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EDITORIAL AND ANNOUNCEMENTS 

EDITORIAL 

Actuarial Software Packages: a Chance and a Challenge 

Actuaries working in non-life insurance know very well how long is the road 
from theory to practical application. In other words, how difficult it is to put 
mathematical methods and models to practical use. Here are just some of the 
difficulties involved: time pressure; the available data are incomplete and/or 
inexact; real life problems tend to be complex, " d i r t y "  and difficult to fit into 
the strict corset of a mathematical model; practical actuaries usually have little 
time for research and hardly get around even to following passively the new 
developments in actuarial science by reading the relevant literature. This means 
that an actuary working in practical insurance has to fulfill high demands. He 
is constantly required to bridge the considerable gap between correct scientific 
methodology and the practical needs of the insurance business. He ought to 
have large practical experience, profound knowledge in risk theory and non-life 
insurance mathematics, and, last but not least, be an expert in numerical 
methods and programming. This last point especially is not to be found among 
the first preferences and interests of an actuary. Although most actuaries are 
accustomed to using a computer as a technical aid and to writing their own 
programmes, the programming work for implementing a sophisticated mathe- 
matical method is in general very time consuming. Hence new advanced 
actuarial methods are often rejected for the simple reason that the time 
required for the programming is considered to be too much. This is where 
suitable actuarial software packages would bring welcome relief. 

Just a few years ago, software packages did not exist in the field of non-life 
mathematics. Only recently have things started to improve. The first actuarial 
software packages have come onto the market, especially in the fields of claims 
reserves, credibility theory and calculation of total claims distributions. Such a 
development is only to be welcomed. A look across the fence to related fields 
shows that suitable software packages are likely to have a substantial stimulat- 
ing impact on applying theoretical results in practice. In classical statistics, for 
example, methods such as general linear models or time series analysis are 
nowadays widely used in practice, e.g. in natural science, economics and 
medecine. The basic theory was already developed in the fifties (linear models) 
and in the sixties (time series). But the breakthrough in practice only happened 
some fifteen years later with the availability of statistical software packages. In 
financial mathematics, the Markowitz approach, one of the bases of modern 
portfolio theory, goes back to 1952. The famous CAPM-relation (capital asset 
pricing model) was discovered in the mid sixties. But only in recent years have 
these theories begun to establish themselves in the practical routines of banks, 
financial institutions, and insurance companies. One of the reasons for this 
ASTIN BULLETIN, Vol. 19, No. 2 



128 EDITORIAL 

time-lag is that well-tested computer software with fast and efficient numerical 
algorithms, carrying out the numerous calculations within the required short 
period of  time, only appeared on the market a relatively short time ago. 

It is certain that software packages can only relieve the actuary of  a part of  
his programming. The necessary data have first to be selected, prepared and 
put into a given format. It is also certain that practical problems in non-life 
insurance are often individual and specific. It is therefore argued that standard 
software is of  limited use. I agree with this. But is it not equally true for the 
related fields mentioned above, where software packages are already widely 
used? In any case, it seems to me, that well tested computer programmes in the 
field of actuarial mathematics can only be an advantage to the actuarial 
community. They are a chance for the practitioners to apply more mathematics 
and to put more sophisticated methods and models to use. Furthermore, 
certain standards will be set, which should have a positive effect on the overall 
professional level. One condition of  such software being used by a larger group 
of  users is, however, that the input-output-interfaces are well organised and 
that the programmes are user-friendly. There is also a great danger connected 
with such software packages: they can be used in the wrong way. A glance at 
the related fields mentioned above shows what nonsense often results if such 
packages are used as a magic black box by non-professionals. A profound 
knowledge of the underlying theories and implications are indispensable to 
make the best use of  such packages for practical purposes. Hence they are also 
a challenge to the actuary to keep his mathematical knowledge up to date. 

ASTIN should be the breeding place for the interaction between sound 
theoretical thinking and practical application. One of Our targets is to support 
all activities with the aim of  putting mathematical models to practical use. In 
connection with actuarial software, this could mean t.h~, ,~ AST1N promotes the 
spread of knowledge about such products among the actuarial community. A 
first step in this direction was the decision of the ASTI .N.Committee in 1987 to 
establish an actuarial software library (see IAA Bulletin Nr. 6, p. 19). The 
editors of  the ASTIN Bulletin are also prepared to supplement the Book 
Reviews column with Software Reviews provided they can find persons willing 
to write such reviews. Should more be done? One could, for example, consider 
selling advertising space in the ASTIN Bulletin to the suppliers of  such 
software. Would it be an idea for the local ASTIN groups to organise from 
time to time a demonstration of and discussion on actuarial software? Any 
suggestions as well as any opinions coming from our readers will be welcomed 
by the editors. 

ALOIS GISLER 



OBITUARY 

JEAN HAEZENDONCK 

1940-1989 

Wednesday April 26, 1989 Prof. Dr. JEAN HAEZENDONCK died suddenly. JEAN 
M. HAEZENDONCK was born on May 8, 1940 in Vilvoorde (Belgium). He 
studied mathematics at the "Universit6 Libre de Bruxelles" (U.L.B.). He 
continued his mathematical studies in Paris under the guidance of Prof. Dr: 
NEVEO and in 1969 he obtained his Ph.D. at the "Vrije Universiteit Brussel" 
(V.U.B.). He was professor of probability theory at the "Universitaire 
Instelling Antwerpen" (U.I.A.) and extraordinary professor at the V.U.B. At. 
the U.I.A. he founded an active research group working in risk theory and 
insurance problems. He organised several international meetings and was one'  
of the founders and thriving forces of Insurance Mathematics and Economics. 
He was one of the exceptions who didn't have but friends. Many of us will 
remember him as a perfect gentleman appreciated very much by all of his 
former mathematical and or actuarial students. We will miss him both as a 
colleague and as a dear friend. His wife and two children were a genuine 
support for his scientific work. We wish them strength. 

M A R C  J. GOOVAERTS 

4 ~b 
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ARTICLES 

STOCHASTIC INTEREST RATES AND AUTOREGRESSIVE 
I N T E G R A T E D  MOVING AVERAGE PROCESSES 

BY JAN DHAENE 

Instituut voor Actuari6le Wetenschappen, K.U.Leuven, Belgium 

ABSTRACT 

A practical method is developed for computing moments of  insurance func- 
tions when interest rates are assumed to follow an autoregressive integrated 
moving average process. 

K E Y W O R D S  

ARIMA (p, d, q)-processes; stochastic interest rates; moments of insurance 
functions. 

I. INTRODUCTION 

In most of  the insurance literature the theory of  life contingencies is developed 
in a deterministic way. This means that mortality happens according to an a 
priori known mortality table and that the interest rate is assumed to have a 
constant value. Nevertheless, the traditional theory of  life contingencies 
implicitly deals with the stochastic nature of  mortality and interest rates in that 
conservative assumptions are taken. 

A first step forward was to consider the time until decrement as a random 
variable, while the interest rate was assumed to be constant. This approach is 
followed in BOWERS et al. (1987). This (as one could call) "semi-stochast ic" 
approach contains the traditional theory in that most actuarial functions can 
be considered as the expected values of certain stochastic functions. 

It is only since about 1970 that there has been interest in actuarial models 
which consider both the time until death and the investment rate of return as 
random variables. 

BOYLE (I 976) includes the stochastic nature of  interest rates in assuming that 
the force of  interest is generated by a white noise series, that is forces of interest 
in the successive years are normally distributed and uncorrelated. 

In the approach of  POLLARD (1971) the force of interest in a year is related 
to the force of  interest in the preceding years by using an autoregressive process 
of  order two. 

PANJER and BELLHOUSE (1980) and BELLHOUSE and PANJER (1981) develop 
a general theory including continuous and discrete models. The theory is 
further worked out for unconditional and conditional autoregressive processes 
of  order one and two. 

ASTIN BULLETIN, Vol. 19, No. 2 



132 JAN DHAENE 

GIACCOTTO (1986) develops an algorithm for evaluating present value 
functions when interest rates are assumed to follow an ARIMA (p, 0, q) or an 
ARIMA (p, I, q) process. 

The goal of this study is to state a methodology for computing in an efficient 
manner present value functions when the force of interest evolves according to 
an autoregressive integrated moving average process of order (p, d, q). As will 
be seen, the method developed here will require less computing time than 
Giaccotto's method for autoregressive integrated moving average processes of 
order (p, 0, q) or (p, I, q). 

It should be remarked that we assume that mortality and interest rates 
posses a certain stochastic nature and that only accidental fluctuations in this 
mortality and interest rates are considered. Other fluctuations due to mortality 
improvement, underwriting practice, the choice of a wrong interest model, 
investment strategy and so on are not considered here. 

2. G E N E R A L  T H E O R Y  

The theory developed in this section is mainly based on the work of PANJER 
and BELLHOUSE (1980) and BELLHOUSE and PANJER (1981). 

Let D t be the stochastic variable denoting the discounted value of one dollar 
payable in t years (t = 0, 1, 2 . . . .  ). The stochastic variable X t defined by 

(1) D, = exp ( - X t )  t = 0, 1, 2 , . . .  

can be interpreted as the force of interest over the first t years. 
If 6; is the force of interest in the i-th year (i = 1, 2, . . . ) ,  then 

,V0=0 
I 

(2) X, = 2 6i t = 1 ,2 , . . .  
i=1  

It is assumed that X~ is normally distributed with mean p( t )  and variance- 
covariance function a (t, s). The variance of Xt is equal to a (t, t) and is denoted 
by a2 (t). 

It is immediately seen that E[Dt k] and E[D~Dts] are the moment generating 
functions of the normal distributed variables kX,  and ( kX ,+  lXs) calculated for 
the value ( -  1). So one finds that 

[ '~2 ] 
E[D~] = exp - k p ( t )  + - -  a2( t )  t , k  >_ 1 

2 
(3) 

and 

(4) 
k2 

E[Dtk Dts] = exp - k ~ ( t ) - l l t ( s )  + - -  a2(t) + 
2 

,2 ] 
+ -- a Z ( s ) + k l a ( t , s )  

2 
t , s , k , l >  1 
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PANJER and BELLHOUSE (1980) proved that when the X, are normally 
distributed, the moments of and the correlation coefficients between interest, 
annuity and insurance functions depend upon E[Dt k] and E[DtkDts]. For a 
whole life term insurance, for instance, the moments of the stochastic va.riable 
dx are given by 

(5) E[d~.] = 2 , - '  I qxE[Ot ~] 
t = l  

The second moment for the life annuity E, is given by 

(6) E[~I  = ,lqx Z Z E[DrDsl 
t=l r = l  s = l  

Given a model for the yearly forces of interest 6,, the problem is to find u(t) ,  
az( t )  and a( t , s )  for t , s  >_ 1. 

3 .  A U T O R E G R E S S I V E  I N T E G R A T E D  M O V I N G  A V E R A G E  P R O C E S S E S  

Assume that the stochastic model governing future forces of interest 6, 
(t = l, 2, ...) belongs to the class of ARIMA (p, d, q)-processes. Then 6t is 
generated by the stochastic difference equation 

(7) ~7d6t = f l + b l ( ~ 7 d 6 t _ l - - f l ) - J - b E ( ~ T d 6 t - 2 - - , U )  -[- . . .  + b p ( ~ 7 d 6 t - p - - f l )  

+ ~ , - c l ~ , - i -  c2~,-2. . .  -Cq~,_q 

where 7 d stand for the d-th backward difference operator: 

(8) 7 ~ 6 ,  -= 76, = 6 ,  - 6 , _  i 

(9) 7d6, = v (vd-~6 , )  d = 2, 3 . . . .  

By convention we set 7°6t -- 6t. Further ~t is a normal white noise series with 
mean zero and variance cr 2. Equation (7) can also be written as 

(10) 7d6, = a+bl  ~7d6t-I"[- . . .  + b p  ~ 7 d 6 t _ p " [ - ~ t - - C l ~ t _ l  - . . .  - - C q ~ t _  q 

with a given by 

P 

(11) a = /1(1 - 2 bi) 
i = l  

Equation (7) indicates that the process describing dr will not necessary be 
stationary. This means that the force of interest 6, will not necessary have a 
constant unconditional mean, variance and autocovariance with any 6,-k for 
t 4: k. The d-th difference of 6, however follows a stationary autoregressive 
moving average process. This means that the series describing the interest rate'. 
exhibits homogeneity in the sense that, apart from local level, or perhaps local 
level and trend, one part of the series behaves much like any other part. 
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In what follows it will implicitly be assumed that the past (p + d) forces of 
interest O 0, 6_ ~ . . . . .  61-p-d and the past q random disturbances ~0 . . . .  , ~ - q  
are known. Means, variances and covariances will always be considered as 
conditional on 3o, 6-1 . . . . .  6 t - p - d ,  CO, ~ - 1 , ' ' ' ,  ~ l - q '  Remark that if Jt fol- 
lows an ARIMA (p, d, q)-process then the Xt given by (2) are normally 
distributed so that the theory of section 2 can be used. 

The variable Y~ is defined as 

(12) Y, = 61_p_d+J2_p_a+ .. .  +6,  t _> l - p - d  

Further we set 

(13) Y - p - d  = 0 

It follows immediately that 

(14) 6 , =  Yt -Y, -~  t >_ l - p - d  

So if fi, follows an ARIMA (p, d, q)-process given by (10) with 
J0, . . . ,  6 t - p - a ,  ~o . . . . .  ~ _ q  known then Yt follows an ARIMA (p, d +  1, q)- 
process given by 

(15) 7 d+l Y~ = a + b l  7 d+l Y~_l + .. .  +bp 7 a+~ Yt_p+~t-Cl~t_l- . . .  - - C q ~ t _ q  

with Y - p - d ,  Y l - p - d  . . . . .  Yo and ~0 ,~- i  . . . . .  ~ l - q  known. 
Now it is easy to see that the ARIMA (p, d+  1, q)-process describing Y~ can 

be written as an ARIMA (l, 0, q)-process with l = p + d +  I : 

(16) Yt  = a + 0 !  Y t - i  + . . .  + O i Y t - t + ~ t - c l ~ t - i -  . . .  - C q ~ t - q  

with 4'!, 02, .- . ,  0t suitable functions of bl . . . .  , bp. 

Examples 

(1) If Jt follows an ARIMA (p, 0, q)-process then 

(17) J, = i . t + b l ( 6 t _ l - l t ) +  . . .  + b p ( 6 t _ p - U ) + ~ t - C l ~ t _  I - . . .  - C q ~ t _  q 

Yt c a n  then be written as an ARIMA ( p +  1, 0, q)-process given by 

(18) Y, = a + O t  Y t - i  + . . .  -{- Op+l Y t - p - I + ~ t - ¢ l ~ t - I  - . . .  - C q ~ t - q  

with 

(19) 

and 

(20) 

with b0 

P 

a = / t ( 1  - 2 bi) 
i=l  

0 i  = b i -  bi-  i 

= - I  and bp+l = 0 

i = I . . . . .  p + l  
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(2) I f  6, follows an A R I M A  (p, 1, q)-process then 

(21) V6, = f l + b l ( ~ T d i t _ l - f l ) +  . . .  + b p ( ~ 7 ~ t _ p - l t ) + ~ t - C l ~ t _  I - . . .  - C q ~ t _ q  

Yt can then be writ ten as an A R I M A  ( p + 2 ,  0, q)-process given by 

Yt = a+Ol  Yt-i + . . .  q -~p+2 Y t - p - 2 - { - ~ t - C l ~ t - i  - . . .  --Cq~t-q l > 1 (22) 

with 

P 

(23) a = /~(1 - Z bi) 
i=1  

and 

(24) 

with b_ i 

Oi = bi-2bi- i+bi-2  i = 1 . . . . .  p + 2  

= bp+ 1 = bp+ 2 = 0 and b0 = - I  

In the next l emma we derive an expression for the Yi in terms o f  known 
values plus a function of  future error  terms ~t. 

L e m m a  I 

Assume that  Y, moves  according to an A R I M A  (1, O, q)-process given by (16) 
and with Yo, Y- i  . . . . .  Yi - t  and ~ 0 , ~ - i  . . . . .  ~ l -q  known.  The  Yt can be 
writ ten as 

1 i - I  

(25) Y' = E Yi- ,  Z 
i =  I j =  max (0, i -  t) 

q i - I  

- E ¢i-q ~] 
i =  I j =  rnax (0, i -¢)  

where the coefficients ai and fli are given by 

(26) ao = 1, 

rain (i. I) 

(2'7) a,= Z O.iai-J 
j=l 

min (i. q) 

(28) fl, = a i -  ~ Cjai- j 
j = l  

{ ~ l - j ( l j - i +  t 

t - I  t - I  

C q - J a J  - i + t  "}- a E 12i "}- E f l i C t - i  
i = 0  i = 0  

fl0 = 1 

t > _ l  

i > _ l  

i k i  

P r o o f  

For  a rb i t ra ry  cons tants  ai (i = 0, 1 . . . . .  t -  I) we find for  t >_ I 

t-- 1 I t+j-- I q t + j -  I t-- 1 

Z o,Y,-, = 2 oj 2 Z cj Z + 2 
i=O j = l  i=j j = l  i=j i = 0  

(a + ~,_ i) ai 
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By interchanging the order 
equation and by using the a~ 

of summation in the second member of this 
and ,Oi defined in (26), (27) and (28) we find 

t+l- I min (i, ~ t+q- 1 mm(i, q) 

Yt = 2 Yt-i ~ Ojl2i-j- ~ ~t-i 2 cj(zi-J 
i=t .j=i-t+ 1 i=t j=i-t+ 1 

t-I t-I 

+ a  Z a i +  2 ,#i¢,-i 
i=O i=0  

After some straightforward calculation (25) is obtained. 

Remark that the first, the second and the thirth term in the right member of 
(25) are constants while the fourth term is stochastic. 

In the following theorem expressions are derived for computing u(t),  0"2(t) 
and a(t ,  s). 

Theorem 1 

If Y, follows an ARIMA (l, 0, q)-process given by (16) then It(1.), 0"2(/) and 
a(t,  s)  can be computed by 

I / q 

(29) /t(t) = a -  Y 0 ( I -  Z cki) + 2 0 i l t ( t - i )  - Z c i q ( t - i )  t > 1 
i = l  i = l  i=l 

where lt(O) = 0 a n d / l ( - i )  = - ( 6 0 +  ... + 61-i) i= l . . . .  , l -  l 

and r/( i)= f 0~i i>0i< 0 

t - I  

(30) 0"2(t ) = 0"2 ~ ,O~ = 0"2(1._ 1/+,O,-~2 t >_ l 
i = 0  

with 0"2(0) = 0 and the fli defined in (26), (27) and (28). 

(31) a(t,  s)  = 0"2 ~ fi',-i,/3s-i t > s >_ 1 
i=1 

Proof  

From (2), (12) and (16) we obtain 

X , =  - Y o + a + ¢ t Y , _ l +  ... +4 ,1Y,_ /+~ , - c t~ ,_ l - . . . - -Cq~ t_  q t>__ 1 

Taking the expected value of both members gives (29). 
(30) and (31) follow immediately from (25). 

The results obtained in lemma I and theorem 1 become much simpler if Y, 
follows an ARIMA (1, 0, 0)-process. The expressions to compute /t(t), O2(I ') 
and a(t ,  s)  for this case are stated in the following theorem. 
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Theorem 2 

If Y, follows 
C I -~  C 2 = . . .  = Cq 

I I 

(32) #(t)  = a -  Yo(l - 2 0') + ~ O,t l( t - i )  
i=1 i=1 

where ~(0) = 0 a n d / l ( - i )  = - ( 6 0 +  ... 6~-i) 

(33) 

an ARIMA (1, 0, 0)-process given by (16) 
= 0 then / l ( t ) ,  ~r2(t) and a( t , s )  can be computed by 

(34) 

The proof follows immediately from theorem 
ci (i = 1 . . . . .  q). 

t > _ l  

i=  1 , . . . , 1 -  1 

t - I  

0 .2 ( , )  = 0.2 
i=0  

with 0.2(0) = 0 and the ai defined in (26) and (27) 

a(t ,  s )  0 .2 = a t _ i a s _  i I > s ~ 1 
i=1 

with 

1 by deleting the terms in 

4. REMARKS 

The method described by GIACCOTTO (1986) for A R I M A ( p ,  0, q)- and 
A R I M A ( p ,  1, q)-processes requires for the computation of  a2( t )  values of 
xi(t)  and yi(t)  (i = 1, . . . ,  t), which can be computed recursively but that 
depend on t. In the method developed here for computing a2(t), the algorithm 
is written so that the ar  and fli-values are independent of  t. 

We remark from theorem 1 and 2 that a2( t )  and a(t, s) are independent of 
the past forces of interest 60,6-1 . . . . .  6~-t. So it follows that when the same 
interest rate model is used from year to year with only the past l forces of  
interest and the past q disturbances changing, the a2( t )  and a(t, s) remain the 
same. Only the u ( t )  will have to be recomputed every year. 

5.  E X A M P L E  

To use our results the following procedure should be followed: 

I) Choose an ARIMA (p, d, q) interest rate model and estimate the parame- 
ters involved. (see e.g. Box and JENKINS (1970)). 

2) Write Y, as an ARIMA ( p + d +  1,0. q)-process. 
3) Compute the ai's and the fl~'s. 
4) Compute 
5) Compute 

To illustrate 
interest rate 

61 = 

u(t), a2(t), a(t,s). 
the moments of  actuarial functions. 

the procedure assume that we have the following model for the 

0 .08+0 .6 (6 ,_~ -0 .08 ) -0 .3 (6 ,_2 -0 .08 )+~ t  t >_ I 
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where ~t is a white noise series with variance 0.0016 and 60 = 0.06 and 
6_ I = 0.07. 

Using (18), (19) and (20) Yt can be written as 

Yt = 0.056+ 1.6 Y , - n - 0 . 9  Yt_2+0.3 Y t _ 3 + ~ t  t > I 

The at, ~(t), crz(t) and a(t, s) can then be computed by using theorem 2 and 
formula (26) and (27). 

In table 1 a~, I~(t), a2(t), E[D~] and Var [Dt] are given for t = 0, I . . . . .  5. In 
the last column the discounted value of I $ payable in t years computed with a 
constant force of  interest equal to the unconditional expected value of  6, is 
given. In the example described here the stochastic approach leads to higher 
single premiums. This fact could be expected by observing 6o and 6_ n. 

TABLE I 

MEAN AND VARIANCE OF A PAYMENT OF I ,~ DUE IN t YEARS 

t a t # ( t )  a2(t)  E[D,] Var [D,] exp ( - 0 . 0 8  t) 

0 1 0 0 I 0 I 
1 1.6000 0.0710 0.0016 0.9322 0.0014 0.9231 
2 1.6600 0.1516 0.0057 0.8618 0.0042 0.8521 
3 1.5160 0.2347 0.0101 0.7948 0.0064 0.7866 
4 1.4116 0.3163 0.0138 0.7339 0.0075 0.7261 
5 0.3964 0.0170 0.6784 0.0080 0.6703 
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T H E  CLAIMS RESERVING PROBLEM IN NON-LIFE INSURANCE:  
SOME S T R U C T U R A L  IDEAS 

BY ELJA A R J A S  

University of Oulu, Finland 

A B S T R A C T  

We present some relatively simple structural ideas about how probabilistic 
modeling, and in particular, the modern theory of  point processes and 
martingales, can be used in the estimation of claims reserves. 

1. INTRODUCTION 

The claims reserving problem, or the run off  problem, has been studied rather 
extensively. The monograph by TAYLOR (1986) covers most of the develop- 
ments so far, and, interestingly enough, creates a taxonomy to the models 
introduced. The booklet of VAN EEGHEN (1981) has a somewhat similar aim. 
Because of these recent surveys we do not intend to describe " t h e  state of the 
a r t "  in this area but confine ourselves to a few remarks. 

There has been a clear tendency away from deterministic "account ing 
methods"  into more descriptive probabilistic models. Early works in this 
direction were BOHLMANN et al. (1980), HACHEMEISTER (1980), LINNEMANN 
(1980) and REID (1981). Of more recent contributions we would like to 
mention particularly PENTIKAINEN and RANTALA (1986), and three papers 
dealing with unreported (IBNR) claims: NORBERG (1986), ROBBIN (1986) and 
JEWELL (1987). 

Most authors today tend to agree that there are important benefits from 
using structurally descriptive probabilistic models in insurance. However, there 
appears to be a new problem : With the increased realism of  such models, many 
papers introduce, very early on, a long list of special assumptions and a 
correspondingly complicated notation. A reader may then not be able to see 
what ideas are really important and characteristic to the entire claims reserving 
problem, and what are less so, only serving to make the calculations more 
explicit. It would be more pleasant if the modeling could be started virtually 
without any assumptions, and then only adding assumptions as it becomes 
clear that advancing otherwise is difficult. We think that the modern theory of  
stochastic processes comes here to aid, and try to illustrate this in the 
following. We are mainly using " the  martingale approach to point processes", 
as discussed e.g. in BRfZMAUD (1981) and KARR (1986). However, apart from 
some calculations towards the end, no previous knowledge of this theory is 
really needed to understand the paper. 
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The emphasis of  this paper is in the conceptual analysis of  Section 2 and the 
structural results of  Section 3. Section 4 provides an illustration of how the 
actual stochastic calculus, in a simple form, can be applied to obtain more 
explicit results. 

We want to stress that this paper contains very little that could be called 
"new resul ts" :  it is more important  to us here how we arrive at them. 

2. CLAIMS, INFORMATION AND SETTLEMENT 
AS MARKED POINT PROCESSES 

Considering a fixed accident year, say the unit interval (0, l], let the exact 
occurrence times of the accidents be Ti* _< T~ _< ... An accident which occurs 
at time T/* is reported to the company after a random delay D i so that its 
reporting time is R~' = T i * + D i .  We denote the ordered reporting times (order 
statistics) by TI < T2 < .. . ,  assuming for simplicity that they are all different. 

We follow the convention that the accidents are indexed according to the 
order in which they are reported to the company,  i.e., the accident reported at 
Ti is called " the  i th accident".  Because of the random delay in reporting this 
indexing is often different from the one that refers to the occurrence times. 

In practice the number  of  accidents in a given year of  occurrence is of  course 
finite. We denote this (random) number by N. As a convention, we let the 
sequence (T~) be infinite but define T,v+l = TN+2 = ... = oo. 

Let us then assume that every time a new accident is reported to the 
company,  this will be followed by a sequence of "handl ing  t imes".  These 
handlings could be times at which claim payments are paid, but also times at 
which the file concerning the accident is updated because of  some arriving new 
information. Supposing that the i a' accident has altogether Ni handling times 
following its reporting, we denote them by 

(2.1) Ti = Tio < Til < Ti2 < . . .  < Ti, N,. 

Again, we let Ti, N,+ t = Ti, u,+2 = ... = oo. 
Next we need to specify the event that takes place at To.. If  a payment  is 

made then, we denote the amount  paid by X 0. I f  nothing is paid at T 0 we 
simply let X 0 = 0. Similarly, it is convenient to have a notation for the 
information which is used for updating the accident file. Let I~0 be the 
information which becomes available when the accident is reported, and let I o 
be the new information which arrives at handling time T 0. If there is no such 
information, we set I o = 0, signalling " n o  new informat ion" .  In particular we 
set X 0 =  0 and I 0.= 0 whenever T O.= oo. 

Our analysis will not depend on what explicit form the variables I 0 are 
thought to have. They could well be strings of  letters and numbers, reflecting, 
for example, how the accident is classified by the company at time T O. Iio will 
often determine what was the delay in reporting the i rk accident. If  further 
payments  are made after the case was thought in the company to be closed, it is 
probably convenient to consider the arrival of  the first such claim as a new 
reporting time, also initiating a new sequence of  handlings. 
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The above definitions give rise to a number of stochastic processes which are 
of  interest in the claims reserving problem. The first definitions will be accident 
specific, after which we obtain the corresponding collective processes by simple 
summation. 

We start by assigning the payments X~j to the handling times T U. In this way 
we arrive, for each i, at a sequence (To., Xo)j~o, where T~ = Ti0 < Ta < ... 
(with strict inequalities if the variables are finite) and X o > O. Thus 
(To., Xu)j~ o can be viewed as a marked point process (MPP) on the real line, 
with non-negative real " m a r k s "  X O. We call it the payment process. Equiva- 
lently, of course, we can consider the cumulative payment process ( X i ( t ) )  
defined by 

(2.2) Xi (t) = 2 XU" 
{j:Tq~ t} 

Clearly, Xi ( t )  represents the total amount  of  payments (arising from accident 
i) made before time t. The function t~-~Xj(t) is an increasing step function, 
with Xi( t  ) = 0 for t <  T i (=  reporting time) and Xi ( t )  approaching, as 
t ~ oo, the limit 

(2.3) X~(oo) = ~ Xu, 
jmo 

which is the total compensation paid for the i u' accident. Similarly, 

u~(t) = x , (oo) -  x~(t) 

(2.4) = 2 X,j 
{2: To > t} 

represents the total l iabil i ty at t coming from future payments, with 
Ui ( t )  = Xi(oo) for t < Ti and Ui ( t )  decreasing stepwise to 0 as t--, oo. 

We remark here that, in order to keep this simple structure, we do not 
consider explicitly the effects of interest rate or inflation. This means, among 
other things, that the future claims must be expressed in standardized (deflated) 
currency. 

Second, we can consider the sequence (Tu, Io.)2 ~ o and call it the information 
process for the i u' accident. This, too, is an MPP, with mark IL/taking values in 
some conveniently defined set. As mentioned earlier the form of the marks is 
not restricted in any real way" It will suffice, for example, that there is a 
countable number of possible marks. 

Our third MPP is obtained by combining the marks of the other two, into 
pairs (Xij,lij). We call (To,(Xij ,  lu))j> o the settlement process of the i th 
accident. 
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Considering finally all accidents collectively, we obtain the corresponding 
collective payment process, information process and settlement process by a 
simple summation (superposition) over the index i. However, we do not need a 
separate notation for these MPP's and will therefore confine ourselves to the 
cumulative payment process 

(2.5) X . ( t )  = ~ X,( t )  
i 

and the liability process 

(2.6) U. (t) 2 U, (t). 
i 

Observe that it is not necessary to restrict the summation to indices i satisfying 
i <  N because, unless this is satisfied, X, ( t )  = Ui( t )  -- 0 for all t. 

3. CLAIMS RESERVES AS A P R E D I C T | O N  PROBLEM 

The estimation of  the claims reserves can now be viewed as a prediction 
problem where, at a given time t representing " the  present",  an assessment of 
the future payments is made on the basis of  the available information. Most of 
our mathematical considerations do not depend on whether the assessment 
concerns the payments from an individual i th accident, or all accidents during 
the considered year of  occurrence. Because of this we will often simply drop the 
subscript ( " i "  or " - " )  from the notation. Thus, for example, U ( t )  can be 
taken to be either the accident specific liability Ui(t) or their sum U. (t).  

The role of the information process above is to provide a formal basis for the 
assessments made. This is done most conveniently in terms of  histories, i.e., 
families of a-fields in the considered probability space, which correspond to the 
knowledge of  the values of the random variables generating them. In particu- 
lar, we let the a-field 

(3.1) "~-t  N = tY{(Tij,lo,Xo)i>_ ,,j~0 : T~/< t} 

respresent the information carried by the pre-t settlement process arising from 

all claims. (For  background, see e.g. KARR (1986), Section 2.1). For complete- 
ness, we also allow for the possibility of  having information which is exogenous 
to the settlements. Writing G for such pre-t information, we shall base the 
estimation of  the future payments on the history (3 , ) ,  with 

(3.2) ~r = .:ft N V ~'t '  

In an obvious sense, the most complete assessment at time t concerning X(ov), 
the total of  paid claims, is provided by the conditional distribution 

= I .7 , ) .  
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When t varies, these conditional distributions form a so called prediction 
process (~i) (see e.g. NORROS (1985)). Here, however, we restrict our attention 
to the first two moments of u~. Assuming square integrability throughout this 
paper, we write 

(3.3) M, = E",(X(oo)) (= f xlt,(dx) ) 

and 

(3.4) V, = Var :'(X(oo)) 

We now derive some fundamental properties of (Mi) and (VI). From now on 
we also write Xt and Ut instead of  X(t) and U(t). 

Having introduced the idea that ,7, represents " informat ion which the 
company has at time t " ,  it is of course the case that the payments already 
made are, at least in principle, included in such knowledge. Formally this 
corresponds to the decomposition of  X~o into X, and Ut (see (2.4)), i.e., 

(3.5) Xo~ = X,+ U,, 

where X, is determined from ...~ (i.e., ,,a-measurable). Therefore, the (.F~)- 
based prediction of  Xo~ is equivalent to predicting Ut. 

CONDITIONAL EXPECTATIONS. Let us first consider the expected values M t. As 
a stochastic process, (M, is easily seen to have the martingale-property: For 
any t < u, 

(3.6) E:'(Mu) = M,. 

Thus, since M, is an estimate of X~o at time t and M u is a corresponding 
updated estimate at a later time u, (3.6) expresses the simple consistency 
principle : 

(PI) "Cur ren t  estimate of  a later estimate, which is based on more 
information, is the same as the current estimate".  

Another way to express the martingale property is to say that the estimates 
(M,) have no trend with respect to t. 

Since Xt is determined from : ,  we clearly have 

Mt = X t + E : ' ( U t )  = Xt+ml. 
def 

Here, the estimated liability at t, 

(3.7) m, = E:'(U,), 
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is a supermartingale, with the "decreasing trend proper ty"  

EJ'(mu) < m, for t < u.  

This follows readily from the fact that the true liability Ut is decreasing in time, 
as more and more of the claims are paid. Unfortunately such a monotonicity 
property is of  little direct practical use because the process (U~) is unobserva- 
ble : Only the differences U , -  Ut = X , -  X,, can be observed, but not the actual 
values of U, or U,. 

The trend properties of  (Mr) and (mr) lead to a crude idea about how the 
reserve estimates should behave as functions of  time. Considering them as a 
time series may therefore be useful. On the other hand, one has to remember 
that the (super)martingale property is quite weak and only concerns the 
(.Tt)-conditional expected values. Thus an apparently downward trend in an 
observed time series could be balanced by a rare but big jump upwards. 

For a more refined analysis, it would be interesting to study (Mt) in terms of 
its martingale integral representation (see e.g. BREMAUD (1981)). The key 
ingredient in that representation is the innovation gains process which deter- 
mines how (M~) is updated in time when ( J , )  is observed. This theory is well 
understood. Unfortunately, however, actuaries seem to have very little idea 
about what properties the updating mechanism should realistically possess, and 
presently there is no detailed enough data to study the question statistically. 
Therefore, a more systematic research effort must wait. 

It is instructive to still consider the differences 

(3.8) M(t ,u)  = M , , - M , ,  t < u .  

By the martingale property (3.6) we clearly have EJ'(M(t ,  u)) = 0. Now, using 
the analogous notation X(t, u ) =  X , , - X  t for the cumulative payments we 
easily find that 

M(t, u) = [X( t ,  u) - E ; , ( X ( i ,  u))]  + [EJo(U, , )  - E ; ' ( U , ) ] .  

The first term on the right is the error in the estimate concerning payments in 
the time interval (t, u]. The second term, then, is the updating correction which 
is made to the estimated liability when the time of  estimation changes from t to u. 
Both terms have .7,-conditional expected value 0. This suggests that it might 
be beneficial in practice to split the estmate into two parts: one that covers the 
time interval to the next update (typically a year) and another for times 
thereafter. 

CONDITIONAL VARIANCES. The variances V t give rise to somewhat similar 
considerations. First observe that, since X, is determined by ._.~'~, the variance V, 
defined in (3.4) satisfies 

(3.9) V r = Var~'-~(U,) = Var"- '(M(t,  ~ ) ) .  
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Thus, if the used estimation method produces also estimates of Vt, the 
observed oscillations in (U~) can be compared with the square root of V,. 
(Warning: Do not expect normality in short time series!) Second, it is 
interesting to note that (Vt) is a supermartingale as well, i.e., 

(3.10) E'"-'(V~,) < V t for t < u. 

This expresses the following intuitively plausible principle: 

(P2) "Measured by the conditional variance, the estimates M t tend to 
become more accurate as time increases and more information becomes 
available". 

To show that (3.10) holds, we first find that 

E"-'(M(t, u) X(u, oo)) = E"-'(M(t, u) E'Z°M(u, oo)) = 0 

so that M(t,  u) and M(u, oo) are uncorrelated. This implies the well known 
additivity property (" Hattendorf's formula", e.g. GERBER (1979)) 

(3.11) Var'T'(M(t, or)) = VarJ '(M(t,  u)) +Var ' ; ' (M(u,  co)). 

On the other hand, 

(3.12) VarJ '(M(u,  co)) = EJ'(Var~o(X~)) = EJ,(V,), 

so that (3.10) follows by combining (3.9), (3.11) and (3.12). 

REMARK. Recall the following well-known result which complements this 
picture: with respect to a quadratic loss function, the conditional expectation 
M t is the optimal estimate of X(ov). More precisely, for any estimate ,Q, of Xoo 
which can be determined from .Y-t (i.e., IQt is .95-measurable), the following 
inequality is satisfied: 

(3.13) E.7,((X _ ~ , ) 2 )  > E z,((X _M, )2)  (= V,). 

KNOWN AND UNKNOWN ACCIDENTS. Finally in this section we divide the 
collective estimate m. t - -  E~'(U t) into two parts depending on whether the 
considered accidents are at time t known (= reported, IBNER) or unknown 
(= not reported, IBNR). 

Let the number of known (= reported) accidents at time t be 

(3.14) N~ = Z llr,~l" 
i 

from future payments is then 2 Uit. Since the The corresponding liability 
i <  N r 

events {T,.< t} are determined by .~, the corresponding .7,-conditional 
estimate is simply given by 
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This formula expresses the intuitively obvious fact that the reserves correspon- 
ding to reported accidents could, at least in principle, be assessed individually. 

If we are willing to make the assumption, which may not be completely 
realistic, that the liabilities Ui, are uncorrelated across accidents given .y,, we 
also have a corresponding equality for variances: 

( 3 . 1 6 )  VarY' ( 2 i  <_ N, Uu) =2Var'/'Uit=Zi< N t i X  N, Vi t"  

Note that although the processes (m~,) and (V,) were above found to be 
supermartingales, the processes defined by (3.15) and (3.16) do not have this 
property. This is because Ni is increasing. 

Considering then the unknown (IBNR) accidents, it is obvious that also their 
number N - N ,  is unknown (i.e., not determined by .~) and therefore the 

liability estimate E'~' ( ~i>u, U~ , ) canno t  be determined " termwise"  a s w a s  

done in (3.15). Therefore the estimate needs to be determined collectively 
for all IBNR-accidents, a task which we consider in the next section. The only 

qualitative pr°perty which we n°te here is that the pr°cess ( E " (  Z,>N, Uil)) 

is again a supermartingale. This is an easy consequence of the supermartingale 
property of (mil), which was established above, and the fact that N, is 
increasing. 

4. AN ILLUSTRATION:  THE ESTIMATION OF IBNR CLAIMS RESERVES 

We now illustrate, considering the IBNR claims reserves, how the mathemati- 
cal apparatus of  the stochastic calculus can be used to derive explicit estimates. 
But we are also forced to introduce some more assumptions in order to reach 
this goal. 

For known accidents, the delays in the reporting times T~ are only important 
in so far as they are thought to influence the distribution of the corresponding 
payment process. For unknown accidents the situation is completely different: 
For unknown accidents the only thing which is known is that if an i '/' accident 
occurred during the considered year and it is still unknown at time t, its 
reporting time T, exceeds t. (Recall the convention that T,. = oo for i > N). 
Therefore, it is impossible to estimate the IBNR reserves individually. A 
natural idea in this situation is to use the information which has been collected 
about other (i.e., known) accidents and hope that they would have enough in 
common with those still unknown. The problem resembles closely those in 
software reliability, where the aim is to estimate the unknown number of  
" b u g s "  remaining in the program. More generally, it is a state estimation or 
filtering problem. 
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It is most convenient to formulate the " c o m m o n  elements" in terms of  
unobservable (latent) variables whose distribution is updated according to the 
information 9-~...~, has thereby an indirect effect on the behaviour of IBNR 
claims. In the following we study the expected value and the variance of  the 
IBNR liability. The presentation has much in common with JEWELL (1980, 
1987), and ROBBIN (1986), and in particular NORBERG (1988). 

Since the marked points belonging to the settlement process of  an unknown 
accident are all " in  the future" ,  most considerations concerning the reserves 
will not change if the payments are assigned directly to the reporting time T,.. 
This is possible because we, as stated before, don' t  consider the effects of  
interest rate or inflation. This will simplify the notation to some extent. We 
therefore consider the MPP (T,., Xi) , where X; = Xi(ov ) is the size of  the claim 
caused by the i r;' accident. The corresponding counting process is 
{Nt(A); t > 0, A c Rt}, where 

(4.1) Ni(A) = Z I{T~t,X,~AI 
i 

counts the number of  accidents reported before t and such that their liability X; 

is in the set A. (Note that N r (A) cannot in general be determined from .y-~ since 
the Xi's counted before t may also include payments made after time t. Also 

observe the connection to (3.14): Nt = N~(RI)) .  

For the purpose of using the apparatus of the stochastic calculus we start by 
writing the total liability from IBNR claims as an integral (pathwise): 

I = I = 
(4.2) 2 Ui, = ~ Xi = x dN=(dx) . 

i>N~ {i:Ti>t} s = t  . r=0 

We also let 

I I  U(t, u; A)  = 2 X; = x dN=(dx),  
{i:t<Tt~u, XieA} s=t xEA 

so that ~2. U , =  0( t ,  co; RI). 
i> N t 

Adapting the idea from NORBERG (1986) we now suppose that the above 
mentioned latent variables form a pair (~, O) and are such that q~ can be 
viewed as a parameter of  the distribution of the process (Nt), formed by the 
reporting times, whereas O parametrizes the distribution of  the claim sizes (X/). 
(Note that this simple model is " s t a t i c "  in the sense that the latent variables do 
not depend on time. This assumption could be relaxed, for example, by 
introducing an autoregressive scheme of state equations, as in the Kalman 
filter). There are no restrictions on the dimension of (~, O). On the other hand, 
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these parameters are assumed to be sufficient in the sense that if q~ and O, 
together with some initial information J0 ,  were known, no information from 
.Y-t would change the prediction concerning the IBNR claims after t. Thus the 

estimates of q~ and O which are obtained from .9",, or more exactly, their 
conditional distribution given.Y-t, can be said to include " tha t  part of 
J r in fo rmat ion  which is relevant in the IBNR-problem" 

The formal expression of this idea is as follows. Fixing t (" the present") we 
consider times u > t and define 

(4.3) .Y,, = ~o  v o-{~, O} v a { ( T , ,  X 3 ;  t < 7;,. _< u}. 

Thus .-~oo represents the information contained collectively in .~0, the parame- 
ters • and O, and all post-t payments, cf. KARR (1986), Section 2.1. We then 
assume the conditional independence property 

(4.4) --~o~ U J~t, 
Jov a;q~, O} 

stating that 3,  is irrelevent for predicting the post-t payments provided that 
J-0 and (q~, O) are known. 

Let the (ff ,)- intensity of counting process (N,,(A)),  ~ t, be (~,(A)), ,>t,  with 
A c R t. The probabilistic interpretation of 2,,(A) is that 

(4.5) i , (A )du  = P(dN, , (A)  = !1 ...~,,_) = P ( T i e  du, X, eA [ ~._) 

on the interval ~_l  < u < Ti. On the other hand, ~,(A) can obviously be 
expressed as the product 

(4.6) ~,(A) = 7.,, ~0,,(A), 

where 2, = ).,,(R I) and ~o~(A)/2,, (cf. KARR (1986), Example 2.24). Here (2,) 
is the (ff ,)- intensity of the counting process (N,), i.e., 2,,du = 
P ( d N ,  = 1 [ 57,_) = P ( T i e d u  [ . ~ _ )  for T~_, <u_< Ti, whereas ~0,,(A) can 
be interpreted as the conditional probability of { X i e A }  given ...~,_ and that 
T i e R .  

It follows from (4.4) that the intensity (7~,(.)),>, can be chosen to be 
.y-0-measurable and parametrized by (~, O). According to " the  division of 

roles of • and O "  we now assume that in fact X, in (4.6) is parametrized by ~, 
and ~0, ( . )  by O..~, can then be expressed in the form 2, = h (u; ~),where, for 
fixed ~, u~----,h(u; q~) is .g0-measurable. This is only another way of saying that 
the reporting process (N,) is assumed to be a doubly stochastic (non- 
homogeneous) Poisson process (or Cox process) with random parameter ~. 



T H E  C L A I M S  R E S E R V I N G  P R O B L E M  IN N O N - L I F E  I N S U R A N C E  149 

Similarly, we assume that the claim size distributions tp,(.) can be written as 
~o,(A) = F,,(A; 0),  where, for fixed u and O, F , ( . ;  O) is a distribution function 
on R~_. This, then, amounts to saying that, given 0 and the (unobserved) 
IBNR reporting times, the claim sizes X i are independent. 

We n°w derive an expressi°n f°r the expected lBNR-liability E : ' (  >~N Ui' ) , 

First note that fit = ,70 v a (~ ,  0). By a straightforward calculation we get 
that 

( z )  (I I ) E J' Uil = E: '  xdN~(dx)  
i>Nr u = t  x=O 

= E "  x (dx)du 
(*) u = ,  x = o 

= h(u; ~) x F~(dx; O) du 
U=I .x'~O 

i 
O9 

= h (u ;  q~) mu  ( 0 )  du,  

where rnu(O) is the mean 

S (4.7) mu(O) = x F~(dx; 0 ) .  
x=O 

(The equality (*) here is a simple consequence of the definition of (~,); for a 
general result see e.g. KARR (1986, Theorem 2.22). On the other hand, because 
of the conditional independence (4.4), we have that 

and therefore finaly 

( z ) I  (4.8) E:'  Ui, = 
i>Nr u = t  

e:, (h (u; ~) me(O)) du. 

We consider some special cases at the end of this section. 
Let us then go over to calculating the corresponding conditional variance 

expression V a r : ' ( ~ , .  , Ui, ) . The calculation goes as follows. 
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= Var Z x dN,,(dx) = E'L(( U(t, "; R ~) )o~) 
u = t x = 0 (*)  

= E ' ,  ( O ( t , . ; a x ) ) o o  = E ,  x Z a ( N c . ) ( d x ) ) ,  
x=O ~'*s x=O u=t 

= E 7' x21,,(dx) du = h(u, qb) x2F.(dx;19) du 
X = 0  11=1 / / = [  X = 0  

i 
oo 

= h (u; 4)  m~ 2) (19) du, 
/ d : f  

where m(u 2)(19) is the second moment 

s 
oo 

(4.9) rn<,2)(19) = x2 Fu(dx; 19). 
x = O  

(Here ( ( . ) , , )  is the predictable variation process, see e.g. KARR (1986), 
Appendix B, (*) is a direct consequence of the definition of this process, and 
(**) follows from Theorem B.12 in KARR (1986)). Therefore, and again using 
the conditional independence (4.4), 

(4.10) V a r ~ ' ( ~ i  , Ui') =EJ 'Var) ' (  2i>N, Ui') +Var';'E'L ( 2i>N, Ui,) 

i ) = EJ,(h(u; qs) m~2)(O)) du+Var  J, h(u; q~) rn.(O) du . 
l l = l  U = I  

The formulas (4.8) and (4.10) can be briefly summarized by saying that the 
conditional expectation and the conditional variance of the IBNR liability 

Ui, can be obtained if the following are known: 
i >  N r 

(i) the intensities h( . ;  4) ;  
(ii) the first two moments of the distributions F( . ;  19), and 
(iii) the conditional distribution of the latent variables (4, O) given ~ .  

Concerning (i), the common expression for h( . ;  4)  (e.g. RANTALA (1984)) is 
obtained by assuming that during the considered year (=  unit interval (0, 1]) 
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accidents occur according to the Poisson(~)-process,  and that  the report ing 
delays D~ are i.i.d, and distributed according to some known distribution G ( ' ) .  
Then it is easily seen that 

(4.11) h ( u ;  ~)  = ~ [ G ( u )  - G ( ( u -  1)÷)] .  

More  generally, • can parametrize both the occurrence process and the 
distr ibution o f  the delays in the reporting, cf. JEWELL (1987). 

The simplest case in (ii) is o f  course when only the number  N -  N t o f  future 
claims is considered, instead o f  the liability they cause. Then we can make the 
obvious  convent ion that every Xi  = I, giving m s ( O )  = m~2)(O) = 1. 

Requirement  (iii), finally, s trongly supports  the use o f  the Bayesian para- 
digm. It is part icularly appealing to use the Po isson-gamma conjugate  distribu- 
tions for the pair  (Nt, # )  since this makes the updat ing extremely simple (see 
GERBER (1979) and NORBERG (1986)). Since deciding on claims reserves is a 
management  decision, rather than a problem in science in which some physical 
constant  needs to be determined,  Bayesian arguments  should not  be a great 
deterrent to a practit ioner.  Choos ing  a reasonable prior for (~ ,  O) could be 
viewed as a good  oppor tun i ty  for an ac tuary  to use, in a quanti tat ive fashion, 
his experience and best hunches. 
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ON EXPERIENCE RATING AND OPTIMAL REINSURANCE 
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ABSTRACT 

This paper presents applications of stochastic control theory in determining an 
insurer's optimal reinsurance and rating policy. Optimality is defined by means 
of variances of such variables as underwriting result of the insurer, solvency 
margins of the insurer and reinsurer and the premiums paid by policy- 
holders. 

KEYWORDS 

Optimal reinsurance; control theory; Kalman filter. 

INTRODUCTION 

The problem of optimal reinsurance has been widely discussed in risk- 
theoretical literature. This problem has several answers depending on the 
optimality criteria used and assumptions on random variables involved. 
However, from the theoretical point of view a marked simplification is 
possible. It has been shown e.g. by BORCH (see GERBER 1979) p. 95) that for 
every pair of concave utility functions of the cedant and reinsurer the optimal 
reinsurance arrangement can be found among those where the reinsurer's share 
of the claims s a function of the total claims amount only; dependence on 
individual risks or claim sizes is not needed. In PESONEN (1984), Theorem 10.5, 
a method for constructing an optimal reinsurance form is also presented when 
the utility functions are known but arbitrary. Usually the problem of optimal 
reinsurance is treated as a static one; i.e. the problem is to divide the total 
claims amount of a fixed time period, e.g. one year, into cedant's and 
reinsurer's components in an optimal way. In this paper a longer perspective is 
taken by assuming that 

a) a reinsurance contract between two insurance companies (the cedant and 
• reinsurer) has been made for a fairly long period and both parties will look for 

an arrangement which would be optimal (under some criterion) over a longer 
term. 

This assumption justifies among other things the use of asymptotic methods. 

ASTIN BULLETIN, Vol. 19, No. 2 
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Moreover, we assume that 
b) the reinsurer's annual share of  the total claims amount  is a function of  
present and past annual total claim amounts only (i.e. reinsurance does not 
depend on individual risks); 

and 

c) the reinsurer's share is a linear function. 

Assumption (b) is motivated by the above-mentioned theorem of  BORCH. 
The linearity assumption (c) allows us to use the methods of  linear stochastic 
control theory. It has been shown by PESONEN (1984), Theorem 10.13, that 
linear functions are optimal if the utility functions of  the cedant and the 
reinsurer are linear functions of  each other. 

It is obvious that the three parties involved, the policy-holders, the cedant 
and the reinsurer, have conflicting interests. Each of them desires to have as 
small a share as possible of  the total variation emerging from claims occur- 
rences. It is in the interest of  policy-holders that fluctuation in the premium 
rates be only moderate. The cedant and the reinsurer put value on smooth 
flows of  underwriting results and solvency margins. In this paper we attempt to 
find a balance between these different interests by stating the optimality criteria 
in terms of  the variances of  the main variables. Examples are minimization of  
the variance of  the total claims amount  retained, subject to a constraint on the 
variance of  the reinsurer's accumulated profit;  or minimization of  the variance 
of  the premiums collected by the cedant, subject to a constraint on the sum of 
the variances of  cedant's and reinsurer's accumulated profits. 

The basic model is introduced in Section 1. Section 2 studies a simple case 
where both cedant's and reinsurer's premiums are assumed to be constants. In 
that section we use a technique of  BOX-JENKINS (1976), Section 13.2; see also 
RANTALA (1984). In Section 3 a more general case is considered. It is then 
assumed that the premiums paid by policy-holders to the cedant company are 
also a controllable variable. This introduces an experience rating aspect into 
the model. The numerical solutions are relatively easy to find with the aid of  
the Kalman filter technique (see also RANTALA (1986)). 

The main purpose of  this paper is more to show a feasible way to attack the 
problems of  reinsurance than to give explicit results directly applicable in 
practice. Related works are among others those by BOHMAN (1986), (who also 
considers the reinsurance contract on a long-term basis), GERBER (1984) and 
LEMAIRE-QUAIRIERE (1986) (who consider reinsurance chains). 

1. The Basic Model 

Consider two insurance companies. The variables relating to company 
j ( i  = 1, 2) are labelled with the subscript j. Company 1 is called the cedant and 
company 2 the reinsurer. All variables are measured as proportions of  a joint 
basic volume measure V(t). This may be taken as e.g. the sum of  insurance 
sums, payroll, a suitable monetary index multiplied by the number of  policies, 
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or it may be some measure which is a basis for tariffication. Thus the variables 
may be termed rates (claims rate, premium rate etc.). Moreover, all variables 
refer to that part of the portfolio which is covered by the reinsurance 
agreement in question. 

We assume that V(t) progresses according to equation 

(1.1) V(t) = rg(t) rx(t ) V ( t -  1). 

In equation (1.1) the total growth of the volume V(t) is attributed to two 
factors: the growth in number of policies or risks units described by re(t) and 
the growth due to inflation described by rx(t ). 

Now the accumulated profit (rate) uj(t) of company j satisfies equation (see 
BEARD-PENTIK,~INEN-PESONEN (1984), Section 6.5) 

(1.2) uj(t) = rj(t) uj( t -  1) + pj ( t ) -  xj(t), 

where pj(t) is the rate of the premiums and xj(t) the rate of  the total claims 
amount retained by company j,  r/( t)= ro.(t)/rg(t)rx(t) and rij(t) is the 
interest coefficient of company j and rj(t) may be called the relative interest 
rate of companyj .  The nature of rj(t)'s is stochastic, but for simplicity they are 
in the following taken as time-independent non-random constants 
ry(j = 1, 2). 

Note that even if there is variation in ru(t ) and rx(t), coefficient rj(t) will be 
fairly stable if rij(t)/rx(t) and rg(t) are stable as can often be assumed. In 
general, values of rj:s around 1.0 are perhaps the most usual. 

In addition, xj(t)'s and pj(t)'s must satisfy the equations 

~ p(t) = pt (t)+ P2(t) 
(i.3) 

[ x(t) x l ( t )+x2( t ) ,  

where p(t) is the total premium rate paid by the policy-holders and x(t)  is the 
total claims rate. 

Another form of (1.2) and (1.3) which better brings out the control-theoretic 
aspects is 

J~ul(t) = r lu l ( t -  l ) + y l ( t )  
(1.4) l u2(t) = r2u2(t- I ) + p ( t ) - x ( t ) - y l ( t ) ,  

where yl(t)  = p~( t ) -x~( t )  is the cedant's underwriting result in the year t. 
The controllable variables in (I .4) are Yl (t) (both through Pl (t) and xl (t)) and p(t). 

We study first in Section 2 a simpler case where premium rates p(t) ,  Pt (t) 
and p:(t) are kept as constants and the problem is only do divide x(t)  into 
cedant's and reinsurer's shares. 

2. The case of constant premium rates 

Assume that Ex(t) is known and both the total premium rate p(t) and the 
reinsurer's premium rate p2(t) are constants. In order to prevent uj(t):s from 
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unlimited asymptotic behaviour it has to be assumed that rj < 1 (which has 
generally been the case in many countries due to rapid growth in business 
volume and high inflation). This assumption can be relaxed when premium 
control is also introduced in Section 3. Moreover, to simplify notation we 
consider only deviations from corresponding expectations and thus take 
Ex(t)  = 0. Hence the premium rates are in fact the corresponding safety 
loadings. Determination of their rational magnitude can be based on the 
variances of uj(t)'s but is omitted here (see however Example in Sec- 
tion 2.1). 

Thus the accumulated profits are governed by the equations 

(2.1) ~ul ( t )  = rlul(t--  l )+pl--Xl( t )  

L u2(t) = r2u2(t- I ) + p 2 - ( x ( t ) - x  t(t)).  

In the following we briefly sketch the method for finding the optimal linear 
reinsurance policy 

(2.2) xl(t  ) = aox( t )+a I x ( t - I )  + . . . ,  

when optimality is defined to mean 

(a) minimization of Oxt when Du2 is restricted to a given value (or vice 
versa) 

(b) minimization of D(AxO when Du2 is restricted to a given value (or vice 
versa), 

where D denotes standard deviation (i.e. D 2 is the variance operator) and zJ is 
the difference operator : zlx (t) = x (t) - x (t - 1). 

The former criterion aims at restricting the variation range (i.e. minimums 
and maximums) of the cedant's annual profit, whereas the latter stresses more 
its smooth flow from year to year. Variation in the reinsurer's accumulated 
profit can be controlled by the choice of the admissible value for Du 2. If the 
safety margin P2 in ceded premiums is an increasing function of Du2, criteria 
(a) and (b) also give the answers to the problem : minimize loading P2 for given 
Ox t or DAx I . 

In what follows the derivation of the optimal coefficients a0, al . . . .  in (2.2) is 
limited in case (a) to autoregressive claims rates x(t)  of at most order two 
(abbreviated as AR(2) processes and in case (b) for AR(I )  claims rates. An 
important special case of these, usually considered in traditional risk theory, is 
the white noise process of identically and independently distributed (abbre- 
viated i.i.d.) random variables. The motivation for considering AR claims 
processes is the empirical observation (see BEARD-PENTIKAINEN-PESONEN 
(1984), PENTIKAINZN-RANTALA (1982), RANTALA (1988)) that claims processes 
are at least in some cases subject to cyclical variations. Such variations can be 
generated by AR (2) processes by a suitable choice of parameters. AR (or more 
generally ARMA processes) are also used in KREMER (1982) to find credibility 
premiums. A natural way to introduce the AR component into the claims 
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process is to assume that the structure variation (see BEARD-PENTIK~iNEN- 
PESONEN (1984), Section 2.7) of the claims process is of autoregressive 
character and the process has also the usual Poisson " random noise". 
However, this decomposition is not used in this paper so as not to overcom- 
plicate the model-structure and the better to extract the relevant features of the 
control problems. 

In both cases (a) and (b) a modification of the method presented in Box- 
JENKINS (1976), Section 13.2 is used to find the optimal rules. Also the Kalman 
filter technique to be presented in Section 3 could be used in Section 2.1, but 
not in Section 2.2. 

2.1. Minimization of Dxl( t )  subject to a constraint on Du2(t) 

The problem is (a): i.e. to minimize Dxt when Du2(t) is given. As stated above 
we restrict our considerations to autoregressive processes of at most order two. 
Solutions for more general processes could be found by solving the general 
difference equations (AI.12)-(AI.13) in Appendix 1. Thus the claims rate 
process is assumed to obey the difference equation 

(2.1.1) x( t )  = ¢lX(t  - l ) + d 2 x ( t - 2 ) + e ( t ) ,  

where e(t) 's are uncorrelated random variables with mean zero and with 
variance a~ 2. To have finite variance for x( t )  coefficients tkl and ¢2 must satisfy 
the stationarity conditions 

~l"bO2 < i 
(2.1.2) 02--01  < 1 

- i < 0 2 < l .  

The formulas become more handy if the so-called backward shift operator B 
(e.g. B x ( t ) =  x ( t - l ) )  is taken into use. With this notation (2.l.l) can be 
rewritten as 

(2.1.3) q~(B) x ( t )  = e(t) ,  

where 

(2.1.4) ~ ( B )  = 1 - 0 1 B - ~ 2  B2. 

It is shown in Appendix l that for this claims process the solution to problem 
(a) is (see equations (AI.25)-(Al.26) in Appendix I) 

(2.1.5) Xl(t) = [ - ( 1 - r 2 B ) l t ( B )  ~ ( B ) +  l l x ( t )  

or equivalently 

(2.1.6) xl (t) = [ - ( l - r 2  B ) / t ( B ) + ~ - ' ( B ) ]  e(t) ,  

where -~ denotes the inverse operator and 

(2.1.7) p(B)  = A ( I - z 0 B ) - ' + ( W , +  W2B ) q~-' (B) 

and coefficients A, Wi, and WE are given by equations (AI.14), (AI.21)-(AI.24) 



158 JUKKA RANTALA 

in Appendix 1 and z 0 is that solution of  (Al.16) for which [z0[  < 1. Note 
that the formulas do not depend on a 2. The relevant parameters are 01, 02, r2 
and the parameter v in (Al.14) defining the ratio Du2/Dxl. 

The reinsurance scheme (2.1.5) leads to the following equations for u~ and 
//2 : 

(2.1.8) (1 - r l  B) ul (t) = - [ - ( !  - rzB) lu(B)  ~ ( B ) +  1] x(t)'+pl 

and 

(2.1.9) @-I(B) u2(t ) = - # ( B )  x ( t )+p2/ ( I -ck l - (~2) (1-r2) .  

The variances connected with these equations are fairly easy to calculate 
from the A R M A  presentations containing e(t) 's, which result when x(t)  is 
replaced by q~-i (B)e(t)  in (2.1.8) and in (2.1.9). The details are omitted here 
(see e.g. BOX-JENKINS (1976) Section 3.4.2). 

EXAMPLE. Take the classical case of  risk theory that x( t ) : s  are i.i.d, random 
var iab les :0 /=  0 for j = I, 2. Then K = Dj = Wj = 0 ( j  = 1, 2) in equations 
(A1.24), and thus 

(2.1.10) p(B) = r f  I z 0 ( l - z 0 B )  - I ,  

where z 0 is that root of  r 2 z 2 - ( I  +r22+ v)z+r 2 = 0 whose modulus is less than 
one. Here v is the parameter fixing the ratio Du2/Dx~. The optimal reinsurance 
scheme is from (2.1.5) and (2.1.7) 

(2.1.11) xl(t  ) = ( I - z 0 B ) - l ( I - r ~ l z 0 ) x ( t )  

or equivalently 

(2.1.12) xl (t) = ZoXl ( t -  l ) + ( l - r ~ l z 0 ) x ( t ) ,  

i.e. x, (t) is calculated according to the classical exponential smoothing formula 
of  experience rating theory. The corresponding variance is 

(2.1.13) D2xl = D 2 x ' ( i - r 2 1 z o ) 2 / ( l - z ~ ) .  

The resulting solvency rate of  the cedant is, from (2.1.8), 

(2.I.14) ( 1 - r I B ) ( 1 - z o B ) u l ( t )  -- - ( I - r 2 - 1 z o ) x ( t ) + p l ( l - z o )  

with variance 

(2.1.15) DEul = (I + z 0 r l )  ( 1 - r 2 - 1  z0) 2 DE x 
(1 - z o r  0 ( l - r l  2) ( l - z ~ )  

The solvency rate of  the reinsurer is 

(2.i.16) u2(t) = ZoU2(t- 1)-r~-lZoX(t)+p2 • l - z °  
1 - r 2 

and hence u2(t ) is an A R ( I )  process with variance 



ON EXPERIENCE RATING AND OPTIMAL REINSURANCE 159 

(2.1.17) D2 u2 = D2x(r~- 2 z02 /(I -z02)). 

The following figure gives the optimal combinations of  Dul, Du 2, Dxl and the 
long-term safety loadings defined by 3.1 = 3 ( l - r l ) D u l ,  3.2= 3 ( l - r 2 ) D u 2  
and 2 = 21+22 as multiples of  Dx when r~ = r2 = 0.95. 

.I.5. 

3 .  

2 .  

I 

O ~  

0 

O.OS ~J OJ~ o.,? o25 0.3 0..~ o.# c1eJ o.5 0 .~ ~ O.o~ o.? a ~  oJ  O ~  ~l.g o.g~ 

FIGURE 2.1.1. Optimal combinations of the main variables as multiples of D~, in Example 1 when 
r I = r 2 = 0.95. 

Since an increase in z0 means that the ceded share of  the business increases it 
is quite natural that Dx~ and Du~ decrease and Du2 increases when z0 gets 
larger. Intuitively it is not so obvious that the sum of  the safety loadings has its 
minimum when the whole risk is carried by one insurer only; i.e. if the risk is 
shared by two companies the safety loading is higher than without risk sharing. 
The reason is that in the case with reinsurance the total safety loading must 
maintain two solvency margins, both of  which have with high probability to be 
positive: it is not sufficient that their sum is positive, as is in fact required in 
the case of no risk-sharing. 

2.2. Minimization o f  D(Axl  ( t ) ) subject to a constraint on Du2 ( t ) 

Now the problem is to minimize D(Axl  (t)) when Du2(t) is given. 
To simplify the formulas we restrict ourselves to AR(1)  claims rate 

processes; i.e. coefficient 02 is zero in (2.1.1). Thus 

(2.2.1) x( t )  = O x ( t -  l ) + e ( t ) ,  

where ] 01 < i and e(t) 's  are a series of  uncorrelated random variables with 
mean zero and with variance rr~. Moreover, let EUl(t) = Eu2(t) = O. 

As is shown in Appendix 2 (formulas A2.18-A2.21), the solution is 

(2.2.2) xt (t) = [ - ( I - r 2 B )  ( 1 -  OB)IJ(B)+ 1] x( t )  



160 JUKKA RANTALA 

o r  

(2.2.3) x l ( t )  = [ - ( l - r 2 B ) p ( B ) + ( l - q ~ B ) - I ] e ( t ) ,  

(2.2.4) (1 - r  I B) u I(t) = - x t  (t),  

(2.2.5) u2(t) = - l t ( B ) e ( t ) ,  

where p(B)  is given by (A2.15) in Appendix 2. Thus processes ul (t), U2(t ) and 
x l ( t )  are ARMA processes, whose variances are easy to compute from the 
presentations containing e(t) 's (see BOX-JENKINS (1976), Section 3.4.2). 

As a limiting case when ¢ approaches I we obtain from (2.2.1) a random 
walk process. This process also follows as a special case of an ARIMA (0, l, l) 
process : 

(2.2.6) , J x ( t )  = (l-On)e(t) 

with e(t) 's uncorrelated and with 0 _< 0 _< I. 
Equation (2.2.6) has the interpretation that every year a shock e(t)  is added 

to the current " leve l"  of the claims rate to produce a value x( t ) .  However, 
only a proportion 1 - 0 of the shock is actually absorbed into the level to have 
lasting influence (see BOX-JENKINS (1976) Chapter 4). 

In practice perhaps not every new shock changes the level; possible changes 
occur only occasionally. Thus (2.2.6) may be regarded as a cautious "upper  
limit)" for actual claims processes. Such changes in the claims level are to be 
expected e.g. due to changed policy conditions or changes in claims settlement 
practice. When 0 ~ 0 we obtain a random walk process; i.e. every new shock is 
totally absorbed into the level, this being the most dangerous alternative. When 
0 is put to one we arrive at the traditional white noise claims process. 

WHITE NOISE CASE 0 = 1. As is shown in Appendix 2 (see equation (A2.27)), 
the optimal reinsurance scheme is now 

(2.2.7) ( 1 - k o B + k l B  2) x l(t) = ( l - r2-1ko+r~-2k Ox(t )  
def 

= box ( t ) ,  

where ko and kt are given by the procedure I-III in Appendix 2. The variance 
of xl (t) is 

(2.2.8) 

with bl = 0. 

D2 xl = (I +k l )  (bo2 + b~) + 2bobl ko D2 x . 

(l - k 0  [(1 +k02-k02] 
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The accumulated process u~ (t) is an ARMA process 

(2.2.9) (1 - k o B + k  I B 2) (1 - r  I B) U l (t) = - (1  -r2-1ko+r2-2kl) x ( t ) ,  

whose variance is readily calculable. Moreover, u2(t) is an A RMA (2 ,  l) 
process 

(2.2.10) ( l - k o B + k t B 2 )  u 2 ( t )  = - [ - r 2 - E k l + r 2 - 1 k o - r 2 - 1 k l B ] x ( t )  

def 

= ( C o + C l B ) X ( t ) ,  

whose variance is given by (2.2.8) when b's are replaced by c's. 
The following Figure 2.2.1 shows Dxl, Du, and Du 2 for different values of  

parameter v, when r I = r2 = 0.95. The curves should be compared to those of  
figure 2.2.1. An increase in Dx~ is reflected as an increase in Dun and as a 
decrease in Du2. When v ~ oo the total variation is shifted to Ul, the cedant 
then taking the whole risk. Naturally the minimum for Dxl and Dztxl is zero, 
which is achieved when v = 0. Then Du2 has its maximum. 

. 3  

. 2 , 5  

2 

1 .5  

! 

0 .5  

' 0 

D u l / O ,  

: , , ~ - _ ~ . _ _ ~  : , , , , , , , , , D u 2 / O ,  

] D X l / D ,  

J , i , i , , , , i i i i J , , i , , , i i , J i , J , , 

00,~,O~9,OO.t:~P.t:~.OO,t:~,OO,O~O.t O, ttO,I,gD,L-TDJ'O,lflD,1~D,n'o.tdDJQD,.ag,,=71J,'~0.'~0.~.;20.2~,~.'2'0,2~.3 

FIGURE 2.2.1. Dx~,  Du I and Du 2 as a funct ions o f  p a r a m e t e r  v, when r t = r 2 = 0.95, x ( t )  is a white 
noise process and D,dx t is minimized for given Du2. 

RANDOM WALK CASE 0 = 0. AS is shown in Appendix 2, u2(t) corresponding 
to the optimal scheme is now an AR (2) process with variance (see (A2.27)) 

(2.2.1 l) D2u2 = ( l+kl)(r2- tk l )2  ors 2 . 
(l - k , )  [(1 + k l ) 2 - k o  2] 
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.The optimal reinsurance scheme itself is 

(2.2.12) ( l - k 0 B + k  IB E ) x l ( t )  = [ ( l - r ~  - I k l ) + ( r 2 - 1 k l + k l - k o ) B ] x ( t ) .  

Thus x~ (t) is a non-stationary process with infinite variance since the "dr iv-  
ing" process x(t)  on the r.h.s, of  (2.2.12) is such. The variance of  dxl is 

(2.2.13) DE(dxt) = (l+kl)(W°2+w~)+2k°w°wt a~ 2 , 
(1 - k 0  [(1 + k~)2- ~021 

where w0 = ( l - - r~- Ik l )  and wl = r2 -1k l+k l -ko  • 
The corresponding u~ (t) process obeys equation 

(2.2.14) ( l - r l B ) ( l - k o B + k l B 2 ) u l ( t )  = [l-r2-J kl +(r~l k] +k t -ko)B]x( t )  

and is thus non-stationary, since x(t)  is such a process. 
Hence in the case of  a random walk claims process the procedure produces 

finite D ( d x l )  and Du 2 but with constant Pl (t) Du) will be infinite. A finite Du I 
can be achieved if pl (t) is allowed to be non-stationary. 

Although the cases considered in this section may be of  some practical 
interest, their applicability may be rather limited since the premium rate p (t) is 
unrealistically kept as a constant. In reality premiums are obviously also 
adjusted according to the observed claims experience. To obtain a more 
realistic model the variable premium rates should be incorporated into 
equations and the variation of the premium rate should also be regarded in 
optimality criteria. 

Another limitation to the model above is that the relative interest rates r~ 
have to satisfy I rj I < 1 in order not to have infinite variances for u/(t)'s. If 
premium rate control is also introduced this assumption is not necessary. 

3. The case where the premium rate may also vary 

The technique of  BOX-JENKINS used in the preceding section becomes rather 
messy when the number of  the control variables or the complexity of the claims 
process increases. In the following the well-known Kalman filter is used 
instead. However, we then obtain only numerical solutions, not analytic 
expressions like (2.1.5) and (2.2.2). In addition, loss function (3.7) is not 
suitable for such optimization as envisaged in Section 2.2, since the order of the 
difference of  p(t) which occurs in (3.7) is the same as the smallest difference 
parameter d for the claims process (3.2) at which dax( t )  is stationary. 

Since the premiums are usually charged at the beginning of the insurance 
period, the optimal premium rate control scheme cannot utilize the most recent 
x(t)  to determine p ( t ) ;  i.e. p(t) is a function x ( t - I ) ,  x ( t - 2 )  . . . .  In order to 
keep the formulas as simple as possible, we then assume that the same set of  
data is used to determine also the retained part xl (t) of the claims. In many 
cases it would also be more realistic to let the time delay be even longer. 
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RANTALA (1986) illustrates the incorporation of a time delay in a simple 
case. 

Take the model in the form (I.4); i.e. 

(3.1) ~ ul(t) = rlul(t--l)+yl(t)  

L u2(/) = r2u2(t- 1 )+p( t ) - y l ( t ) - x ( t ) .  
The control variables are the underwriting result yl (t) of the cedant and the 
total premiums p(t). It is clear that the optimality criterion must include each 
of ul (t) (or alternatively Yl (t)), u2(t) and p(t) if a solution is sought where 
none of these variables is identically constant: if the variation of only two 
variables is restricted the total variation produced by x(t) can be directed to 
the remaining third variable by letting the other variables be constant. 

We make the general assumption that the claims rate is an ARIMA (s, d, q) 
process 

(3.2) 
where 

¢,(B) ,~"x(t) = o ( n )  e( t ) ,  

f qb(B)= l - d t B - ~ 2 B  2 -  . . . - ~ s B  s 

(3.3) O(B) = I -Oi B-Oz B 2- . . .  O q B  q 

e(t) = a sequence of  uncorrelated random variables with 
mean zero and with variance a~ 2. 

If d > 0, then the x(t) process defined by (3.2) is non-stationary, but if the 
roots of equation 

(3.3) ~ (B)  = 0 

lie outside the unit circle the d-th difference Adx (t) of x (t) is stationary. Note 
that for d > 0 the variances of d iuJ(t) and A"p(t) for i < d and j = 1, 2 
cannot all be finite. A natural demand is that Duj(t) (j = 1, 2) and DAdp(t) 
should be finite, i.e. the accumulated profits have finite variances and the 
"stationarity order"  of the premium process is the same as that of the claims 
process. 

Next (3.1) and (3.2) are transformed to a state-space model. Equations (3.1) 
can be rewritten as 

( l - r IB)Aaul( t )  = Adyl(t) 
(3.4) 

(1 - r 2 B  ) ~(B),ddu2(t) = ~(B) [,dap(t) -Adyt ( / ) ] - O ( B )  e ( t ) .  

Let nl = d + l ,  n2 = m a x { s + d +  i, q + l }  and n = n~+n2. 
Introduce n state variables Z(i, t) (i = 1, 2 . . . . .  N) obeying equation 

Z ( t + I )  = AZ(t)+G ( AaY'(t) I - Me( t ) ,  (3.5) 
I P( t ) 
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where 

(3.6) 

J U K K A  R A N T A L A  

ri • / . 1 - 1  

n, 0 0 . . . 0  
1 

A = [ 

L 0, ,  

.2 

ill. I.~- 1 

fl,~ 0 0. . .  0 

I, = identity matrix of  order n, 
On = nxn matrix of  zeroes, 

n,- I  

I 0 . . . 0  '1 - 1 ,  O, . . . . .  
G = 1 

0 0 . . . 0  I 1, - ~ l  . . . . .  
I 

M ( 0 . . . 0  ', 1 - 0 , , .  . . . . .  2) 
- I 

nl 

t 0.2 ) 
-- ~n 2 

def 

a(B) = ( l - r l B ) A  d =  l - a j B - a 2  B2-  ... - a .  B",, 

def 

fl(B) = ( I - r z B ) A a  ~(B) = 1 - f l l B - f l 2 B  2 -  . . . - ~ 2 B  ~2 

with di = 0 for i > s and 0i = 0 for i > q and ' denoting transpose. 
The accumulated profits ul(t) and u2(t ) are given by Z ( I ,  t + l )  and 

Z(nt + 1, t+ 1). 
Let the loss function to be minimized be 

N 

(3.7) E{ Z(N)" QoZ(N) + j=IZ (Z(j)' Qi z ( j ) ) +  Y(j) '  Q2 Y(J) }, 

where Q0, Qi and Q2 are symmetric positive definite matrices, 
Y ( j )  = (Adyl (j) ,  drip(j))  ' and {! . . . . .  N} is the planning horizon (a suita- 
ble choice for which is the duration of  the reinsurance agreement). According 
to our assumption at the beginning of  this section Y(t) can depend on Z(t), 
Z ( t -  1) . . . .  but not on Z(t+ I). 
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The optimal linear control rule giving the minimum for this loss function is 
(see e.g. ,~,STROM (1970): Theorem 4.1 in Section 8.4): 

(3.8) Y ( t )  = - L ( t ) Z ( t ) ,  

where Y( t )  is the vector of the cedant's optimal profit and premium setting to 
be applied at time t. L ( t )  is a (2 x n) matrix of constants given by 

(3.9) L( t )  = [Q2+G'S( t+ I) G] -I G'S( t+  1) A, 

where S( t+  1) is obtained from 

(3.10) S( t )  = A ' S ( t +  1) A + Q t - A ' S ( t +  I) GL(t)  

with the initial condition 

(3.11) S ( N )  = Qo. 

Thus the optimal procedure is quite easy to reach from recurrence equations 
(3.8)-(3.11). However, it depends on the initial values of the state vector Z; i.e. 
on the immediate past of the accumulated profits uj(t). It can be shown that as 
the planning horizon N ~ oo, matrix S( t )  will converge to a unique steady- 
state positive definite value S. Denote the corresponding limit of L( t )  by L. 
Numerical calculation by computer of this steady-state solution is quite easy 
from equations (3.9) and (3.10) by successive iteration. (Note also that the 
results of Section 2 are in fact steady-state solutions.) The steady-state feedback 
rating and ceding formula is 

(3.12) Y(t)  = - L Z ( t ) .  

This equation is quite easy to translate into a more traditional form involving 
only past p(t) 's  and uj(t)'s or x(t)'s. An example is given later. 

The corresponding steady-state covariance matrix Cz of the state vector Z ( t )  
can be obtained by iteration from equation 

(3.13) Cz = (A - GL) Cz (A - GL)' + tr2~ M M '  . 

The corresponding variance of Y(t)  is 

(3.14) Var Y(t)  = Cr = L C z L ' .  

The steady-state variances of the accumulated profits and ztdy~ a n d  zldp can be 
found as the appropriate elements of matrices C z and C r. 

Note that when d > 0 the variance of the premiums (as that of x ( t ) )  is 
infinite but the variances of the accumulated profits and cedanrs profit Yl (t) 
are finite. Note also that the KALMAN filter technique can easily be extended to 
more than one reinsurer. 
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EXAMPLE 1. Take first the white noise x(t) process of traditional risk theory. 
This case was considered in the examples of Sections 2.1 and 2.2. Now the 
state-space equation (3.5) is simply 

(3.15) { (u ,  (t))u2(/) = (rl00r2)(u,(t-lu2(t_ 1) ) + ( )  1 0 ) ( y , ( t ) )  _ ( 0 ) X(1) 
- 1 1 p ( t )  1 i 

(0 0) 
and M M '= 

0 1  

Choose the matrices Q0, Qt and Q2 in loss function (3.7) as 

 3,6,  0=02Q ( w 0) o2:(w3 0) 
0 W 2 0 W 4 

By varying w~'s different optimum combinations can be produced. As an 
example we take r t = r 2 = 1.0, w~ = 0.1, w 2 = 0.025, w 3 = 0.0001 and w4 = 1. 
Since w3 is negligible this in fact means that the variance of premiums is 
minimized subject to wlD2u~+w2D2u2 = a given value. Furthermore, an 
increase in D2p is ten times "worse"  than in D2u~ and forty times "worse"  
than in D 2 u2 and an increase in D 2 ul four times " w o r s e "  than in D 2 u2. This 
choice of weights reflects the thinking that the reinsurer should carry most of 
the fluctuations and the policy-holder the least. 

With these parameters the steady-state optimal scheme turns out to be 

(3.17) 
yt(t) = - 0 . 8 2 6 " U l ( t - l ) + 0 . 1 7 3 " u 2 ( t - i )  

p(t) = - 0 . 1 3 2 " u l ( t - 1 ) - 0 . 1 3 2 " u 2 ( t - l )  

D2yl =0 .0322a~ 

D2ul = 0.122cr~ 2 
(3.18) 

D2p = 0.0705tr~ 2 

D 2u2 = 2.96tr~ 2 . 

Using equations (3.1) it can be shown that (3.17) is equivalent to 

( i - 2 . 6 5 2 B +  1.652B2)yl(t) = (0.173-0.173B) B(p( t ) -x( t ) )  
(3.19) (1-1.868B+O.868B2)p(t) = (0.264-0.264B) By~(t) + 

+ (0.132-0.132B) Bx(t). 

with corresponding variances 
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Figures 3.1 and 3.2 show the steady-state standard deviations o f  the main 
variables in the optimal schemes as a function o f  w~, where loss matrices (3.16) 
are used with w 3 = 0.0001, w4 = 1 and with two constant ratios wl/w 2 = 4 and 
w l / w 2  = I. 
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FIGURE 3.1. Steady-state D u t ,  D y e ,  Du 2 and D p  o f  the optimal schemes as functions o f  w t when 
w 3 = 0.0001, w 4 = I, w [ / w  2 = 4 and rt = r~ = 1.0. 
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FIGURE 3.2. As  Figure 3.1 but w , / w  2 = I. 

In both cases Dut, Du2 and Dyl are decreasing functions o f  w I , whereas Dp 
increases with wl. For Du t and Dyl this is natural since the increasing w[ 
means that an increase Dut is considered more serious and a smoother  f low o f  
um is achieved by a smoother  y~. The decrease in Du2 obviously  emerges from 
the constancy o f  the ratio w I/w2; i.e. when w t increases w 2 also increases. 
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EXAMPLE 2. Assume that s = q = 0 and d =  1; i.e. x(t) is a random walk 
process. As noted above, this case can be viewed as a cautious approximation 
which in a way constitutes an " u p p e r  l imit"  for actual claims processes. Now 
transformation (3.5) reads 

(3'20) /;((23:t+1)] 0 r2+l ~ Z ( 3 , , ) ] -  ,,dp(,)]- e(,) 
\Z(4 ,  t + t ) /  0 -r2 \Z(4 ,  t)] 0 

Choose Q0 = 04, Q i = 

00 i) 
0.0001 0 

0 0 0.0001 

and Q2 as in (3.16). 

Thus, instead of Dyt and Dp we now consider D(dyl) and D(Ap). Note  also 
that Dp has now to be infinite if DUl and Du2 are to be finite. Take 
r l =  r 2 =  1.0 and w I = 0.01, w 2 =  0.05, w 3 =  0.5 and w4= 1.0. The two 
elements on the diagonal of  Q~ other than wt and w2 cannot be taken as zero, 
since they must be positive in order to obtain a positive definite matrix. 
However,  they are so small that their effect on the results is insignificant. Then 
the steady-state solution is in the feedback form 

(3.21)J'Ayl(t) = - 0 . 4 3 3 u l ( t -  I)-0.352ul(t-2)+O.294u2(t- I )+0 .172u2( t -2 )  

Jp(t) = 0 .374Ul ( t -  l ) - 0 . 3 1 7 U l ( t - 2 ) - 0 . 5 2 1  u2(t- 1 ) - 0 . 4 0 3 u 2 ( t - 2 )  

with corresponding variances 

(3.22) 

f D2Ul = 6.02tr~ 2 
D2 (zJyl) 0.14a,  2 

D2u2 4.19a~ 

D2 (.dp) 0.43 a~ 

Figures 3.3-3.4 show the steady-state standard deviations Dut, D (Ayt), Du2 and 
D(Ap) of  the optimal schemes as a functions of  w 3 when w I = 0.01, w 4 = I, 
w 3/w 2= 1 0 o r  = 1. 

1 

4. Concluding remarks 

The results of  the paper  should not be seen as suggestions for explicit solutions 
to be used in reinsurance treaties. In practical situations there are many factors 
to be taken into account, which however cannot  easily be included in a 
mathematical  model. The main emphasis of  the paper  is on demonstrat ing an 
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FIGURE 3.4. As figure 3.3 but w3/w 2 = I .  

approach which would be considered as a rational means of  tackling reinsur- 
ance problems. That is 

l) cedant's and reinsurer's share of  the claims are functions of  the total claims 
amount in the reinsured part of  the portfolio (i.e. they do not depend on 
individual risks) 

2) the agreement is made on a long-term basis 
3) an explicit definiton of  the goals and criteria of  both parties involved (such 

as acceptable variations in accumulated profits and in annual profits, 
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profitability in the long run, the rating procedure of the cedant etc.) 
(compare also BOHMAN (1986) and GERATHEWOHL-NIERHAUS (1986)). 

In this way one may succeed in giving more weight to the most relevant 
factors related to a reinsurance treaty than in a heuristic approach. 

This paper concentrates on point (3): how methods of stochastic control 
theory might be used in a search for the optimal reinsurance formulas (in 
Section 3 also for the rating formla), when the goals and criteria are expressed 
in terms of the variances of certain important variables. These rules could be 
applied if a sufficient consensus on the criteria and on the stochastic properties 
of the claims process is achieved. If there is considerable uncertainty about 
those properties then the formula candidates should be tested against various 
claims process alternatives. 

A P P E N D I X  1 
M I N I M I Z A T I O N  OF Dxt (t) S U B J E C T  TO A C O N S T R A I N T  ON 

Du2(t ) W I T H  C O N S T A N T  P R E M I U M  RATES 

It is assumed that the claims rate process x(t)  is a weakly stationary process 
given by equation 

(AI.I)  x(t)  = ~F(B)e(t) = e ( t )+~ule ( t - l )+~u2e( t -2 )+ . . . .  

where e(t) is the noise process of uncorrelated random variables with mean 
zero and with variance tr, 2, and ~j's are the weights of past e(t) 's such that 
,S~j 2 < ~ and B is the backward shift operator: Be(t) = e ( t -  I). However, 
the explicit solution is given only for the case where ~j's are generated by an 
AR(2) claims process. 

It is assumed that x(t),  x ( t - I )  . . . .  are used to determine xl (t). Thus the 
optimal scheme can be written as the output of a linear filter L(B):  

(AI.2) x l ( t )  = L(B)e ( t ) ,  

or equivalently 

(Al.3) xt( t)  -- L(B)  ~u- l (B)x ( t ) ,  

where - J denotes the inverse operator. If  Xl (t) should be a function of delayed 
x ( t ) ' s : x ( t - d ) ,  x ( t - l - d )  . . . .  with d < 0 then L(B) should be replaced by 
BdL(B)  and the formulas and equations to be presented below should be 
correspondingly modified (see RANTALA (1984), Appendices I and II). 

Let - / t  (B) be the linear filter corresponding to (AI.3) and transforming e (t) 
into u2(t); i.e. 

(A1.4) UE(t) = - ~ ( B )  e(t) = - ~ ( B )  ~ - i  (B) x(t) ,  

where we have temporarily assumed that p = Pl = P2 = 0. 
Thus ~(B) and L(B) are connected via equation 

(A1.5) L(B) = - (I - r 2 B)/t(B) + ~(B). 
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Obviously the minimum possible variance of  u2(/) is zero, which results with 
the reinsurance scheme L(B) = ~ ( B ) ;  i.e. the total business is taken over by 
the cedant. 

The optimization problem stated in the title can be solved by finding the 
unrestricted minimum of  

_ _ [  D2u2(t) ] (AI.6) D2xl(t) + v" - - -  w , 

where v is the Lagrange multiplier and wa 2 the value allowed for D 2 u2(t). 
The autocovariance-generating function for the autocovariances ?k 

(k = . . . ,  - 2 - 1 , 0 ,  2 . . . .  ) is defined by (see BOX-JENKInS (1976)), 

oo 

(A1.7) 7(B) = 7k B k , 
k= -oo 

where B now is a complex variable. 
I f  x(t)  = ~U(B)e(t), it is easy to see that the autocovariances of  x(t)  are 

generated by 

(AI.8) 7(B) = ~U(B) ~u(r), 

where F = B - I .  
Applying this technique to the minimization of (AI.6) we can equivalently 

require an unrestricted minimum of  the coefficient of  B ° =  1 in the expres- 

sion 

(AI.9) G(B) = L(B) L(F)+ v~(B)~(F) .  

Regarding (A1.5) we obtain 

(Al.10) G(B) = [ ( I - r 2 B ) ( l - r 2 F ) + v ] ~ ( B ) ! u ( F  ) -  

- ( l - r 2 B )  lt(B) ~ ( F ) - ( l - r z F ) l t ( F )  ~ ( B ) +  ~ ( B )  ~(F) .  

By differentiating G(B) with respect to each/ t i  (i = 0, l, 2 . . . .  ), we obtain 

0 
( A l . l l )  - -  G(B) = [ l+r22+v-rEB-r2F][Bil t (F)+Fi~(B)]  - 

- ~(F)  [Bi-r2Bi+l] - ~(B)  [Fi-r2 Fi+l] . 

After selecting the coefficients of  B ° = I, and equating them to zero, we obtain 
the following equations:  

(A 1.12) r 2/tl - b/t0 = r2 ~ i - 1 (i = 0) 

(Al.13) r 2 f l i + l - - b ] . l i + r 2 f l i _ l  = r 2 ~ / + l - - ~ i  ( i  >_ 1 ) ,  
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where 

(AI.14) b = l + r ~ + v .  

REMARK. From (AI.12) and (AI.13) we obtain a relation for the characteristic 
function of u which- - i f  g0 is known--determines #: 

g(Z ) (r2 + r2 z 2 -  bz ) = gt (z ) ( r2 -  z ) -  r2 + r21~ O. 

The solution of  (AI.12)-(AI. 13) is the sum of  the solution of the corresponding 
homogeneous equation and any particular solution of the homogeneous 
equation. 

First the solution of the homegeneous difference equation 

(Al.15) r2fli+2-bfli+l+r2lli = 0 (i = 0, 1, 2 , . . . )  

is sought. The characteristic equation is 

(AI.16) r 2 z 2 - b z + r 2  = 0; 

i.e. 

(AI.17) r2z+r2 z - l  = b.  

Thus if z0 is a solution so is z0 -~ and the general solution of (A1.15) is 

(A1.18) lai = A z ~ + A ' z f f  i (i = 0, 1,2 . . . .  ). 

Now, if z0 has a modulus less than or equal to one, then z0 -~ has a modulus 
greater than or equal to one, and since u2(t ) in the optimal solution must have 
finite variance, A' must be zero. Because of the property (AI.17) it is easy to 
see that z must be real. Thus the general solution of (AI.15) is 
lit(B) = A ( i - z o B )  -I  

In deriving the particular solution of (AI.12)-(AI. 13) we confine ourselves to 
autoregressive processes of at most order two; i.e. we assume that the weights 
are given by 

(Al.19) ~U(B) = ( I - O ~ B - O 2 B 2 )  -I  

and 4~ and 02 are constants satisfying stationary conditions (2.1.2). 
It can be shown (see RANTALA (1984), Appendix II) and is easy to check that 

the solution of (A 1.12)-(A 1.13) is then 

(A1.20) bt(B) = A ( I - z o B ) - I + ( W i + W 2 B ) ( I - O i B - - c k 2 B 2 )  - I ,  

where the second term on the r.h.s, is a particular solution. Coefficients A, Wt 
and W2 are given by equations 
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WI = ~/~-- 1~2 (DI cos 0 +  D 2 sin 0) 

W2 = - 01 W i -  02(Di cos 2 0 + D  2 sin 20) 
/ 

t a n 0 = ~ / - 0 ~ - 4 0 2  ( 0 _ < 0 < n )  
01 

D I - C I E i + C 2 E 2  x /~02  
E? + E:~ 

(AI.21) D 2 -  C 2 E I - C I E 2  x/---02 

E, - r201__ ( 1 -  02) -  b x / -  02 
24z  

Ex = r2~/l +0~/402 "(i +02) 
C1 = r2 0 1 -  1 

(r2~ I - 1)0! +2r202  
C 2 = 

A = r2-1 z0" [Di (r x / Z  02 cos 8 -  b) + D 2 r x / ~  02 sin 8 -  r0t + 1] 
when the roots of  
(AI.22) z 2 -  0 t z + 0 2  = 0 

are complex, and 

W I = D n K n + D 2 K  2 

W2 = - K1K2(D1 + D1) 

C] KL 
D I = 

r I K 2 -  b K  I + r 2 

(A1.23) 

D2 
C2 K2 

r2 K 2 -  bK2 + r2 

K l (I - r 2 Kn) 
Ct - 

Kz - K l  

K2(l -r2K2) 
C2 - 

K 2 - K  n 

,4 = r2-1Zo'[Dl (rKa - b ) + D 2 ( r K z - b ) - r c k x  + 1] 
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when the roots KI and K2 of (AI.22) are real and distinct. 
When Kj = K2 = K the following equations are obtained 

Ct = 2 r 2 K -  I 

C2 = r2 K -  1 

C2 K 
D2 = 

r 2 K 2 - b K +  r 2 

(AI.24) Ci K + r2 D 2 ( !  - K 2) 
D I = 

r 2 K 2 - b K  + r2 

W l = ( D i + D 2 ) K  

W 2 = - D i K  2 

A = r2- I z0" [(Di + D2) ( r K -  b ) -  r01 + 1]. 

Now the optimal reinsurance scheme may be found by substituting (A1.20) 
into (AI.5). As can be seen from equations (2.1), (AI.2)-(AI.5), the resulting 
difference equations for xl ,  u~ and u2 are 

Xl(t) = [ - ( l - r 2 B  ) l I t (B)  ~ ( B ) +  I] x ( t )  (A1.25) 

or equivalently 

(A1.26) 

(A1.27) 

and 

(A1.28) 

Xl(/) = [-(l-r2B)g(B)+~-l(B)]e(t), 

( 1 - r  t B) ul (t) = - [ - ( 1  -r2B) g(B ) ~ ( B ) +  1] x(t)+pl 

- ~ ( B )  u2 ( t )  = - ~ ( B )  x ( t )  + P 2 / (  1 - 0~ - 02 )  ( 1 - r 2 ) .  

In (AI.27) and (AI.28) the effects of non-zero premium rates are taken into 
account. Processes xl (t), ut (t) and u2 (t) are ARMA processes whose variances 
are easy to compute from the presentations based on the noise process e ( t ) .  

APPENDIX 2 

MINIMIZATION OF D(,Jx¿ (l)) SUBJECT TO A CONSTRAINT ON 

Di . /2( / )  WITH CONSTANT PREMIUM RATES 

Assume again that the total claims rate x ( t )  is given by (AI.1). Moreover, in 
order to shorten the notations assume that p = pl = P2 = 0. 

By defining the change in the retained claims rate in the optimal linear 
scheme as 
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(A2.1) ,dxl(t)  = ( l - B )  x l ( t )  = L ( B )  e(t)  

we can proceed analogously to Appendix I. The resulting difference equations 
are 

(A2.2) 

(A2.3) 

(A2.4) 

where 

(A2.5) 

(i = O):r2f12--(r2+ l)2fll+cflo = r2~2- - (2r2+ l) ~ 1 + ( r 2 + 2 ) ,  

(i = 1) : r2 ] . t3 - ( r2+ 1 ) 2 # 2 + c # 1 - ( r 2 +  1)2~0 

= r 2 ~ 3 - ( 2 r 2 + l ) ~ 2 + ( r 2 + 2 ) ~  l - l  

(i >_ 2) : r2fli+2-(r2q- I)2fli+l + cf l i - (r2+ l)2fli_ I +r2fli_ 2 

= r2~i+2-(2r2+ l )~i+l  + ( r 2 + 2 ) ~ i -  ~ i - i ,  

C = 2 ( l + r 2 + r 2 2 ) + v .  

Thus we have to solve a difference equation of  order four. The homogeneous 
equation is solvable by the methods presented in BOX-JENKINS (1976), 
Section 13.2. 

The characteristic equation corresponding to difference equation (A2.4) is 

(A2.6) r2zd-(r2  + l )2z2-Fcg2-(r2 - l )2z+r2  = 0.  

Hence, if z is a solution so is z - i .  Let the roots be K I , KI -I  , K2 and K2 -1 with 
[Ki [ < 1 and [K21 < l. I f v  = 0 then the roots of  (g2.6) are l , r  2 an d r2  - I .  

Then the modulus of  only one root is less than I. To rule out this case we 
assume that v> 0. 

In subsequent applications we need only coefficients k0 = Ki +K2 and 
kl = KtK2.  They can be found by the following procedure (see Box- 
JENKINS (1976)) : 

(I) Compute M = ( l + r 2 ) 2 / r 2  and N=[( l+r2)E+( l+r22)+v] / r2  

for a series of  values of  v chosen to provide a suitable range for Du2 and 
Ddxl  . 

(II) Compute zl = 0 . 5 ( N - 2 )  + x / O . 2 5 ( N - 2 ) 2 + 2 N - M  2 

and z2 = 0 . 5 ( N - 2 )  - x / O . 2 5 ( N - 2 ) 2 + 2 N - M  2 . 

(III) Compute kl = 0.5zl - x/(0.5Zl) 2 -  1 

and k0 = x/kl (z2 + 2) . 

The general solution of the homogeneous equation is 

(A2.7) /t, = A i K i t + A ( K i - I + A ~ K i 2 + A ~ K 2  i (i = O, 1,2 . . . .  ) .  

In this solution A~' and A] must be zero because in the optimal solution the 
solvency rate cannot have infinite variance. Hence 
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( A 2 . 8 ) , i :  AzK~+A2K~,  [Kt[ < It21 < 1 ( i = 0 , 1 , 2  . . . .  ) .  

This  solution is the same, apar t  f rom coefficients A I and A2, for  every x ( t )  
process. The  exact solution contains features which are specific to individual 
x ( t )  processes; i.e. it depends on the part icular  solution o f  (A2.2)-(A2.4). 

For  the case ~U(B) = (1 -00B)  -I  with 100l < 1 a part icular  solution o f  
(A2.2)-(A2.4) is easy to find. In fact, a part icular  solution is given by 

(A2.9) /zi = D00 i (i = 1, 2 . . . .  ) ,  

where 

r2 (00_ 1)2 (00_ r2-i) 
(A2.10) D/00 = 

r2 004-- (r2 + 1)2 003 ÷ C002--(r2-l-1)2 00+r2 

Constants  A~ and A 2 can be determined from initial condit ions (A2.2) and 
(A2.3), giving 

Ki2( r2DK2 + K2 r 2 D )  

00 2 00 00 

(A2.1 1) 

Ai = 
r2 (KI - K2) 

Ki r 2 D ) K2 2 r2DKi + _ _  _ _ _  

0 2 00 00 
A 2 = 

rE (g2 - Ki) 

In d e r i v i n g / t ( B )  and L(B)  it is useful to observe that  

(A2.12) A i + A 2 = Dkl ]¢2 + k l/r2 00- Dko/O 

and 

(A2.13) 

The  final solution is 

A 1 K2 + A2 Ki = - kl D/O. 

(A2.14) ~l i = A, K I + A2 r~ + DO' 

or  equivalently 

(i = 0, 1, 2 . . . .  ) 

,Uo +/zl B D 
(A2. ! 5) .u (B) = + - -  

l - k o B + k ~ B 2  [ - O B  ' 

where (see (A2.12) and (A2.13)) 

(A2.16) ,u0 = A~+A2 

and 
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(A2.17) ,ul = -(A~ K2+A2K~). 

Thus the final formulas are: 

.r I (t) = [ - ( I  - r 2 B  ) (1 - O B ) ~ ( B ) +  1] x ( t )  (A2.18) 

or 

(A2.19) 

(A2.20) 

(A2.21) 

(A2.27) 

where 

x , ( t )  = [ - ( i - r 2 B ) , u ( B ) + ( l - ~ B ) - ' ] e ( t  ) ,  

(1 - r  t B) ul (t) = - x  I ( t ) ,  

u2(t)  = - f l ( n ) ~ ( t ) .  

The necessary coefficients can be found from equations (A2.5), procedure I-III, 
(A2.10), (A2.1 I)-(A2.13) and (A2.15)-(A2.17). 

The corresponding variances can most easily be calculated from the presen- 
tations containing ~(t)'s. Note that the effect of the constant premium rates p, 
Pt and P2 is not shown in equations (A2.18)-(A2.21), since we assumed the rates 
to be identically zero. 

Next, the random walk claims process is considered. For this purpose we 
take a slightly more general process by assuming that 

(A2.22) zlx(t) = (1 -OB)  a(t) 

with e(t) 's uncorrelated; i.e. x ( t )  is an ARIMA (0, I, 1) process. 
When looking for the solution we can proceed analogously with the 

considerations earlier in this Appendix. Now the following difference equations 
are obtained : 

(A2.23) r2ltx-(r2+l)2u~+CUo = l + ( r 2 + l ) 0  ( i =  0) 

(A2.24) r 2 ~ 3 - ( r 2 +  l ) 2 f l 2 + c / t t -  (r22+ l)Z~0 = - 0  (i= I) 

(A2.25) r2lti+2-(r2+ 1)2lti+~+c,tti-(r2 + l)21.ti_l+r2/.ti_2 = 0 (i > 2) 

The solution of this difference equation is exactly the same as that of the 
homogeneous equation above; i.e. 

(A2.26) u i = A , K i + A 2 K ~ ,  ] K t l  < I, IK2I < ! ( i = 0 , 1 , 2  . . . .  > 

and K~ and K2 are the solutions of equation (A2.6). Constants A~ and A2 can 
be computed from intial conditions (A2.23) and (A2.24). 

For all 0 #(B) is of the form 

~0+g~ B 
~ ( n )  = 

I - k o B + k t  B 2 ' 

la 0 = Aj+ A 2 = r2-2[r2-r20-O]kl+r2-1Oko 



178 JUKKA RANTALA 

and  

~ t  = - ( A t  K 2  + A2 Kl)  = - r 2 -  i kl 0 .  

W h i t e  no i se  case  0 = 1 gives/ . t  o = - r 2- 2 k i + r2- i k0 and / . t l  = - r2- t k i a n d  the  

r a n d o m  w a l k  case  0 = 0 gives  ,u = r2- tk t  a n d  a l  = 0. 
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ABSTRACT 

This paper derives several formulas for the probability of  eventual ruin in a 
discrete-time model. In this model, the number of claims process is assumed to 
be binomial. The claim amounts, premium rate and initial surplus are assumed 
to be integer-valued. 

KEYWORDS 

Compound binomial process; Probability of  eventual ruin; Ultimate ruin 
probability; Infinite-time ruin probability; Risk theory; Random walk; 
Gambler 's ruin; Lagrange series. 

l .  INTRODUCTION AND NOTATION 

This paper is motivated by the recent paper GERBER (1988b), which discusses 
the probability of  eventual ruin in a discrete-time model. We shall derive some 
of  GERBER'S results by alternative methods. As we shall point out below, our 
formulation and notation are not exactly the same as  GERBER'S.  

We consider a discrete-time model, in which the number of  insurance claims 
is governed by a binomial process N(t), t = 0, 1, 2 . . . . .  In any time period, 
the probability of  a claim is q (denoted by p in GERBER'S paper) and 
the probability of no claim is 1 - q .  The occurrences of a claim in different 
time periods are independent events. The individual claim amounts 
X~, X2, X 3 . . . .  are mutually independent, identically distributed, positive and 
integer-valued random variables; they are independent of the binomial process 
N(t). Put X = Xt,  and let p(x) = Pr(X = x). The value of the probability 
density function p(x) is zero unless x is a positive integer. We also assume that 
the premium received in each period is one and is larger than the net premium 
qE(X). Put E(,Y) = #; then the last assumption is 

(1.1)  1 > q~ 

For k = 1, 2, 3 . . . . .  define 

(1.2) Sk= X i + X 2 +  .. +Xk.  

ASTIN BULLETIN, Vol. 19, No. 2 
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Put S o = 0. Let the initial risk reserve be a nonnegative integral amount  u. The 
probabili ty of  eventual ruin (ultimate ruin probability, infinite-time ruin 
probability) ~,(u) is the probability that the risk reserve 

(1.3) U(t) = l d ' ~  l - -  S N ( i )  

is ever negative. Since GERBER (1988b) defines ruin as the event that the risk 
reserve U(t) becomes nonpositive for some t. t > 0, the formulas derived 
below will not be exactly the same as his. 

2. THE PROBABILITY OF NONRUIN 

It is somewhat easier to work with the nonruin function 

O(u) = l - ~ , ( u ) .  

For u < 0, 4,(u) = 0. Consider an initial risk reserve of amount  j, j >__ O. If  
there is no claim in the first period, the risk reserve becomes j +  1 at the end of 
the period; if there is a claim of  amount  x in the first period, the risk reserve 
becomes j +  ! - x .  Hence, by the law of total probability, 

(2.1) 0 ( j )  = (1 -q) O(j+ l)+qE[O(j+ I - X ) ] ,  j = 0, 1, 2, . . . .  

Rearranging (2.1) yields 

(2.2) q i ( j+  l ) -  0(./)  = q{(~(j+I)-E[O(j+I-X)]}, j =  0 , 1 , 2  . . . . .  

Summing (2.2) from j = 0 to j = k -  I, we have 

k k 

o r  

(2.3) O(k)-(1-q)O(O)= q{ (~(jl-e ~ ¢(j-X) , 
j=O j = l  

Let I+ denote the function defined by 

l + ( j )  = I, j =  0 , 1 , 2  . . . . .  

l + ( j )  = 0, j =  - 1 ,  - 2 , . . . .  

For  each pair of  functions f and g, let f*g denote their convolution, 

(2.4) (f*g)(j)= ~ f ( j - i )g( i ) .  
i= - oO 

Note that, i f f ( i )  = g(i) = 0 for all negative integers i, then (2.4) becomes 

J 

(f*g)(J) = 2 f ( j - i )g( i ) .  
i=O 

k =  1 , 2 , 3 , . . .  
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Since the convolut ion  operat ion can be regarded as a multiplication opera t ion 
between functions, we sometimes write (f ,g)(j) as f(j)*g(j). 

The first sum in the r ight-hand side o f  (2.3) is ( 0 ,  1 +) (k). As X is a positive 
random variable, 

k k 

(2.5) Z O(J-X)= 2 O(J-X)= (O*l+)(k-X)" 
j= l  j=0 

Hence,  (2.3) becomes 

0 ( k ) - ( 1  - q )  0(0) = q{(0* 1+) ( k ) -  E l ( 0 *  1+) ( k -  X)]} 

(2.6) = q [ ( 0 * l + ) ( k ) - ( 0 * l + * p ) ( k ) ] ,  k = 1 , 2 , 3 , . . . .  

Since p(0)  = 0, it is easy to check that  (2.6) also holds for k =  0. To  solve for 0 
in (2.6), we first extend it as an equat ion for all integers k, positive and 
negative : 

(2.7) 0 ( k ) - ( l - q )  0 ( 0 ) l + ( k )  = q[(O*l+)(k)-(O*l+*p)(k)]. 

Let 6 be the function defined by 6(0) = I and 6 ( j )  = 0 f o r j  ¢ 0. Then the 
r ight-hand side o f  (2.7) can be expressed as 

q { 0 (k) * l + (k) * [3 (k) - p (k)]}. 

Rearranging (2.7) and writing 

(2.8) c = (1 - q )  0(0) 

yields 

(2.9) ¢ (k) * (O (k) - q { I + (k) * [6 (k) - p (k)]}) = c l + (k) .  

Equat ion  (2.9) is a Volterra equat ion of  the second kind. T o  solve for 0, we 
invert 

6 (k) - q { 1 + (k) * [6 (k) - p (k)]} 

as the N e u m a n n  series [BROWN and PAGE (1970, p. 226), RIESZ and Sz.-NAGY 
(1955, p. 146)] 

(2.1 o) 

(We use the 
Hence,  

(2.11) 

• q " { l .  (k) • [,~ ( k ) - p  (k)]}*". 
nlmO 

notat ion" f * ° = 6  and f , ,  = f , ( , - i ) , f ,  , 1=  1 ,2 ,3  . . . . .  ). 

O(k) = c ~ q"{[6(k)-p(k)]*"* l*+("+')(k)}. 
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Since 

(2.12) 

and 
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[3(k)-p(k)]*"= ~ (n)  ( - I ) j p * J ( k ) ' j = o  j 

n 

J 

l*("+t)(k)= (k+n) l + ( k ) ' n  

. =j n - j  

k + ] + l  

p*J(k) *f(k) = E[f(k - Sj)], 

by an interchange of the order of summation (2.1 I) becomes 

¢(k) = c E (-q)J p*J(k)* k+j 1 k+j+ 
j . o  j -i-5-q l 

)[( (2.13) = 0(0) -q JE k+j-Sj 
j=o 1 - ~  j 

1 + (k) 

(1 _q)Sj-k 1+ (k- Sj) ] . 

As Sj >j, there are at most k + l  nonzero terms in the right-hand side of 
(2.13). This formula corresponds to (4.6) of SHIu (1988) and (3.14) of 
SHIU (1989a). 

To derive the value of ~(0), we return to formula (2.6). Let P denote the 
probability distribution function of the individual claim amount random 
variable X. Then 

P =  l + * p .  

As k tends to positive infinity, the left-hand side of (2.6) tends to 

l - ( 1 - q )  ~ ( 0 ) ,  

while the right-hand side tends to 

q E [l+(j)-P(j)] q [ I - P ( j ) ]  
j=  -oo j=0 

= q/t 
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by the Lebesgue dominated convergence theorem. Hence. 

I - q ~  
(2.14) 0(0) - - -  

l - q  

3. GAMBLER'S RUIN 

As a verification of formulas (2.13) and (2.14), let us consider the special case 
that X=-2. This is a classical problem in the theory of random walk. The 
probability that, with an initial reserve of u (a nonnegative integer), the 
company's risk reserve will ever become - I is known to be [q/(1 _q)]U+l. 

Since Sj = 2j, formula (2.13) becomes 

ck(O.__~) ~ [_q(l_q)]j(u-J)l+(u_2j) 
O(u) - (1-q)U j=0 j 

(u j) _ i - 2 q  2 [-q(l-q)]J 
(3.1) ( l -q )U+ '  j=0 j " 

For a real number r, we let ~r~ denote the greatest integer less than or equal 
to r. The polynomial 

(3.3) 

N o w ,  

is related to the Chebyshev polynomials of the second kind and can be 
expressed as [KNUTH (1973, problem 1.2.9.15), RIORDAN (1968, p. 76)] 

(I + X / I + 4 x )  k + ' - ( i  - - X / I + 4 x )  k+l 

2 k+l X/I + 4 x  

x / I - 4 q ( l - q )  = I 2 q - I  I 

= I - 2 q  

by assumption (1.1). Hence, 

(3.4) 0(u) = 1 - 
q )u+l 

as required. 
For the case that X -  m > 2, formula (2.13) cannot be simplified. It has been 

given by BURMAN (1946). Also see GIRSHICK (1946, p. 290), SEAL (1962, p. 23; 
1969, p. 101) and GERBER (1988b, (43)). 
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4. ANOTHER RUIN PROBABILITY FORMULA 

GERBER (1988b) has derived another formula for the probability of eventual 
ruin, which is complementary to (2.13). It follows from condition (1.1) that 

Pr Film U(/)= +oo] = 1 .  
[ I ~ O 0  

(4.1) 

Since 

If ruin occurs, there is necessarily a last upcrossing of the risk reserve U(t) 
from level - 1 to level 0. By considering the number of claims n, prior to this 
last upcrossing, and the time t at which it occurs, we have 

~u(u) = [ ~,,=t ,=,,~ ( t)  -q)'-"Pr(S,, = u+t+l)] ( l - q )  0(0). 

I ~ t t  n 

= ~ [ ( s  u ,)~, q~s u ,+~ u n ,~] n 

we obtain the formula 

(4.2) ~u(u) = ( I - q l t )  E q 
n=l 

E [ ( ~  u ')~,-q~Sn ~ , ~ S  u n 

Continuous-time analogues of (4.2) can be found in PRABHU (1965, (5.55)), 
GERBER (1988a, (27)) and SHIU (1989a, (1.6)). 

Using the identity 

we can rewrite (2.13) as 

5. GERBER'S FANCY SERIES 

~5,~ 0~u~ ~, q~,~( ~ ) j E(~ -~,-,) ] j=o ~ - q  E . ( I -q )S j -~ - '  l+ (u-S]) . 
J 

~ l ~ j ( o ) ( a + J , ) j  J 
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Since 

0 ( u ) + ~ ( u )  = 1 

and u is an integer, adding (5.1) to (4.2) yields 

(5.5) 

Since 

if we put x = - ( u + l ) .  This interesting formula is Theorem la of 
GERBER (1988b). In this section we present some alternative proofs for (5.2); 
the assumption that x is an integer will not be used. 

Assume that all the moments of  the random variable X exist. Consider the 
linear operator G on the linear space of polynomials defined by 

(5.3) (G f )  (y) = E [ f ( y +  X)]. 

[Such operators have been considered by FELLZR (1971, section VIII.3)]. A s f  
is a polynomial, the random variable f ( y + X )  in (5.3) can be expressed as 

(5.4) 2 xJ fO)(Y) 
j~0 j !  

Consequently, the linear operator G can be represented as a power series in 
terms of the differentiation operator D: 

G = 2 E(j__) Dj " 
j~o j! 

G - I =  pD+ V2E(X2)D2 + . . . ,  

we have, for each nonnegative integer n, 

(5.6) (G-  l)"x" = n! p" 

and, for nonnegative integers n and m, m < n, 

(5.7) ( G - l ) n x  m = 0 .  

It follows from (5.6) and (5.7) that 

(5.8) ( G -  Z)" 

Multiplying (5.8) with qn and summing 

Xn ) = Itn" 

from n = 0 and n = oo yields 
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(5.9) 
n=O 

q"(G-I)" ( x)_ l 
n 1 - q / . t  

Applying the formulas 

(G - I)" = ( - 1)"- , 
k=0 k 

(x)(n): x(xk) 
n k k n -k  

and 

()xk E ( - - l ) " -k  q , -k  = ( l _ q ) x - k ,  
,,=k n-- k 

we obtain 

(5.10) 

Since 

k=0 ~ ( l--~q ) k G k [ ( X ) (1-- q ) X ] l --l q p 

(Gkf)(x) = E[f(X+Sk)], k = 0, 1,2 . . . . .  

formula (5.10) is the same as (5.2). 
An operational calculus proof  is (5.10) can be found in SHtu (1989b). 
If  the random variable X in formula (5.2) is degenerate, i.e., X -= p, then we 

have 

(5.11) ~ (X+lln)[q(l--q)"-I]n= 1 
,=0 n (1 --/xq) (1 -- q)" 

This result is quite well known; it and its variants can be found in POLYA 
(1922, (7)), WHITTAKER and WATSON (1927, p. 133, example 3), RIORDAN 
(1968, p. 147), POLYA and SZEG6 (1970, p. 126, problem 216), KNUTH (1973, 
problem 1.2.6.26), MELZAK (1973, p. 117, example 4), COMTET (1974, p. 153), 
HENRICl (1974, p. 121, problem 12), ROTA (1975, p. 56), ROMAN and ROTA 
(1978, p. 115) and HOFRt (1987, p. 34). The standard proof  of formula (5.11) is 
by an application of  the Lagrange series formula. The proof  can readily be 
generalized to one for (5.2), as we shall show below. (Also see section 5 of  
Snlu (1989a)). 

Let h be an analytic function and let 

(5.12) z = b+wh(z). 
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By the implicit function theorem, there is a unique root z = z(w) which 
reduces to b at w = 0. If f is an analytic function, t h e n f ( z )  = f ( z ( w ) )  may be 
expressed as follows [RIORDAN (1968, p. 146), POLYA and SZEG6 (1970, 
p. 125), GOULDEN and JACKSON (1983, p. 17)]: 

f (z) _ w J 
l - w h ' ( z )  j=o 7 [f(Y)[h(Y)]J] y=b (5.13) 

Now, consider b = l - q ,  

and 

Then 

and 

(5.14) 

f (y)  = yX 

h (y )  = E(yX) .  

[h(y)]  j = E(ySO 

• ~ y • 

j! dff j 

With w = q, the right-hand side of (5.13) is the same as the right-hand side of 
(5.2) and equation (5.12) becomes 

z = ( l - q ) + q E ( z X ) .  

Thus z = 1 and the left-hand side of (5.13) is identical to the left-hand side of 
(5.2). 

6. REMARKS 

(i) Consider formula (2.14). Since X >_ I by hypothesis, the number 4,(0) is 
always bounded above by one as it should be. If I_< q/2, then ruin is 
guaranteed; but this is ruled out by condition ( l . l ) .  It follows from (2.14) 
that 

q ( u -  1) 
(6.1) ~ (0) - 

l - q  

However, GERBER'S (1988b) result is that 

(0) = q u .  

This discrepancy exists because GERBER defines ruin to occur when the risk 
reserve U(t) becomes nonpositive, while we consider the insurance company to 
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be solvent even if its risk reserve is zero. An anonymous referee has kindly 
pointed out that our definition of ruin is equivalent to DUFRESNE'S (1988, 
section 3) and (2.14) is DUFRESNE'S formula (37). 

(ii) GERBER (1988b) first obtained formula (5.2) and then derived a formula 
corresponding to (4.1). With these two formulas, he derived formulas corre- 
sponding to (2.14) and (2.13). 

(iii) Formula (2.12) is a special case of the combinatorial identity 

k=0 m n r e + n +  1 

where m, n, r and s are nonnegatlve integers and n >_ s [RIORDAN (1968, p. 35, 
problem 13), KNUTH (1973, p. 58), HOFRI (1987, p. 39, problem 2b)]. 

(iv) Formula (2.1) can written as 

(6.2) 0 ( j + l ) - 0 ( j )  = [ q / ( 1 - q ) ] { 0 ( j ) - E [ 0 ( j + l - X ) ] } ,  j =  0, 1 , 2 , . . . .  

Hence, for each positive integer k, 

0 (k) - 0 (0) = [q/(l - q)] { 0 (k) - E [ 0 (k + 1 - X)]} * 1 + (k - i) 

(6.3) = [q/( 1 - q)] { 0 (k) * [ 1 + (k - 1 ) - P (k)]}, 

which is reminiscent of a renewal equation in the compound Poisson model 
[(FELLER, 1971, (XI.7.2)), (Smu, 1989a, (2.4))]. Let h denote the function 

h ( k )  = [ l + ( k - l ) - P ( k ) ] / ( l , - 1 ) ,  k = O, d: l ,  ± 2 , . . . .  

It follows from (6.3) and (6.1) that, for all integers k, 

0 (k) - 0 (0) 1 + (k) = V (0) [0 (k) * h (k)]. 

Define H*" = h*"* l+ .  Then 

(6.4) 0(u) = 0(0) ~ [~(0)]" H * " ( u ) .  
n=O 

Formula (6.4) is analogous to a convolution series formula.in the compound 
Poisson model; see SHIU (1988, (2.1); 1989a, (2.14)). Since h ( i )  = 0 for all 
i < 0, there are at most u +  1 nonzero terms in the right-hand side of (6.4), 
i.e., 

O(u) = 0(0) ~ [~(0)]"I-I*"(u).  
n=O 

~.~ [ ~ ( 0 ) ] "  : 1 / [ I - ~ ( 0 ) ]  = 1 / 0 ( 0 ) ,  
PI=0 
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we have, for each nonnegat ive  integer u, 

(6.6) ~ ( u )  = [ I - ~ ( 0 ) ]  ~ [ ~ ( 0 ) ] " [ I - H * " ( u ) ] .  
11 = I 

F o r m u l a  (6.6) has been derived by R. MICHEL and can be found in a 

for thcoming risk theory book  by C. HIPP and R. MICHEL. Observe that, when 

X =- 2, h ( j )  = O ( j -  I) and  formula  (3,4) immediate ly  follows from (6.5). I 

thank  C. HIPP for the in fo rmat ion  above. 
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ABSTRACT 

We consider a risk generating claims for a period of N consecutive years (after 
which it expires), N being an integer valued random variable. Let X k denote the 
total claims generated in the k th year, k >_ 1. The Xk's are assumed to be inde- 
pendent and identically distributed random variables, and are paid at the end of 
the year. The aggregate discounted claims generated by the risk until it expires is 
defined as SN(V) = Z~=l vkXk, where v is the discount factor. An integral equa- 
tion similar to that given by PANJER (1981) is developed for the pdfof SN(V). 
This is accomplished by assuming that N belongs to a new class of discrete 
distributions called annuity distributions. The probabilities in annuity distribu- 
tions satisfy the following recursion: 

P n = P n - I  a +  , for n =  1,2 . . . . .  

where an is the present value of an n-year immediate annuity. 

KEYWORDS 

Annuity distributions; integral equation; aggregate discounted claims. 

1. INTRODUCTION 

A major problem in mathematical risk theory is the evaluation of the distribu- 
tion of the aggregate claims occuring in a fixed time period. This is because the 
aggregate claims is usually the sum of a random number of claims. If Yk is the 
size of  the k th claim and N is the number of claims in this time period, then the 
aggregate claims S is given by 

N 

(1) S =  ~ Yk. 
k=l 

The Yk'S are usually assumed to be independent and identically distributed (iid) 
with common cummulative distribution function (cdf) F(y). If the n-fold 
convolution of F(y) with itself is given by 

ASTIN BULLETIN, Vol. 19, No. 2 
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('y 
Fn(y) = 3o F,_l(y-z)dF(z) ,  n =  1,2 

with Fo(y ) = 1, for y>_ 0, and the non-defective claim number distribution is 

p. = Pr[N = n],  

for n = 0, 1 . . . . .  then the cdf of  S is 

(2) G(y) = ~ p,F.(y). 
n=0 

Unfortunately, explicit expressions for Fn(y ) are usually not available, so the 
equation (2) is generally not very useful. Approximations for G(y) are thus 
needed. 

In order to facilitate the easy evaluation of  G(y) in equation (2), PAN- 
JER (1981), and SUNDT and JEWELL (1981) provided a family of claim number 
distributions which yielded an integral equation for the pdfof S when the Yk's 
are absolutely continuous random variables. The random variable N must have 
probabilities satisfying the recursion 

where a and b are constants depending on the length of the time period. This 
family includes the geometric, Poisson, binomial, negative binomial, logarithmic 
series, and the so-called extended truncated negative binomial distribution. See 
WILLMOT (1988) for details. PANJER (1981) proved that if Pn satisfies equa- 
tion (3), then g(y) ,  the pdf of  S, satisfies the following integral equation for 
y > 0 :  

(4) g(y) = p , f (y)  + ~i (a + - ~ ) f ( z ) g ( y - z ) d z .  

This integral equation can be solved numerically; see STROTER (1985). 
Recall that S is defined as the aggregate claims over a fixed time period. If this 

time period T is large, i.e., extending over several years, then it many be prudent 
to include an interest discount factor to obtain the present value of  these claims. 
Let T k be the random time at which the claim Yk occurs, and N(T) be the 
number of  claims over T years, T a positive integer. The aggregate discounted 
claims, denoted by S~(v), will be given by 

N(T) 

(5) S~-(v) = ~, v r~ Yk 
k=l  

where v = 1/(1 + i )  and i is the constant annual rate of interest. Comparing 
equations (I) and (5), it is clear that S~-(v) is a more complicated random varia- 
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ble than S, and hence will have a more complicated cdf S~-(v) can be simplified 
by making the traditional actuarial assumption that claims are paid at the end of  
the year in which they occur. This means that equation (5) reduces to 

T 

(6) St(v) = ~ vk Xk 
k=l 

where X k is the aggregate claims generated in year k. We assume that the num- 
ber of  claims occuring during each year is an iid sequence, implying that the Xk'S 
are also iid. 

The important observation to note here is that St(v) is now the sum of  T (a 
fixed number) of  random variables Xk. Thus we have seen that the traditional 
model studied by PANJER and SUNDT and JEWELL can be adapted to include an 
interest factor. However an expression for the pdfof S~(v) will not be similar to 
equation (4) when the probabilities of  N(T)  satisfy equation (3). We will see that 
by making T random, it is possible that ST(v) can be extended to yield a pdf 
which satisfies an integral equation similar to (4). 

2. THE MAIN RESULTS 

The inclusion of interest and/or inflation factors in risk theoretic models have 
appeared in the literature mainly in the context of  the calculation of  ruin prob- 
abilities; see, for example, WATERS (1983), BOOGAERTS and CRIJNS (1987), and 
GARRIDO (1988) and references therein. The limiting distributions of  discounted 
processes have been studied by GERBER (1971), and BOOGAERT, HAEZENDONCK 
and DELBAEN (1988). However, there has been no work in the literature on 
integral equations similar to that of  PAN.JER (1981) for aggregate discounted 
claims. 

Consider a risk that can produce either no claim or it produces a sequence of  
iM positive claims that are paid at the end of  the year in which they occured. 
Such risks are pertinent to health insurance, dental insurance, etc. The sequence 
of  claims will run for N years, starting from year 1 until year N, after which no 
further claims are produced. N is an integer valued non-negative random varia- 
ble. The total claims produced in the k th year is Xk > 0, k = 1, 2 . . . . .  If interest 
is at rate i annually, the aggregate discounted claims will be given by Su(v) 
where 

N 

(7) So(v) = ~ vk Xk 
k= |  

Notice the difference between equat ions (6) and (7), the constant  T is now 
replaced by the random variable N. These equat ions clearly have different  
interpretat ions.  

In order  to develop an integral equat ion for the pdf of  Su(v), we will 
introduce a new family of  claim number  distr ibut ions for N, called annui ty  
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d i s t r i bu t ions ,  with p robab i l i t i e s  p ,  sa t i s fy ing the fo l lowing  d i f fe rence  equa -  
t ion :  

(8) P n = P n - ~  a +  , for  n = i , 2  . . . . .  

where  an is the p re sen t  va lue  o f  an n -yea r  i m m e d i a t e  a n n u i t y  at  in te res t  rate  
i, i.e., 

(1 - v  n) 
(9) an - - -  

i 

As before ,  Pn = P r [ N  = n] .  
Let  P(z) be the p r o b a b i l i t y  genera t ing  func t ion  o f  N, i.e., 

P(z) = ~ p , z  n, 
n=0  

I t  can eas i ly  be p r o v e n  tha t  

and  

E [SN (V)] = 

for  - i  ~ z _ <  1 . 

~(1 -P(v ) )  

Var  [So(v)]  = E [Var  [SN(V ) I N] ]  + Var  [E  [So (v) I N] ]  

_ _ _  l_p(v2)  + [P(v2)l-[P(v)l 2 
1 - v  2 

where ,u = E[Xk] and a 2 = Var[Xk] .  
F rom equat ion (7) we condi t ion on {N = n t and define S.(v) as 

Sn(v) = ~ v k Xk, n=  1,2 . . . . .  
k=l  

Note  that, because the Xk'S are iid, Sn (v) has, for each non-negat ive  integer m, 
the same  dis tr ibut ion as 

S,,(v) = ~ vk X,,+k. 
k=l  

Therefore ,  since 
n - I  

Sn(V) = VXl+V ~ vkXk+l , 
k = l  

Sn (v) is seen to have the same  distr ibution as vX~ + vSn_ ~ (v). Thus  iffn (x) is the 
probabi l i ty  dis tr ibut ion function o f  Sn(v), then the following convolu t ion  rela- 
t ionships will exist" 
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\ v ) k v )  

for n = 2, 3 , . . .  and f ( x )  is the pd f  of  the Xk'S. 
Before deriving the integral equation for the pdfo fSg(v ) ,  the following lemma 

is needed" 

LEMMA 1. If  X~, k = 1, 2, . . . ,  n are iid random variables with finite mean, and 
the constants Wk are positive weights, let 

n 

Z , =  ~ WkXk and 
k=l 

then f o r k e { l , 2  . . . . .  nl and n =  1,2 . . . .  

(11) E [ X  k ] Z  n = x] = 

W n : ~ IOk, 
k=l 

X 

Wn 

PROOF: By the symmetry of iid random variables and the fact that the weights 
are positive constants, 

E [ t O k X k l  Z n = X]OC W k X .  

Let n be the constant of  proportionality. Summing both sides of  the above 
expression yields 

i.e., 

So 

X = 7 t W n x  , 

1 

Wn 

E[WkXkl  Zn = x] : 
lO k X 

W. 

and equation (1 l) follows. 
Q.E.D. 
Consider the case where Wk = V k and W, = an, then 

E[Xi IS.+i(V) = x] = - -  
X 

an+l 

(12) 
I 

We are now able to establish the main result of  this paper• 
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Tr~EOREM 1. Let Sn(v) be defined as in equation (7) with pdfg(x) for x > 0. If  
N has its probabilities satisfying the recursion in equation (8) and Zn~oPn = 1, 
then for x > 0, 

(13) g(x) = plf(x/u) + a + ~ g f ( y / v )dy  

with Pr[Su(v) = 0] = P0. 

PROOF: Since the Xk'S are positive, SN(V)= 0 if and only if  N =  0. So 
Pr[S~v(v) = 0] = P0. For x >  0, 

g(x) = ~ p , f , ( x )  
n = l  

= Plf l (x)  + ~ P,+lfn+l(X) 
n = l  

= plf(x/v)  + p, a + - -  fn+l(x) 
n =  1 a n +  1 

+ P, fn+l (x) 
n =  I a n +  1 

+ _ Pn ~ f (y /v)  dy 
n =  I O X  

Q.E.D. 
A similar result can be established if we assume that claims are subject to 

inflation at rate r and there is no interest. This can be accomplished by defining 
wk = (1 +r) k, and using a new family o f  discrete claim number  distr ibutions 
with 

(14) P n = P n - t  a +  , for n =  1 , 2 , . . . ,  
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must coverge. There are several tests that can be used to check the convergence 
o f  R(a,  b, o~, see MALIK (1984) or WILLMOT (1988). For example, the ratio-test 
ensures convergence if 

lim a + - -  = L < I .  
n-oR a ( n ,  

Once R (a, b, o~ exists, the pn's will be given by 

l 
if  n = 0; 

R(a,b, 6) 

(21) p .  = 

Po a + ~  if n =  1 , 2 , 3  . . . .  
k=J a(k, 6) 

For given a and b that ensures the convergence o f  R(a, b, 6), one can easily 
evaluate the p~'s and the moments  o f  the distribution. Unfortunately, closed 
form expressions are not easily obtainable these distributions, except o f  course 
when ~ = 0. 

Further research is needed in the distributional properties o f  annuity distribu- 
tions, the tail thickness, and the estimation o f  the parameters a and b. It will 
also be instructive to compare the various members o f  the family when ~ = 0 to 
those with the same parameters a and b but with ~ ~ 0. One would expect that 
the tails o f  these comparable distributions to become thicker as d~ decreases. 
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A B S T R A C T  

The objective of this paper is to provide an extension of well-known models of 
tarification in automobile insurance. The analysis begins by introducing a 
regression component in the Poisson model in order to use all available 
information in the estimation of the distribution. In a second step, a random 
variable is included in the regression component of the Poisson model and a 
negative binomial model with a regression component is derived. We then 
present our main contribution by proposing a bonus-malus system which 
integrates a priori and a posteriori information on an individual basis. We show 
how net premium tables can be derived from the model. Examples of  tables are 
presented. 

K E Y W O R D S  

Multivariate automobile insurance rating; Poisson model; negative binomial 
model; regression component; net premium tables; Bayes analysis; maximum 
likelihood method. 

INTRODUCTION 

The objective of this paper is to provide an extension of well known models of 
tarification in automobile insurance. Two types of tarification are presented in 
the literature : 

1) a priori models that select tariff variables, determine tariff classes and 
estimate premiums (see VAN EEGHEN et al. (1983) for a good survey of 
these models); 

2) a posteriori models or bonus-malus systems that adjust individual prem- 
iums according to accident history of the insured (see FERREIRA (1974), 
LEMAIRE (1985, 1988) and VAN EEGHEN et al. (1983) for detailed discus- 
sions of these models). 
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This study focuses on the selection of tariff variables using multivariate 
regression models and on the construction of insurance tables that integrates a 
priori and a posteriori information on an individual basis. Our contribution 
differs from the recent articles in credibility theory where geometric weights 
were introduced (NEUHAUS (1988), SUNDT (1987, 1988)). In particular, 
SUNDT (1987) uses an additive regression model in a multiplicative tariff 
whereas our nonlinear regression model reflects the multiplicative tariff struc- 
ture. 

The analysis begins by introducing a regression component in both the 
Poisson and the negative binomial models in order to use all available 
information in the estimation of  accident distribution. We first show how the 
univariate Poisson model can be extended in order to estimate different 
individual risks (or expected number of  accidents) as a function of a vector of 
individual characteristics. At this stage of  the analysis, there is no random 
variable in the regression component of the model. As for the univariate 
Poisson model, the randomness of  the extended model comes from the 
distribution of accidents. 

In a second step, a random variable is introduced in the regression 
component  of  the Poisson model and a negative binomial model with a 
regression component  is derived. We then present our main contribution by 
proposing a bonus-malus system which integrates explicitly a priori and a 
posteriori information on an individual basis. Net premium tables are derived 
and examples of tables are presented. The parameters in the regression 
component of  both the Poisson and the negative binomial models were 
estimated by the maximum likelihood method. 

1. The Basic Model 

I.a. Stat i s t ical  Analys is  

The Poisson distribution is often used for the description of random and 
independent events such as automobile accidents. Indeed, under well known 
assumptions, the distribution of the number of accidents during a given period 
can be written as 

e-2)Y 
(1) pr (Yi  = Y )  - 

y! 

where y is the realization of the random variable Yi for agent i in a given 
period and 2 is the Poisson parameter which can be estimated by the maximum 
likelihood method or the method of moments. Empirical analyses usually reject 
the univariate Poisson model. 

Implicitly, (1) assumes that all the agents have the same claim frequency. A 
more general model allows parameter 2 to vary among individuals. If we 
assume that this parameter is a random variable and follows a gamma 
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distribution with parameters a and l /b  (GREENWOOD and YULE (1920), 
BICHSEL (1964), SEAL (1969)), the distribution of the number of accidents 
during a given period becomes 

r ( y + a )  ( l /b )  a 
(2) pr (Y i  = Y )  - 

y !  F ( a )  (1 + I/b) y+" 

which corresponds to a negative binomial distribution with E(Yi) = X and 

V a r ( Y i ) = 2  [1 + ~ ]  , w h e r e 2 = a b .  

Again, the parameters a and (l/b) can be estimated by the method of moments 
or by the maximum likelihood method. 

l.b. O p t i m a l  Bonus  M a l u s  Rule  

An optimal bonus malus rule will give the best estimator of an individual's 
expected number of accidents at time (t+ I) given the available information 
for the first t periods (y i  . . . . .  y/). Let us denote this estimator as 
i~ t +' ( Yi' . . . . .  V[). 

One can show that the value of the Bayes' estimator (i.e. a posteriori 
mathematical expectation of 2) of the true expected number of accidents for 
individual i is given by 

(3) i 
oo 

~, ,+l(yi, ... Yi') = 2f (2 /Y, ' . . .  Yi') d 2 .  
o 

Applying the negative binomial distribution, the a posteriori distribution of 2 is 
a gamma distribution with probability density function 

(4) f (2 /Yi '  . . .  Y[) = 

where Yi= ~ Y [ .  
j = l  

( l /b+ t) a+ F, e-  ao/b+O 2~+ ~7,-t 

F(a + Y;) 

Therefore, the Bayes' estimator of an individual's expected number of accidents 
at time (t+ 1) is the mean of the a posteriori gamma distribution with 
parameters (a + Yi) and ((1/b) + t )  : 

a+Yi  _ X [  o+Yi ] _ _  
(5) 2[+~(Yi '  . . . .  , Yi') - ( I / b ) + t  a + t 2  

Actuarial net premium tables can then be calculated by using (5). 
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2. The Generalized Model 

Since past experience cannot, in a short length of  time, generate all the 
statistical information that permits fair insurance tarification, many insurers 
use both a priori and a posteriori tarification systems. A priori classification is 
based on significant variables that are easy to observe, namely, age, sex, type of 
driver's license, place of residence, type of car, etc. A posteriori information is 
then used to complete a priori classification. However, when both steps of the 
analysis are not adequately integrated into a single model, inconsistencies may 
be produced. 

In practice, often linear regression models by applying a standard method 
out of  a statistical package are used for the a priori classification of  risks. 
These standard models often assume a normal distribution. But any model 
based on a continuous distribution is not a natural approach for count data 
characterized by many "zero  accident" observations and by the absence of 
negative observations. Moreover, the resulting estimators obtained from these 
standard models often allow for negative predicted numbers of  accidents. 
Regression results from count data models are more appropriate for a priori 
classification of risks. 

A second criticism is linked to the fact that univariate (without regression 
component) statistical models are used in the Bayesian determination of  the 
individual insurance premiums. Consequently, insurance premiums are func- 
tion merely of  time and of  the past number of  accidents. The premiums do not 
vary simultaneously with other variables that affect accident distribution. The 
most interesting example is the age variable. Let us suppose, for a moment, 
that age has a significant negative effect on the expected number of accidents. 
This implies that insurance premiums should decrease with age. Premium 
tables derived from univariate models do not allow for a variation of age, even 
if they are a function of  time. However, a general model with a regression 
component would be able to determine the specific effect of age when the 
variable is statistically significant. 

Finally, the third criticism concerns the coherency of the two-stage procedure 
using different models in order to estimate the same distribution of accidents. 

In the following section we will introduce a methodology which responds 
adequately to the three criticisms. First, count data models will be proposed to 
estimate the individual's accident distribution. The main advantage of  the 
count data models over the standard linear regression models lies in the fact 
that the dependent variable is a count variable restricted to non-negative 
values. Both the Poisson and the negative binomial models with a regression 
component will be discussed. Although the univariate Poisson model is usually 
rejected in empirical studies, it is still a good candidate when a regression 
component  is introduced. Indeed, because the regression component contains 
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many individual variables, the estimation of  the individual expected number of  
accidents by the Poisson regression model can be statistically acceptable since it 
allows for heterogeneity among individuals. However, when the available 
information is not sufficient, using a Poisson model introduces an error of  
specification and a more general model should be considered. Second, we will 
generalize the optimal bonus-malus system by introducing all information from 
the regression into the calculation of  premium tables. These tables will take 
account of time, accident record and the individual characteristics. 

2.a. S t a t i s t i c a l  A n a l y s i s  

Let us begin with the Poisson model. As in the preceding section, the random 
variables Yi are independent. In the extended model, however, ). may vary 
between individuals. Let us denote by 2i the expected number of  accidents 
corresponding to individuals of  type i. This expected number is determined by 
k exogenous variables or characteristics xi  = ( x i t ,  x iz  . . . . .  Xik) which represent 
different a priori classification variables. We can write 

(6) 2i = exp(xifl) 

where fl is a vector of coefficients (k × 1). (6) implies the non-negativity of 

~-i. 
The probability specification becomes 

e-CXv ~.,-~p) (exp (x i f l ) )  ~' 
(7) Pr ( Y i  = Y )  = 

y! 

It is important to note that 2i is not a random variable. The model assumes 
implicitly that the k exogenous variables provide enough information to obtain 
the appropriate values of the individual's probabilities. The fl parameters can 

be estimated by the maximum likelihood method (see HAUSMAN, HALL and 

GRILICHES (1984) for an application to the patents - -  R & D  relationship). 
Since the model is assumed to contain all the necessary information required to 
estimate the values of  the 2i, there is no room for a posteriori tarification in the 
extended Poisson model. Finally, it is easy to verify that (l) is a particular case 
of (7). 

However, when the vector of explanatory variables does not contain all the 
significant information, a random variable has to be introduced into the 
regression component.  Following QOURIEROUX MONFORT and  TROGNON 

(1984), we can write 

(8) 2i = exp ( x i f l + e i )  

yielding a random 2i. Equivalently, (8) can be rewritten as 
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(9) 2i = exp (xifl) ui 

where ui---exp (el). 
As for the univariate negative binomial model presented above, if we assume 

that ui follows a gamma distribution with E(u~) = 1 and Var (u~) = l/a, the 
probability specification becomes 

F ( y + a )  exp(xi~)  " 1 + 
(10) pr (Yi = Y) - y! F(a) a a 

which is also a negative binomial distribution with parameters a and exp (x~/3). 
We will show later that the above parameterization does not affect the results if 
there is a constant term in the regression component.  

Then E(Yi) = exp(xifl) and Var(Yi) = exp(xi[3) [1 + exp(xifl) ] 

We observe that Var (Yi) is a nonlinear increasing function of E(Yi). When the 
regression component is a constant c, E(Y~) = exp (c) = ~ and 

V a r ( Y / ) = 2 - [ l  +--a'~] 

which correspond, respectively, to the mean and variance of  the univariate 
negative binomial distribution. 

DIONNE and VANASSE (1988) estimated the parameters of both the Poisson 
and negative binomial distributions with a regression component.  A priori 
information was measured by variables such as age, sex, number of  years with 
a driver's license, place of residence, driving restrictions, class of driver's license 
and number of days the driver's license was valid. The Poisson distribution 
with a regression component was rejected and the negative binomial distribu- 
tion with a regression component yielded better results than the univariate 
negative binomial distribution (see Section 3 for more details). 

An extension of  the Bayesian analysis was then undertaken in order to 
integrate a priori and a posteriori tarifications on an individual basis. 

2.b. A Generalization of the Opthnal Bonus Malus Rule 

Consider again an insured driver i with an experience over t periods; let Y{ 
represent the number of  accidents in period j and x[,  the vector of the k 
characteristics observed at period j, that is x[ = (x~l . . . .  , xJ~.). Let us further 
suppose that the true expected number of  accidents of individual i at period j, 
2~.(u~, x]), is a function of  both individual characteristics x] and a random 
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variable u;. The insurer needs to calculate the best estimator of  the true 
expected number of  accidents at period t + l .  Let ~ . / + l ( y :  . . . . .  y / ;  
x l . . . . .  x /+l)  designate this estimator which is a function of  past experience 
over the t periods and of  known characteristics over the t+  I periods. 

If we assume that the ui are independent and identically distributed over time 
and that the insurer minimizes a quadratic loss function, one can show that the 
optimal estimator is equal to: 

~'~+ l ( Yil . . . .  , Yi' ; x i  ~ , . . . ,  x i  '+ l) 

i 
¢f3 

(11) = 2 t i + ' ( u , , x , ' + l ) f ( ) f i + l / Y i  I Y : "  x i  I x / ) d ) .  ~+l 
' ~ " " ,  , , ' ' ' ,  - " ~ i  • 

0 

Applying the negative binomial distribution to the model, the Bayes' optimal 
estimator of  the true expected number of accidents for individual i is : 

(12) Y~l+;(Y/ Y';x: x/+') ~,+~]a+y; / r l  
. . . . . .  ' [ J 

where 2~ = e x p ( x { f l ) u , = - ( , ~ ) u , ,  ,~i = E ,~Ji and Y, = Y[. 
j=l i = l  

When t = 0, i I  = ,J-I ~exp  (xilfl) which implies that only a priori tarifica- 
tion is used in th first period. Moreover, when the regression component is 
limited to a constant c, one obtains: 

(,3) ~/.-i- [ ( ,y ] [ a l -  Yi ] 
--i , - i  . . . . .  Y / ) ; ~  - -  

a + t , T  

which is (5). This result is not affected by the parametrization of  the gamma 
distribution. 

It is important to emphasize here some characteristics of  the model. In (13) 
only individual past accidents (Yi I . . . . .  Y/) are taken into account in order to 
calculate the individual expected numbers of accidents over time. All the other 
parameters are population parameters. In (12), individual past accidents and 
characteristics are used simultaneously in the calculation of  individual expected 
numbers of accidents over time. As we will show in the next section, premium 
tables that take into account the variations of both individual characteristics 
and accidents can now be obtained. 

Two criteria define an optimal bonus-malus system which has to be fair for 
the policyholders and be financially balanced for the insurer. It is clear that the 
estimator proposed in (12) is fair since it allows the estimation of the individual 
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risk as a function of both his characteristics and past experience. From the fact, 
that E ( E ( A / B ) ) =  E ( A ) ,  it follows that the extended model is financially 
balanced' 

E ( A ' i + ' ( Y ,  ' , . . . ,  Y[;  xi' , ...,,x,'+')). = J/i *l since E(ui)  = I .  

3. Examples of Premium Tables 

As mentioned above, Dionne and Vanasse (1988) estimated the parameters of 
the Poisson regression model (fl vector) and of the negative binomial regression 
model (fl vector and the dispersion parameter a) by the maximum likelihood 
method. They used a sample of 19013 individuals from the province of 
Qu6bec. Many a priori  variables were found significant. For example, the age 
and sex interaction variables were significant as well as classes of driver's 
licences for bus, truck, and taxi drivers. Even if the Poisson model gave similar 
results to those of the negative binomial model, it was shown (standard 
likelihood ratio test) that there was a gain in efficiency by using a model 
allowing for overdispersion of the data (where the variance is greater than the 
mean): the estimate of the dispersion parameter of the negative binomial 
regression 6 was statistically significant (asymptotic t-ratio of 3.91). The usual 
Z 2 test generated a similar conclusion. The latter results are summarized in 
Table I: 

TABLE I 

ESTIMATES OF POISSON AND NEGATIVE BINOMIAL 
DISTRIBUTIONS WITII A REGRESSION COMPONENT 

Individual 
Observed numbers 

number of 
of individuals accidents in 

a given period during 1982-1983 

Predicted numbers of individuals 
for 1982-1983 

Poisson * Negative binomial * 

0 17,784 17,747.81 17,786.39 
1 1,139 1,201.59 1,131.05 
2 79 60.56 86.21 
3 9 2.88 8.18 
4 2 .15 .98 
5+ 0 0 0 

19,013 Z 2 = 29.91 Z2 = 1.028 
2 

Z2.95 = 5.99 ZL95 = 3.84 

Log Log 
Likelihood = -4,661.57 Likelihood = -4,648.58 

* The estimated fl parameters are published in DIONNE-VANASSE (1988) and are available upon 
request. ~ = 1.47 in the negative binomial model. 
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The univariate models were also estimated for the purpose of comparison. 
Table 2 presents the results. The estimated parameters of  the univariate 
negative binomial model are 6 = .696080 and ( l / b ) =  9.93580 yielding 

= .0701. One observes that 66 = 1.47 in the multivariate model is larger than 
6 = .6961 in the univariate model. This result indicates that part of  the 
variance is explained by the a priori variables in the multivariate model. 

Using the estimated parameters of the univariate negative binomial distribution 
presented above, table 3 was formed by applying (14) where $100 is the first 
period premium (t = 0): 

(a + F~) 
(14) 1 5 i t + l ( y i  I , . . . ,  Y i  r) = 100 

In Table 3, we observe that only two variables may change the level of  
insurance premiums, i.e. time and the number of  accumulated accidents. For  
example, an insured who had three accidents in the first period will pay a 
premium of $ 462.43 in the next period, but if he had no accidents, he would 
have paid only $ 90.86. 

From (14) it is clear that no additional information can be obtained in order 
to differentiate an individual's risk. However, from (12), a more general pricing 
formula can be derived: 

(15) 15[+'(Yit...Yit; xiI • = ~ { ] . . .  x , ,+  I) M2i '+ t 6 +  Yi 
& -'l- X i 

TABLE 2 

ESTIMATES OF UNIVARIATE POISSON AND NEGATIVE BINOMIAL DISTRIBUTIONS 

Individual 
number of 

accidents in 
a given period 

Observed numbers 
of individuals 

during 1982-1983 

Predicted numbers of individuals 
for 1982-1983 

Poisson 
(exp ,~ = 0.0701) 

Negative binomial 
(.6 = 0.6960; I / b =  9.9359) 

0 17,784 17,726.60 17,785.28 
1 1,139 1,241.86 1,132.05 
2 79 43.50 88.79 
3 9 1.02 7.21 
4 2 0.02 .61 
5+ 0 0 0 

19,013 Z 2 = 133.06 Z 2 = 2.21 
2 2 ~2.95 = 5.99 XX ~.95 = 3.84 

Log Log 
Likelihood = -4950.28 Likelihood = -4916.78 
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TABLE 3 

UNIVARIATE NEGATIVE BINOMIAL MODEL 

6=.696080 ~ =  .0701 

'Yi 0 1 2 3 4 
l 

0 100.00 
I 90.86 221.38 351.91 462.43 612.96 
2 83.24 202.83 322.42 442.01 561.60 
3 76.81 187,15 297.50 407,84 518,19 
4 71.30 173.72 276.15 378.58 481.00 
5 66.52 162.09 257.66 353.23 448.80 
6 62.35 151.92 241.49 331.06 420.63 
7 58.67 142,95 227,23 311.52 395,80 
8 55.40 134.98 214.56 294.15 373.73 
9 52.47 127.85 203.23 278.61 353.99 

whe re  ~ r i + ' ~ e x p  (x[+ ' l~), ~i ~ 

a n d  M is such tha t  

l 

exp 
j=l  

I 

1/; ,i'+' M _ ;  = $100  
i=1 

w h e n  the  to ta l  n u m b e r  o f  insu reds  is L 

Th i s  gene ra l  p r i c ing  f o r m u l a  is f u n c t i o n  o f  t ime,  the n u m b e r  o f  a c c u m u l a t e d  

acc iden t s  and  the  i n d i v i d u a l ' s  s ign i f i can t  cha rac te r i s t i c s  in the reg ress ion  

c o m p o n e n t .  In c o n s e q u e n c e ,  tables  can  n o w  be c o n s t r u c t e d  m o r e  genera l ly  by 

us ing  (15). F i r s t ,  it is easy  to ver i fy  tha t  each  agen t  does  no t  s ta r t  wi th  a 

p r e m i u m  o f  $ 1 0 0 .  In T a b l e  4, for  e x a m p l e ,  a y o u n g  d r ive r  begins  wi th  

TABLE 4 

NEGATIVE BINOMIAL MODEL WITH A REGRESSION COMPONENT 

Male, 18 years old in period 0, region 9, class 42 

Y~ 0 I 2 3 4 
l 

0 280.89 
I 247.67 416.47 585.27 754.07 922.87 
2 217.46 365.66 513.86 662.07 810.27 
3 197.00 331.26 465.53 599.79 734.06 
4 180.06 302.78 425.50 548.23 670.95 
5 165.81 278.81 391.82 504.82 617.83 
6 153.64 258.36 363.07 467.79 572.50 
7 79.85 134.28 188,70 243.12 297.55 
8 76.92 129.35 181,77 234.19 286.62 
9 74.20 124.76 175.33 225.90 276.46 



GENERALIZATION OF AUTOMOBILE INSURANCE 209 

$ 280.89. Second, since the age variable is negatively significant in the estimated 
model, two factors, rather than one, have a negative effect on the individual's 
premiums (i.e. time and age). In Table 4, the premium is largely reduced when 
the driver reaches period seven at 25 years old (a very significant result in the 
empirical model). 

For the purpose of comparison, Table 4 was normalized such that the agent 
starts with a premium of $100. The results are presented in table 5a. The effect 
of using a regression component is directly observed. Again the difference 
between the corresponding premiums in Table 3 and Table 5a come from two 

TABLE 5a 

TABLE 4 DIVIDED BY 2.8089 

~, 0 1 2 3 4 
l 

0 100.00 
I 88.17 148.27 208.36 268.46 328.55 
2 77.42 130.18 182.94 235.70 288.46 
3 70.13 117.93 165.73 213.53 261.33 
4 64.10 107.79 151.48 195.18 238.87 
5 59.03 99.26 139.49 179.72 219.95 
6 54.70 91.98 129.26 166.54 203.82 
7 28.43 47.81 67.18 86.55 105.93 
8 27.38 46.05 64.71 83.37 102.04 
9 26.42 44.42 62.42 80.42 98.42 

TABLE 5b 

COMPARISON OF BASE PREMIUM AND BONUS=MALUS FACTOR COMPONENTS 

Univariate Model Individual of  Table 4 

Base Bonus Malus Base Bonus Malus 
Premium Factor Premium * Factor 

Y~ 0 | 0 I 
t 

0 100.00 1.0000 280.89 1.0000 
1 100.00 0.9086 2.2138 280.89 0.8817 1.4827 
2 100.00 0.8324 2.0283 280.89 0.7742 1.3018 
3 100.00 0.7681 1.8715 280.89 0.7013 1.1793 
4 100.00 0.7130 1.7372 280.89 0.6410 1.0779 
5 100.00 0.6652 1.6209 280.89 0.5903 0.9926 
6 100.00 0.6235 1.5192 280.89 0.5470 0.9198 
7 100.00 0.5867 1.4295 154.67 0.5163 0.8682 
8 100.00 0.5540 1.3498 154.67 0.4973 0.8363 
9 100.00 0.5247 1.2785 154.67 0.4797 0.8066 

* To be compared with Table 5a, this column should be divided by 2.8089. 
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sources:  the individual  in Table  5a has par t icular  a priori characteristics while 
all individuals  are implicitly assumed identical in Table  3 and age is significant 
when the individual  reaches period seven (25 years old). Final ly,  the above 
compar i son  shows that  the Bonus-Malus  factor is now a funct ion of the 
individual ' s  characteristics as suggested by (12). Table  5b separates the 
cor responding  base premium and  Bonus-Malus  factor componen t s  of the total 
p remiums  in the first two co lumns  of Table  3 and Table  4. 

Moreover ,  when the insured modifies significant variables, new tables may 
be formed. In Table  4 the driver was in region # 9 (a risky region in Quebec) 
and had a s tandard  driving license. 

TABLE 6 

NEGATIVE BINOMIAL MODEL WITH A REGRESSION COMPONENT 
SAME INDIVUDUAL AS IN TABLE 4, MOVED TO MONTREAL IN PERIOD 4 

Yi 0 1 2 3 4 
1 

0 280.89 
I 247.67 416.47 585.27 754.07 922.87 
2 217.46 365.66 513.86 662.07 810.27 
3 197.00 331.26 465.53 599.79 734.06 
4 119.65 201.19 282.73 364.28 445.82 
5 113.18 190.32 267.45 344.59 421.73 
6 107.38 180.56 253.74 326.92 400.11 
7 56.98 95.81 134.65 173.48 212.32 
8 55.47 93.28 131.08 168.89 206.69 
9 54.04 90.87 127.70 164.53 201.36 

TABLE 7 

NEGATIVE BINOMIAl. MODEL WITH A REGRESSION COMPONENT 
SAME INVIDUAL AS IN TABLE 4, MOVED TO MONTREAL IN PERIOD 4, 

CHANGED FOR CLASS 31 (TAXI) IN PERIOD 5 

Yi 0 I 2 3 4 
1 

0 280.89 
I 247.67 416.47 585.27 754.07 922.87 
2 217.46 365.66 513.86 662.07 810.27 
3 197.00 331.26 465.53 599.79 734.06 
4 119.65 201.19 282.73 364.28 445.82 
5 291.65 490.42 689.19 887.96 1086.73 
6 256.00 430.48 604.95 779.42 953.90 
7 127.26 213.99 300.72 387.45 474.18 
8 119.97 201.73 283.49 365.25 447.02 
9 113.47 190.80 268.13 345.47 422.80 
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Now if the individual moves from region # 9 to a less risky region 
(Montreal, for example) in period 4, the premiums then change (see 
Table 6). 

Having two accidents, he now pays $ 282.73 in period 4 instead of $ 425.50. 
Finally, if the driver decides to become a Montreal taxi driver in period 5, the 
following results can be seen in Table 7. 

Again, having two accidents, he now pays $689.19 in period 5 instead of 
$ 267.45. 

CONCLUDING REMARKS 

In this paper, we have prop'osed an extension of  well-known models of 
tarification in automobile insurance. We have shown how a bonus-malus 
system, based only on a posteriori information, can be modified in order to 
take into account simultaneously a priori and a posteriori information on an 
individual basis. Consequently, we have integrated two well-known systems of  
tarification into a unified model and reduced some problems of consistencies. 
We have limited our analysis to the optimality of the model. 

One line of  research is the integration of accident severity into the general 
model even if the statistical results may be difficult to use for tarification 
(particularly in a fault system). Recent contributions have analyzed different 
types of  distribution functions to be applied to the severity of losses (LEMAIRE 
(1985) for automobile accidents, CUMMINS et al. (1988) for fire losses, and 
HOGG and KLUGMAN (1984) for many other applications). Others have 
estimated the parameters of the total loss amount  distribution (see SUNDT 
(1987) for example) or have included individuals' past experience in the 
regression component (see BOYER and DIONNE (1986) for example). However, 
to our knowledge, no study has ever considered the possibility of  introducing 
the individual's characteristics and actions in a model that isolates the 
relationship between the occurence and the severity of  accidents on an 

individual basis. 
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ABSTRACT 

The technique of risk invariant linear estimation from NEUHAUS (1988) has 
been applied in the construction of a mutual quota share reinsurance pool be- 
tween the subsidiary companies of the Storebrand Insurance Company, Oslo. 
The paper describes the construction of the reinsurance scheme. 

1. INTRODUCTION 

The Storebrand Insurance Company is the largest non-life insurer in Norway. 
Non-life business is written by four wholly owned stock companies, each cover- 
ing a certain geographic area. The regional companies enjoy a large degree of 
autonomy, while certain areas, like tariffication and reinsurance, are managed 
centrally. 

All but one of the regional companies are small, measured even by Norwegian 
standards. This makes their profitability subject to large fluctuations, even after 
deduction ofexternal reinsurance. In 1987, the company top management issued 
a request to devise a way of stabilising the regional companies' profitability. The 
idea of additional reinsurance was launched at an early stage, and all the tradi- 
tional forms of reinsurance were discussed. During the discussions a number of 
guidelines were formulated. 

1. The reinsurance should give protection against large claims, as well as large 
claim numbers (typically caused by spells of bad weather). 

2. No additional external reinsurance was to be bought. 
3. The reinsurance should be fair, it should not take the accountability off the 

regional companies (other than correcting for " random" fluctuations). 
4. The reinsurance should be very easy to administer. 
5. Compulsory participation for the 4 regional companies. 

Guidelines 1 and 4 quickly disqualified excess of loss reinsurance and surplus 
reinsurance. Guideline 3 disqualified stop-loss reinsurance. Left over was quota 
share reinsurance. The solution arrived at was a mutual quota-share pool, de- 
scribed briefly as follows. 

ASTIN BULLETIN, Vol. 19, No. 2 
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a. Each regional company cedes a certain share of  its business (premium and 
losses) to the pool. Business to be ceded is own account business, i.e. after 
deduction of external reinsurance. 

b. The total losses ceded to the pool are redistributed amongst the participating 
companies in the same proportion as premium was ceded to the pool. 

c. The premium ceded to the pool is returned in its entirety, thus leaving the 
regional companies' premium unaltered. 

The arrangement described is essentially a loss pool, since only losses (not pre- 
mium) are affected. A desirable side effect of  this property is that the regional 
companies' expense ratio is left unchanged; thus eliminating the need for rein- 
surance commission. 

The mutual quota share pool is a very traditional way of  reinsurance, which 
does not necessarily make it a poor way of  reinsurance. In the following chapter 
a mathematical model is given, within which the mutual quota share is optimal. 

2. OPTIMAL REINSURANCE IN THE B U H L M A N N - S T R A U B  MODEL 

Let us number the regional companies by i = l . . . .  ,1. For company i, define 
Pi = premium for own account, Si -- losses for own account, X i -- Si /Pi  = loss 
ratio for own account. Note that " fo r  own account"  in this context means 
business net of  external reinsurance, but before application of  the mutual quota- 
share treaty. 

We make the assumptions of  the BUHLMANN-STRAUB model ( B U H L M A N N  & 
STRAUB, 1970). These assumptions are that there exists a latent parameter Oi so 
that 

(2.1) E(Xi[  Oi) = b(Oi), 

(2.2) Var (X, [ Oi) = o(Oi)/Pi, 

where b and u are real-valued functions of  0~. It is then assumed that the 
parameters Oi are i.i.d, random variables, and that 

(2.3) E(b(Oi))  = fl, 

(2.4) E(v(Oi))  = O, 

(2.5) Var (b(Oi)) = 2. 

These assumptions obviously fit the problem to be solved very well. The func- 
tion b(O~) is interpreted as the underlying (long-run) loss ratio of  company i, and 
the aim of  the exercise is to estimate this quantity. 

For fixed values of  the parameters ,8, ~, 2, the best linear estimator of b(Oi) 
(with respect to mean squared error) is the credibility estimator 

(2.6) bi = 2 iX i+( l - -Z t ) f l ,  

where 

(2.7) z, = Pi / (PiwK),  



MUTUAL REINSURANCE AND HOMOGENEOUS LINEAR ESTIMATION 215 

(2.8) x = ¢/2. 

To simplify notation, define 

(2.9) ci = I - z,, 

and note the relation 

(2.10) eici = I~Zi" 

For fixed values of ¢, 2, and unknown//,  the best linear unbiased estimator of 
b(Oi), based on Xt . . . . .  Xi ,  is 

(2.11) ~i = ziXi+(l-zi)fl, 
where 

(2.12) fi = [ E  ZJ l - I  ~ zjXj. 
J 

Proofs of the optimality of (2,6), (2.1 I) may be found in BOHLMANN (1970). 
A risk exchange between the 1 companies is given by the transformation 

(2.13) (S, . . . . .  St)--, (S, . . . . .  St) = (?, b, . . . . .  et~t). 

This risk__exchange is defined by replacing each company's loss ratio X i with the 
estimate b i. It is optimal in the sense of minimum mean squared error estima- 
tion of the "underlying loss ratio" b(Oi). That the risk exchange coincides with 
a mutual quota share treaty may be seen by 

(2.14) Si = Pi~i = P,{ziXi+cil~l  = z i S , + P i c i z - '  ~ z i ( ~ / P  j) 
J 

"~ zigi"i-I(ZiZ-I ~ CJl¢-I gj ~" z igi+(Zi /Z)  E cjgj = z i g i + ( z i / z ) S ,  
J J 

where we have defined z = ~ z j ,  S = ~,qSj. The variable S is just the total 
J J 

losses ceded to the pool. The risk exchange (2.13) replaces the losses of  company 
i with the sum of the retained share and a share of the pool, the share of  the pool 
being z,/z .  To see that this share is equal to the proportion of 

premium ceded to the pool, note that z i / z  = P , . c i /~  Pjcj. 
J 

A direct consequence of (2.14) is the identity 

(2.15) = s,, 
i i 

which makes (2.13) a proper risk exchange in the sense of  BUHLMANN &. 
JEWELL (1979). GISLER (1987) mentions the property (2.15); it ensures that no 
claims are " l o s t "  when homogeneous credibility estimation is applied. 
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3. CHOICE OF M O D E L  

Let us consider one line of  business. The risk exchange (2.13) is characterised by 
the value o f " a c t i o n  parameter" x, entering into the credibility factors z~, see 
(2.7). Ideally one should use x = ~/2, where 0, 2 are the true variances. Since it is 
preposterous to try to separate empirically the variance components ~ and 2 
from just 4 replications (companies), and since the author does not subscribe to 
subjectivism, we applied the minimax approach of NEUHAUS (1988), which is 
sketched in the sequel. 

For a fixed k > 0, define the risk exchange S -  S(k) by 

(3.1) Si(k) = zi(k) Si+ (zi(k)/z (k)) S(k), 

where z~(k)= PJ(Pi+k), z (k )= ~ zj(k), cj(k)= l-z j (k) ,  S (k )= ~ cj(k)Sj. 
J J 

This risk exchange has obviously the same structure as (2.13), only ~c is replaced 
by k. Let Xi(k) = Si(k)/Pi be the loss ratio after reinsurance. 

The loss incurred by using k as action parameter is measured by the loss 
function 

( 3 . 2 )  L(k ,  ~, 2) = l - t  ~ E(X i (k ) -b (~9 i ) )  2, 
i 

the objective being to minimize (3.2). It can be shown that 

(3.3) L(k,¢,2)  = I - '  [q~ ~ g~.(k)/Pj+2 ~ (8,g-gij(k))2], 
i,j i,j 

where we have defined for 1 <_ i,j <_ I, 
(3.4) gij (k) = 8ij zi (k) + ci (k) zj (k)/z (k). 
Assume that data available are ~ , . . . ,  P~ and X[ .. . .  , X[, representing pre- 
miums and loss ratios for (one or more) previous periods. Then one may esti- 
mate fl by 

( 3 . 5 )  = w;X;, 
i 

where w~ = P [ / ~  Pj. The estimator r* is the overall loss ratio for the period 
J 

observed. The statistic 

(3.6) V* = ~ w;(X[-fl*) 2 
i 

has expectation 

(3.7) E(V*) = 2 ~ w ~ ( 1 - w ~ ) + ~  w~(l-w~)/P~. 
i i 
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The total variance in the loss ratio is estimated by V*. 
As in NEUHAUS (1988), the parameter k >  0 may be chosen so that the risk 

exchange S - S ( k )  becomes an equaliser rule with respect to the parameter 
se t  

(3.8) J r =  1(¢, ~.)l v* = a ~ w;(l -w;)+¢~ w;(l-w;)/e;}, 
i i 

i.e. L(k, ¢, 2) = constant for (~, 2) s 
The calculations needed to find k are similar to those given in NEUHAUS 

(1988), The reason for choosing an equaliser rule is that it will be a (restricted) 
minimax rule with respect to the parameter set .A r Note that 
{,~ I (¢, 4) ~ w} = <0, oo>. 

4. EXAMPLE 

Consider the line "Small  to medium commercial risk". Table l gives the 
relevant statistics for the year 1987. It is found that ,6* = 1.21 l, V* = 0.102, 

w~(l-wD = 0.595, ~ w~(l-wD/P; = 0.021. 
i i 

The value k = 42 makes the risk exchange an equaliser rule across the para- 
meter set 
(4.1) . .#= {(¢, 2) 10.102 = 2 .0 .595+¢-0 .021  }. 
The factors ci (42) are displayed in the rightmost column of  table 1. One sees 
that the large company should cede about one-third of  its business to the pool, 
while the 3 small companies should cede about two-thirds of  their business to 
the pool. 

TABLE 1 

STATISTICS FOR "SMALL TO MEDIUM COMMERCIAL RISK" 

Company P; X[ w~ tv~ (X[ - ,0*) 2 ci (42) 

East 81.366 1.425 0.590 0.026 0.34 
South 19.816 1,163 0.144 0.000 0.68 
West i 8.149 0.475 0.132 0.071 0.70 
North 18.596 1.047 0.135 0.003 0.69 

Total 137,927 1.211 = fl* 0.102 = V* 

Figure 1 shows the square root of  the different loss functions (3.2) dependent 
on the true x, where it is assumed that (~, 2)e.,g./V given by (4.1). The square 
root is displayed because it is measured in the same scale as the estimand. The 
loss functions of  three risk exchanges are displayed, 
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1. k = 42, giving the equaliser rule with respect to X, 
2. k = K, giving the optimal risk exchange (2.13), 
3. k = O, meaning no reinsurance at all. 

It is seen that the choice k = 42 gives a constant loss function across .A(and a 
considerable improvement over k = 0 (using k = 0 means judging each regional 
company only by its own loss ratio). The choice k = x is optimal, but the 
improvement it gives over k = 42 is very moderate over most of  the parameter 
space displayed. 

5. CONCLUDING COMMENTS 

The aim of  the paper has been to show that even a very traditional quota share 
pool reinsurance exhibits optimality properties when the shares are appropria- 
tely chosen. 

Conceding that it is preposterous to separate empirically the variance compo- 
nents ¢~ and 2, one may ask whether estimating E(V*) by V* is any better; it is 
probably not, but the equaliser value of  k does not depend on V*, see NEU- 
HAUS (1988). 

The aim being to estimate the companies' loss ratio, should one include fl* in 
the estimator? Two arguments may be used against using fl*. The first argument 



MUTUAL REINSURANCE AND HOMOGENEOUS LINEAR ESTIMATION 219 

is that a linear estimator using /3*, being the empirical counterpart of (2.6), 
would not have the desirable property (2.15), thus it does not give a proper risk 
exchange. The second argument goes as follows: The parameter fl should not be 
fixed but random, f l =  fl(~), and (2.1)-(2.5) should be conditional relations, 
given ~. This is a hierarchical credibility model; let ¢ = Var (fl(~)). The optimal 
inhomogeneous estimator of b(Oi) is then 

(5.1) 

Y zj(K)Xj+A~-'E (fl(~,)) 
.I 

6~ = z~(x)xi+(1-zi(x)) 

Y zj(K)+a¢-' 
J 

see SUNDT (1979). The estimator (2.11) is obtained by letting ~j--, oo, which in 
the Bayesian context means using a vague prior distribution for fl(v/). 

One may contend that it is unnecessary to establish a reinsurance treaty in 
order to assess the 4 companies' underlying loss ratio, when simple calculation 
of the homogeneous unbiased linear estimator would do the job. But, as expe- 
rience has shown, the bottom line after mutual reinsurance is accepted by eve- 
ryone as true expression of  a company's profitability. On the other hand, an 
actuary telling company management that "well, the loss ratio is 120, but m y  
model  says it should have been 105"  is doomed to fail. The reinsurance treaty 
makes the same statement more credible. 

The loss function (3.2) is an unweighted average of the 4 companies' loss 
functions. This loss function reflects the objective of estimating the companies' 
underlying loss ratio, regardless of their premium volume. In an economic envi- 
ronment, the loss function should be weighted to reflect the fact that a unit of 
error in assessing the loss ratio is most serious for the large companies. It is 
possible to find an equaliser rule for weighted loss function, and probably the 
optimal k would not be changed much, see NEUHAUS (1988). 

A separate risk exchange was set up for each line of business. The obvious 
reason was to spare the accounting staff for troublesome allocation problems. 
Stabilising each line of business also had the positive side effect of reducing 
regional demands for immediate remedial action (premium increases or dis- 
counts) in the wake of fluctuating loss ratios. 

A more complicated model is needed if one wants to design a risk exchange 
for the I companies, which spans all lines of business. Probably the simplest 
model would be of the form 

(5.2) b 0 = lZ + at~+ flj, 

where 

b o is the underlying loss ratio for company i, line j, 
# is a fixed mean, 
~z~ is a random parameter characterising company i, 
//j is a random parameter characterising line j. 
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An estimator of  the underlying loss ratio of company i is 

(5.3) 6 i = , u + ~ i + [ ~  Pijl-'~ POLK', 
J J 

where u, oq,/~ are calculated by the credibility method described in BUCHANAN 
et al. (1989). Unfortunately, this method lacks the transparency which makes the 
estimators (2.6) and (2.11) so attractive. 

A point of lengthy discussions was the choice of reinsured shares, although all 
but one company finally accepted the recommended shares. Figure 2 shows the 
loss function of the final scheme, compared with the optimal loss function 
(k = x) and the loss function without reinsurance. We did not analyse whether 
the final scheme, being (very slightly) sub-optimal in the sense of minimaxing 
(3.2) over (4.1), has any other nice properties, such as Pareto-optimality. Here is 
a field for further analysis. Incidentally, if there is anything like empirical Pare- 
to-optimality, the author has experienced it : Whatever modification of the sche- 
me was suggested during the discussions, someone was certain to object. 
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