1 + 0.25x2 + 0.5 × 1{x1+x2>1}

x1

0.2

0.4

0.6

0.8

x2

0.2

0.4

0.6

0.8

m
u

0.0

0.2

0.4

0.6

0.8

1.0

µ5 = 0.25x1 + 0.25x2 + 0.5 × 1{min(x1, x2)>0.5}

x1

0.2

0.4

0.6

0.8

x2

0.2

0.4

0.6

0.8

m
u

0.0

0.2

0.4

0.6

0.8

1.0

µ6 = 1{(x1−1)2+(x2−1)2<1} × 1 − (x1 − 1)2 − (x2 − 1)2

Non-parametric Bayesian Regression for Risk Assessment



Posterior distribution

Problem: in the survival analysis setting the posterior
distribution is given by

P(dφ | D)

φ
∝

n∏
i=1

 2∏
j=1

λij(t , φ)
1{Ei=j} exp

−
∫ Ti

0

2∑
j=1

λij(u;φ) du


P(dφ).

If the hazard functions are non-parametrically specified,
the presence of the integral over time in the survival
contribution is a computational nuisance.
This is especially the case in Markov chain Monte Carlo,
where the likelihood needs to be evaluated numerous
times (whenever a modification to the regression functions
is proposed).
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Case-base sampling

As a solution, Saarela & Arjas (2015) proposed to use
case-base sampling of ‘person-moments’ (Hanley &
Miettinen, 2009).
Here all outcome event person-moments are selected to
constitute the case series, complemented by a randomly
chosen set of base series person-moments, serving as
controls.
Now the hazard functions need to be evaluated only at the
selected person-moments.
The resulting partial likelihood is of a logistic/multinomial
regression form with an offset term.
The partial likelihood has the usual likelihood properties
(Saarela 2015); its use in conjunction with MCMC
inferences can be motivated asymptotically (cf.
Chernozhukov & Hong, 2003).
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Study base
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Case series
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Base series
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Packaging of covariates

Let now S represent a subset of the collection of all
non-empty subsets of the covariates (including time
scales) zi = (t , xi1, . . . , xip), and let Sk ∈ S.
The cause-specific hazard functions could be specified as

λi(t , φ) ≡ λ(zi , φ) = exp

φ0 +

|S|∑
k=1

φk (ziSk )

 ,

where Sk ∈ S and ziSk ≡ (zil : l ∈ Sk ).
The intercept term φ0 determines the absolute level of
log-hazard, while the monotonic regression functions φk
modify this additively, restricted by a sum-to-zero
constraint.
The number of the covariate packages |S| is determined a
priori.
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Model specification

For example, a GAM-type structure

λ(zi , φ) = exp

φ0 +

p+1∑
k=1

φk (zik )


would be obtained by specifying p + 1 packages each
involving only a single covariate.
To allow for interactions, the packages could be
higher-dimensional, with the variable selection functionality
of the Saarela & Arjas (2010) algorithm taking care of the
required dimension reduction.
In principle it would be possible to specify only a single
package with all p + 1 covariates.
However, then the inferences would likely be hampered by
the curse of dimensionality, even with the monotonicity
assumption.
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Application

Consider 10-year risk assessment of CVD given the
classic risk factors (HDL cholesterol, non-HDL cholesterol,
treated and untreated systolic blood pressure, daily
smoking, prevalent diabetes) and Troponin I biomarker.
We compare a conventional Troponin I marker with almost
80% zero measurements, and a high sensitive version with
almost no zero measurements.
Both have very right-skewed distribution.
We consider models where the classic risk factors are
entered as in the Framingham model (D’Agostino et al.
2008).
Since we would have little prior idea how to model the
association of Troponin markers, we apply non-parametric
specifications to this task, also allowing for interaction with
age (used as the time scale).
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Model specification

Consider the following specification of the CVD hazard
function:

λi(t ; θ) = exp{φ0 + φ1(t , troponin Ii)

+ φ2 × HDL cholesteroli
+ φ3 × non-HDL cholesteroli
+ φ4 × treated systolic blood pressurei

+ φ5 × untreated systolic blood pressurei

+ φ6 × smokeri

+ φ7 × prevalent diabetesi}.

This was fitted to the earlier shown case-base sample
selected from a 10-year follow-up cohort of 6000 25-75
year old men.
A similar model was specified for other (non-CVD)
mortality.
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Model fit
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Model complexity
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Discrimination
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Calibration
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Cross-validated discrimination
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Cross-validated calibration
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Remarks

The combination of monotonic regression and case-base
sampling provides a computationally convenient way to fit
flexible non-proportional hazard models.
As an illustration, we modeled the joint effect of the
Troponin I biomarker and age in predicting CVD incidence.
The results reflected the fact that in healthy population
cohorts, age is by far the strongest single predictor, with
new markers, when added individually, contributing
relatively little.
More flexible model specifications could be applied also for
the classic risk factors of CVD; log-linear additive effects
for these resulted in less than perfect calibration.
As a caveat, Bayesian model selection favours
parsimonious models which may not result in optimal
predictions in the typical training/validation setting.
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