
A Non-parametric Frailty Model
for Temporally Clustered Multivariate
Failure Times

TOMMI HÄRKÄNEN
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ABSTRACT. A model is introduced here for multivariate failure time data arising from het-

erogenous populations. In particular, we consider a situation in which the failure times of individual

subjects are often temporally clustered, so that many failures occur during a relatively short age

interval. The clustering is modelled by assuming that the subjects can be divided into ‘internally

homogenous’ latent classes, each such class being then described by a time-dependent frailty profile

function. As an example, we reanalysed the dental caries data presented earlier in Härkänen et al.

[Scand. J. Statist. 27 (2000) 577], as it turned out that our earlier model could not adequately

describe the observed clustering.

Key words: data augmentation, frailty model, intensity model, interval censoring, Markov chain
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1. Introduction

A Bayesian intensity and frailty model for multivariate survival data was introduced in

Härkänen et al. (2000). The baseline intensity rates were modelled non-parametrically, and the

frailty component was introduced in the traditional fashion by assuming a hierarchical gamma

prior. It was subsequently realized that most subjects studied in Härkänen et al. (2000)

experienced a cluster of failures during some age intervals. As there was no observed covariate

information that could have explained these clusters, an extension to the frailty model seemed

to be a reasonable option.

We build here a finite mixture model for the multivariate failure times. The population is

assumed to be heterogenous, consisting of a finite number of latent classes, each class cor-

responding to a particular profile according to the way in which the frailty in that class

develops as a function of age.

Section 2 introduces the data, basic notations and the previous work of the authors ex-

tended to the tooth-surface-specific dental caries. It also motivates the use of the extended

model and provides a brief description of the numerical results obtained in the corresponding

estimation problem. In section 3, predictive probabilities of future caries incidents are com-

pared with traditional predictors. The paper concludes with discussion. Details of our esti-

mation algorithm are explained in appendix.
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2. Data, models and estimates

2.1. Tooth-surface-specific version of the model of Härkänen et al. (2000)

We study a cohort described already in Härkänen et al. (2000). The data consist of the

dental histories of 240 boys indexed by i. Here we chose to consider only 56 surfaces on

altogether 20 permanent teeth because the canines and the lower incisors experience only a

negligible amount of caries activity. The teeth are indexed by j ¼ (j, m), where

j 2 {1, 2, 3, 4} indexes the quarter of the mouth, and m 2 {1, 2, . . ., 7} the teeth from the

front to the rear of a mouth. Each tooth has maximally five surfaces indexed by

‘ 2 {1, 2, . . ., 5}. The observations were based on routine dental examinations at boy-spe-

cific ages ui1 < � � � < uiKi
, approximately once every year. All observations were interval

censored: the eruption age aij of tooth j of boy i was recorded at age ui,k(i,j), that is, at the

time of the first examination following aij, and, similarly, the failure time bij‘ of the tooth

surface ‘ was recorded at age ui,l(i,j,‘).

The model of Härkänen et al. (2000) can be made ‘surface-specific’ as follows. By consid-

ering the lifetimes of surfaces dij‘ : ¼ bij‘ ) aij, the corresponding surface-specific baseline

hazard rates hj‘ and subject-specific frailty parameters Zi, the hazard rate of tooth surface (j, ‘)

of subject i is specified as

kðcÞij‘ ðtÞ :¼ hj‘ðt � aijÞZi ð1Þ

where t is the age of the subject (in years). Following a common practice in frailty models, the

frailty parameters Zi are assumed to be independent of age. Their prior is assumed to have a

doubly stochastic form, with the Zi’s conditionally independent given a hyperparameter /, all
drawn from gamma(Æ|/, /), and / itself drawn from gamma(Æ|2, 2). The corresponding

intensity function then becomes kðcÞij‘ ðtÞ � 1ðaij ;bij‘�ðtÞ.
The eruption times aij are generally thought to be essential information for predicting future

dental caries. But since eruption times are not ‘surface specific’, the model introduced in

Härkänen et al. (2000) can be used without change. We let

kðeÞij ðtÞ :¼ fjðt � giÞ � 1ðgi;aij �ðtÞ; ð2Þ

where fj is a baseline hazard rate of the eruption and gi is called the birth of dentition of subject

i. Parameters gi are a priori assumed to be N(Æ|n, s)2) distributed, with hyperparameters

n � N(Æ|5, 1) and s)2 � gamma(Æ|2, 2).
The baseline hazard rates hj‘ and fj in (1) and (2) are modelled by piecewise constant

functions. Omitting the indices j and ‘, a piecewise constant function can by written in the

form hðtÞ :¼
Pn

k¼ 0 ak1ðTk ;Tkþ1�\ð0;Tmax�ðtÞ. Following Arjas & Gasbarra (1994) we specified the

prior distribution for the jump points Tk and levels ak of the caries baseline hazards by

ðTkÞk�1 � Poisson process ðlÞ;

ak � gammað�ja0; b0Þ; k ¼ 0
gammað�ja; a=ak�1Þ; k > 0.

�
ð3Þ

The hyperparameters l, a0, b0 and a are allowed to depend on j and ‘. The eruption baseline

hazards are made non-decreasing on (0, Tmax] by defining a0: ¼ d0 � gamma(0.1, 1) and

dk � gamma(1, 1) a priori for k > 0, and ak: ¼ ak)1+dk.

Unfortunately it turned out that this straightforward extension of the model in Härkänen et

al. (2000) did not give a completely adequate description of the surface-specific data, in the

sense that the observed failure times of a subject tended to be more clustered than what could

be expected on the basis of the model. To illustrate this, we use the statistic Vi: ¼ maxk{nik}/
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P
knik, where nik is the number of tooth surface failures in subject i recorded in the exam-

ination at time uik. In the extreme situation in which subject i had no failures we have Vi : ¼ 0,

while Vi ¼ 1 if all failures took place during a single examination interval. Figure 1 shows that

in the data the median subject had 40 per cent of all his failures during a single examination

interval. For a comparison, the posterior predictive CDF based on the time-independent

frailty model (1) of Vi* for a hypothetical subject i* is also plotted. The median value of Vi* is

then only 25 per cent, indicating a much larger dispersion of failure times. We believe that this

clustering behaviour in the observed cohort can for the most part be attributed to reasons such

as (i) changes of habits related to oral health and oral environment, (ii) presence versus

absence of untreated cavities which can affect the infection process, and possibly (iii) changes

in the ways of action of the dentist(s) taking care of the patient.

2.2. Model with frailty profiles

As shown above, many subjects experienced relatively short age periods during which most of

the failures occurred. This suggests that there is joint temporal and individual variation in the

failure risks. Temporal variations are usually described in terms of baseline hazards and

individual variation in terms of frailty coefficients, but here these two sources of variation need

be considered jointly. This, however, can easily lead to overparametrized models, and there-

fore some simplification is needed.

We now assume that the study population can be usefully divided into K strata or classes,

each with a characteristic age-dependent frailty profile g(t|k), k ¼ 0, 1, . . ., K)1, for the

hazards. Each subject i is characterized by an unobservable covariate Ci indicating his class

membership. We assume that healthy subjects who have no risk of experiencing failures belong

to the class 0, and therefore set g(t|0) ¼ 0 for all t. For k > 0, the functions g(Æ|k) are non-

negative, each representing a particular temporal profile in the risk of the subjects sharing the

same value Ci ¼ k. This gives rise to the hazard rate model
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Fig. 1. The observed clustering versus posterior predictive clustering according to the models (1) and (4)

which will be defined in section 2.2.
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kðcÞij‘ ðtÞ :¼ hj‘ðt � aijÞ � gðtjCiÞ; ð4Þ

where we make the conditional independence assumption that, given the tooth eruption time

aij, the corresponding Ci and the parameters (functions) hj‘ and g, the failure times are

independent across all values of i, j and ‘. The corresponding (stochastic) intensity function is

then given by kðcÞij‘ ðtÞ1ðaij ;bij‘�ðtÞ. The prior distribution of Ci is defined through probabilities

P{Ci¼k} ¼ wk for k 2 {0, 1, . . ., K)1},
P

kwk ¼ 1. Here we let W :¼ (w0, w1, . . ., wK)1) �
Dirichlet(1, 1, . . ., 1).

Before proceeding further, we still have to take care of a non-identifiability issue in our

model. As it is defined above, because of complete symmetry of the definitions, all (K)1)!
permutations of the classes indexed by 1, 2, . . ., K)1 lead to exactly the same joint distribution

of the remaining model variables, and therefore of the data. Here identifiability was achieved

by choosing K)1 ‘index’ subjects i1, i2, . . ., iK)1 to represent each class k. Because the subjects

in each class will share a common frailty profile, it is a natural idea to try to choose the index

subjects as different from each other as possible.

We considered the model (4) with K ¼ 6 strata. The index subjects for these strata were

chosen by visual inspection and their dental histories are presented in Fig. 2. The index

subjects i1 and i2 were chosen so that i1 had only a few failures whereas i2 had a large number

of failures. Subject i3 (resp. i4 and i5) was picked so that he had clustered failure times

approximately between ages 6 and 8 (resp. 10 and 12, and 14 and 16). The calibration

h(3,6),1(0+) :¼ 1 was applied for identifiability of the multiplicative hazard rate model.

2.3. Estimation and estimates

Because to the complexity of the model and the very large number of unobservables (including

the interval censored exact eruption and failure times), Markov chain Monte Carlo (MCMC)

techniques were applied in the numerical computation. The Metropolis–Hastings–Green al-

gorithm was applied in the estimation of the baseline hazard rates fj, hj‘ and the frailty profiles

g. The posterior distribution is multimodal as noted above, and therefore, in order to ensure

that there was a sufficient amount of mixing, a group updating procedure (described in

appendix) was used. Otherwise, we applied the traditional Metropolis–Hastings algorithm. We

ran 30,000 iterations of MCMC in addition to 10,000 iterations of burn-in, taking about 50 h

on a 800 MHz Pentium III PC.

The parameters n, s2, (gi), (fj) and (hj‘) were estimated as in Härkänen et al. (2000), and the

estimates were similar. The estimates of the parameters n, s2 and W seemed to converge well

according to the diagnostic tests in CODA (see Best et al., 1995). The estimates of the func-

tions g are presented in Fig. 2. In all classes, the frailty profile estimates agree well with the

corresponding failure data of the index subjects. The age periods during which clusters of

failures occur in classes 3, 4 and 5 are clearly discernible from these estimates.

The posterior class membership probabilities, given as the posterior expectation of W, were

0.08, 0.34, 0.05, 0.17, 0.23 and 0.13. The class memberships for individual subjects appeared to

settle rather well: after all data had been accounted for, 97 per cent of the subjects had the

largest posterior class membership probability greater than 0.5, and 88 per cent had a value

greater than 0.6, much larger than the probabilities of belonging to any of the other classes. On

the other hand, when considered as a function of age, they were quite sensitive to observed

new data. Figure 3 shows an example of a typical subject. Initially, when there are no follow-

up data on this subject, the membership probabilities coincide with the posterior class prob-

abilities based on the complete data from all other subjects. As this subject has no failures

before age 13, his membership in the class 0 of healthy subjects becomes increasingly probable,
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but when the first failure occurs this class membership probability falls to zero. After that,

classes 1 and 5 appear to be approximately equally likely, until again, when there are no

further failures after the age of 17 years, class 1 becomes by far the most likely alternative.

3. Model assessment by caries predictions

Given a subject’s past observed caries and tooth eruption history up to age t1, it is of interest

to predict, for example, whether one or more of the still intact tooth surfaces of the same

subject will fail during some specified prediction interval from age t1 to t2.

Two sources of information can be used for such prediction: first, the eruption times are

positively correlated, which in our model is accounted for by using a common birth of den-

tition time gi. Secondly, the sooner a sensible value of the frailty class Ci could be chosen, the

more accurate the predictions are likely to be because the class determines the development of

the individual hazard profile through the function g(Æ|Ci).

The following notations are needed in the ‘dynamic’ approach to caries prediction, see, for

example, Andersen et al. (1993). Let Di,[0,t] denote the r-field containing the observations from

subject i by age t. Furthermore, let Di :¼ Di,[0,1) denote all observations on subject i. All

dental examination times uik are assumed to be known at any time t ‡ 0 ("k). Let D)i,[0,t] be an

aggregation of all observations by time t excluding the events concerning subject i:

D)i,[0,t] :¼: D1,[0,t] � � � � � Di)1,[0,t] � Di + 1,[0,t] � � � � � DN,[0,t]. Finally, let D)i :¼ D)i,[0,1]

denote all observations excluding subject i.
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Fig. 3. The upper panel shows the class membership probabilities PfCi ¼ kjDi½0;t�g for subject i, and the

lower the data on this subject (see Fig. 2 for explanations).
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Considering subject i at age t1 and a subsequent age interval (t1,t2], we then wish to

determine the probability of an event of the form Bi,(t1,t2],i
:¼ ‘subject i has at least i

new tooth surface failure s during the time interval (t1, t2]’, conditionally on the ob-

servations available (pre-t1 history of subject i and the complete histories of the other

subjects, i.e. Di,[0,t1]
� D)i). By choosing t1 and t2 so that they coincide with some dental

examination times uik, the occurrence or non-occurrence of the event Bi,(t1,t2],i
is observed

in the data.

Let h :¼ ((fj), (hj‘), (g(Æ|k)), n, s2, W) denote the population level parameters. Consider first

the (unrealistic) situation in which h, the class memberships Ci, the exact eruption times

a :¼ (aij) and failure information 1{bij‘ £ t1
} before time t1 were known. Then the probability of

Bi,(t1,t2],i
is

pi;ðt1 ;t2�;i :¼ P Bi;ðt1;t2�;ijh; a; ð1fbijl�t1gÞ
n o

¼ P
X
j;l

1bijl2ðt1;t2� � i

����h; a; ð1fbijl2t1gÞ
( )

: ð5Þ

The probability pi,(t1
,t2],i can be approximated numerically by applying a Monte Carlo

method for all i. Let Uij‘ be i.i.d. uniform (0,1) random variables. Denoting

ni;ðt1 ;t2� :¼
X
j;‘

1 Uij‘ < P bij‘ 2 ðt1; t2�jh; a; 1fbij‘�t1g

n on o

¼
X
j;‘

1 Uij‘ < 1� exp �1fbij‘>t1g

Z t2

t1

kðcÞij‘ ðsÞ ds
� 
� 


;

it is easy to see that P{Ni,(t1
,t2]‡i}¼ pi,(t1,t2],i

. As the true values of the parameters are not

known, in order to calculate the corresponding predictive probabilities, expectations of (5)

must be taken conditionally given the observations Di,[0,t1]
� D)i. This posterior

expectation can be approximated by an MCMC simulation, that is, by generating a

large Markov-dependent sample {h[m], a[m]; 1 £ m £ M} with posterior P{d(h, a)|Di,[0,t1]
� -

D)i} as the limiting distribution (and U[m] i.i.d. uniform (0,1)), and then computing the

average

X
m

1fni;ðt1;t2�½m� � ig
M

: ð6Þ

In the considered cross-validation scheme, calculation of the posterior expectation of (5)

separately for each individual would be very time consuming. Thus we used an approximation

presented in Table 1. It is based on the idea that the distributions P{dh|Di,[0,t1
] � D)i} and

P{dh|�iDi} are close to each other if there is a large number of subjects in the cohort and many

subjects in each class. Under such circumstances excluding the information Di,(t1,1) from the

conditioning has only a negligible influence on the posterior distribution of the population

parameters h. In the present study the number of subjects is 240, and so an exclusion of Di,(t1,1)

Table 1. An approximate cross-validation algorithm (ACA)

1. The population level parameters (denoted here by h) are estimated from the complete data

¤iDi, and their sampled values ðh½m�ÞMm¼1 are saved

2. During each iteration m, values #
½m�
i of the individual parameters Ji and the missing

eruption and failure times are sampled by using the conditional distribution P{dJi |Di,[0,t1
], h[m]}

as the invariant distribution of the MCMC

3. The posterior expectations of the functional f(Æ) are approximated by

E½fð#iÞjDi;½0;t1 � _D�1� � 1
M

P
m f #

½m�
i

� �
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should have only a minor influence on this distribution. Bigger differences are likely to occur if

subject i belongs to a small class k and t1 is small (here 8). Here the smallest class 2 contains

about 5 per cent of the subjects, and corresponds to the highest caries risk. The distinction

between that class and other classes is quite strict. After excluding the information Di,[t1,1] of

subject i in class 2, the remaining subjects would still provide enough information for esti-

mating g(Æ|2). Assuming that n2 subjects actually belong to class 2, the proportional error in

estimating w2 is approximately

ðn2 � 1Þ=239

�
=

n2=240

�
. This difference does not, however,

have much influence because also the information Di,[0,t1]
is used for estimating the class

membership Ci. We conclude that exclusion of one subject will influence the posterior

distribution only little. The approximate cross-validation algorithm (ACA) defined in Table 1

is used for calculating the predictive probabilities E[pi,(t1,t2],i
|Di,[0,t1]

� D)i] by setting

f(Æ) :¼ 1Bi,(t1,t2],i
(Æ).

For a statistical assessment of the compatibility of observed and predicted frequencies, a

simple v2-test was carried out. The subjects were ordered according to the predictive prob-

ability E[pi,(t1,t2],i
|Di,[0,t1]

� D)i], and then divided into 10 categories, 24 subjects in each ca-

tegory. The predicted number en of subjects in category n 2 {1, 2, . . .,10} with the outcome

Bi,(t1
,t2],i is the sum of E[pi,(t1,t2],i

|Di,[0,t1]
� D)i] over subjects in that category. The observed

number of positive outcomes on is the number of subjects who actually had at least i new

failures. For a correctly specified model it would be natural to view the indicators 1{Bi,(t1,t2],i
} as

Bernoulli random variables, with the predictive probabilities of Bi,(t1
,t2],i and of its comple-

ment being assigned to the two outcomes. In a cross-validation scheme these variables are

stochastically dependent of each other (with respect to the Bayesian model), but for reason-

ably sized cohorts the pairwise correlations across subjects will be very weak (cf. Arjas &

Andreev 2000). Using this as a justification, we are led to consider
P

n(on)en)
2/en as a test

statistic for model adequacy, with v210 as the reference distribution. The relatively small

number of categories (10) was chosen because the v2 approximation works well only for

reasonably sized categories.

Many of these intervals (t1, t2] overlap, and the data and the models being the same, the p-

values are dependent. However, the following conclusions seem warranted. As in Table 2,

both models (1) and (4) appeared to fit to the data reasonably well when considering test

statistics based on events Bi,(t1,t2],1
. However, when considering Bi,(t1,t2],2

, the differences in the

performance of the two models were quite dramatic when the prediction interval was only

2 years long. In this case Bi,(t1,t2],2
can be viewed as an indicator of clustering, and the results of

Table 2 show that model (1) could no longer provide an adequate fit. When using model (4),

the problem was straightened.

Past caries experience is usually considered in terms of cross-sectional DMF values, that is,

the total number of decayed, missing, and filled teeth (DMFT), or of the corresponding tooth

surfaces (DMFS). Here the predicted binary response was again chosen to be the indicator

1Bi,(t1,t2],1
. As model (1) was found to be inferior to model (4), the latter was compared to its two

Table 2. The p-values when testing the compatibility of observed and predicted frequencies with the v2-test

Model K i

Prediction age interval (t1,t2]

8–10 10–12 11–13 12–14 13–15 14–16 14–17 12–17

(1) 1 0.51 0.80 0.29 0.20 0.59 0.27 0.11 0.82

2 0 0.01 0.01 0 0.07 0.02 0.17 0.53

(4) 6 1 0.73 0.53 0.12 0.12 0.78 0.43 0.35 0.49

2 0.31 0.43 0.73 0.39 0.28 0.02 0.34 0.91
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natural competitors, the DMFS index at baseline t1 itself, and a simple logistic regression

model using the DMFS index at baseline t1 and the eruption time of the first permanent tooth

as covariates.

Receiver operating characteristic (ROC) curves provide an attractive method for assessing

and comparing the performance of different predictors (e.g. Hausen, 1997). Each such curve is

obtained by plotting, for different threshold values of the predictors, the observed true positive

rates in the data versus the false positive rates. In terms of the ROC curves, the DMFS method

gave poor predictions at every interval, probably because it does not incorporate information

about the eruption times. The performance of the logistic regression model was similar to that

of the intensity model (4) in most cases. The most notable difference seems to be on interval

from 11 to 13 years where the prediction provided by the intensity model seemed to be better,

see Fig. 4. The difference was not, however, found to be statistically significant when tested

with the method by DeLong et al. (1988).

4. Discussion

In this analysis of the early development of dental caries in permanent teeth we applied a

multivariate survival analysis model in which a characteristic non-parametrically defined

failure intensity is defined for each tooth surface. The intensity function was assumed to have a

product form. One factor was specific to the tooth surface and was then considered as a

function of the age of the tooth in question. The other factor was a frailty term depending both

on a latent classification of the subject and on his age. The frailty profiles described a specific

clustering pattern of the tooth failures over time, and were estimated from the data jointly with

the class memberships of the subjects. This extension of the earlier model with time-inde-

pendent frailties, presented in Härkänen et al. (2000), improved the fit of the model while

increasing the number of model parameters only slightly.

Many of the ideas presented in this work are not new. The time-dependent frailty models

have been considered before, e.g. by Yashin et al. (1995) who used a stochastic differential

equation for specifying the frailty functions. Their model structure could be modified for the

present purpose, but the numerical computations would require using a time discretization,

which would be computationally more involved than our approach.
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Fig. 4. Comparing predictors by ROC curves.
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Also mixture models have been used in the failure time models before. McLachlan &

McGiffin (1994) presented a review of mixture models for survival data, capable of handling,

for example, several phases of high risk and competing risks. An elegant way of estimating the

number of classes is to consider it as an unobservable variable in a larger model and to apply

the Metropolis–Hastings–Green algorithm in the numerical MCMC estimation. This

approach was followed by Richardson & Green (1997), who solved the identifiability problem

in the latent classes by using an ordering of the component mean parameters. In our case,

the components of the mixture are the class-specific profile functions, and finding a natural

ordering for them is difficult.

The convergence of the parameter estimates of the latent class part was quite sensitive to

the number of classes. With a large number of classes, some classes appeared to have

similar failure patterns, and consequently the class memberships of the subjects in those

classes remained vague, causing instability in the class membership and profile function

estimates. Even with the chosen number of K ¼ 6 classes the mixing of the MCMC al-

gorithm needed special care (see appendix). Initially, subjects similar to the index subject ik1

might be classified to a different class k2, and conversely, subjects similar to ik2
to the class

k1. A single component updating may not be able to interchange the class memberships

between these two groups of subjects and the corresponding frailty profiles g(Æ|k1) and

g(Æ|k2) within a reasonable amount of time. This problem was solved by the algorithm

presented in appendix.

Arjas & Andreev (2000) used importance sampling for calculating predictive probabilities in

a similar cross-validation scheme as we have here. In the case of the frailty model (1), both

prior and posterior distributions turned out to be unstable importance sampling kernels

(weighted by the likelihood of Di,[0,t1]
and the inverse likelihood of Di,(t1,1), respectively). For

model (4) importance sampling may be a better choice: sampling from the prior distribution of

Ci might provide reasonably accurate results because all components of W have a posterior

expectation 0.05 or greater. However, sampling from the posterior distribution might not,

because each subject has some estimated class membership posterior probabilities very close to

zero. As we considered here only few prediction intervals, the computational burden did not

become too heavy when using the ACA (see Table 1) based on the saved MCMC sample from

the posterior and the pre-t1 history of the subjects.

We tried also a simple logistic regression model in which the DMFS index at baseline and

the eruption time of the first permanent tooth were used as covariates. In terms of the ROC,

the performance of this model turned out to be slightly better than that of the DMFS index,

but not as good as of our finite mixture model. A drawback of the logistic model is that it does

not describe the true development of caries, and therefore inclusion of temporal events in the

model is complicated. In contrast to this, our model has the potential of including time-

dependent covariates for handling the effects of changes in the (oral) environment, of infection

process on tooth surfaces, and possibly of a new attending dentist.

Unfortunately, in order to be useful in clinical work, a predictor should be able to make a

reasonably clear distinction between the individuals who are likely to remain healthy and the

ones who will develop caries. In this respect none of the predictors performed in a way

that would be entirely satisfactory in clinical use. The finite mixture model showed marked

improvement only in the region in which the sensitivity and the specificity were around 0.6

during the age interval from 11 to 13 years. Without further knowledge of the nature of dental

caries, however, improving on these results appears to be very difficult. From this perspective

the results of this paper, rather than presenting an absolute success in data analysis, should be

viewed as an illustration of the flexibility of and possibilities offered by non-parametric

Bayesian models in describing complicated duration data.
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Appendix

Let m ¼ 1, 2,. . ., denote the iteration of the MCMC. The proposal for jumping between the

local maxima of the joint distribution of the parameters and the data is a group-updating step:

first two classes n1, n2 � Uniform{1, 2 ,. . ., K)1} such that n1 „ n2 are chosen. Then the

proposal (indicated by *) involves interchanging of (i) the class probabilities (w�
n1 :¼ w½m�

n2 and

w�
n2 :¼ w½m�

n1 ), (ii) frailty profiles (g(Æ|n1)
*:¼g(Æ|n2)

[m] and g(Æ|n2)
*:¼g(Æ|n1)

[m]) and (iii) the sub-

jects, apart from the index subjects, in those two classes (C�
i :¼ n2 for i such that C½m�

i ¼ n1 and
i „ in1

, and C�
i :¼ n1 for i such that C½m�

i ¼ n2 and i „ in2
). The acceptance probability for this

proposal is given by

min
p b½m�in1 j‘

� �
j;‘j kðcÞ�in1 j‘

ð�Þ
� �

j;‘

� �
p b½m�in2 j‘

� �
j;‘jðk

ðcÞ;�
in2 j‘

ð�ÞÞj;‘
� �

p b½m�in1 j‘

� �
j;‘j kðcÞ;½m�in1 j‘

ð�Þ
� �

j;‘

� �
p b½m�in2 j‘

� �
j;‘jðk

ðcÞ;½m�
in2 j‘

ð�ÞÞj;‘
� � ; 1

8<
:

9=
;: ð7Þ

Note that (7) equals the proposal that the only the class memberships Cin1
and Cin2

of the index

subjects were interchanged. (Note also that if the index subjects were also interchangeable in

this way, the classes would become unidentifiable and the posterior distributions of all frailty

profiles g(Æ|k) would be the same.)

Scand J Statist 30 A non-parametric Bayesan frailty model 533

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.


