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Abstract

Dynamic treatment regime is a decision rule in which the choice of the treatment of an individ-
ual at any given time can depend on the known past history of that individual, including baseline
covariates, earlier treatments, and their measured responses. In this paper we argue that finding
an optimal regime can, at least in moderately simple cases, be accomplished by a straightforward
application of nonparametric Bayesian modeling and predictive inference. As an illustration we
consider an inference problem in a subset of the Multicenter AIDS Cohort Study (MACS) data
set, studying the effect of AZT initiation on future CD4-cell counts during a 12-month follow-up.

KEYWORDS: Bayesian nonparametric regression, causal inference, dynamic programming, mono-
tonicity, optimal dynamic regimes



1 Introduction

A dynamic (sequential) treatment regime is a decision rule which determines
the treatment decisions to be taken over time, and it can in general depend
on both the patient’s earlier known history and the anticipated future con-
sequences of the decision. The definition of optimality of such a rule can
involve formal consideration of loss or utility functions; here, however, we take
optimality to simply mean the treatment regime which produces the highest
expected value for a response variable of interest at the end of the study period.

Important contributions to the study of optimal treatment regimes have
been provided, in particular, by Robins (1986, 1994, 2004) and Murphy (2003).
The respective approaches of the two authors are summarized and compared
by Moodie et al. (2007). Murphy (2003) proposed methodology for estimating
optimal dynamic regimes from observational data. As discussant of this pa-
per, Arjas (2003) suggested to solve the inferential problem using simulation
from the predictive distributions of potential outcomes of the response vari-
able, given alternative treatment regimes (see also Arjas and Parner, 2004).
In contrast, Murphy parameterizes the problem directly in terms of differences
of mean response values of the different treatment regimes to the mean of the
optimal regime, calling these functions regrets. Basically, any unbiased esti-
mation of ‘causal effects’ from observational data requires an assumption of no

unmeasured confounders, meaning that the treatment decisions made at each
point in time are based only on observed data that are available also in the
statistical analysis. Rosthøj et al. (2006) present an application of Murphy’s
method in a situation where the treatment variable (dose of anticoagulation
medication) is continuous, concentrating on parametric regret functions. In
addition to the regret functions, the estimation procedure requires the deter-
mination of probability distributions for the treatment actions.

Determination of optimal decisions in more conventional likelihood-based
analysis requires the modeling of the longitudinal distribution of the data,
combined with backward induction (also known as dynamic programming) in
time. This approach requires working out all the future optimal decisions,
backwards from the last observation point to the first. One way to achieve
this, at least in the case of discrete decision alternatives, is to draw samples
from the predictive distributions estimated from the observed data, for each of
the alternative treatment options. The expectations are then evaluated using
Monte Carlo integration.

Carlin et al. (1998) describe this approach in the context of optimal stop-
ping rules in clinical trials, where the decisions to be made are binary (stop
the trial if a large enough positive or negative treatment effect has been ob-
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served, or continue the trial to collect more data). If determination of one
expectation using Monte Carlo integration requires a sample of size m, using
nested simulation rounds through k backward steps would require a total of
m(mk − 1)/(m − 1) simulations. For large values of k this leads to computa-
tional problems, and therefore Carlin et al. describe also a forward sampling
algorithm applicable in certain special cases of likelihood functions. Here the
nested integration can be replaced with an optimization task over 2k− 1 deci-
sion rule boundaries. Also in the context of sequential clinical trials, Wathen
and Thall (2008) revamp this algorithm by assuming more restrictive para-
metric forms for the boundaries. To account for uncertainty in the model
definition, they incorporate a model selection based on approximate Bayes
factors over a preselected set of candidate models.

Moodie et al. (2007) demonstrate optimal dynamic regime analysis based
on modeling of regret or blip (Robins, 2004) functions. They argue that
likelihood-based modeling of longitudinal data is sensitive to model misspecifi-
cation. However, it is unclear whether misspecification of the regret functions
is any less serious of a problem. In this paper we aim to wipe the dust off
the combination of likelihood and backward induction in optimal dynamic
regime analysis and claim that it is still a viable alternative for such purpose.
Probability-based data analysis carries some obvious advantages over alter-
native methods, including the ability to handle missing data and providing
a natural quantification of uncertainties at different levels of model specifica-
tion. In order to avoid problems associated with too rigid model assumptions
we apply Bayesian nonparametric monotonic regression, where a monotonic-
ity assumption is used in place of more restrictive parametric or structural
assumptions. In contrast to Wathen and Thall (2008), in our approach model
selection is built into a part of the probability model and statistical inference
is based on model averaged results over random realizations drawn from the
space of possible models. We argue that, at least in situations where the de-
cision space is small, the optimal regimes can be worked out using standard
MCMC techniques, with the optimal decisions obtained as a byproduct of a
single sequence of MCMC samples. We illustrate this approach by using the
same example as in Moodie et al. (2007), based on data from Multicenter
AIDS Cohort (MACS) study (Kaslow et al., 1987).

The plan of the paper is as follows: In the next section we briefly reintro-
duce the data and the notation of Moodie et al. (2007), and then present our
probability model for the data. In Section 3 we discuss probability-based infer-
ence of the optimal treatment regime and the computational issues involved.
We also pay attention to the problems caused by missing data and censoring
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discussion in Section 4.

2 Statistical model

Multicenter AIDS Cohort study (MACS) was a longitudinal observational
study starting from 1984 and following up HIV-positive homosexual and bisex-
ual men recruited from four U.S. cities. As in Moodie et al. (2007), we restrict
our attention to a small subset of this dataset, consisting of the first three con-
secutive follow-up visits (separated by approximately six months each) after
antiviral drug azidothymidine (AZT) became available. We included HIV-
positive individuals who did not have (self-reported) AIDS defining illness at
the first eligible visit. The interest is in studying the effect of AZT treatment
initiated before the 6 or 12 month follow-up visits to the response variable,
which is the count of CD4-positive helper cells measured at the 12 month visit.
First suppressing an index i referring to an individual, let

• X1 = CD4-cell count at the beginning of the study,

• A1 = 1 if AZT treatment initiated at 0 < t < 6, and A1 = 0 otherwise;

• X2 = CD4-cell count at t = 6 months;

• A2 = 1 if AZT treatment initiated at 6 < t < 12 (only possible if A1 = 0),
and A2 = 0 otherwise;

• Y = CD4-cell count at t = 12 months.

Further, let A1 = {i : A1i = 1}, A0 = {i : A1i = 0}, A01 = {i : A1i = 0,
A2i = 1}, and A00 = {i : A1i = 0, A2i = 0} denote the sets of individuals in
the data observed in the different treatment alternatives. The observed counts
in the dataset were |A1| = 132, |A0| = 1295, |A01| = 131 and |A00| = 1164.
Figure 1 displays the scatterplots of the three CD4-cell measurements, showing
that there are strong serial correlations between the consecutive cell counts,
and also that there is a visible decreasing trend in the individual CD4-levels
as a function of time.

We assume that treatment assignment after the baseline visit can depend
on the measured covariate value X1, but that it otherwise satisfies the condi-
tion of no unmeasured confounders. The MACS data include many possibly
relevant measured covariates, both questionnaire based and laboratory results.
Here, however, we take this condition to mean simply that, given the CD4-
count X1i of individual i at time t = 0, there are no additional known individ-
ual characteristics of i, represented in the model by (latent) random variables,

to causal inference in such observational settings. The paper concludes with a
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Figure 1: Scatterplots for three CD4-level measurements
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that would predict the assignment of i to either A1i = 0 or A1i = 1, nor does
such a prediction of assignment depend on the model parameters (considered
in detail below) which we use for describing the development of the CD4-count
levels Yi and X2i. For more formal definition of no unmeasured confounders,
see e.g. Arjas and Parner (2004). In similar fashion, when considering the
assignment of treatment alternatives A2i after time t = 6, we assume that
they can depend on the, then known, covariate readings X2i and X1i, but that
they otherwise satisfy a similar no unmeasured confounders postulate.

The statistical model is now specified in such a way that it is conditional on
the observed values of X1i, i = 1, . . . , n, in the data. Moreover, as our statisti-
cal inferences will be based on forming the likelihood of the data, the above no
unmeasured confounders implies that the likelihood contributions arising from
treatment assignments can be treated as constant proportionality factors, and
therefore have no influence on the inferences based on such likelihoods. Thus,
under the no unmeasured confounders postulate we can specify our statistical
model in such a way that it is at t = 6 conditioned directly on the observed
values of both X1i and A1i. The model is specified as a modular structure,
where each module corresponds to a possible transition from one ‘state’ to the
next ‘state’. In the following, we use the notation [.] to refer to both probabil-
ity density and probability mass functions, depending on whether the random
variate is continuous or discrete.

Module 1: Model structure for treatment branch A1 = 1:

• Consider first a nonparametric Bayesian model for ‘the systematic part’
of predicting response Yi of individual i, given covariate value X1i at
baseline t = 0. Denote this systematic part by f1(X1i). Since the func-
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tion f1, which is assumed to be common to all individuals, is unknown,
we view it to be random and will estimate it from the combined data.
In order to facilitate this, we make the following assumption: f1 is (that
is, all realizations of f1 are) monotonically increasing. Considering that
both Yi and X1i are CD4-counts measured from the same individual i,
this assumption would seem to be well justified.

• Modeling individual variation: It is obvious from Figure 1 that the vari-
ability of the CD4-levels over time depends on the absolute CD4-level.
To take this into account, conditionally on f1 and X1i, and independently
across individuals, we draw a random variable, say Z1i, from a gamma
distribution: [Z1i | A1i = 1, X1i, f1, α1] = Gamma(α1f1(X1i), α1). Here
α1 is a hyperparameter, which can be either specified separately or es-
timated from the data; here we choose the latter option and therefore
specify a prior [α1] for it. This parameter controls the variance of the
gamma distribution. Note that E(Z1i | A1i = 1, X1i, f1, α1) = f1(X1i).

• Modeling the response Yi: Conditionally on (A1i = 1, X1i, f1, Z1i), sup-
pose that [Yi | A1i = 1, X1i, f1, Z1i] = Poisson(Z1i). Note that then
E(Yi | A1i = 1, X1i, f1, α1) = f1(X1i).

In summary, we have postulated the following hierarchical model structure
for the individuals i ∈ A1 in branch A1 = 1, conditionally on the treatment
assignments and the corresponding X1i,

[{Yi, Z1i : i ∈ A1}, f1, α1 | {A1i = 1, X1i : i ∈ A1}]

=

(

∏

i∈A1

[Yi | Z1i][Z1i | A1i = 1, X1i, f1, α1]

)

[f1][α1]. (1)

Module 2: The model for X2i in the treatment branch A1 = 0 is specified
exactly as the model for Yi above, with a different nonparametrically specified
and monotonically increasing function f0 and the related parameterization,
resulting in a joint distribution of the form

[{X2i, Z0i : i ∈ A0}, f0, α0 | {A1i = 0, X1i : i ∈ A0}]

=

(

∏

i∈A0

[X2i | Z0i][Z0i | A1i = 0, X1i, f0, α0]

)

[f0][α0]. (2)

The next step in the model construction is to consider the progression
in branch A1 = 0 from time t = 6 onwards, up to Y measured at t = 12,
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separately for the alternatives A2 = 1 and A2 = 0. The main difference to the
above two constructions is that now there are two covariate measurements,
X1 and X2, in the history that should be accounted for when predicting Y .
Before continuing the model specification, we return briefly to the issue of
treatment assignment, now at time 6 < t < 12. As stated earlier, we assume
that A2 can depend on, then known, covariate readings X1 and X2 (as well
as, in obvious way, on A1), but that they otherwise satisfy the no unmeasured
confounders postulate. As a consequence, the likelihood contribution arising
from observing the value of A2 for an individual in the data can be treated
as a constant, and therefore need not be considered when drawing statistical
inferences, unless it is specifically of interest (in Section 3.2 we will note one
possible situation where this might be the case).

Module 3: Considering first the case A1 = 0 and A2 = 1, we introduce a
nonparametrically defined function f01(X1, X2), and assume that it is mono-
tonically increasing in X1 and X2 − X1. The motivation behind this choice
(instead of using the two measured levels directly as covariates) was to separate
the baseline level and the longitudinal trend, thus resulting in two less corre-
lated variables, both of which are seemingly compatible with the monotonicity
postulate. We postulate a hierarchical model structure

[{Yi, Z01i : i ∈ A01}, f01, α01 | {A1i = 0, A2i = 1, X1i, X2i : i ∈ A01}]

=

(

∏

i∈A01

[Yi | Z01i][Z01i | A1i = 0, A2i = 1, X1i, X2i, f01, α01]

)

[f01][α01], (3)

where

[Z01i | A1i = 0, A2i = 1, X1i, X2i, f01, α01] = Gamma(α01f01(X1i, X2i), α01)

and [Yi | Z01i] = Poisson(Z01i). Note that

E(Yi | A1i = 0, A2i = 1, X1i, X2i, f01, α01) = f01(X1i, X2i).

Module 4: Finally, considering the combination A1 = 0 and A2 = 0, we
introduce a random function f00(X1, X2), similarly monotonically increasing
in X1 and X2 − X1, and postulate the joint distribution

[{Yi, Z00i : i ∈ A00}, f00, α00 | {A1i = 0, A2i = 0, X1i, X2i : i ∈ A00}]

=

(

∏

i∈A00

[Yi | Z00i][Z00i | A1i = 0, A2i = 0, X1i, X2i, f00, α00]

)

[f00][α00], (4)

where the distributions for Z00i and Yi are defined analogously to above.
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3 Statistical inference

3.1 Determining the optimal treatment assignment

Given the observed data D, the model parameters f0, f1, f00, f01, α0, α1, α00,
and α01 can now be estimated. The nonparametric random functions are de-
fined and estimated following Saarela and Arjas (2009). Our approach to the
inferential problem is Bayesian, with the consequence that we obtain the joint
posterior distribution of these parameters, and can then consider the corre-
sponding posterior predictive distribution of how a generic individual drawn
from the same population as the actual individuals in the data (that is, we are
using the same model for both) would respond to different treatment alterna-
tives. Denote the ‘potentially observed’ characteristics of such an individual
by X∗

1 , X∗
2 and Y ∗. Note that the choice of the values of A∗

1 and A∗
2 can be

viewed as representing ‘do’-conditioning (Pearl, 2000). (That we can switch
from observed treatment values in the data to ‘optional’ or ‘forced’ in the pre-
dictions is again consequence of the no unmeasured confounders postulate.)
It is now straightforward to compute, for example, the posterior predictive
expectation of the response Y ∗ at time t = 12, as a function of the CD4-count
X∗

1 when A∗
1 = 1, that is, if the AZT treatment is initiated after the baseline

visit. We get

E(Y ∗ | A∗
1 = 1, X∗

1 ,D)

= E(E(Y ∗ | A∗
1 = 1, X∗

1 , f1, α1,D) | A∗
1 = 1, X∗

1 ,D)

= E(f1(X
∗
1 ) | A∗

1 = 1, X∗
1 ,D),

where the outer expectation in the second line is with respect to the unknown
parameters f1 and α1. Similarly,

E(X∗
2 | A∗

1 = 0, X∗
1 ,D) = E(f0(X

∗
1 ) | A∗

1 = 0, X∗
1 ,D),

E(Y ∗ | A∗
1 = 0, A∗

2 = 1, X∗
1 , X

∗
2 ,D)

= E(f01(X
∗
1 , X

∗
2 ) | A∗

1 = 0, A∗
2 = 1, X∗

1 , X
∗
2 ,D)

and

E(Y ∗ | A∗
1 = 0, A∗

2 = 0, X∗
1 , X

∗
2 ,D)

= E(f00(X
∗
1 , X

∗
2 ) | A∗

1 = 0, A∗
2 = 0, X∗

1 , X
∗
2 ,D).

The computation of these expectations is carried out in practice most easily
alongside the MCMC sampling which is used for estimating the model pa-
rameters, applying data augmentation. A more detailed description of the
computational algorithm is given in the Appendix.
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To solve the main problem, that is, finding the optimal treatment regime,
we need to consider how the choice between the three alternatives (A∗

1 = 1),
(A∗

1 = 0, A∗
2 = 1) and (A∗

1 = 0, A∗
2 = 0) should be made in a situation in which

the measurement X∗
1 is available at t = 0, and, if A∗

1 = 1 is chosen, also X∗
2 is

measured at t = 6 in order to facilitate the choice between A∗
2 = 1 and A∗

2 = 0.
Following the principles of dynamic programming, we consider first how this
latter choice after t = 6 should be made, conditioning on the observed past
history (A∗

1 = 0, X∗
1 , X

∗
2 ) of a generic individual as described above, and then

moving backwards in time in order to make a choice between branch (A∗
1 = 0)

and branch (A∗
1 = 1).

After t = 6, the key comparison to be made is between the posterior
expectations E(Y ∗ | A∗

1 = 0, A∗
2 = 1, X∗

1 , X
∗
2 ,D) and E(Y ∗ | A∗

1 = 0, A∗
2 = 0,

X∗
1 , X

∗
2 ,D), both of which were obtained above. We now define the optimal

treatment choice after t = 6 to be the one under which, for given values of X∗
1

and X∗
2 , the expected value of Y ∗ is larger, denoted by indicator

Aopt
2 (X∗

1 , X∗
2) = 1{E(Y ∗|A∗

1=0,A∗

2=1,X∗

1 ,X∗

2 ,D)>E(Y ∗|A∗

1=0,A∗

2=0,X∗

1 ,X∗

2 ,D)}.

After t = 0, we then make a comparison between E(Y ∗ | A∗
1 = 1, X∗

1 ,D) and

E(E(Y ∗ | A∗
1 = 0, Aopt

2 (X∗
1 , X

∗
2 ), X∗

1 , X
∗
2 ,D) | A∗

1 = 0, X∗
1 ,D),

where the outer expectation is with respect to the posterior predictive distri-
bution of X∗

2 , and let

Aopt
1 (X∗

1 ) = 1{E(Y ∗|A∗

1=1,X∗

1 ,D)>E(E(Y ∗|A∗

1=0,A
opt

2 (X∗

1 ,X∗

2 ),X∗

1 ,X∗

2 ,D)|A∗

1=0,X∗

1 ,D)}.

The optimal dynamic treatment regime Aopt will thereby be defined as follows:
For 0 < t < 6 choose Aopt

1 (X∗
1 ) and for 6 < t < 12, if Aopt

1 (X∗
1 ) = 0, choose

Aopt
2 (X∗

1 , X
∗
2 ).

It is of some interest to compare results obtained when following the three
deterministic regimes (A∗

1 = 1), (A∗
1 = 0, A∗

2 = 1) and (A∗
1 = 0, A∗

2 = 0)
to each other, and all these to Aopt. The comparison becomes most clear and
intuitive if we present it in terms of the posterior predictive distributions of the
responses Y ∗, and since these predictions will depend on the value of covariate
X∗

1 determined at the baseline, we should study the predictive distributions as
functions of X∗

1 . In each case, producing the predictive distributions can be
realized with relative ease by data augmentation within the MCMC sampling
scheme, by augmenting the hierarchical models (1), (2), (3) and (4) with the
potential outcomes, with the inferential model, and then considering marginals
of Y ∗. In Figure 2 we show the predictive distributions of Y ∗ for the three
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different regimes given observed decile points of X1 in the data. The three
distributions are often overlapping, and even if some systematic differences
between the groups could be discerned, they appear to be quite small.

Model fit can be evaluated by comparing the predictive distributions, drawn
given the individual covariate levels, to the actual observed outcome values.
Figure 3 shows the medians of the posterior distributions of residuals from the
four modules. For modules 3 and 4 these are plotted with respect to both X1

and X2. Only the observations which contribute to the likelihood in the spe-
cific module are shown. The residual plots seem to indicate reasonably good
model fit.

Producing predictive distributions corresponding to the optimal regime
Aopt (or Aopt

1 (X∗
1 )) is slightly more involved since then the choice of what

particular module, of the four possibilities, is used in the simulation will depend
on the current values of X∗

1 and X∗
2 , the former being chosen in advance for

each prediction, and the latter being obtained in the course of the simulation
if Aopt

1 (X∗
1 ) = 0 (see Appendix). We evaluated the optimal regime for each

observed X1-value present in the data; in Figure 4 the results are presented
as differences between the decision to initiate the treatment after the baseline
visit, and the decision not to initiate, given that the later decision after t = 6
is optimal. In panel a) the medians and credible intervals obtained from the
posterior predictive distributions are presented, as functions of X1, for the
response itself, while panel b) shows these statistics for the corresponding
means, represented in the model by the random functions f . The credible
intervals indicate no real differences between the groups based on these data.

When two CD4-measurements have been recorded, finding the optimal
decision will be based on both of these. Figure 5 a) shows the predictive
distributions of the 6 months change in the CD4-level as a function of the
baseline value. A decreasing trend is clearly visible here. Panel b) shows the
Aopt

2 values as a function of the baseline CD4-level and of the 6 months change.
There is no clear pattern separating the alternative decisions, indicating again
that the differences between the groups in these data are small.

3.2 Considerations due to missing data and censoring

The probability models defined in Section 2 were written for fully observed
measurement data and follow-up histories. In reality the data described were
subject to various kinds of incomplete observation. Least problematic of these
are ordinary missing data in the CD4 laboratory measurements. There are
only a small number of these in the data, and due to the full probability
model they can be handled easily by using Bayesian data augmentation.
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Figure 2: Predictive distributions for three alternative treatment regimes
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Figure 3: Posterior median residuals
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Figure 4: Comparison between two alternative treatment decisions after the
baseline visit
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Figure 5: Treatment decision based on two covariate measurements
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Incompletely observed treatment histories due to missed follow-up visits
are a more problematic issue. Consider first the individuals who dropped
out from the follow-up after the first or second visit. (It is possible that the
same individuals have reappeared for later MACS visits, but since we consider
only follow-up of 12 months we do not utilize this information here.) The
data included 200 individuals who were censored from the follow-up after the
baseline visit and another 245 who were censored after the intermediate visit.
These we omitted from the analysis. Effects of the drop-out for the statistical
inference depend on the (typically unknown) censoring mechanism (Little,
1995). For example, here missing at random would refer to the assumption
that the censoring after the baseline visit would depend only on the observed
baseline CD4 measurement X1, while the censoring after the intermediate visit
would depend only on observed values of (X1, X2, A1). This assumption is in
many ways analogous to the no unmeasured confounders postulate, although
the latter may be easier to understand, since it means that that the clinician
making the treatment decisions and the statistician analyzing the data would
be working on the basis of the same observed variables. In contrast, missing
at random means assuming that confounding variables really do not exist. If
the assumption is valid, censored individuals are similar to individuals who
remained in the study with similar covariate histories and the inference is
unbiased. A nonignorable censoring mechanism would mean that the drop-
out depends on the unobserved response values themselves, or on some latent
characteristics related to them. Correcting the resulting bias with likelihood-
based inference would require also modeling of the censoring process (including
its dependence on the outcome). However, in practice there may be little or
no information available for such modeling.

If only the intermediate visit of the three is missed, and since the drug usage
items in the MACS questionnaire concern medications taken after the previ-
ous follow-up visit, it is possible to infer the corresponding treatment branch
and the corresponding likelihood contribution for those who missed the inter-
mediate visit and in the 12 months visit did not report having received AZT
treatment (there were 119 such individuals in our dataset). Assuming miss-
ing at random, we can include them in the branch (A1 = 0, A2 = 0), with
missing X2 measurements to be handled as ordinary missing data, allowing
also dependence on the observed values of Y . However, those who in their
12 months visit reported having taken AZT may have initiated the treatment
either before or after 6 months. To utilize these individuals in the inference,
we would also have to define a probability model for A1 in order to augment
the missing treatment combination. Since there were only 25 such individuals
in the data, we did not pursue this here. However, in case of more complicated
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designs with many different treatment alternatives possibly only partially ob-
served, and in order to utilize as much of the data as possible, it would be
necessary to model also the probabilities of different treatment decisions and
their dependence on the covariates.

Rubin (2006) discusses causal inference in situations where follow-up histo-
ries are subject to censoring due to death and the response variable reading is
thus unobserved for the censored individuals. Here the membership in a ‘prin-
cipal stratum’ is an unobservable individual characteristic which is a source of
nonignorable censoring. For example, the MACS data could include individ-
uals who would have survived with AZT treatment, but who did not receive
the treatment and were then censored due to death before 12 months (Rubin’s
principal stratum ‘LD’). If treated, an individual belonging to this principal
stratum survives, but may end up with a lower CD4-count than those who
would survive through the follow-up period irrespective of the treatment deci-
sion (principal stratum ‘LL’), thus confounding causal inference. In the MACS
study, a more common situation than censoring due to death may well be that
an individual simply feels too sick to go to a follow-up visit. This may be even
more problematic than censoring due to death since here knowing the dates
and the causes of death of the individuals in the study would not help the
modeling task. For example, if we knew who has died of AIDS during the 12
month period, we could try to include these individuals in the analysis using
zero as the outcome CD4-level. This would not help in cases where the cause
of censoring is also unknown.

If the missing at random assumption is unverifiable in practice, how should
one then interpret the results obtained from such an observational setting? At
least, the results should always be presented conditionally on the baseline mea-
surement of CD4-level (as we have done throughout). As discussed by Rubin
(2006), such a covariate may be predictive of both the final and intermedi-
ate outcomes, including possible censoring, and thus may shed some light on
the unobservable principal strata. For example, in the MACS study we could
speculate that those with normal levels of CD4-cells (e.g. > 500) would be
primarily individuals who would survive through the follow-up period irrespec-
tive of the treatment decision, and thus the results for this group would be less
affected by a possible bias due to censoring. Correspondingly, the results may
be more uncertain for those whose disease has already progressed to a more
advanced stage at the baseline.
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4 Discussion

In this paper we have presented a brief illustration of how methods belong-
ing to Bayesian nonparametric inference and dynamic programming can be
used in establishing an optimal treatment regime. Although our example was
simplified, essentially the same methods can be applied directly to more com-
plicated designs as long as the treatment decisions are discrete and there are
sufficiently many observations in each branch of the tree of alternative treat-
ment histories. In practice the modeling would likely involve more covariates
than what we considered here. Since completely nonparametric inference of
high dimensional problems is usually not feasible, dimension reducing model-
ing assumptions will be required. For higher dimensional problems we propose
Bayesian hierarchical parameterization and “packaging” of covariates (see e.g.
Arjas and Liu, 1996), where parametric assumptions are relaxed in the most
critical parts of the model. Further work is required with models which could
accommodate continuous treatment decisions.

A main challenge is to collect enough covariate information, in order to
convince oneself (and others) about the adequacy of the no unmeasured con-
founders postulate in the considered context, and then model such processes
in a way that would lead to plausible predictive distributions. However, this
approach alone does not provide a complete solution in problems involving
incomplete observation, which cannot be fitted into the standard probability-
based missing data framework. As was evident in the present example, the
no unmeasured confounders postulate, even if true, will not ensure unbiased
inference if the longitudinal design is subject to self-selection due to censor-
ing caused by a missed follow-up visit. At least, attempts should be made to
gather information on the causes of such censoring (Little, 1995). Also, the
assumed conditions for non-confounded statistical inference should be made
explicit in an intuitively understandable way. Here the concept of principal
stratification (Frangakis and Rubin, 2002; Rubin, 2006) might be helpful.

In reporting the results from an empirical study, there is often consider-
able emphasis on statistical tests, or estimates, relating to the parameters of
simple (often simplistic) statistical models. Given that sufficient amounts of
data are available, nonparametric Bayesian modeling, combined with MCMC
methodology, offers an attractive and flexible alternative for statistical infer-
ence. This task is to some extent facilitated by the use of constrained (for
example, monotone or U-shaped) multivariate nonparametric Bayesian mod-
els. Our preference would be to report the results from an empirical study
in the form of predictive distributions of the response of interest, with each
such prediction corresponding to a specific (sequence of) intervention(s) or
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choice(s) of control variables. In studies involving real data the computational
challenge can become formidable, and even exceed what is feasible in practice.
Nevertheless, we would view the relative simplicity of the present conceptual,
entirely probabilistic, framework to be a valuable asset in such an enterprise.

Appendix: Computational details

We outline an algorithm for the sequential inference problem described in
Section 3, which requires only a single MCMC sample of size m from the joint
distribution of all model parameters and potential outcomes. This differs from
the sampling scheme described by Carlin et al. (1998), which utilized nested
rounds of simulations in calculating the integrals involved. Let

E(Y ∗ | A∗
1 = 0, A∗

2 = 1, X∗
1 , X

∗
2 ,D) (5)

= E(E(Y ∗ | A∗
1 = 0, A∗

2 = 1, X∗
1 , X

∗
2 , f01,D) | A∗

1 = 0, A∗
2 = 1, X∗

1 , X
∗
2 ,D)

=

∫

E(Y ∗ | A∗
1 = 0, A∗

2 = 1, X∗
1 , X

∗
2 , f01,D)

× p(f01 | A∗
1 = 0, A∗

2 = 1, X∗
1 , X

∗
2 ,D) df01

=

∫

f01(X
∗
1 , X

∗
2 )p(f01 | A∗

1 = 0, A∗
2 = 1,D) df01,

and equivalently,

E(Y ∗ | A∗
1 = 0, A∗

2 = 0, X∗
1 , X

∗
2 ,D) (6)

=

∫

f00(X
∗
1 , X∗

2)p(f00 | A∗
1 = 0, A∗

2 = 0,D) df00.

Note here that the posterior distributions of the random functions f01 and f00

do not depend on the pair (X∗
1 , X

∗
2 ), since these potential outcomes are not

‘data’ and thus do not affect the estimates of the unknown parameters in the
model. With fixed (X∗

1 , X
∗
2 ), the above integrals can be evaluated using Monte

Carlo integration, by sampling from the posterior distributions of f01 and f00.
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To determine Aopt
1 (X∗

1 ), we have to evaluate the expectation

E(E(Y ∗ | A∗
1 = 0, Aopt

2 (X∗
1 , X∗

2 ), X∗
1 , X

∗
2 ,D) | A∗

1 = 0, X∗
1 ,D) (7)

=

∫

E(Y ∗ | A∗
1 = 0, Aopt

2 (X∗
1 , X

∗
2 ), X∗

1 , X
∗
2 ,D)p(X∗

2 | A∗
1 = 0, X∗

1 ,D) dX∗
2

=

∫ ∫

E(Y ∗ | A∗
1 = 0, Aopt

2 (X∗
1 , X

∗
2 ), X∗

1 , X
∗
2 , f0,A

opt

2
,D)

× p(f0,A
opt

2
| A∗

1 = 0, Aopt
2 (X∗

1 , X
∗
2 ), X∗

1 , X
∗
2 ,D)

× p(X∗
2 | A∗

1 = 0, X∗
1 ,D) df0,A

opt

2
dX∗

2

=

∫ ∫ ∫ ∫ ∫

f0,A
opt

2
(X∗

1 , X
∗
2 )p(f0,A

opt

2
| A∗

1 = 0, Aopt
2 (X∗

1 , X
∗
2 ), X∗

1 , X
∗
2 ,D)

× p(X∗
2 | Z∗

0)p(Z∗
0 | A∗

1 = 0, X∗
1 , f0, α0)

× p(f0, α0 | A∗
1 = 0,D) dZ∗

0 df0 dα0 df0,A
opt

2
dX∗

2 .

Again, some obvious conditional independencies have been applied in the last
expression. The split of the joint posterior distribution into the conditional
distributions shown above suggests how these will be used in the MCMC sim-
ulation. The algorithm to evaluate (7) now goes as follows. For k = 1, . . . , m,
given a fixed value of X∗

1 , do:

1. Draw parameter values (fk
0 , αk

0) from the posterior p(f0, α0 | A∗
1 = 0,D).

2. Draw the latent variable Z∗k
0 from p(Z∗

0 | A∗
1 = 0, X∗

1 , f
k
0 , αk

0).

3. Draw the corresponding X∗k
2 value from p(X∗

2 | Z∗k
0 ).

4. Draw function realizations fk
01 and fk

00 from p(f01 | A∗
1 = 0, A∗

2 = 1,D)
and p(f00 | A∗

1 = 0, A∗
2 = 0,D), respectively.

5. Optionally, if the predictive distributions of the response variable are of
interest, draw a value of Y k given both (A∗

1 = 0, A∗
2 = 1, X∗

1 , X
∗k
2 , fk

01)
and (A∗

1 = 0, A∗
2 = 0, X∗

1 , X
∗k
2 , fk

00), similarly as in steps 2.-3.

Simultaneously, an MCMC sample of parameter values and potential outcomes
is also produced from model (1). Now using the obtained samples (fk

01, f
k
00),

k = 1, . . . , m, of the function realizations, the expectations (5) and (6) are
evaluated at each point (X∗

1 , X
∗k
2 ), k = 1, . . . , m, to determine the values of

the indicators Aopt
2 (X∗

1 , X
∗k
2 ). Now, with the values of Aopt

2 (X∗
1 , X

∗k
2 ) known,

expectation (7) can also be evaluated using Monte Carlo integration, using,
depending on the value of Aopt

2 at the point (X∗
1 , X

∗k
2 ), the realization fk

01 or
fk

00 in place of fk

0,A
opt

2 (X∗

1 ,X∗k

2 )
. Note again that the posterior distributions of
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the random functions do not depend on the simulated potential outcomes and
thus the evaluation of the function level at any given point (X∗

1 , X
∗k
2 ) is purely

deterministic, given the current realization of the random function. Now (7)
can be compared to E(Y ∗ | A∗

1 = 1, X∗
1 ,D), evaluated using the sample from

model (1), to determine the indicator Aopt
1 (X∗

1 ).
The MCMC sampler described here was ran for 25000 iterations after a

15000 round burn-in, saving every 5th state of the chain. Gamma(0.1, 0.1)
prior was used for the α parameters. One iteration took 2.7 seconds on a
standard desktop computer. To put this into context, each of these iterations
involved 100 proposals to update each the four random functions f . The
computational time needed in our approach would generally depend roughly
linearly on the numbers of knots (likelihood modules) in the tree representing
the different treatment alternatives.
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