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Transmission of Pneumococcal Carriage in Families: 
A Latent Markov Process Model for Binary 

Longitudinal Data 
Kari AURANEN, Elja ARJAS, Tuija LEINO, and Aino K. TAKALA 

We present a Bayesian data augmentation model to estimate acquisition and clearance rates of carriage of Streptococcus pneurnoniae 
(Pnc) bacteria. The panel observation data comprise 10 measurements of Pnc carriage (carrier/noncarrier of the bacteria) in all 
members of 97 families with young children over a period of 2 years. Using natural conditional independence assumptions, a 
transmission model is constructed for the unobserved dependent binary processes of the augmented data. The model explicitly 
considers carriage transmission within the family and carriage acquisition from the surrounding community. The joint posterior 
of the model parameters and the augmented data is explored by Markov chain Monte Carlo sampling. The analysis shows that 
in young children the rate of acquiring carriage of three common Pnc serotypes increases with age. In children less than 2 years 
old, the duration of carriage is longer than in older family members. Asymptomatic Pnc carriage is found highly transmittable 
between members of the same family. In young children, the estimated rate of acquiring carriage from a family member carrying 
Pnc is more than 20-fold to that from acquiring it from the community. 

KEY WORDS: Bayesian analysis; Conditional independence modeling; Data augmentation; Markov chain Monte Carlo; Recur- 
rent infection 

1. INTRODUCTION 

Epidemiological data are very often presented as 
sequences of Os and is. Examples include the ab- 
sence/presence in an individual of symptoms or at- 
tacks of a recurrent disease, noncompliance/compliance 
to treatment in clinical trials (Smith and Diggle 1998), or 
the absence/presence of parasitic infections (Nagelkerke, 
Chunge, and Kinoti 1990). In this study we consider data 
on carriage of Streptococcus pneumoniae (Pnc) bacteria in 
members of a family. The response on each individual con- 
sists of a sequence of is (denoting carriage at the time of 
the observation) and Os (noncarriage). The complete data 
set includes individual sequences from all members in 97 
families with a newborn child. 

A common model for the analysis of longitudinal binary 
data is a two-state Markov process (Hassani and Ebbutt 
1996; Kalbfleisch and Lawless 1985). At any one time, an 
individual is assumed to be in either of the two states. To 
write the likelihood, supposing that the data arise from a 
panel design in which the exact times of transitions 0 -? 

1 or 1 -X 0 are not recorded, the likelihood expressions 
will involve probabilities of the transitions over the obser- 
vation intervals. If the individual sequences are condition- 
ally independent, given constant transition rates, the model 
is time-homogeneous. Heterogeneity among individuals in 
their transition rates adds to the complexity of modelling 
(Conaway 1990; Cook 1999). When modelling disease 
transmission, it is also important to allow for dependency 
between the binary sequences of individuals with close con- 
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tacts. Because of the dependency, the states of the Markov 
process are actually vectors of is and Os that simultaneously 
denote the infection state of all family members (Auranen, 
Ranta, Takala, and Arjas 1996). The large dimension of the 
associated matrix of transition probabilities, however, may 
in practice lead to awkward numerical and computational 
procedures. 

In this article, we avoid the difficulties associated with ex- 
plicit transition probabilities by taking recourse to Bayesian 
data augmentation. For each individual, the unobserved 
event times of acquiring and clearing carriage, which jointly 
define sequences of carriage/noncarriage, are included in 
the set of model unobservables. By constructing for each 
family a multivariate point process of dependent event 
times, the (conditional) likelihood of the observed panel 
data becomes trivial. It is simply an indicator that signi- 
fies whether the augmented sequences are concordant with 
the observed binary data. The formulation of the carriage 
transmission model remains Markovian but entails time- 
dependent transition rates. The principal computational ef- 
fort is in the numerical integration of the augmented data 
processes. We use Markov chain Monte Carlo (MCMC) 
simulation to explore the joint posterior of the model pa- 
rameters and the augmented data. 

Gibson (1997) considered estimation of relative risk of 
infection in citrus trees, associated with distance between 
the trees in a spatial lattice structure. In that model, the 
problem with an unknown order of infections was attacked 
by MCMC simulation. The infection was considered perma- 
nent once acquired (simple epidemics), and the likelihood of 
the panel data was reduced to calculating the probability of 
the observed set of additional infections over the study pe- 
riod. Gibson and Renshaw (1998) and O'Neill and Roberts 
(1999) presented MCMC algorithms to estimate parame- 
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ters in stochastic compartmental models for infections that 
confer immunity. Apart from the order of infection events, 
the unknown number and times of events were also consid- 
ered explicitly in latent transmission models. The MCMC 
sampling algorithm in our application is constructed for a 
data augmentation model that considers histories of infec- 
tion events separately for each individual, rather than his- 
tories in terms of total counts of individuals in different 
infection states. In addition, our study generalizes the pre- 
vious MCMC sampling schemes to unknown numbers and 
times of recurrent infection events (clearance and acquisi- 
tion of carriage). 

The clinical motivation in the present analysis is to de- 
scribe the epidemiology of Pnc carriage in young chil- 
dren. This study provides estimates of the acquisition and 
clearance rates of carriage of the three most prevalent Pnc 
serotypes (6B, 19F, 23F), representing approximately 60% 
of all possible Pnc serotypes worldwide. Based on longitu- 
dinal data arising from families, we are also able to assess 
the importance of close contacts within families for Pnc 
transmission by comparing the rate of carriage acquisition 
from the community and from within the family. 

This article is organized as follows: Section 2 introduces 
the longitudinal data on Pnc carriage in families. In sec- 
tion 3 we introduce the notation and the hierarchical model 
structure. We then define the observation, transmission and 
prior models that correspond to different levels of hierarchy 
in the joint model. Section 4 contains the inferential results 
and an account of the model assessment, which is based on 
checking predictive distributions against the observed data. 
Section 5 provides a concluding discussion. The Appendix 
contains some details about computation, specifically, the 
MCMC algorithm that was used to sample the augmented 
data processes. 

2. PNC CARRIAGE IN FAMILIES 

The data were gathered in the FinOM cohort study con- 
cerning the epidemiology of acute otitis media, with spe- 
cial emphasis on Streptococcus pneumoniae (Pnc) bacte- 
ria (Syrjanen, Kilpi, Kaijalainen, Herva, and Takala 2000). 
Healthy unselected babies, born to Finnish-speaking moth- 
ers and not previously immunized with a pneumococcal 
vaccine, were consecutively enrolled at their first routine 
visit to a local well-baby clinic in Tampere, Finland, be- 
tween April 1994 and August 1995. In Finland, these clinics 
are attended by 99% of the babies (Takala, Koskenniemi, 
Myllymaki, and Eskola 1994). During the enrollment pe- 
riod, 53% of the families with a newborn decided to par- 
ticipate in the study. The infants were then followed for 
nasopharyngeal carriage of Pnc over a period of 2 years. 
Here, we consider a subset of 97 infants, consecutively en- 
rolled between December 1994 and May 1995, for which 
carriage information was collected from all family mem- 
bers. 

The family size, including the newborn infant (index 
child), varied between two and eight; in most families there 
were three or four members. During the follow-up, 14 

younger siblings of the index children were born. All family 
members (N = 370 + 14) were examined for Pnc carriage 
when the index child was 2, 3, 4, 5, 6, 9, 12, 15, 18, and 24 
months old (a total of 10 time points over a 2-year follow- 
up). In this study, time always denotes follow-up time since 
the birth of the index child. According to this choice, the 
first observation took place after 2 months of follow-up. 

At each observation, the absence (noncarriage) or pres- 
ence (carriage) of Pnc in the nasopharynx was identified 
for seven Pnc serotypes that will be included in the new 
pneumococcal conjugate vaccines. The three most preva- 
lent types (6B, 19F, 23F) were chosen for the present anal- 
ysis; hereafter Pnc carriage refers to these three serotypes 
only. For clarity, they will be also referred to as the model 
serotypes. There were two occasions in which two model 
serotypes were found in the same individual at the same 
time. Only one randomly chosen type was then retained in 
the data. Due to this procedure, the model is based on the 
assumption that there is no simultaneous carriage of differ- 
ent model serotypes. We return to discuss this issue in the 
conclusion of this article. 

Initial carriage statuses at the first observation were miss- 
ing for 10 family members. Among the index children, no 
initial status was missing. Right-censoring (dropout) oc- 
curred in the sense that the follow-up on the individual 
carriage status did not cover the whole 2-year period. The 
amount of censoring increased from 1% after 3 months to 
22% after 24 months of follow-up. In addition, intermittent 
observations were missing occasionally. The proportion of 
intermittently missing values was on average 4% of the po- 
tential number of observations; maximally it was 9% af- 
ter 15 months of follow-up. Altogether, the proportion of 
recorded observations was 86% (3208/3717) of their po- 
tential number. This can be considered to be high for such 
extensive follow-up. 

Carriage in the families was dependent on age and on 
follow-up time. In the age class 0-2 years, mostly consist- 
ing of the index children, the average number of nonmiss- 
ing observations at any one observation time was N = 95; 
of these, the proportion of carriers of the three model 
serotypes was 9%. It increased from about 4% at the age 
of 2 months to more than 20% at the age of 2 years. The 
proportions of the three serotypes were similar enough to 
warrant a common model for their dynamics. In the age 
class 2-5 years (N = 23), the overall proportion of carriers 
was higher (16%). It is also noteworthy that the same in- 
creasing pattern in the proportion of Pnc carriers during the 
follow-up was seen as in the younger children. The reason 
for this is not immediately clear although it is likely that the 
presence of the newborn induces carriage transmission af- 
ter the protection due to maternally derived antibodies has 
waned by the age of 6 months. In the class of older family 
members (N = 203), including the adults, the proportion of 
Pnc carriers was approximately 2%; also a slight increase 
was observed from approximately the time when the index 
child was 9 months old. In 40 of the 97 families, there was 
no observed carriage in anyone in the family during the 
follow-up. Pneumococcal carriage was thus clustered into 
some famili.es. 
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The data of children less than 5 years old are summarized 
in Table 1. It presents the observed numbers of changes 
in the carriage status over the observation intervals, strati- 
fied according to both age class (0-2 years and 2-5 years) 
and "background" carriage in the family. In the table, back- 
ground carriage is categorized as "no carriers"/"at least one 
carrier" in the family at the time of the start of the obser- 
vation interval. For simplicity, the presentation in the table 
does not distinguish between the different serotypes. How- 
ever, Pnc carriage was almost invariably clustered according 
to the serotypes so that the same serotype was present, if 
at all, at the same and at the next observation time in the 
family (the few exceptions are indicated in footnotes). 

Exploratory two-way comparisons can be made on the 
basis of the data summary. For example, the risk ratio 
for carrying Pnc associated with carriage in the family is 
8.7 (16/41:28/623) and 4.2 (13/33:12/129) in the two age 
classes. This indicates that carriage in children is associ- 
ated with carriage in the other family members. There also 
seems to be a difference between the very young and older 
siblings. In the two age classes, 0-2 and 2-5 years, the 
risk ratios for carrying Pnc at the next observation time are 
3.7 (11/41:45/623) and 3.6 (13/33:14/129), respectively. In 
comparison to simultaneous carriage in the family, the as- 
sociation in the younger children is weaker, whereas among 
the older ones there does not seem to be such difference. 

It is not straightforward to interpret the raw data in re- 
gard to rates of carriage acquisition and clearance. The data 
were gathered from the families during overlapping but not 
(according to the calendar time) synchronous time periods. 
No association was found between carriage prevalence and 
calendar time (Syrjanen et al. 2000). Thus the observed de- 
pendency in carriage prevalence on follow-up time is not 
likely to be due to seasonal effects or an epidemic in the 
community. When constructing the model, the underlying 
assumption is therefore that the common factor across fam- 
ilies explaining the increase in prevalence is the presence of 
the newborn. This affects Pnc carriage, which is observed 
in a nonstationary phase. The statistical model will be for- 

mulated in follow-up time but the rates of carriage acqui- 
sition and clearance are taken to be age-dependent. With 
the aid of the model, these rates can be estimated and the 
relative strength of family and community transmission as- 
sessed. The results will then be compared to the observed 
data through predictive distributions. 

3. A MARKOV PROCESS MODEL FOR 
TRANSMISSION OF CARRIAGE 

We model sequences of binary observations on Pnc car- 
riage by constructing latent point processes of acquiring 
and clearing carriage. This task is guided by natural condi- 
tional independence assumptions leading to a hierarchical 
model formulation. The main emphasis is on modeling of 
the unobserved point processes, with the aim of achieving 
a simple form of the likelihood of the observed data. The 
hierarchical model structure is also essential to the imple- 
mentation of the MCMC simulation algorithm. 

3.1 Notations and the Hierarchical Model Structure 

Let Aj denote the time window of observations in family 
j j 1, ... . 97). In each family, this window starts when 
the index child is 2 months old and ends 22 months later (or 
at the time of the last observation available from the family). 
In member i of family j, the unobserved event times of 
acquiring and clearing carriage during Aj are denoted by 

jih, h = 1, ... ., Hji, and (jik, k -1, . . ., Kji, respectively. 
At each time Vjih, the individual acquires carriage of one of 
the three model serotypes. The serotype is viewed as a mark 
Sjih associated with time Vjih. The collections of times of 
acquisition {Vjih}, serotypes {Sjih}, and times of clearance 
{ jih} in family j are denoted by vj, sj and (j. In addition, 
the initial carriage status with serotype information at the 
start of window Ai is denoted by qji and Oj in individual 
i of family j and collectively in family j, respectively. The 
complete sets of event times, serotypes, and initial statuses 
in all 97 families are denoted by v, ., s, and 0. 

The model of the augmented event times vj and 4j, 
serotypes sj and the initial carriage statuses /j in fam- 

Table 1. The Numbers of Observed Changes in the Individual Carriage Status Over the Observation Intervals 

Age class 0-2 years Age class 2-5 years 

Carriage at the Carriage at the 
next observation next observation 

Carriage No Yes Total No Yes Total 

No 562 33 595 107 10 117 
No carriage in the family 

Yes 16 12a 28 8 4 12 
Total 578 45 623 115 14 129 

No 24 1 25 14 6b 20 
At least one carrier in the family 

Yes 6 10c 16 6 7 13 
Total 30 11 41 20 13 33 

NOTES: The presentation is stratified according to age class (0-2 years and 2-5 years) and background carriage in the family (no carriers/at least one carrier among the other family members 
at the start of the observation interval). The carriage status in the individual family member at the start/end of the interval indexes the rows/columns of the 2 X 2 tables. To avoid unnecessary 
complexity in the presentation, intermittently missing carriage observations were imputed with Os (noncarriage). 

a Including two pairs of consecutive Pnc carriage of different serotypes. 
b Including one pair of Pnc carriage of a different serotype to that of the background. 
c Including one pair of consecutive Pnc carriage of different serotypes. 
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ily j is defined as a multivariate point process with histo- 
ries (.Ftj)t>O, where history Ftj includes all events in the 
family up to (follow-up) time t. The model parameters 0 
include rates of acquiring and clearing carriage. The ob- 
served panel data Yj record individual carriage statuses 
Yjil (carrier/noncarrier) in each member of the family at 
prescheduled observation times ul, 1 = 1, . .. I ,10. In case of 
carriage, the serotype (6B, 19F, or 23F) is also included in 
the data. The complete data are denoted by Y. 

We can now define the hierarchical structure of the 
model, relating to each other the observed data Y, latent 
event times v (with marks s) and (, initial carriage statuses 
q, and the model parameters 0. The joint density of these 
quantities is factorized as 

A(Y, VI t,SI o,0) 

= P (Y), v, S, I0)P (0) 
= p (Y IV , S, O)p (V), ~'S, I 0)P (0) 

97 

= f {p(Yj Ivj, tj, sj, )j)p(vj, tj, sj, ?j ) p(o)- (1) 
j=1 

The three terms on the right-hand side are termed as the 
observation model, the transmission model, and the prior 
model. The forms of these component models exhibit some 
basic conditional independence assumptions: Conditionally 
on the model parameters, the latent processes are assumed 
to be independent across families. The observations in each 
family are assumed to be independent of the model pa- 
rameters and of the processes in other families, given the 
realization of the latent process in the family. 

To obtain the marginal likelihood p(Y 0) of the data, 
the standard approach to likelihood-based inference under 
panel observation requires integration over the intermittent 
latent quantities in the hierarchy (times vj, (j, marks sj, 
and initial statuses qj). We retain these augmented data as 
additional parameters in a hierarchical model. The posterior 
of all model unknowns (0, v, (, s, 0) is then explored nu- 
merically by MCMC sampling. We give detailed definitions 
of the three component models in the following sections. In 
the observation and transmission models it is sufficient to 
consider a single family, and therefore we suppress from 
the notation index j indicating the family. 

3.2 Observation Model 

It is characteristic of models using data augmentation that 
simple conditional independence assumptions can be made. 
In the present case, the observation model for panel data 
arising from a family of size n is written in the almost 
trivial form as a product of indicator functions: 

n 10 

A(Y l v, vs, 0) = fflI I4({>v, v's, ?> Yii) (2) 
i=1 1=1 

Here ""9 denotes agreement in the sense that the aug- 
mented processes do not assume values contradicting with 
the observed data. For example, an observation of carriage 
of a certain serotype in an individual has to take place dur- 

ing an augmented period of carriage of that serotype in 
that individual. Likewise, the initial carriage statuses have 
to agree with the observed ones. This implies that after 
conditioning on the data the initial status is random only 
for those 10 individuals with missing initial observation. 
In general, missing observations are simply omitted from 
expression (2) as they are assumed to be missing at ran- 
dom (Rubin 1976) and, therefore, to pose no restrictions to 
the augmented processes. Here missing at random implies 
that the conditional probability of not recording the carriage 
state (carrier/noncarrier) does not depend on the underlying 
state. Under panel observation on asymptomatic presence of 
Pnc bacteria, this assumption should be very plausible. 

The model assumes conditional independence between 
consecutive observations of the same individual, as well 
as between observations of different family members. The 
feasibility of such an assumption depends on the model of 
the augmented data processes. The main concern is then 
to allow dependence of the individual processes within a 
family, at the same time acknowledging for the fact that 
the acquisition rates of carriage can be different for different 
individuals. The transmission model presented in the next 
section is designed to meet these requirements. 

3.3 Transmission Model 

The model of acquiring and clearing Pnc carriage is de- 
fined as a multivariate point process with the following 
stochastic intensities as a function of follow-up time: 

P(vi(s) [t, t + dt[ .7%-) 
>ts) (t)dt, 

P(ci [t, t + dt[.Ft7) iAii (t)dt. (3) 

Here v(s) and (i denote generic event times of individual 
i for acquiring carriage of serotype s and clearing carriage 
of any serotype, respectively, and ,\S)(t) and Ai (t) are the 
predictable stochastic transition intensities with respect to 
the histories (.Ft)t>o of the augmented process in a family 
of n individuals. The augmented events are restricted to 
window Aj = [2,24]. 

Before specifying intensities V\S)(t) and ji (t) explicitly, 
we have to introduce some additional notation. A left- 
continuous indicator Cis) (t) is one if individual i is carrier 
of serotype s at time t, and zero otherwise; indicator Ci(t) 
refers to carriage of any of the three model serotypes. The 
time of birth of individual i is denoted by Ti whereby t - Ti 
denotes age. The intensities in (3) are now assumed to have 
the following structure: 

2 (t) = (t-Tj) + (t-Ti) c ̀5 (t)] 

x {1 - ci(011 

Hi(t) =uCi(t), (4) 

where ni is the size of the family. 
Expression (4) encompasses several model assumptions. 

First, a noncarrier acquires carriage of serotype s from the 
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community at rate a. Each carrier within the family is as- 
sumed to be equally infective, adding a contribution of mag- 
nitude 3 to the net acquisition rate. The rates a and 3 are 
taken to be dependent on the age of the (noncarrying) indi- 
vidual but independent of calendar or follow-up time. The 
additive form of the rate follows from the usual assump- 
tion in disease transmission models that infected individuals 
(carriers) act as sources of competing risks for a susceptible 
(noncarrier). 

Second, the acquisition rates are assumed to be the same 
for all three serotypes. The serotypes compete for infect- 
ing the susceptible: the model excludes the possibility of 
simultaneous carriage of different serotypes. There is no 
immunity to reacquisition of carriage. Finally, the duration 
of carriage of any of the three model serotypes is assumed 
to be an exponential random variable. Whereas clearance 
rate ,u describes a biological process within an individual, 
the rate of acquiring carriage also depends on the environ- 
ment, which is reflected in the inclusion of the effect of the 
carriers of the same family. 

We still have to define a model for the initial carriage sta- 
tuses Xi that, with the new notation for carriage, are denoted 
by C(s) (2), i =1, . ... ,n. For initial carriage, we introduce 
a multivariate Bernoulli model P(C1(s)(2) = 117r) = 7j/3 
for all three types, and for initial noncarriage P(Ci(2) 
0o7) = 1- 7. Because the proportion of Pnc carriers in any 
age group and for any serotype was maximally only a few 
percent, a single parameter 7w (chance of initial carriage of 
any of the three model serotypes) was considered sufficient. 

The contribution of the transmission model to the joint 
density (1) is now given by the Poisson density of the mul- 
tivariate point process and a model of the initial carriage 
statuses at time t = 2. Let Ai denote the sum of the three 
serotype-specific rates, that is, Ai is the crude rate for in- 
dividual i to acquire carriage of any of the three model 
serotypes. In each family, we then have 

p(v,t,s,)) =p(v, t,s, a) o,,t., 7) 

n 
= J{(T/3)Ci(2)(1 -7)1-Ci(2)} 

i=1 

n Hi Ki 
x 17 I i (Jih)JAi)((ik)} 

i=l h=i k=1 

x exp ri (u) + }i (u) dj 

(5) 

If initial statuses qj, all event times v and (, and the 
associated serotypes s were actually known, expression (5) 
would be the likelihood for the data collected inside the 
time window A [2,24] (Arjas 1989). The transmission 
model (5) has a Markovian structure, and it is conditional 
on the initial carriage statuses at time t =2. A model for 
these is required only because of the few missing initial 
observations. For simplicity, the notation in this section did 

not allow explicitly for an increase in family size during 
the follow-up although such events were taken into account 
in the analysis. Younger siblings of the index children were 
introduced in the families as noncarriers at the time of their 
birth. 

3.4 Prior Model 

The model parameters 0 comprise the acquisition rates 
(a,p), clearance rate ,u, and chance 7w of initial carriage. 
In the prior distribution they are taken to be independent: 
p(O) = p(c, /)p([t)p(7w). The rate ,u of clearing Pnc carriage 
is taken to be constant Ml for all children less than 2 years 
old and constant M2 for older family members. The prior 
distribution for both rates is Gamma(.001, .001). This dis- 
tribution is flat in the range corresponding to mean duration 
of carriage up to several months. The prior distribution for 
wF is uniform on [0,1]. 

Family members more than 5 years old are assumed to 
share common carriage acquisition rates af and f. The 
prior of af is Gamma(1.5, 50) with prior expectation .03 
(infections per month) and standard deviation .024. This 
corresponds to vague prior knowledge, based on a naive 
use of rule of thumb "prevalence = incidence x duration," 
where the overall carriage prevalence is a few percent and 
the mean duration of carriage in the range of 1 week to a 
few months. The prior of the within-family rate f is defined 
through the rate ratio (f = /3f/f, letting inverse (-l be 
distributed according to Gamma(.001, .001). Although this 
is a distribution with mean 1, it corresponds to a prior belief 
that the rate of carriage acquisition within the families is 
larger than from the surrounding community. 

For children less than 5 years old, the rate ratio = 
O(a)/a(a) is assumed to be a constant, and the prior for 
(-Q is again Gamma(.001, .001). For the rate a(a) we use 
a piecewise constant parametrization (Arjas and Heikkinen 
1997): 

L 

a (a) = a ll{ecl <a<Kcl+11} (6) 
I1= 

According to the prior, the partition { , = 2 < K2 < 
... < IL < IL+1 = 60} of the 5-year interval into L subin- 
tervals is taken to be a realization on [2, 60] of a homoge- 
neous Poisson process with rate .25 in range [2, 24] and with 
rate .05 in range [24, 60] (on average, one jump in 4 months 
and 20 months, respectively). The different rates correspond 
to the number of data points in the respectiv7e ranges, and to 
the prior belief that the rate of carriage acquisition changes 
more rapidly during the first 2 years of life. Conditionally 
on the partition, a Gaussian autoregressive prior is specified 
on the log-rates & = (4,... ,L) = (109.l, . . 1 alogC) - 
The prior mean level di is defined as the weighted average 
of the overall mean i- and the average of the rl neighboring 
levels: 

Ep (c;1 
__ = (1 -N 

I i;li-I1 a 
ml 

var(&cPL1c-) =var(c&l)= a 
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This defines a multivariate Gaussian distribution for the log- 
rates (Arjas and Heikkinen 1997). In the application, we 
used i- = ln(.03), r,, = .99 and ,, = .3, which emphasizes 
the smoothness of rate a. 

4. POSTERIOR INFERENCES 

The joint posterior of the model parameters and the aug- 
mented data is proportional in these variables to the joint 
density (1): p(0, v, (, s, ? IY) xc p(Y, v, (, s, , 0). The re- 
sults are based on numerical samples from the posterior, 
realized by the Metropolis-Hastings method. The sampling 
algorithm and the computations are described in the Ap- 
pendix. 

4.1 Posterior Summaries 

Figure 1 presents the estimated age-specific community 
rate a of carriage acquisition in children less than 5 years 
old. The rate increases with age up to a level of approxi- 
mately .3 new infections per year at the age of 18 months, 
reflecting the observed increase in carriage prevalence. The 
posterior mean of the ratio ( of within family (in the pres- 
ence of one carrier) and community rates was 25. In family 
members more than 5 years old, the posterior mean of rate 
a was .04 (per year), and the posterior mean of the rate 
ratio (f was 15 (Table 2). The rates refer to a susceptible, 
being defined as one not carrying any of the three model 
serotypes. The community rate describes the acquisition of 
carriage of a single model serotype. The net community rate 
of acquiring any of the three model serotypes is threefold. 

According to the previous results, young children are 
more prone to acquire Pnc carriage than older family mem- 
bers. The community rate (a) of carriage acquisition in chil- 
dren less than 5 years old is approximately 10-fold to that 
in the adults and older siblings (af). Within the families, 
the relative intensity of carriage acquisition in the young 
children to that in the older family members is described 
by the rate ratio /3//3f (a/((faf). The posterior mean 

0.8 
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Figure 1. Community Acquisition Rate in Children. The pointwise 
posterior mean (solid line) and 90% pointwise equal-tail posterior in- 
tervals (dashed lines) of the age-specific community rate of carriage 
acquisition ce in children less than 5 years old. 

Table 2. Summary of the Marginal Posterior Distributions 

Parameter Mean Median Credible interval 

clf (per year) .037 .037 .016-.061 
25 23 14-44 

(f 15 10 3-42 
til (per month) .45 .44 .30 -.66 
[12 (per month) .71 .69 .49-1.01 
1 /pd (months) 2.3 2.3 1.5-3.3 
1/b12 (months) 1.5 1.4 1.0-2.0 
'7r .023 .022 .011 -.037 

NOTES: The credible intervals are 90% equal-tail posterior intervals. The parameters are: 
cef community rate of carriage acquisition in family members more than 5 years old. 
C rate ratio of within-family and community rates of carriage acquisition in children less than 

5 years old. 
(f rate ratio of within-family and community rates of carriage acquisition in family members 

more than 5 years old. 
,ul rate of carriage clearance in children less than 2 years old. 
L2 rate of carriage clearance in family members more than 2 years old. 
1/,u1 mean duration of carriage in children less than 2 years old. 
1/fL2 mean duration of carriage in family members more than 2 years old. 
7r chance of initial carriage. 

pertaining to children at 2 years old as compared to family 
members more than 5 years old was close to 40. Moreover, 
the posterior values of the rate ratios ( and (f strongly in- 
dicate that asymptomatic Pnc carriage of at least the three 
model serotypes (6B, 19F, and 23F) is highly transmittable 
between members of the same family. 

In children less than 2 years old, the estimated mean du- 
ration of Pnc carriage of a model serotype was 2.3 months 
(90% equal-tail posterior interval [1.5, 3.3]). These values 
are in accordance with earlier published results for the three 
model serotypes (Smith, Lehmann, Montgomery, Gratten, 
Riley, and Alpers 1993). In older family members, the esti- 
mated mean duration of Pnc carriage was 1.5 months ([1.0, 
2.0]). The rate of clearing carriage is higher than in young 
children: The posterior probability P(rateM2 > rateul) Y) 
was .92. The posterior correlation was strongest between 
parameters af and (f (-.63), which is a natural consequence 
of the product form of the within-family rate in expression 
(4) (f = (f af) and of the low frequency of carriage ac- 
quisition from the community. In children less than 5 years 
old, negative but weaker correlations were found between 
parameter ( and the levels of rate a. 

4.2 Model Assessment 

An overall goodness-of-fit analysis in Markov models 
with panel data is usually carried out in terms of compar- 
isons between the expected and observed numbers of tran- 
sitions between the model states. These numbers often rep- 
resent the expected and observed values of sufficient statis- 
tics, although it may be necessary to pool states into classes 
to obtain somewhat larger numbers of transitions between 
such classes. In the present study, we work instead in the 
opposite direction: To assess the overall performance of the 
model, goodness-of-fit tests are based on evaluating individ- 
ual predictions of carriage against the observed responses. 
Additionally, we calculate the predicted and observed total 
numbers of carriers at each observation point. 

In a cross-validatory scheme, based on the posterior 
p(O Y_j) of the population parameters arising from the 
data Y -j from all other families, we predict the sequence 
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3 I I I I I l 
0= index children 
*= siblings less than 5 years of age 
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Figure 2. Model Assessment. The values of test statistics T/, I= 
2, ..., 10, for the index children (circles) and for the siblings less than 
5 years old (asterisks). In this presentation, carriage in the index child 
is considered as 0/1 (carriagelnoncarriage of any of the three model 
serotypes). Likewise, carriage in the siblings is considered as "1" if at 
least one sibling of the index child is a carrier. The missing data items 
have been acknowledged. If the model is adequate, the test values joined 
by the lines are approximately independent samples from a normal dis- 
tribution with mean 0 and variance 1. 

of observations in family j (see Gelfand and Dey 1994). 
At each observation time ul, the predictions are addition- 
ally conditioned on the data Yj,<, accrued in the family 
up to the previous observation at time ul-1. This enables 
the model to learn from the accumulated data about the 
infection process in the family. A test statistic is used to 
compare the cross-validation predictive probability pjil = 
P (Yjii = I IYj, < 1 Y_j) of individual i for being carrier at 
observation time ul with the actually observed data item 
Yjil. Specifically, the test statistic associated with carriage 
of the index children at observation time ul is defined as 

aO~~9 

T, i-(Yill- Pjll) I = 2, . .. ,10. 

The summation is over all index children in the 97 families. 
The predictive probability pjll is given by 

t[p(Yjll = 1 1y, vj,I sj, Ij) 

X P((j j, vj , sj j Yj,<1, 0)p(0JY_j) d((j , vj , sj , Oj)]dO. 

The first term under the integral assumes value I if the 
process defined by initial statuses Oj, times vj (with marks 
sj) and (a is such that the index child is carrier at time ul, 
and O otherwise. In practice, the predictive probability pjil 
was determined as the fraction of MCMC sample paths in 
which the index child was carrier at time ul; for the predic- 
tions at time ul, data items were considered only up to time 
ul-1. Unfortunately, the singular observation model effec- 
tiveIV Drecluded the use of imDortance samDlina to reweiaht 

prdcin codngt ifrn mutso aaa ifr 

en Uiepit,an eaaeM M rnwsnee o 

each prediction. follow-u time (maon ths) rs-aldto 

isronsideredias we/e (carrulage/nonariae ofanys of the three model 

terior, including the influence from the data in family j. 
This should not influence the essential inferences. 

If the model is adequate, each T1 is a normalized sum 
of 97 Bernoulli random variables. Values T1 should thus be 
approximate samples from a normal distribution with mean 
0 and variance 1 (cf. Arjas and Andreev 2000). Figure 2 
shows the series of test statistics Tl, 1 = 2, . . , 10, for the 
index children, along with a similar series for the presence 
of carriage in siblings less than 5 years old. Note that the 
predictions for the index child and the siblings are corre- 
lated by construction at any one time point. According to 
these tests, there is perhaps a slight tendency to overesti- 
mate the risk of carriage in both groups at the start of the 
follow-up, and a corresponding tendency to underestimate 
the risk at the end of the follow-up. 

Figure 3 presents the observed number of carriers among 
the index children at each observation time ul, and the asso- 
ciated posterior predictive expected numbers. The pertinent 
question is whether the observed numbers could have arisen 
in a binomial trial with expectation given by the left col- 
umn and the number of single Bernoulli experiments (ob- 
servations) approximately 90. The figure again hints at an 
overestimation of the risk of carriage at the start of the 
follow-up. The tests presented previously refer to carriage 
of any of the three model serotypes. Serotype-specific tests 
were performed, but they did not indicate essential differ- 
ences between the three model serotypes. 

The model involved the assumption that each additional 
carrier in the family adds the same amount to the net ac- 
quisition rate. Alternative models were formulated assum- 
ing that the net within-family rate is divided by the family 
size n (as the contacts spread equally among the n family 
members, the risk of carriage acquisition diminishes with 
increasing n), and on the assumption that the net carriage 
acquisition rate from one carrier in the family is the same 
as from any positive number of carriers. These alternative 
models yielded essentially the same inferences in terms of 
model assessment. The effect of the model choice was seen 
mainly in the rescaling of the estimated rate ratios ( and 

25 

1 expected 

20 _ observed 

C o 

15 

o - 0- ----- ,,..,-,, 

3 . 4 5 6 9 12 15 18 24 
age at observation (months) 

Figure 3. Model Assessment. The expected (left columns) and ob- 
served (right columns) numbers of carriers of the model serotypes in 
the 97 index children. The missing observations are not included in the 
presented numbers. 
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(f. For example, when the infection rate induced by the 
carriers was divided by the family size, the estimated rate 
ratios were approximately fourfold. At the same time, the 
community rates a and af, as well as the clearance rates 411 
and I2, remained basically unaltered. This implies that the 
within-family rates of carriage acquisition were effectively 
of the same magnitude as in the basic model. It is obvi- 
ous that the small and homogeneous family size (mainly 
three to four members) and the relative rarity of carriage 
did not discriminate between the models. Specifically, to 
address questions about the mechanism by which infective 
contacts spread out in the family, more variability in family 
size would be needed than in the present study. 

The basic model was expanded with family-specific frail- 
ties (Andersen, Borgan, Gill, and Keiding 1993) that modu- 
late carriage acquisition rate a across families. The pop- 
ulation distribution of the frailties was a conventional 
Gamma(, rj) where the estimated posterior mean of pa- 
rameter r was 5.1 (marginal 90% posterior interval [2.6, 
8.8]). This corresponds to a rather narrow distribution of 
frailties, with posterior predictive mean of the coefficient 
of variation .47. Accordingly, the posterior estimates of the 
other model parameters and the predictive ability of the 
model were insensitive to the inclusion of the frailty. This 
observation suggests absence of important unaccounted dif- 
ferences across families in the acquisition rate. In principle, 
such heterogeneity could be induced by several socioeco- 
nomic factors or factors related to the family health status. 

5. DISCUSSION 

Household studies can be used to assess the type and the 
strength of infectivity of transmittable diseases. The corre- 
sponding statistical models are usually formulated for in- 
fections that yield immunity against reinfection, either for 
lifetime or at least for an epidemic season. To estimate sec- 
ondary attack rates, it is then possible to specify models 
without explicit reference to the dynamics of the infection 
process (Longini, Koopman, Haber, and Cotsonis 1988). In 
the present study, such an approach does not apply, because 
pneumococcal carriage is recurrent. An explicitly longitu- 
dinal model formulation was necessary to capture the dy- 
namics of carriage transmission. 

Different pneumococcal serotypes compete in the na- 
sopharynx but the nature of such competition is poorly 
known. Colonization by other pneumococcal serotypes may 
be prevented due to the one already residing in the na- 
sopharynx. There may also be temporary immunity to car- 
riage acquisition, working perhaps cross-reactively between 
different serotypes. The data of the present study recorded 
almost invariably only one serotype (or none) in an indi- 
vidual at any one observation time. Although this is partly 
explained by the relative rarity of pneumococcal carriage, 
it may also be a result of an imperfect sensitivity of the 
detection method. However, even if multiple carriage was 
more common in reality than what was detected, the data 
and the model can be interpreted as describing the pres- 
ence and transmission of the most prevalent serotype. The 
relevance of this interpretation is supported by the tempo- 

ral clustering of single serotypes in the family. Problems in 
interpreting carriage data can be further caused by the un- 
specificity of the detection methods in bacteriology. For ex- 
ample, the method used for samples from the family mem- 
bers in the present study may be unspecific for serotypes 
6A and 6B within serogroup 6 (likewise for types 19A and 
19F within group 19). However, when tested, the effect of 
modeling pneumococcal transmission at serogroup rather 
than serotype level was small. 

In accordance with the previous interpretations, the anal- 
ysis was based on a model in which the presence of one 
of the model serotypes effectively hinders colonization by 
other types. The model also required that two carriages of 
(different) serotypes be separated by a period of noncar- 
riage. The three model serotypes were pooled together in 
the sense that they were assumed to share common carriage 
acquisition and clearance rates. This amounts to "borrowing 
strength" in the estimation of the transition rates for a single 
serotype. Without such pooling, the inferences would have 
been unstable. Note, however, that even when pooling, the 
model serotypes were distinguished when constructing the 
model for the transmission of Pnc carriage within families. 

The assumption of a constant ratio of community and 
within-family rates of carriage acquisition is undeniably 
crude, even when the ratio was stratified into two age 
classes. It is likely that the proportion of carriage acquisi- 
tion from the community increases rapidly during the first 
two or three years of life. The present rather rigid model 
averages over possible trends in the ratio, and this may be 
one factor contributing to the slight overestimation of car- 
riage prevalence in the very young. 

There are several possible explanations for the observed 
increase in carriage prevalence in all age groups during the 
follow-up. After the protection offered by maternal anti- 
bodies has waned, a young child may act as an effective 
source of infections (carriage) in the family either by car- 
rying the bacteria for prolonged periods of time, or by being 
particularly infectious. The present model did not account 
for these characteristics as they would have required more 
data to be well identified. Instead, differences in acquisition 
rates were addressed solely to age-dependent susceptibility. 
As the estimated dependence of the duration of Pnc carriage 
on age was only moderate, the increase in prevalence can 
be assigned mainly to the increased net rate of the family to 
acquire carriage from the community and by the enhanced 
transmission within the family induced by the new suscep- 
tible family member. 

The most notable pattern in the data was the temporal 
clustering of pneumococcal carriage within families. Conse- 
quently, our analysis could confirm that transmission of Pnc 
from within the family dominates the transmission from the 
population at large. Some bias may have been introduced 
into the quantitative results by the way in which the fami- 
lies were recruited to the study, through a newborn infant 
(although the model was built to adjust for the effects on 
carriage acquisition of age and the introduction of the new 
family member). Impact on outcome (carriage status) by 
confounding factors related to socioeconomic or health sta- 
tus of the family is not likely to be substantial in the present 
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study. This is suppported by the insensitivity of the infer- 
ences to the inclusion of family-specific frailties. In gen- 
eral, the study population is representative of a relatively 
homogeneous Caucasian population. However, it has some 
characteristics that may be relevant when generalizing the 
inferences obtained here. These include common and long- 
lasting breast feeding of the index children, and the fact 
that day care attendance among the index children was not 
frequent (20% at 18 months of follow-up). 

This study presented a Bayesian data augmentation 
model for recurrent periods of subclinical infection (bac- 
terial carriage). Similar approaches can be used in other 
disease transmission models when the infection processes 
are observed incompletely . Analogous uses of the EM al- 
gorithm and augmented data sets for infectious diseases 
are presented in Becker (1997). For incompletely observed 
data arising from diseases that yield permanent immunity, 
Becker and Hasofer (1997) proposed another approach us- 
ing estimating equations based on appropriately defined 
martingales. With data augmentation as presented in this 
study, analyses can be based on the likelihood either in a 
fully Bayesian model or in a hierarchical model using a 
stochastic EM algorithm. As an additional benefit of the 
hierarchical Bayesian scheme and the numerical sampling 
methods, the precision of parameter estimates is directly ob- 
tained within the joint model. Moreover, the models need 
not necessarily be restricted to a Markov property of the 
infection process. Because explicit event times on carriage 
acquisition and clearance are available through data aug- 
mentation, non-Markovian extensions, for example, due to 
duration-dependent transition rates, are relatively straight- 
forward. Such endeavors, however, may be limited by re- 
quirements of identifiability of the parameters of the more 
involved distributions. 

APPENDIX: COMPUTATIONAL ISSUES 

To draw samples from the posterior distribution, we used a 
random-scan single-site updating Metropolis-Hastings algorithm 
(see e.g., Besag, Green, Higdon, and Mengersen 1995) and its "re- 
versible jump MCMC" extension by Green (1995). The augmented 
processes were initialized with a minimum number of transitions 
(acquisitions and clearances of carriage) that made the processes 
consistent with the observed sequences of carriage statuses. The 
times of transitions were drawn from a uniform distribution on 
the respective intervals. At each iteration of the algorithm, a ran- 
dom choice was made between 10 categories of moves, 7 of which 
took care of the model parameters oa(a), (af, 9, (f, 1 tt2, and ir. 
The remaining three steps were used to sample augmented pro- 
cesses in the 97 families by updating event times, and combin- 
ing/splitting or adding/removing individual periods of carriage 
in pairs of reversible moves. Events pertaining to families or in- 
dividual family members were updated either in a random or- 
der or using forward-backward visiting schedules. We realized a 
thinned sample of 200,000, taken every 10th iteration (2,000,000 
iterations in total). For posterior inferences, we discarded the first 
100,000 of these as a burn-in phase. On an unloaded Pentium II 
400 MHz computer, a run of 2,000,000 iterations took approxi- 
mately 10 hours. Gelman-Rubin convergence tests (Gelman and 
Rubin 1992) were calculated for the model parameters and for 
the logarithmic value of likelihood (5). For a single parameter, the 

Gelman-Rubin test statistic estimates the potential scale reduction 
in the estimated variance of the parameter. Running three separate 
chains of 2,000,000 iterations, starting from overdispersed initial 
values of the model parameters, the test statistics were less than 
1.1 for all parameters and the log-likelihood, which is considered 
satisfactory in terms of convergence. 

To update the piecewise constant rate oa, we used the re- 
versible jump algorithm of Arjas and Heikkinen (1997). For sam- 
pling of the other model parameters, the standard random-walk 
Metropolis-Hastings algorithm proceeds as follows: A proposal 
q* for parameter p, say, is first drawn from a density q(p* I0) that 
may depend on the current values of the parameters. Parameter 
vector 0*, in which p is replaced by p*, is then accepted as a new 
sample value with probability min{ 1, A} where the acceptance 
ratio is 

A - p(v, (, s,,0IO*)p(O*) x q(plO*) (A 1) 
-APV), CS, I0 1 (W ) q(p* 10) 

If the proposal is rejected, the current parameter vector 0 is 
taken into the sample. Expression A. 1 exploits the hierarchical 
model structure. By factorization (1), the first term, corresponding 
to the posterior ratio under the proposed and current parameter 
vectors, does not involve terms concerning the observed data. 

We give a more detailed description of the sampling steps that 
update the augmented data processes. The method involves pro- 
posals that change the dimension of the state vector (v, (, s, 4). In 
our implementation, these steps are always realized so that there is 
an identical one-to-one correspondance between the current state 
(v, , s, ), w), augmented with a random proposal w of appropri- 
ate dimension, and the new state (v*, *, s*, 4*). When updating 
the augmented processes, the acceptance ratio of the reversible 
MCMC is then given by (cf. Richardson and Green 1997) 

-p(Y Iv*, , s*, *) p(v*, *,s*,4)* ) x S 0. (A 2) 

The first term is the likelihood ratio, which according to expres- 
sion (2) is 1 if the data are in agreement with the proposed process, 
and 0 otherwise (the denominator is always 1 because the current 
process is always concordant with the data). The second term is 
the ratio of the densities (5) under the current and the modified 
augmented processes. The proposal ratio HIp is the ratio between 
the proposal density from the proposed to the current state vector 
and the proposal density of the reverse move. By factorization (1), 
the acceptance ratio associated with latent events in a particular 
family includes only terms concerning the observed data and the 
latent events in that family. 

Next, we give the form of ratio TIp for the three different move 
types: 

(1) update the event times v and (, 
(2) split or combine periods of carriage, 
(3) add or remove periods of carriage. 

Updating the Event Times 
This step is standard because it retains the dimension of state 

vector (v, (, s, 4). In a forward-backward manner, all families 
are run through. In each family, a randomly chosen event time is 
updated with a random-walk scheme, retaining the order of the 
individual's event times. The proposal ratio TI-p reduces to one. 

Splitting/Combining Periods of Carriage 
These steps are constructed to form a reversible pair of jumps 

between parameter spaces of different dimensions. Families are 
handled in a backward-forward manner. For each family, the split 
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or combine move is first chosen with equal probabilities. The 
serotype to be considered is then drawn randomly among the three 
model serotypes. A period of carriage of the chosen serotype is se- 
lected randomly among the current number L of such carriages in 
the family. Let Ac denote the duration of the chosen carriage. The 
carriage is split into two by proposing times t* and t* uniformly 
on the period of the carriage. One carriage of a serotype is thus 
modified in the proposal as two carriages of the same serotype 
and a period of an intervening noncarriage. In a corresponding 
combine step, two consecutive carriages of the same serotype are 
proposed to be combined; let there be L* such pairs. The proposal 
ratio of the split move reduces to IIp = (L/L*) X (A2 /2). The 
acceptance ratio is given by A.2, and that of the opposite move 
by the inverse of A.2. In addition, there are some modifications 
concerning the first and the last periods of carriage during interval 
[2,60]. 

Adding/Removing Periods of Carriage 
Splitting and combining carriages is not enough to ensure the 

irreducibility of the sampling algorithm. We need also a reversible 
pair of moves that add and remove periods of carriage. In case of 
a single serotype only, these jumps are completely analogous to 
the split/combine moves, now applied to periods of noncarriage. 
As there are three serotypes in the model, slight modifications 
are needed. In the adding step, a period of noncarriage is first 
chosen randomly among L such periods. The start and end points 
of a new carriage are then drawn uniformly from that interval of 
length As. The associated serotype is chosen randomly among 
the three model serotypes (ns = 3). In the corresponding remove 
step, a carriage to be removed is chosen randomly among the L 
periods of carriage. The proposal ratio of the adding step reduces 
to IIp = ns x (A\2/2). The acceptance ratio is given by A.2, and 
that of the opposite move by the inverse of A.2. There are again 
some modifications concerning the first and the last periods of 
noncarriage during interval [2, 60]. 

[Received May 1999. Revised June 2000.] 
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