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1 Introduction

Arjas and Gasbarra (1994) introduced a new approach to the nonparametric
Bayesian estimation of the intensity (or hazard rate) of a non-homogeneous
Poisson process. The basic idea was to use piecewise constant functions with
a random number and random locations of jump times to approximate ‘real’
(smooth) intensity functions. In this way an intensity defined on a finite inter-
val was parametrized by a finite number of real numbers. Variability of this
number lead, however, to an infinite-dimensional parameter space. Examples
of such random step functions have been plotted in Figure 2 (Section 4).

The form of piecewise constant intensities was chosen as a convenient way
of arriving at a simple model formulation and straightforward calculation for
the posterior. Since Bayesian inference is not concerned with selecting a
point estimate (here single intensity function) from the postulated model
class, the precise functional form of its individual members is not as crucial
as in the frequentist approach. More important 1s that the integrals of test
functions of interest (e.g. predictive densities or probabilities) w.r.t. the pos-
terior distribution obtained from the approximate model are close to those
obtained from the ‘true’ model (see Arjas and Andreev 1996). Furthermore,
a ‘Bayesian point estimate’, the posterior mean, does not necessarily belong
to the model class. In the present case pointwise posterior means don’t need
to form a piecewise constant function since the jump times are variable, and
indeed the posterior mean is typically a smooth continuous function (see Fig-
ure 1 in Secion 4). Further discussion on the topic can be found in the papers
cited above and in Arjas (1996).

In Arjas and Gasbarra (1994) a prior distribution on the space of random
step functions, or jump processes, was specified in terms of the correspond-
ing local characteristics. A martingale structure was assumed, which penal-
izes large differences between nearby function values. The aim was, besides
smoothing the oscillations, to have the change points concentrated on the
areas where the intensity 1s changing most rapidly.

The main motivation of the work presented here was to modify the method
of Arjas and Gasbarra (1994) so that it could also be generalized to the
estimation of spatial intensities. In this modification random step functions
are generated via ‘center points’ of regions of constant intensity rather than
via the jump points; (one dimensional) Voronoi tessellations are applied. This
also simplifies the structure so that corresponding to each generating point
there is exactly one intensity level; in other words, step functions are specified
by marked point patterns. Instead of the martingale model we use (one
dimensional) Markov random fields: Conditional distributions of levels are
specified given both the preceding and the following level, instead of building
the prior distribution sequentially in time as in Arjas and Gasbarra (1994).
This approach 1s also in better correspondence with the role of the prior as
a smoother. Finally, we use the more general reversible jump algorithm of
Green (1995) to replace the version of Gibbs sampler developed by Arjas



and Gasbarra (1994) for sampling from the variable dimensional posterior
distribution.

Development and application of this approach to the estimation of spatial
intensities is reported in Heikkinen and Arjas (1998). Green (1995) presented
two examples where a similar approach was taken to the estimation of an
intensity function on the real line and of a surface on the plane. The main
concern in these examples was in finding change-points and boundaries in
functions that are truly discontinuous, and accordingly independence was
assumed between values of the step functions in different regions. In this
sense our method is more general, and perhaps better suited for prediction.
Related concurrent work includes also Denison et al. (1998), where piecewise
polynomials were used instead of our step functions.

2 Model

Suppose we observe a non-homogeneous Poisson process during observation
time Agps C R, which may, in general, be a finite union of disjoint intervals.
The likelihood of observing sequence T = (71,...,Tn) C Agps, 11 < T2 <
-+ < T, of event times is

p(TIA) = exp [_ /A A(t) dt] f:[A(Tn), (2.1)

where A : R — [0, 00) is the intensity function of the process. Given data
T we consider the inference concerning the restricion of A to a finite interval
Atot = [Tin, Tmax) containing Agpg. We may choose Aior to be longer than
Aops for the purpose of prediction; see Section 5.

We construct a prior distribution for A on the set of positive valued step
functions

A(t) = i/\klAk(t), (2.2)

where intervals Ay, ..., Ag form a partition of A, and Ay, ..., Ax € (0,00)
are the corresponding intensity levels. Random partitions A = (Aq,..., Ag)
are generated by sequences & = (£1,...,&x) of generating points &, € Agot
so that the subinterval Ay consists of those points of Aioy which are closer
to & than to any other point of &; in other words A is the (one dimensional)
Voronoi tessellation of pattern £. The explicit formulae for the intervals are

[Tmina %(gl +€2)) k= 1a
[ (gK—l +€K)aTmax) k=K.

1
2
1
2



An advantage of this parametrization, as opposed to defining the partition by
the endpoints of the subintervals, is the one-to-one correspondence between
generating points & and intensity values A;. A step function is specified by
a pattern of marked points (€x, Ax). This makes it possible to extend the
construction to more general spaces than the real line. A slight defect is that
all partitions of the real line can not be represented as a Voronoi tessella-
tion. This should not, however, have any essential effect on the practical
performance of our method.

The actual prior distribution among step functions parametrized as ex-
plained above, that is, the joint prior distribution of & and X = (A1, ..., Ag)
is specified through

p(&A) = p(€)p(AlE) (2.4)

The prior distribution of & is taken to be the homogeneous Poisson process on
Ator with a given intensity Ag € (0,0), and with zero probability assigned
to the empty pattern. Hence, density p(€) is proportional to /\f if K >0
and T < &1 < -+ < &g < Thax, and equal to 0 otherwise.

The prior of A (given &) will reflect an assumption of smoothness in the
sense that the differences |A\x — Ag—i| between two consecutive levels are
expected to be small. A multivariate Gaussian prior

p(nl€) o< (27)~F*Q? exp{—3(n — )" Q(n — p)} (2.5)
is assigned to the K-vector 1 of log-intensities 7 = log A;. Here K naturally
depends on &, but also the mean vector g = (p1, ..., ux) and the precision

matrix Q may in general be functions of &, although we will suppress these
dependencies from the notation for clarity.

The expectations p; may be chosen according to any prior knowledge of
local intensities. They could, for example, be functions of covariate values
attached to the corresponding intervals Ag. Here we will assume, however,
that they have been chosen to be all equal, pi = p for all &, to simplify the
notation.

Following the Markov random field approach we specify the covariance
structure via the local characteristics p(ni|n_, &), where n_; denotes the
sequence 17 with 7 removed. With the assumption of multivariate normal-
ity (2.5) and the first-order Markov property

p(kln_y, &) = pluxln;, 17— k[ =1,) (2.6)
the conditional distributions p(nx|n_, &) become Gaussian with expectations
E(meln_g, &) =p+ > Buj(n — n), (2.7)
Jili—k|=1
where Bi; = —Qr;/Qxr, and variances

Var(ni|n_;, &) = 0',3 = Q,Zkl (2.8)



In specifying the joint distribution (2.5) via the local characteristics (2.7)
and (2.8), that is, in choosing the parameters 3;; and o7, some consistency
conditions must be imposed. The symmetry of Q requires that

Orjoi = Bjroy. (2.9)

The matrix Q must also be positive definite, for which a simple sufficient
condition (Besag and Kooperberg 1995) is that the 3x; are all non-negative
and

ST By<l, forallk. (2.10)
Jli—k|=1

The role of the prior as smoother becomes now apparent as

E(%In_kf):(l— > ﬁkj)ﬂJr > Bung (2.11)

Jili—kl=1 Jili—kl=1

is a weighted average of the prior expectation p and the neighbouring levels
A simple and yet rather flexible scheme satisfying the above restrictions
is given by
s E
Bi=2Lg  and ol=T (2.12)
lk lk
with hyperparameters 3 € [0,1) and ¢ > 0. Here l;; and [, are some simple
functions of the generating points & satisfying

lkj = ljk and Z lkj S lk (213)
jlj—k|=1

The easiest choice would be to have all l;; equal (= 1) and {; equal to the
number of neighbours of k (1 for k£ € {1, K}, 2 otherwise). We wish, however,
to encourage adaptivity by allowing larger jumps for shorter intervals, and
hence choose I, to be the length of Ay. The requirements (2.13) are then
met by choosing l; = %|€k —¢;|. In the corresponding expression (2.5) of
the joint distribution we now have Q = U%I‘, where

i if j =k,
ij = —ﬁlkj if |_] — k’| = 1, and (214)
0 otherwise.

Our entire prior distribution p(&,7) = p(&)p(n|€) has four hyperparam-
eters: Ag controls the resolution, p gives the expected overall level of log-
intensity, § determines the weighting between p and the neighbouring levels,



and o? between the prior and the data. Consider, for a moment, a slight mod-
ification of p(n|€), where [y =1 » and lg =g k1. As § approaches 1, this
distribution tends to the improper pairwise difference prior (Besag 1989, Be-
sag et al. 1995)

plale) o (o) exp{ LS tstme -} (219

ok

and p disappears. Hence, in the case where prior knowledge of the intensity
level is vague, we can give § a value close to 1, and the choice of p is not
crucial. We are then left with two hyperparameters, A¢ and ¢, which control
the degree of smoothing. Our experience suggests that a moderate value of
A¢ 1s sufficient; see the comments on Figure 4. Also, the posterior level of
K appears to get higher as we take smaller values of 0?. Naturally, there
is the option of treating (some of) these parameters as random variables by
building one more level of hierarchy.

For the piecewise constant log-intensity function > nz1a, determined by
& and n, the Poisson likelihood (2.1) can be written as

p(Tlé,m) = exp{zmn)}, (2.16)

k=1
where
Ek(n) = N(Ak)ﬁk - |Ak N Aobs|€nk, (217)

N(A) is the number of events of T during time A, and |A| is the length of
A. The inference concerning the intensity is now based on sampling from the
resulting posterior distribution

p(& n|T)
o< p(§)p(nl€)p(TIE, n)

1 (2.18)
x /\5(271'0'2)_%1(|I‘|% exp{—ﬁ(n — )T (m—p)+ ng(n)}

by means of a Markov chain Monte Carlo (MCMC) algorithm. The details
of the algorithm are given in Section 3.

3 Simulation of the posterior

Our MCMC algorithm follows the ideas of Green (1995, sections 4 and 5);
motivation behind some of the choices made below is also discussed there
more thoroughly. The move types considered here are

1. change of level in a subinterval,



2. birth of a new generating point, and
3. death of an existing generating point,

with proposal probabilities hg, b, and dg, respectively, depending on the
current number of generating points. We take

C if K <A\ |Atot|_1a

bK = >\€|Atot| . . = (31)
CK—-I—l if K > A£|Atot| — 1,
0 K =1,

_ K : -~

dK = Cm if 1 < K S A£|Atot|a (32)

C if K > A£|Atot|a
and
hx =1 —bg — dg. (3.3)

The constant ¢ € (0, %) controls the rate at which changes are proposed to
the number of generating points: We have bg + dg € [c, 2¢] for all K.

In a type 1 move an index & is sampled from the uniform distribution on
{1,..., K}, and a proposal ), for a new log-level is drawn from the uniform
distribution on [n; — &, 9k + ), where 9, is the current value, and ¢ is a given
sampler parameter. Since the proposal kernel is symmetric, the acceptance
probability is simply min{l, p(& %'|T)/p(€,n|T)}, and the posterior ratio
turns out to be

p&n|T) _ [ 772—%{ (77;@"1'77!« ) }
L —exp | = T (A — )+ D Twin— )
P(€a77|T) o’ 2 jlj—k|=1

Tl - £k<n>]. (3.4)

Moves of type 2 and 3 are designed to form pairs of reversible jumps.
Considering first a birth move, suppose that there are currently K gener-
ating points forming a sequence &. A proposal & for the location of a new
generating point is drawn from the uniform distribution on Aio;. Let ¢ be
the sequence of order statistics of & U &', and suppose that & = & (i.e.,
&€ (Er1,8k))

To simplify notation in comparing ¢ and &', let us re-index the elements
of the current sequence € as &1,...,&—1,8k+1,...,8k, where K/ = K + 1;
then 5} = ¢; for j # k; similar re-indexing will naturally be applied to
the partition A, the log-level sequence 17 and the matrix I'. Also, we will
not make explicit the modifications near the ends of Aoy every time they
are needed. The general rule is: Whenever an index falls outside the range
1,..,K (or 1,..., K', as appropriate) in the formulae (3.5) through (3.17)
below, then simply ignore the corresponding term.



Let then s_ and s; be the lengths of the intervals which A} ‘conquers’
from its two neighbours, that is,

— Aol = 1AL and sy = Al AL (35)

yielding |AL| = s_ + sy for the new interval. The log-level proposed for the
new interval is then 7} = A + ¢, where 75 is the weighted average

e = gﬁﬁk—l + |Z—z|77k+1, (3.6)

and perturbation ¢ is drawn from the density
fle) = Ce® /(14 e99)?, (3.7)
where C'is yet another parameter of the sampler (in addition to ¢ and d); these
can be tuned to improve mixing. Reasons for the form of density (3.7) are

symmetry and easy sampling by the inversion method: The inverse function
of the cumulative probability is simply

F~Y(u) = C~'log (1 . u) .

The proposal also includes modifications

/ |Ak 1| S— |Ak 1| 5+ /

1 - d 3.8
Ng—1= |A |77k 1 |A |77k an 77k+1 |A TAr e+l — |A +1| ( )

1l

to the neighbouring log-intensity values, whereby the integral of n remains
unchanged in this type of move, that is,

D1 = 1A (3.9)

The death proposal reverses the above procedure: A random generating
point & is omitted, the current partition A = (Ay,..., Ag) is updated to

A= (Ar, Ao, A Ny, Aiga, -, AR)
with
= (Al = 1Ak-a] and sy = AL | = [Akgal, (3.10)
and new log-intensity levels

’ |Ak—1| / | +1|
Mp—1 = Me-1+ N and 7
T AL |A 1 A,

———k+1 + > (3.11
et A B

are proposed.



Applying the terminology of Green (1995), the acceptance probabilities
are of the form

min{1, (posterior ratio) x (proposal ratio) x (Jacobian)}. (3.12)

Suppose that a birth move is proposed from (£, 1) to (¢,%’), the new gen-
erating point being &;, and § and 7 being re-indexed as explained above; T’
and I'" are the corresponding dependence matrices as introduced in Section 2.
Then the posterior ratio is

Rpost{(ga ”7), (€/a 77/)} =

- pi;f(ijzllg) = A¢(2m0?) % <||11:/||) " exp [—#Dp + DT] . (3.13)
where

Dr = =)' (n —p) - (n—pw)'Tn—p) (3.14)
and

Dy =b:(0') + leer(0') + b1 (') — be1(n) — Ligr(m). (3.15)

Most terms in the two quadratic forms apperaring in equation (3.14) are
equal, and therefore actually cancel across in the differencing.

The proposal ratio corresponding to the proposal mechanism introduced
above 1is

dicer/ (K + 1)

= S Ta = Uk - AT (310

Rprop{(&,m), (€', 1)}

with the Jacobian
on’
d(n, )

For the death proposal (¢', 1) generated from (£, 1) by removing & the terms
in the expression (3.12) of acceptance probability are

posterior ratio = [Rpest{(€', ), (€,m) 171,
proposal ratio = [Rprop{ (€', 7), (&,m)}]7", and
Jacobian = [J{(&,n'), (&, M}~ "

_ Ak [Ar]
|AL | 1A

ﬂ@mmawnz‘ (3.17)

ml
n)
7)

3.1 Algorithm

Let us now summarize the contents of this Section in the form of a simulation
algorithm. Further suggestions for practical implementation of step 1 are
given afterwards.
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1. Choose an initial configuration 5(0), 79, the sampler parameters ¢, d,
C', and the number of iterations 7.

2. Tterate steps 3 and 4 for:=1,...,1.
3. Let & = €(i_1), 17 = 1Y and let K be the number of points in €.

Draw a uniform random number u € [0, 1], and proceed accordingly:
o If u < hg then

(a) Choose a random index k € {1,..., K}.

(b) Let ¢ = €. Draw a proposal 7}, from the uniform distribution
on [nx —d,n +6), and let n; = n; for j # k.

(c) Let R=p(¢,7'|T)/p(&,n|T) as given by equation (3.4).

o Else if u < (hg + bx) then

(a) Draw a new generating point & from the uniform distribution
on Atot~

(b) Create &, and re-index £ and i as explained on page 7 (fol-
lowing equation (3.4) (¢ becomes &}).

(c) Create i as explained between equations (3.5) and (3.9)
(o = n for j & {h— 1k, k+1)).
(d) Let

R= RPOSt{(g’ 77)’ (5/’ n/)}RPFOP{(& 77)’ (5/’ 77/)}
J{(&m), (€ 7))},

the terms being given by equations (3.13), (3.16), and (3.17),
respectively.

e Else
(a) Choose a random index k € {1,..., K}.
(b) Let & = (&;)jz»-
(c) Create n' as explained between equations (3.9) and (3.11)
(m; =mj, for j ¢ {k—1,k+1}).
(d) Let

R= [RPOSt{(gl’ 77/)’ (5’ n)}RPFOP{(E’ 77/)’ (5’ 77)}
J{E ), €N,

the terms being given by equations (3.13), (3.16), and (3.17),
respectively.
4. e If R>1, then let £%) = ¢ and V) = 4.

e Else draw a uniform random number w € [0,1]. If R > u, let
€9 = ¢ and 9 = ', otherwise let €% = ¢ and o) = 7.
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The choice of the initial configuration is not crucial, although it may save
some computation time to choose one that should be a ‘likely’ realization of
the posterior. In our simulations we have simply taken K (%) =1 and drawn
5(10) from the uniform distribution on Ao, If AgAior were large, it would
perhaps be more efficient to simulate 5(0) from the homogeneous Poisson(A¢)

process on Agqi. For the 7720) logical choices are log(N(Aéo))AAéo)D.

Selection of a sufficient number of iterations for an MCMC sampler is
always a difficult issue, and it is usually done by monitoring the evolution of
important summary statistics in a few pilot runs. Some convergence diag-
nostics can be found in relevant chapters of Gilks et al. (1996) (see also our
Figure 3 in Section 4, and its explanation).

Careful choice of the sampler parameters ¢, § and C' is essential for fast
convergence. If § is small and C large, only small changes are proposed to the
intensity levels, and it takes a long time to explore the parameter space thor-
oughly enough. On the other hand, if ¢ is too large (C' too small), then the
advantage of using MCMC is lost: Proposals become almost arbitrary, and
consequently the acceptance probabilities small. The proportions of accepted
moves among proposed ones are simple and useful diagnostics for adjusting
the sampler parameters. Tt is often suggested that proportions around 0.5 (or
maybe even a bit smaller) should indicate a reasonably well mixing sampler.

4 Examples

Figure 1 gives condensed summaries from two test runs, Simulation 1 and
Simulation 2, on two data sets, Data 1 and Data 2. The data were simulated
from Poisson processes with intensity functions 500 f for Data 1 and 100 f for
Data 2 (the dotted lines in Figure 1), where f is a density function on [0, 1]
constructed as follows. First, a mixture f' = wifi + wsfs was taken from
two log-normal densities; f; and fo, with origins at 1/4 and 2/3, modes at
my = 1/3 and my = 5/6, variances 2% and (1/12)?, and mixture weights w;
and wsy such that wy fi(m1) = wafa(msa). Then f was set to have a constant
value fo = f/(m')/3, where m’ is the mode of f’, on the interval [0, %g), where
lg is the first time f’ reaches the level fo. On the interval [to, 1], f was set
equal to f’, and finally, f was scaled to a density.

The simulated data, 505 and 96 points, are shown as jittered dot plots.
The dashed lines in Figure 1 are adaptive kernel density estimates multiplied
by the observed number of points. The method of Abramson (1982) was
used, in which the bandwidth h, of the kernel around the data point 7;, is

chosen as h/\/f(Tn), where f is a ‘pilot estimate’ of the density. We used

the ordinary kernel estimation to obtain f, and the parameters A and hg, the
bandwidth for the pilot, were chosen by trial and error as hy = .03, h = .1
for Data 1 and hy = .08, h = .15 for Data 2. Reflective boundaries were
applied to correct for the finite support: The density was estimated from the
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Figure 1: True intensity functions (dotted lines), data sets simulated from
them (dot plots), kernel estimates (dashed lines), posterior mean estimates by
our method (solid lines), and line segment diagrams illustrating the lengths
of the steps in the piecewise constant intensity functions of the samples (see
text for details); Data 1 and Simulation 1 on the left, Data 2 and Simulation 2
on the right

augmented data (=T, T,2 — T), and the result was multiplied by 3.
The solid lines in Figure 1 show our estimates

3o = - I (4.1)

of the pointwise posterior expectations E[A(¢)|T], based on an MCMC-sample
A A from the posterior. The line segments at the bottom of Figure 1
illustrate average lengths of the subintervals Ay. More precisely, let AE@TZ))
denote the subinterval of the mth realization which contains point ¢, and
consider the line segment intersecting the diagonal line at point ¢ in the
horizontal direction. The length of that segment to the left (right) of the

diagonal is the average (over the sample) of the distances from ¢ to the left
(right) ends of the intervals AE@TZ)) We can see, for example, that almost every
realization of Simulation 1 has a jump point at ¢ = ¢y &~ 1/3.

Figure 1 illustrates the flexibility of our method: Subintervals are short
in places where the intensity seems to change rapidly. We can also see that
piecewise constancy of the individual realizations (almost) disappears in the
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Figure 2: Realizations 250, 500, 750 and 1000 from the sample of Simula-
tion 1; the true intensity function is shown as dotted lines

posterior mean estimates, which are rather smooth curves.

The values A\¢g = 5, u = 4 » log(100), 2 = 0.9 and 0? = 0.05 of the
hyperparameters were chosen after some experiments; same values were used
in both simulations. As discussed in Section 2, the choice of p has little
effect when [ is close to 1. This is illustrated by the fact that the same pu
works reasonably well in both examples although the intesity levels in the
latter are 5 times as large as in the former. The results appear to be rather
insensitive to the choice of A¢ as well, and a value as low as 5 seems to offer
enough flexibility in our example. Very large values of A\¢ may result in wiggly
intensity functions that are following the data too closely, although this can to
some extent be counterbalanced by decreasing ¢?. Also the computing time
increases with A¢. The parameter o? has a similar role as the bandwidth in
kernel smoothing, and can be tuned to control the degree of smoothing. The
sampler parameters were adjusted by monitoring acceptance ratios for the
different kinds of proposals; the values used in the final run were ¢ = 0.45,
0 =1, and C = 5. The sample size was M = 1,000, with a burn-in period
of 50,000 basic update steps, and with the realizations after every 500th
step saved to form the sample. This makes I = 550,000 basic update steps
altogether, which took about 50 seconds on a Sun Ultra workstation.

Figure 2 shows four realizations from Simulation 1. As an example of the
convergence diagnostics we present Figure 3 . It contains the plots of A" (t)
against m from Simulation 2 at three reference points t = .1,.79,5/6 located
at the constant intensity area, just before the thin peak, and at the top of
the thin peak, respectively (the left hand column of Figure 3), and the curves



14

150
150

50

0 200 400 600 800 1000 0 200 400 600 800 1000

100 150 200 250 300
100 150 200 250 300

50
50

0 200 400 600 800 1000 0 200 400 600 800 1000

400
400

300
300

Figure 3: Intensity values of the realizations of Simulation 2 at points ¢ =
1,.79,5/6 (left hand column), and their cumulative means (solid lines) along
with error bands (dashed lines) of width twice the estimated Monte Carlo
standard deviation (right hand column); the horizontal lines show the true
intensity values

of corresponding cumulative means
1 .
A),, = — > A 4.2
B = DA ) (12)

(solid lines) along with Monte Carlo error bands

Mt),, & 24/020/m, (4.3)

where 0%~ is an initial monotone sequence estimate (Geyer 1992) of the

JE—

asymptotic Monte Carlo variance of \/mA(t),, (the right hand column of
Figure 3). Our diagnostics do not indicate any problems with the conver-
gence. Apparently, we could have used much less iterations; the time series
of Figure 3, for example, have almost no autocorrelation. It should perhaps
be emphasized here that the Monte Carlo error bands reflect the variability
caused by sampling based calculation. They do not tell us about the spread
of the posterior distribution, which is illustrated in Figures 4-6.
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Figure 4: Distributions of K, the number of steps, in the samples of Simula-
tion 1 (left) and Simulation 2 (right)
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Figure 5: 5% and 95% quantiles of the pointwise distributions of intensity
levels in the samples of Simulation 1 (left) and Simulation 2 (right); the true
intensity functions are shown as dotted lines

Various features of the posterior distributions can be studied from the
MCMC-samples. The distributions of K, the number of steps, are shown in
Figure 4 . Note that these are shifted upwards from the prior distribution,
Poisson(5), due to the complexity of the intensity function. Figure 5 shows
simple interval estimates for the intensity function, pointwise 5% and 95%
quantiles of the intensity levels in the samples. In Simulation 1 the true
intensity lies entirely within the envelope, while in Simulation 2 the thin
peak is somewhat smoothed down. In other regions, we can see how the
envelope is relatively wider in Simulation 2, as there is less data. This is
also illustrated in Figure 6 , where the approximations of the full marginal
posterior distributions of A(t) from the two simulations are compared at the
same reference points ¢ as in Figure 3.
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Figure 6: Distributions of the intensity values at points ¢ = .1,.79,5/6 in the
samples of Simulation 1 (top) and Simulation 2 (bottom); the interior tick
marks at the horizontal axes are located at the true intesity values

5 Discussion

Prediction beyond the observation time Agps can also be directly imple-
mented to our method. Suppose, for example, that we are asked to pre-
dict the number of events occurring during time A, which is not included in
Aops. Then we simply choose At so that it contains both Agps and A, and
approximate the probability

Pr(N(A) = N|T) = /Pr(N(A) — N[A) Pr(dA[T)
(5.1)
_ /exp(—A)AN/N! Pr(dA|T),

where A = fA A(t) dt, by the average of exp(—A(m))(A(m))N/N! over the
Monte Carlo sample from the posterior. Here the correlation between in-
tensity levels on consecutive intervals, implied by a positive value of 3, is
especially important.

There is an obvious connection between the estimation of an intensity
from Poisson data and the estimation of a density function on the real line
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from a simple random sample. As is well known, given that there are N data
points on an interval [0, 7)) from a Poisson process with intensity A, their joint
distribution 1s the same as that of the order statistics of a sample of size N
from the density on [0, T) which is proportional to A. Therefore, an intensity
generated by our MCMC algorithm can always be immediately converted
into a corresponding density function supported by [0,7), thus providing a
Bayesian method of estimating a density with a compact support.

Finally, it must be emphasized that the way in which the prior for A was
specified here need not be the best, or even adequate, in some problems. For
example, we could postulate that the means pg are not all equal, but that
they form an increasing or a decreasing sequence, or first decreasing and then
increasing (‘bath-tub shape’) as is commonly done in reliability problems.
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