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SUMMARY

Rational decision making on whether some form of intervention would be necessary to control the
spread of a meningococcal epidemic is based on predictions concerning its potential natural progres-
sion. Unfortunately, reliable predictions are di�cult to make during the early stages of an outbreak.
A stochastic discrete time epidemic model was applied to adaptively predict the development of out-
breaks of meningococcal disease in ‘closed’ populations such as military garrisons or boarding schools,
which are further divided into subgroups called ‘units’. The performance of the adaptive method was
assessed by using 3 simulated epidemics representing substantially di�erent realizations in a ‘garrison’
of 20 units, with 68 men in each. Predictions of the weekly number of disease cases, of the number
of carriers, and of the number of new infections were computed. Simulations suggest that predictions
based only on the observed numbers of disease cases are generally inaccurate. These predictions can
be improved if temporal observations on asymptomatic carriers in di�erent units are utilized together
with observed time series of the disease. A sample of 15 per cent from all units can be su�cient for
a major improvement if the alternative is to obtain a full sample of only some units. Exploiting fully
such information requires computer intensive Markov chain Monte Carlo methods. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Decisions on interventions should be made in the early stages of a meningococcal outbreak.
They are often based on arbitrary incidence thresholds of disease cases [1, 2]. Prior to any
rules of thumb, we need better dynamical modelling of epidemics in order to fully exploit
observations that become available sequentically during the ongoing outbreak. Simulating epi-
demics is fairly straightforward once a model is speci�ed. Early examples of plain simulation

∗Correspondence to: Jukka Ranta, Rolf Nevanlinna Institute, University of Helsinki, PO Box 4, FIN-00014,
Helsinki, Finland.

†E-mail: jukka.ranta@rni.helsinki.�

Received January 2001
Copyright ? 2004 John Wiley & Sons, Ltd. Accepted May 2003



928 J. RANTA, P. H. M �AKEL �A AND E. ARJAS

models can be found, e.g. in FORTRAN code in Reference [3], and even for pocket calcu-
lators in Reference [4]. However, such simulators are in�exible because the parameters have
to be assigned and �xed beforehand. In order to achieve better predictions for a speci�c
ongoing epidemic it is necessary to be able to employ adaptive methods that account for
each temporal sequence of data that becomes observed during the course of events. Stochas-
tic epidemic models exploiting temporal data on invasive meningococcal disease cases have
been employed [5], but the weekly numbers of disease cases provide only a limited source of
information about the underlying epidemic process. If no observations on the asymptomatic
carriers are available, such predictions can be modest in their accuracy. Related recent work
on epidemic models can be found, e.g. in References [6, 7].
The predictions in a structured population, e.g. a military garrison or a boarding school

consisting of subpopulations called ‘units’, could be improved by utilizing sample information
on the prevalence of carriage obtained at di�erent time points. This same idea was apparently
the motivation behind the old practice of culturing pharyngeal swab samples for the presence
of meningococci from all members of the units in which meningitis had occurred. In many
instances, the percentage of meningococcal carriers has been found to be high in the units
in contact with cases, as compared to percentages in other units [8–10], but this has not
always been so [11–14]. No apparent useful pattern has emerged from the crude carriage
percentages [15, 16]. Instead, meningitis cases tend to occur within a few days after exposure,
suggesting that the decisive factor is the acquisition of carriage [11, 12, 14, 17]. Therefore,
temporal observations on the number of carriers would contain useful information on the
acquisition. Starting initially with only a few carriers, the prevalence of carriage can become
very high in only a few weeks. Very di�erent percentages can then be found within the same
unit if samples are collected at di�erent times. Figures from less than 20 per cent to over 70
per cent have been reported [14, 18, 19]. Improving the speci�city of the culture method to
identify carriers of only the particular strain (de�ned by sulfonamide resistance or serotype,
or more recently by serosubtype, or other clonal characteristic) that had caused the disease
cases has given more relevant information [10, 12, 13, 20], but still these data could not be
directly applied for predicting the course of an outbreak. Unit speci�c observations on carriers
provide direct information on the development of the latent epidemic processes in the units.
In practical monitoring of an epidemic, it is then only required that the numbers of invasive
disease cases and of carriers found in the units are reported, by linking them to the respective
units rather than reporting the total numbers from the entire garrison.

2. BACKGROUND OF MODEL ASSUMPTIONS

The epidemic model below describes the time course of a meningococcal disease outbreak
in a closed population, e.g. military garrison, which is further divided into subpopulations, or
units. By a ‘carrier’ we mean an asymptomatic person who carries on the upper respiratory
tract mucosa Neisseria meningitidis of the same clone as the case(s) occurring in the same
population (as far as it has been possible to determine the clone by the typing techniques
available). A carrier is then able to spread the infection further.
Meningococcal epidemics can be described temporally by the numbers of susceptibles,

carriers, and immunes. We consider a discrete time model, with Sji , Iji and Rji referring to
the current sizes of the respective group at the beginning of week i, in unit j. The class of
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immunes comprises all those who are ‘removed’ from the epidemic, i.e. can no longer acquire
or spread the infection. Although it is known that each individual may become a carrier of
the bacteria several times, it is assumed here that the study interval is too short to allow more
than a single acquisition per individual. There may actually be partial short-term immunity
against carriage [21, 22]. Each individual remains a carrier for some time, and the probability
of terminating carriage, during a week, is assumed independent from all the other individuals.
Thus the number I�ji of asymptomatic infections terminating during week i in unit j follows
a binomial distribution, where 06I�ji 6Iji .
The dynamics of an epidemic are driven by the numbers of infected and susceptible in-

dividuals at each time, the size of the population Nj being assumed to be constant in each
unit. Each susceptible-infective contact may lead to a transmission within each week with
equal probability. Contacts between members of di�erent units are assumed less frequent than
within the same unit. The number of new infections I⊕ji during week i in unit j follows a
binomial distribution, where 06I⊕ji 6Nj − Iji − Rji . Furthermore, each new infection can lead
to an invasive meningococcal disease with a �xed probability. Therefore, the number of new
disease cases Dji during week i in unit j is assumed to follow a binomial distribution, where
06Dji6I⊕ji .
Predictions [23, 24] based solely on the numbers of observed disease cases {Di} were

shown to be quite crude [5], since there is not much information on the latent epidemic
process. These predictions can be markedly improved when, additionally, observations on
the number of carriers become available. When applying Bayesian inferential methods, also
relevant medical and biological prior knowledge can be utilized, thus providing further support
to the predictions that are made.

3. MODELLING THE GARRISON STRUCTURE

A garrison is divided into a number of units. A discrete time model of an outbreak in such
a structured population is now formulated as follows:

Iji = Ij; i−1 + I⊕j; i−1 − I�j; i−1 −Dj; i−1; Rji =Rj; i−1 + I�j; i−1 +Dj; i−1 (1)

I⊕ji ∼ Bin(1− qIjiw qI+i−Ijib ; Nj − Iji − Rji) (2)

Dji ∼ Bin(p; I⊕ji ) (3)

I�ji ∼ Bin(r; Iji) (4)

where I+i=
∑
j Iji . Parameter qw is the avoidance probability within a unit, i.e. when the consid-

ered infective and susceptible belong to the same unit, and qb is the corresponding avoidance
probability across two di�erent units. Here, we require that qw¡qb. Equality qw= qb would
correspond to an unstructured population [5], and qw6qb=1 to complete lack of contacts
between di�erent units.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:927–945
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Let us assume that the carrier prevalence of a unit is completely determined by collecting
swab samples soon after an invasive disease case has been found. Most likely, the carrier
prevalence is higher in these than in the other units, although, at least in principle, the
other units could as well have been completely infected initially, or full of immunes, so
that new infections would no longer be possible. In any case, to exploit the observed car-
rier prevalence we need to quantify the prevalence at the time of recruitment to the army
(or school). An estimate of carriage prevalence could be obtained from a random sample
at the time of recruitment, or knowledge about the general population prevalence could be
utilized. Ideally, an estimate of the most recent carrier prevalence before the epidemic should
be used.
If the bacteria are rare, the units will initially have either a small number of carriers, or no

carriers at all. Whether such small initial di�erences are important for the later behaviour of
the process depends on the acquisition rates, or the ‘avoidance probabilities’ qw and qb in our
model. When qw and qb are equal, the epidemic process is homogeneous between and within
all units, and carrier prevalences between units are likely to mix fast. Then, each unit is a
representative sample of the whole.
In contrast, if qb=1, there are no contacts between units and new carriers can emerge

only in those units in which there were already initially some infected individuals. Under
such circumstances, the epidemic is likely to behave di�erently in di�erent units. If qb is
less than one and if qw is much smaller, the units with initial carriers will show epidemic
behaviour soon (the sooner the lower qw is), while units without initial carriers will start a
similar epidemic at some later time, after transmission from an infected unit has occurred. If
qb is small enough, infections spread rapidly between units and simultaneous occurrence of
similar numbers of disease cases in di�erent units is likely because these units were likely in
the same phase of an epidemic. If qb≈ 1, and there is no heterogeneity between units with
respect to other parameters (qw; p; r), then phase di�erences solely due to initial di�erences
of carrier prevalence can occur.
Carrier observations combined with some knowledge of the initial prevalences in the units

with disease cases can provide information on the overall acquisition rate in those units, but
if the epidemics are in a di�erent phase of development, then this information cannot readily
be applied for the rest of the garrison. Often there is no information on which infections
were due to sources external to the unit. If some units with no initial carriers have carriers
at a later time point, then these must be due to external transmissions. In this special situ-
ation we could estimate the between-unit transmission avoidance probability. Otherwise, we
have to consider a combination of external and internal transmissions in a joint probability
model.
It would be useful to have prevalence data also from some randomly chosen units where

disease cases did not occur. When the initial states and model parameters are given prior
distributions, one can compute the joint posterior distribution of all unknown variables and
parameters. For simplicity, the Bayesian hierarchical model is depicted with only 2 units in
Figure 1. Each arrow denotes a conditional distribution between the variables in the nodes.
For example, the two arrows from arbitrary nodes ©a and ©b to c© should be read: ‘the
conditional distribution of c given a and b’. Unit speci�c observations are accommodated
by treating the unit speci�c variable Iji as �xed whenever its value becomes known. Exten-
sion to account for a sampling experiment is straightforward. The MCMC algorithm for the
joint posterior distribution is explained in the appendix.
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Figure 1. Directed acyclic graph of the hierarchical model with a simple population structure. The
population depicted in the graph constitutes of two ‘units’ (upper and lower box). Solid arrows denote
stochastic dependence. For clarity, the (�xed) sizes N1, N2 of the units and parameters p, r, qw, qb
are excluded from the graph. Dotted arrows denote deterministic dependence. Unknown state variables
are written in ellipsoids. Observed data and given priors are written in square boxes. The value of Iji
becomes known data once the unit is inspected for carriers. Variables to be predicted are the rightmost

I�ji , Iji , Rji , I
⊕
ji and Dji , with, e.g. i=3; 4; 5; : : : :

3.1. Simulated examples

Unfortunately, we were unable to �nd records on unit speci�c developments of an outbreak
of Neisseria meningitidis [5, 25]. For illustration purposes, a simulated data set was generated
from model (1)–(4) with parameters p=0:05, qw=0:97, qb=0:9999 and r=0:1 in a popula-
tion of 20 units, each comprising 68 individuals (the estimated size of a unit in the data used
in Reference [3]). The simulated outbreak data are shown in Table I. (Rj1 = 0 for all j). This
arti�cial data set (default) is then used to test the model performance by treating a subset of
the data as observations and using the rest of the data for model assessment. Additionally,
using the same parameter values we generated 10,000 outbreak realizations from which we
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chose two rather extreme examples. In the �rst, no disease cases occurred during weeks 1–2.
In the second, 15 disease cases occurred during weeks 1–2. Judging from these simulations,
the Monte Carlo estimate of the probability of 15 or more disease cases during the �rst 2
weeks is approximately 6=10;000, whereas the probability of zero disease cases during weeks
1–2 was approximately 62=10;000. Predictions were also computed for these two extreme
realizations. All three chosen examples represent outbreaks with almost identical cumulative
number of cases over weeks 1–10, but the temporal patterns are di�erent. Therefore, the two
extreme realizations could be viewed nearly as worst case situations in which the initial course
of the epidemic is strongly misleading.

Table I. Simulated data set for model testing.

[Dji] =




0 0 2 1 0 0 0 0 0 0

0 2 1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 2 0 0 0 0 0 0 0

0 0 4 1 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 1 2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 2 0 1 0

0 0 0 0 0 2 3 2 2 0

0 0 0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 4 0 0

0 0 0 1 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 3 0 1 1 0

0 0 0 0 1 0 3 1 0 0

0 0 0 0 0 1 2 1 0 0

0 0 1 0 1 1 0 0 0 0

0 0 0 0 0 0 3 0 0 0




; [I⊕ji ] =




5 9 23 18 7 4 0 0 0 0

7 15 19 18 6 1 0 0 0 0

4 5 11 15 23 6 1 1 0 0

4 11 23 17 8 2 1 0 0 0

2 3 16 17 21 4 1 2 0 0

5 15 22 14 9 1 0 0 0 0

3 9 21 21 11 1 0 0 0 0

0 0 0 2 7 16 26 14 2 0

0 0 0 1 8 15 20 12 6 4

0 0 0 1 5 13 20 20 6 3

0 0 0 1 3 15 20 19 9 1

1 3 6 15 23 17 2 1 0 0

0 0 1 1 7 18 16 23 2 0

0 0 1 4 11 22 23 6 0 0

0 1 0 4 8 23 19 12 1 0

0 0 1 3 7 16 23 12 6 0

0 0 1 3 9 20 20 12 3 0

0 0 1 4 12 17 20 9 4 1

1 1 3 7 18 26 10 1 1 0

0 0 0 4 13 15 24 9 3 0



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Table I. Continued.

[I�ji ] =




0 1 2 5 8 6 6 5 5 2

0 1 3 2 7 5 3 6 4 8

2 0 0 1 4 6 6 4 4 5

0 0 3 7 4 2 8 2 3 5

1 0 1 1 5 3 7 5 3 4

0 0 1 3 7 8 8 2 6 4

0 0 1 1 8 5 1 5 8 6

0 0 0 0 0 1 1 2 6 8

0 0 0 0 0 1 4 1 4 5

0 0 0 0 0 2 2 3 3 9

0 0 0 0 0 0 2 5 6 3

0 0 0 1 2 2 3 4 4 10

0 0 0 0 0 1 2 2 10 7

0 0 0 0 0 0 5 7 5 7

0 0 0 0 0 2 4 5 8 3

0 0 0 0 0 2 3 3 4 4

0 0 0 0 0 1 3 5 6 3

0 0 0 0 1 6 2 4 4 6

0 0 0 0 1 2 5 8 3 4

0 0 0 0 0 3 3 3 5 4




; [Iji] =




2 7 15 34 46 45 43 37 32 27

2 9 21 36 52 50 46 43 37 33

2 3 7 18 32 51 51 46 43 39

2 6 16 34 44 48 48 41 39 36

2 3 6 17 32 48 49 43 40 37

2 7 21 42 53 54 47 39 37 31

2 5 13 31 50 53 49 48 43 35

0 0 0 0 2 9 24 49 61 57

0 0 0 0 1 8 21 35 46 47

0 0 0 0 1 6 15 30 45 46

0 0 0 0 1 4 17 35 49 52

0 1 4 10 24 44 59 58 55 51

0 0 0 1 2 8 24 38 55 47

0 0 0 1 4 14 36 53 52 47

0 0 1 1 5 13 33 48 55 48

0 0 0 1 3 10 21 41 49 50

0 0 0 1 4 12 31 45 51 48

0 0 0 1 5 16 26 42 46 46

0 1 2 4 11 27 50 55 48 46

0 0 0 0 4 17 29 47 53 51




Note: Each row in a matrix is a time series for a unit. Each column denotes the values of a variable during,
or in the beginning of, a week as explained in the text.

4. SPECIFICATION OF PRIOR DISTRIBUTIONS

The prior distributions of the disease probability p upon infection, and of the clearance
probability r of carriage in a week, were chosen as follows:

P(p) = Beta(p | 1:1; 9:4)

P(r) =Uniform(r | 0:0043; 0:1591)

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:927–945
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Figure 2. The two priors for qw. Pessimistic (�at) and optimistic (peaked).

An empirical motivation for these choices was given in Reference [5]. The prior expectation
of p is 0:1048 and the prior standard deviation is 0:0903. For the avoidance probability qw
we specify two alternative priors, shown in Figure 2:
Pessimistic:

P((qw − 0:95)=0:05)=Beta(qw | 2; 3)
Optimistic:

P((qw − 0:95)=0:05)=Beta(qw | 70; 2)
Moreover, for a joint prior we should specify a range of plausible values that a pair (qw, qb)
can take. It is reasonable to require the obvious constraint qw¡qb. In addition to this we need
to account for the actual number of units in order to specify the relative chances of infectious
contacts between and within the units. Suppose that there are x infectives in each unit. Then,
the chance of avoiding an infection (during a week) is qxwq

19x
b . It is clear that even when qw

is only somewhat smaller than qb, the transmissions between units will dominate. The prior
of qb should therefore simultaneously account for both qw and the total number J of units.
For qb, we propose a conditional Beta distribution over the range [qw; 1], with conditional

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:927–945
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mean and conditional variance

E(qb | qw; J )= q1=(J−1)w and Var(qb | qw; J )= v(1− qw)2

where

v=

(
0:5

(
1− q1=(J−1)w − qw

1− qw

))2

The pessimistic prior of qw leads to prior predictions with fairly rapidly growing outbreaks
whereas the optimistic prior generates slowly growing outbreaks. On the other hand, the
pessimistic prior leads to quickly ending epidemics and the optimistic prior to prolonged
epidemics.
It should also be noted that the ‘pessimistic’ prior is very vague compared to the ‘opti-

mistic’ prior. At �rst sight, it can be expected that a pessimist is more easily converted to an
optimist than an optimist to a pessimist, after having observed the data. For a more ‘balanced’
speci�cation, we could de�ne the pessimistic prior to be as peaked as the optimistic one, but
in general, strong priors should be avoided unless one has substantial a priori knowledge. The
two priors seem quite extreme when compared in Figure 2. Yet, the transition from slow and
minor outbreaks to fast and large outbreaks is not linear when moving from (qb; qw)= (1; 1)
towards (0; 0). Due to the ‘mass action’ e�ect, rapid outbreaks occur for all but the values
very close to (1; 1). It is therefore not only in terms of parameters but also in terms of the
outbreaks that we should evaluate our priors. Both optimistic and pessimistic prior predictions
can be seen in Figure 3 compared to the default data set.
For the initial number of carriers Ij1 in each unit j, we considered the binomial prior distribu-

tion Bin(Ij1 | 0:01; Nj) corresponding to the assumed 1 per cent endemic population prevalence
of carriers. The same prior distribution was also used for the numbers Rj1 of initially removed,

0 1 2 3 4 5 6 7 8 9 10 11
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Figure 3. Prior predictive distributions of the weekly numbers of new disease cases
(upper frame), new infections (middle frame), and carriers (lower frame). These
are based on a pessimistic prior (left), and an optimistic prior (right). The de-
fault realization is denoted by circles, and marginal predictive means are con-
nected with a solid line. Vertical bars show the 95 per cent probability intervals.

Notice di�erent scaling in the �gures!
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although some other prior could have been more relevant. For example, in Reference [15] it
was reported that carrier percentages among new naval recruits varied from 25 to 34 per cent.
However, only the virulent clones of the bacteria can cause a disease outbreak, and one should
try to estimate the corresponding prevalence instead of that of all types of meningococcal
bacteria. If this is not investigated in each unit, one must de�ne a prior distribution for the
initial state according to the best available information on the plausible number of carriers Ij1
of a virulent clone and the number of susceptibles Nj − Ij1 − Rj1.

5. OUTBREAK FORECASTING

Using subsets of the arti�cial data as our unit speci�c ‘observations’, predictions were com-
puted according to two di�erent sampling designs. In both of these, a complete sample from
an inspected unit is assumed and no samples from other units. In the �rst design, the num-
bers of disease cases from the �rst 2 weeks in all units, and the numbers of carriers in those
units with disease cases, were treated as observations, see Figure 4. The obtained number
of carriers was taken to represent the carrier status of the unit at the beginning of the next
week rather than at the beginning of the same week. There were 5 units with disease cases
during weeks 1 and 2 in the default data. In one of those units there was a new disease case
during both weeks. Consequently, 6 observations on the number of carriers became available
according to our simulated surveillance. In the second sampling design, these observations
were supplemented with carrier observations from six randomly selected units without disease
cases, see Figure 5.
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Figure 4. Posterior predictive distributions of the weekly numbers of new disease cases
(upper frame), new infections (middle frame), and carriers (lower frame). These are
based on a pessimistic prior (left), and an optimistic prior (right). The true realization is
denoted by circles, and marginal predictive means are connected with a solid line. Ver-
tical bars show the 95 per cent probability intervals. The posterior was computed con-
ditional on unit speci�c observations on disease cases in the �rst 2 weeks, and on the
number of carriers in each unit with positive number of disease cases, in the end of

weeks 1 and 2, following the disease occurrence.
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Figure 5. Posterior predictive distributions of the weekly numbers of new disease cases
(upper frame), new infections (middle frame), and carriers (lower frame). These are based
on a pessimistic prior (left), and an optimistic prior (right). The true realization is de-
noted by circles, and marginal predictive means are connected with a solid line. Verti-
cal bars show the 95 per cent probability intervals. The posterior was computed condi-
tionally on unit speci�c observations on disease cases in the �rst 2 weeks, and on the
number of carriers in equally many units with and without disease cases, in the end of

weeks 1 and 2, following the disease occurrence.

Carrier observations from disease units only do not provide a representative sample of the
whole garrison. The resulting predictions of the epidemic as a whole can then be biased
(Figure 4). This is only partially counterweighted by the observation that in other units there
were no disease cases at all. ‘No disease cases’ can also be explained by a low invasive
disease probability upon acquisition which is why the number of disease cases provides only
indirect (weak) information about the latent epidemic. The marginal posterior distributions of
qw and qb are quite di�erent under the two priors, although those of the epidemic realization
may not be, because a higher qw value can be compensated by a smaller qb value, and
conversely.
All the predictions are strongly dependent on the data that become observed—which is

indeed natural and even desirable but can also be a disadvantage if the initial phase of the
epidemic happens to be atypical from the point of view of the assumed epidemic model.
Therefore, all predictions can be misguided by sparse data that happen to be misleading.
This e�ect is clear in the two additional ‘extreme’ data sets that were generated using the
same parameter values as with the more ‘typical’ default data. These additional epidemics
were chosen so that the temporal pattern di�ers but the cumulative number of disease cases
over 10 weeks is similar. In the �rst additional data set, the number of disease cases was
zero for the �rst 2 weeks. Six units were then randomly selected for inspecting the number
of carriers. The predictions were then computed conditionally on the observed disease cases
(zero) for the �rst 2 weeks, and on the observed number of carriers in the six inspected
units (Figure 8, upper 3 frames). In the second additional data set, 15 disease cases occurred
during the �rst two weeks. Only the corresponding units were then chosen to be inspected
for carriers (Figure 10, upper 3 frames).
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Figure 6. Posterior predictive distributions when a sample of 10 per cent (upper 3 frames) and 15 per
cent (lower 3 frames) is collected from all units in the beginning of week 2. Disease case data were

observed for weeks 1 and 2 (default data set). Pessimistic prior left, optimistic prior right.

The predictions for individual units can be particularly unreliable if there are no carriage
data concerning that speci�c unit. However, the model has the ability to learn from any
additional datapoints. This is crucial in any attempt to model as di�cult phenomena as an
infectious disease outbreak with latent infections: the model should be able to adapt to every
new fragment of data. An open question is how such adaptation could be tuned so that the
method could perform optimally both for the bene�t of individual units and the total popula-
tion. This problem is closely connected to the speci�cation of prior densities for parameters
linking ‘global’ and ‘local’ characteristics.
As a rule of thumb, a more informative alternative to testing all individuals in an inspected

unit is to take a sample of individuals from several, or all, units. This was studied, using the
default data, by simulating a sample of 10 and 15 per cent from all units in the beginning of
the second week (Figure 6). Similarly, a sample of 15 per cent was simulated for the extreme
data sets (Figures 8 and 10, lower 3 frames). With this sample size, the number of tested
individuals is equivalent to the whole population in only 3 units out of 20. The resulting
predictive distributions of the cumulative number of disease cases are shown in Figures 7
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Figure 7. Posterior predictive distribution of the cumulative number of cases during weeks 1–10. Based
on a sample of 15 per cent from each unit in the beginning of week 2, and disease data from weeks
1–2 (default data set). Pessimistic prior (left), and optimistic (right). Ninety-�ve per cent probability

intervals: [27; 152], and [37; 237], respectively. Correct number was 71.

(default data) 9 and 11. It is clear that the distribution of the cumulative number of cases
will be di�erent with di�erent temporal data and di�erent priors.
Let us assume that the carrier status of all individuals would be tested for all units for

both weeks 1–2. In the three generated examples this would count 56, 52 and 58 positive
results. In units with no disease cases, the numbers were 24, 52 and 13. In units with disease
cases these were 32, NA (not de�ned if zero cases) and 45. Units with disease cases tend to
have more carriers than non-a�ected units. The number of carriers can also vary considerably.
If one would use only these numbers to calculate a simple rule-of-thumb predictor for the
epidemics, the following problems would be evident: (i) it is not at all clear how the number
of positive test results (in non-a�ected or a�ected units) could be best mapped to the total
epidemic size as a simple function, (ii) the errors due to chance can be manifold and without
a model there is no systematic way to quantify the prediction uncertainty, and (iii) expert
knowledge would not be easily merged in the prediction. The model based approach provides
an answer to questions (i), (ii) and (iii), but the method, like any approach, is still vulnerable
to extreme situations. However, the probability of such an extreme situation could be very
small and the method may perform reasonably in more typical situations.
Convergence of the MCMC algorithm was veri�ed by visual monitoring of the sample paths

of individual parameters, some state variables, as well as the log of posterior joint density.
Computation was done in batches of 100,000 iterations. The �rst batch was discarded as a
burn-in period, after which 3,000,000 more iterations were computed, but saving only every
500th sample point for the results. A random scan algorithm was used. By ‘one iteration’ we
mean selecting randomly only one of the parameters or one of the unknown state variable
pairs to be updated. This is described in more detail in the appendix. Autocorrelations of
the log joint density were computed from this thinned sample path. With lag 10 these were
typically around or below 0.5. Dispersed initial values for the state variables and parameters
led to the same results. Marginal posterior distributions of state variables of those units with
identical observations, and with identical priors, were nearly equal.
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Figure 8. Posterior predictive distributions of weekly numbers of new disease cases, new infections, and
carriers. The ‘true’ realization is denoted by circles, and marginal predictive means are connected with
a solid line. Vertical bars show the 95 per cent probability intervals. Based on unit speci�c observations
on disease cases in the �rst two weeks (zero) and on the number of carriers in 6 randomly chosen
units without disease cases, in the end of weeks 1 and 2. Predictions based on the same disease data,
and on a sample of individuals (15 per cent from each unit) in the beginning of week 2 are shown in

lower 3-frame �gures (pessimistic prior: frames left; optimistic prior: frames right).

6. DISCUSSION

We have shown here how unit speci�c observations of both the invasive disease cases and
observations on the numbers of carriers can be combined for the purpose of predicting the
natural course of a meningococcal disease outbreak in a military establishment. The same ap-
proach could be applied to other semiclosed communities such as boarding schools. Although
it may be of interest to provide realistic predictions only of the total number of resulting
disease cases, instead of a time series of cases, it is important that such predictions are based
on the actual temporal development of the epidemic, and for this a dynamic statistical model
is needed. If required, predictions of the cumulative numbers can be obtained as a straight-
forward by-product of the computed MCMC sample of the week and unit speci�c variables
by plotting the sample histogram of their cumulative sum. The advantage of using carrier
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Figure 9. Posterior predictive distribution of the cumulative number of cases during weeks 1–10. Based
on disease case data (zero) from weeks 1–2, and a sample of 15 per cent from each unit in the beginning
of week 2. Pessimistic prior (left), and optimistic (right). Ninety-�ve per cent probability intervals:

[0; 29], and [0; 63], respectively. Correct number was 78.

data is more direct in predictions concerning the inspected units themselves. However, the
overall predictions improved when carriage prevalences in a few other units, where no disease
cases had occurred, were exploited as well. Further improvement was achieved by sampling
a proportion of individuals from all units. The number of swabs may then be considerably
smaller than if, e.g. a�ected units were inspected thoroughly, and the prediction quality is
increased.
A commonly referred measure of potential severity of an epidemic is the basic repro-

duction number R0, which is de�ned as the expected number of secondary infections that
one infective person will cause during his=her infectious period in a completely susceptible
population [26]. This is an idealized quantity in the sense that an unlimited number of sus-
ceptibles is assumed to be within the reach of each infected individual [27, 28]. In models for
the control of epidemic, R0 has been used to describe the initial ‘potential’ of an epidemic.
However, once the epidemic has started, this is of little practical predictive value. Instead,
one needs a more �exible characterization that can be updated when new observations be-
come available. The decision on whether or not an intervention is made depends crucially
on the likely course of the epidemic in the future under no intervention. For that purpose,
the posterior predictive distributions of both latent and observable disease cases and carriers
are of concrete value and, in principle, can be updated as soon as new observations become
available.
In real epidemics, various intervening events may occur, some due to precautions taken by

the individuals occupying the units and alerted by disease cases among their fellows. External
factors may come into play, distorting the contact patterns and altering the chances of further
infections in unpredictable ways. It is thus unlikely that an outbreak could be throughout
governed by the same biological conditions, i.e. ‘parameters’. A further generalization of the
model would result from treating parameters p, qw, and qb as time dependent, thus accounting
for temporal changes in the biological and environmental conditions. The results derived from
our simulated data provide an illustration of the kind of analysis that could be done. Until
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Figure 10. Posterior predictive distributions of weekly numbers of new disease cases, new infections, and
carriers. The ‘true’ realization is denoted by circles, and marginal predictive means are connected with a
solid line. Vertical bars show the 95 per cent probability intervals. Based on unit speci�c observations on
disease cases in the �rst two weeks (15), and on the number of carriers in those units with disease cases,
in the end of weeks 1 and 2. Predictions based on the same disease data, and on a sample of individuals
(15 per cent from each unit) in the beginning of week 2 are shown in lower 3-frame �gures (pessimistic

prior: frames left; optimistic prior: frames right).

more detailed real data become available, a larger simulation study based on several di�erent
sets of test data could be useful. However, it is not obvious what scenarios and models should
be used to generate the data for such general testing. Yet, only simulated data will allow one
to compare the predictions of all model quantities with their ‘actual’ values, a task that is
never fully possible with real data.
In conclusion, signi�cantly better predictions can be expected by collecting additional data

on the number of carriers from all units. However, sample sizes should be fairly large, at least
15 per cent. This may still be more economical than sampling all individuals only in units
where invasive disease cases occurred (if there are several such units). The prior distributions
of infection parameters (here qw; qb) should not be too restrictive unless there is substantial
prior information. With limited data, it is recommendable to use fairly strong prior knowledge
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Figure 11. Posterior predictive distribution of the cumulative number of cases during weeks 1–10. Based
on disease case data (15) from weeks 1–2, and a sample of 15 per cent from each unit in the beginning
of week 2. Pessimistic prior (left), and optimistic (right). Ninety-�ve per cent probability intervals:

[64; 187], and [93; 356], respectively. Correct number was 69.

about the disease probability (p), or even treat it as a �xed parameter. This could be based
on reliable external knowledge about the invasiveness of the bacteria, if this was considered
as a universal biological property. Otherwise, one may end up with di�culties of parametric
identi�ability especially in extreme situations of very low or very high disease incidence. In
all situations, the predictions can be improved by additional data.
The essential feature of the model is its ability to learn from new observations as they

appear along the epidemic process. When such data are combined with knowledge about
the initial carriage prevalence, we have gained useful information on acquisition and on the
expected course of an outbreak.

APPENDIX

The results were computed by Markov chain Monte Carlo simulation by applying Metropolis–
Hastings random scan algorithm. This means that at each iteration one of the model unknowns
is chosen randomly and the Metropolis–Hastings updating scheme is applied for that quantity.
Then the next unknown quantity is chosen randomly to be updated, etc. The updating step
of parameters p, qw, qb and r is relatively straightforward to compute and details are not
given here. However, since the number of carriers Iji is now observed for some ( j; i)’s, these
become data in the nodes of the model graph and therefore �xed quantities in the algorithm.
Updating a pair of I⊕jk , I

�
jk for some week k propagates a change in Iji and Rji for all i¿k.

For this reason, quadruples (I⊕ji , I
�
ji , I

⊕
j; i+1, I

�
j; i+1) are sampled blockwise by proposing new

values from uniform distribution, centered at the current values of the �rst pair (I⊕ji ; I
�
ji ), then

determining the proposed values of the second pair so that the epidemic chain is una�ected
by the proposal from week i+2 onwards. In addition to the quadruple, this scheme will only
a�ect the values of Ij; i+1 and Rj; i+1.
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There is an exception to the rule. When updating a quadruple would change the value of
Ij; i+i which should be kept constant (data), we only update the �rst pair (I⊕ji ; I

�
ji ) so that Ij; i+1

remains una�ected, but Rj; i+1 does not. (Consequently, Rj; i+2; Rj; i+3; : : : will change too). This
can be done by proposing I�ji (or I⊕ji ) and then determining the proposed value for I

⊕
ji (or

I�ji ). To avoid systematic moves, we can ‘�ip a coin’ at each iteration to decide which one
is proposed freely, but the order should not be crucial. All state variables of all units can
be updated by the described block sampling algorithm, keeping some Iji-variables �xed as
needed. If no Iji values need to be kept as �xed constants, then the latter updating step can
be omitted.
An exceptional situation occurs when some Iji is observed to be zero. Such data will

immediately determine two other state variables, namely I⊕j; i−1 = 0 and I
�
ji =0. Moreover,

I�j; i−1 and Ij; i−1 must be equal. Adding a new move type would provide better mixing. With
some probability, e.g. 23 , we propose adding either +1 (probability 0.5) or −1 jointly to the
variables (I⊕j; i−2; Ij; i−1; I

�
j; i−1).

Initial states Ij1; Rj1 may also be treated as unknown quantities if prior distributions P(Ij1)
and P(Rj1) are speci�ed. The associated sampling step can be constructed from several possible
move types. There are �ve di�erent ways in which we can propose independently new values
for two out of the four variables (Ij1; Rj1; I⊕j1 ; I

�
j1 ), then determining the other two proposals

so that the rest of the epidemic chain is not a�ected. Additionally, we can propose to keep
I⊕j1 at its current value, but propose new values for (Rj1; Ij1) (or (Rj1; I

�
j1 )) independently, and

determine I�j1 (or Ij1) so that Ij2; Ij3; : : : are not a�ected, but Rj2; Rj3; : : : are allowed to change.
It is good to propose di�erent move types for better mixing.
If only a sample of individuals is drawn from a unit, and their carrier status are exam-

ined, we need to add the corresponding hypergeometrical sampling distribution to the likeli-
hood. Hence, sampling would proceed without having to keep any Iji �xed. This formulation
would provide an alternative algorithm. As a special case, when the sample size in unit j is
equal to Nj, the hypergeometric distribution becomes singular, corresponding with the previous
algorithm.
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