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General problem
Let p be a sampling design in a population U, which is divided
in disjoint subpopulations

U =
I∪

i=1

Ui .

The sample S drawn according to p is divided into

S = S1 ∪ . . .SI ,

where Si ⊂ Ui , i = 1, . . . , I.
We want to estimate total �i of a variable Y in the subpopulation
Ui using, say, an unbiased estimator t̂i based on Si for each
i = 1, . . . , I.
The aim is to allocate the sample in such a way that e.g.
standard errors (cv’s) of t̂i(Y), i = 1, . . . , I, are minimal and
comparable (equal).



A toy example

Assume that
p consists of independent SRS plans in Uis,
the total size of the sample is n,
t̂i = Ni ȳSi , i = 1, . . ..

Then cv2 of t̂i is
Ti =

(
1
ni
− 1

Ni

)
2

i ,

where Ni = #(Ui), ni = #(Si), and i is the cv of Y in the
subpopulation Ui , i = 1, . . . , I.
Thus

ni =
Ni

2
i

2
i +Ti Ni



A toy example, cont.
We postulate constancy of cv2(̂ti):

Ti =: T , i = 1, . . . , I,

together with the constraint

n = n1 + . . .+ nI

which give

n =
I∑

i=1

Ni
2
i

2
i +TNi

.

It is elementary to see that the equation has a unique solution
T ∗, which can be easily obtained numerically, nevertheless no
analytic formula is available. Thus the allocation is

ni =
Ni

2
i

2
i +T∗Ni

, i = 1, . . . , I.



A toy example - an alternative approach
Define vi = ni

i
�, i = 1, . . . , I. Then � = 1

n
∑I

j=1 vjj . Moreover,

�i
vi
− 2

i
Ni

= T , i = 1, . . . , I.

That is

i√
n

⎛⎝ I∑
j=1

j√
n vj

⎞⎠− 2
i

Ni
vi = Tvi , i = 1, . . . , I.

Finally, for the vectors g = 1√
n

(
i√

n , i = 1, . . . , I
)T

and

c =
(
2

i
Ni
, i = 1, . . . , I

)T
we get

(ggT − diagc)v = Tv ,

where v = (vi , i = 1, . . . , I)T .



A toy example - an alternative approach, cont.

Conclusion: v is an eigenvector of the matrix D = ggT − diag c
and T is its respective eigenvalue.
Since

I∑
i=1

g2
i

ci
= N

n > 1

it follows that there is a unique simple positive eigenvalue
� =: T ∗. Then it follows from the Perron-Frobenius Theorem
that the respective eigenvector v∗ has all components which
are positive (up to a multiplication).
Finally the allocation is:

ni = n v∗i i∑I
j=1 v∗j j

, i = 1, . . . , I.
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Remarks
if Ti , i = 1, . . . , I, are fixed, then the total sample size n is
uniquely determined;
if Ti , i = 1, . . . , I, are just bounded above by some fixed
numbers, minimization of n is a valid issue;

solved for SSRS in Choudhry, Rao and Hidiroglou (2012)
through non-linear programming (Newton-Rawson
procedure);
alternative numerical method for multivariate variables
(together with strata construction) given in Lednicki and
Wieczorkowski (2003) uses Nelder-Mead simplex
algorithm;

for two-stage (SSRSI ,SRSII) sampling when no
subpopulations are considered and a single constraint is
given through expected total cost standard methods go
back to Cochran’s book;
we extend the approach from Niemiro and Wesołowski
(2001), where common precision allocation for either
(SSRSI ,SRSII) or (SRSI ,SSRSII) were considered.



General minimization scheme
We consider such sampling plans (with stratification on the first
stage) and estimators for which cv2(̂ti) in Ui is of the form

Ti =

Hi∑
h=1

1
xi,h

⎛⎝Ai,h +
∑

j∈Vi,h

Bi,h,j
zi,h,j

⎞⎠− ci (1)

where Vi,h is (a set of indices) related toWi,h (the hth strata of
PSUs in Ui ) and the constraints are

I∑
i=1

Hi∑
h=1

xi,h = x (2)

and
I∑

i=1

Hi∑
h=1

xi,h
∑

j∈Vi,h

�i,h,jzi,h,j = y (3)

where Ai,h > 0, Bi,h,j ≥ 0, ci > 0 and �i,h,j > 0 are some given
population quantities and the constraints x > 0 and y > 0 are
also known.



Objects of interest

Define vectors

a = 1√
x

⎛⎝ Hi∑
h=1

√
Aj,h, i = 1, . . . , I

⎞⎠ ,

b = 1√
z

⎛⎝ Hi∑
h=1

∑
j∈Vi,h

√
�i,h,jBi,h,j , i = 1, . . . , I

⎞⎠ ,

and
c = (ci , i = 1, . . . , I)

and a matrix
D = aaT + bbT − diag(c).



Minimization

Theorem. Assume that D has a unique simple eigenvalue
� > 0 and Dv = � v.

Then the solution of the problem of minimization of T , under
I + 2 constraints: T = Ti , i = 1, . . . , I, as given in (1), (2) and (3)
is

xi,h = x
vi
√

Ai,h∑I
k=1 vk

∑Hk
g=1

√
Ak,g

, (4)

zi,h,j = z
xi,h

vi

√
Bi,h,j
�i,h,j∑I

k=1 vk
∑Hk

g=1
∑

r∈Vk,g

√
�k,g,r Bk,g,r

. (5)

and
T = �.



A sketch of proof
Consider the Lagrange function

F (T , x , z) = T +
I∑

i=1

�i

⎛⎝ Hi∑
h=1

1
xi,h

⎛⎝Ai,h +
∑

j∈Vi,h

Bi,h,j
zi,h,j

⎞⎠− ci − T

⎞⎠
+

I∑
i=1

Hi∑
h=1

xi,h

⎛⎝�+ �
∑

j∈Vi,h

�i,h,jzi,h,j

⎞⎠ .

Then the equations
∂ F
∂ xi,h

= 0 and ∂ F
∂ zi,h,j

= 0

together with the constraints after some algebra allow to write√
�
�i

Hi∑
h=1

√
Ai,h +

√
�
�i

Hi∑
h=1

∑
j∈Vi,h

√
�i,h,jBi,h,j − ci = T .

The above can be reduced to Dv = Tv with vi =
√
�i ,

i = 1, . . . , I. □



Priority adjustments

In practice it is often important to give different (known) priority
weights �i > 0 to cv2(̂ti). Then, instead of Ti = T , we have
Ti = �i T , and thus

�i T =

Hi∑
h=1

1
xi,h

⎛⎝Ai,h +
∑

j∈Vi,h

Bi,h,j
zi,h,j

⎞⎠− ci .

Minimization problem in such a case is easily reduced to the
previous one by proper adjustments: Ai,h → Ai,h/�i ,
Bi,h,j → Bi,h,j/�i and ci = ci/�i . That is, the vectors a, b and c
are modified and consequently also the matrix D.

The solution is read out from Theorem with modified D and
modified Ai,h, Bi,h,j and ci .
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(SSRSI,SSRSII) scheme

For any subpopulation i = 1, . . . , I the variance of t̂i is

D2(̂ti) =

Hi∑
h=1

(
1

mi,h
− 1

Mi,h

)
M2

i,hD2
i,h

+

Hi∑
h=1

Mi,h
mi,h

∑
j∈Wi,h

Gi,h,j∑
g=1

(
1

ni,h,j,g
− 1

Ni,h,j,g

)
N2

i,h,j,gS2
i,h,j,g ,

where Mi,h = #Wi,h and

D2
i,h = 1

Mi,h−1

∑
j∈Wi,h

(tj − t̄i,h)2.



(SSRSI,SSRSII), cont . scheme

That is in terms of symbols used in Theorem we have:
Vi,h = {(j ,g) : j ∈ Wi,h, g ∈ {1, . . . ,Gi,h,j}},

Ai,h =
Mi,h

�2
i

⎛⎝Mi,hD2
i,h −

∑
j∈Wi,h

Gi,h,j∑
g=1

Ni,h,j,gS2
i,h,j,g

⎞⎠ ,

Bi,h,(j,g) =
Mi,hN2

i,h,j,gS2
i,h,j,g

�2
i

and

ci = 1
�2

i

Hi∑
h=1

Mi,hD2
i,h.



(SSRSI,SSRSII) scheme, cont.

The sample size constraints have the form

I∑
i=1

Hi∑
h=1

mi,h = m (6)

and
I∑

i=1

Hi∑
h=1

mi,h
Mi,h

∑
j∈Wi,h

Gi,h,j∑
g=1

ni,h,j,g = n, (7)

that is x = m, z = n and �i,h,(j,g) = M−1
i,h .



(SSRSI,SSRSII) scheme, cont.

Assume that Ai,h > 0 and that D has a unique simple
eigenvalue � > 0 with eigenvector v .

Then the allocation assuring optimal common-precision in
subpopulations is

mi,h = m
vi
√

Ai,h∑I
k=1 vk

∑Hk
r=1

√
Ak,r

and

ni,h,j,g = n
vi
√

Bi,h,(j,g) Mi,h

mi,h
∑I

k=1 vk
∑Hk

r=1
∑

l∈Wk,r

∑Gk,r,l
s=1

√
Bk,r,(l,s)/Mk,r

.



(SSRSI,SRSII) scheme with ni ,h,j = ni ,h

Here #(Vi,h) = 1. We keep the notation Mi,h, D2
i,h, ci as above

and above but with

Ai,h =
Mi,h

�2
i

⎛⎝Mi,hD2
i,h −

∑
j∈Wi,h

Ni,h,jS2
i,h,j

⎞⎠
and

Bi,h =
Mi,h

�2
i

∑
j∈Wi,h

Ni,h,jS2
i,h,j .

The sample size constraint (6) is the same and (7) changes into

I∑
i=1

Hi∑
h=1

mi,hni,h = n.

That is x = m, z = n and �i,h = 1.



(SSRSI,SRSII) scheme with ni ,h,j = ni ,h, cont.

Assume that i,h > 0 and that D has a unique simple
eigenvalue � > 0 with eigenvector v .

Then the allocation assuring optimal common-precision in
subpopulations is

mi,h = m
vi
√

Ai,h∑I
k=1 vk

∑Hk
r=1

√
Ak,h

and
ni,h = n

vi
√

Bi,h

mi,h
∑I

k=1 vk
∑Hk

r=1

√
Bk,r

.



(SHRI,SSRSII)

Hartley-Rao (HR) scheme is �ps (based on a size variable Z)
systematic sampling from randomly ordered list.

SHRI means that HR scheme is used in each strata of PSUs.

The approximate variance of �-estimator t̂i has the form

Hi∑
h=1

1
mi,h

∑
j∈Wi,h

!i,h,j(1 + z̃i,h,j)−
Hi∑

h=1

∑
j∈Wi,h

!i,h,j z̃i,h,j

+

Hi∑
h=1

1
mi,h

∑
j∈Wi,h

1
z̃i,h,j

Gi,h,j∑
g=1

(
1

ni,h,j,g
− 1

Ni,h,j,g

)
N2

i,h,j,gS2
i,h,j,g

where z̃i,h,j =
zj∑

k∈Wi,h
zk

and !i,h,j =
(

yi,h,j
z̃i,h,j
−
∑

k∈Wi,h
yk

)2
z̃i,h,j .



(SHRI,SSRSII), cont.
Here, Vi,h = {(j ,g) : j ∈ Wi,h, g ∈ {1, . . . ,Gi,h,j}} and, with
D2

i,h =
∑

j∈Wi,h
!i,h,j(1 + z̃i,h,j),

Ai,h = 1
�2

i

⎛⎝D2
i,h −

∑
j∈Wi,h

1
z̃i,h,j

Gi,h,j∑
g=1

Ni,h,j,gS2
i,h,j,g

⎞⎠ ,

Bi,h,(j,g) =
N2

i,h,j,gS2
i,h,j,g

�2
i z̃i,h,j

, and ci = 1
�2

i

Hi∑
h=1

∑
i∈Wi,h

z̃i,h,j!i,h,j .

The sample size constraint (6) is the same and (7) changes into

I∑
i=1

Hi∑
h=1

mi,h
∑

j∈Wi,h

z̃i,h,j

Gi,h,j∑
g=1

ni,h,j,g = n.

That is x = m, z = n and �i,h,(j,g) = z̃i,h,j .



(SHRI,SSRSII), cont.

We assume D = aaT + bbT − diag(c) has the unique simple
positive eigenvalue � and that Ai,h > 0. Then the (approximate)
optimal equal-precision allocation is

mi,h = m
vi
√

Ai,h∑I
k=1 vk

∑Hk
g=1

√
Ak,g

and

ni,h,j,g = n
vi
√

Bi,h,(j,g)/z̃i,h,j

mi,h
∑I

k=1 vk
∑Hk

g=1
∑

r∈Wk,g

∑Gk,g,r
s=1

√
Bk,g,(r,s)z̃k,g,r

,

where v is the unique (up to a scale) eigenvector (of eigenvalue
�) with all coordinates of the same sign.



(SHRI,SRSII) scheme with ni ,h,j = ni ,h

Here #(Vi,h) = 1. We keep the notation D2
i,h, ci as above. The

constraint for the common precision reads

T =

Hi∑
h=1

1
mi,h

(
Ai,h +

Bi,h
ni,h

)
,

where

Ai,h = 1
�2

i

⎛⎝D2
i,h −

∑
j∈Wi,h

Ni,h,j S2
i,h,j

z̃i,h,j

⎞⎠
and

Bi,h = 1
�2

i

∑
j∈Wi,h

N2
i,h,j S

2
i,h,j

z̃i,h,j
.



(SHRI,SRSII) scheme with ni ,h,j = ni ,h, cont.

Since the constraints are

I∑
i=1

Hi∑
h=1

mi,h = m and
I∑

i=1

Hi∑
h=1

mi,hni,h = n

we see that �i,h,j = 1 and by Theorem (if only Ai,h > 0 and D
has the unique simple eigenvalue � > 0) the (approximate)
optimal equal-precision allocation is

mi,h = m
vi
√

Ai,h∑I
k=1 vk

∑Hk
g=1

√
Ak,g

and
ni,h = n

vi
√

Bi,h

mi,h
∑I

k=1 vk
∑Hk

g=1

√
Bk,g

,

where Dv = �v and v has all coordinates of the same sign.
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(SHRI,SRSII) for LFS

The variable of interest: number of unemployed in a
household.

The subpopulations: voivodships (NUTS2 level).

Pseudo-population was created on the basis of a survey
(accompanying the last virtual census) of 20% dwellings in
Poland. The records of the sample were cloned with the cloning
multiplicity equal to rounded weights. Such a "population" had
13 243 000 dwellings.

As in the standard LFS the PSUs were the census areas and
SSUs were the households. The total number of PSUs
m = 1872 and of SSUs n = 13676.

Actually, only a quarter of the standard sample (one of four
rotation groups) were considered.



(SHRI,SRSII) for LFS, cont.

The matrices aaT , bbT and diag(c) were computed on the basis
of the variables: "number of dwellings in a census area (PSU)",
"number of unemployed in a household (SSU)" and "number of
households in census areas".

The standard eigen function of R (see e.g. R Core Team, 2013)
gives: (1) the largest eigenvalue � ≈ 9.7% which is the common
cv of estimators; (2) respective eigenvector v which gives the
sample allocation.

The R-code available at:

https : //github.com/rwieczor/eigenproblem− sample− allocation



(SHRI,SRSII) for LFS, cont.

The experiment with sample allocated according to v was
repeated 100 times with estimators precision evaluated through
a bootstrap method (described e.g. in McCarthy and Snowden
(1985)): In each stratum a suitable bootstrap samples was
taken 500 times. The bootstrap variance estimate was obtained
by the usual Monte Carlo approximation based on independent
bootstrap replicates.

The results were compared with other 100 independent
experiments in which the sample was drawn from the
"population" according to standard LFS procedure (see
Popiński, 2006). The same variable was estimated and the
precision was evaluated again through the bootstrap procedure.

The results in the next Table. Note an average of ≈ 14.5% gain
in CV in subpopulations.



(SHRI,SRSII) for LFS, cont.

sub s-SSU s-PSU e-SSU e-SSU s-CV e-CV
PL11 884 130 888 127 10.6 9.4
PL12 1170 156 1033 153 10.8 9.5
PL21 884 130 861 130 10.9 9.4
PL22 1170 182 999 114 9.2 9.6
PL31 754 104 813 117 11.2 9.5
PL32 702 104 661 96 10.2 9.7
PL33 676 78 731 117 12.4 9.5
PL34 832 78 882 120 11.8 9.5
PL41 936 156 927 129 10.3 9.5
PL42 806 104 836 112 11.7 9.7
PL43 572 78 814 95 12.3 9.9
PL51 910 130 880 113 10.6 9.7
PL52 988 156 942 133 10.3 9.5
PL61 728 104 779 101 10.9 9.6
PL62 780 78 754 103 11.0 9.6
PL63 884 104 869 111 11.0 9.6
Sum 13676 1872 13669 1871



Based on:

WESOŁOWSKI, J., WIECZORKOWSKI, R.
An eigenproblem approach to optimal equal-precision sample
allocation in subpopulations.
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Available on arXiv - see: arXiv:1503.08686


	Main Talk
	Preliminaries
	Common-precision allocation
	Applications
	Numerical experiment


