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 - and would that be a 

problem? 
 



Surveys have strong emphasis on 

representation/generality  

(Kish 1987 page 7, Baker et al. 2013 sec 8.2, O’Muircheartaigh 

1999) 
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Reasons for random sampling 

Impartiality/transparency 

● Transparently impartial (cf referee tossing a coin at 

start of game) 

● Easy to communicate 

● As distant from human mind as it can be (random 

selection as the most stupid selection method 

conceivable) 

● A judgement sample opens the Pandora’s box of 

”improvements” of the realised sample 

● Easy to accept ’’bad luck” in a random sample. In a 

judgement sample, there is no such a thing as ‘bad 

luck’.  
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Further reasons: 
Statistical culture /Knowledgebase 
 
● Coordinated samples, PRNs 

● Incorporated in university courses 

● Lots of literature, including textbooks at various 

levels 

● Lots of experience 

● Knowledge among practitioners 

● Public acceptance 

Dan Hedlin, Department of Statistics 5 



Disadvantages with random sampling 
 

● Persuading reluctant respondents in a longitudinal 

survey may create attrition 

● Or may create nonresponse in other surveys 

(Bergman and Brage 2008) 

● Is it cost-effective? Strong emphasis on 

representation/generality means that expensive 

units need to be sampled and approached.  

● Long period of field work 

● Increases general response burden 
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Now focus on three sampling methods 

1. Random sample from a perfect frame 

2. Non-random sample from a perfect frame 

3. Non-random sample from a frame that suffers from 

missing objects  

● Nonresponse in all three 
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Inference in surveys 

● Sample 𝒔 

● Specify 𝑓(𝐘|𝐗; 𝛃) for all variables Y for all N units. X 

to be used for sampling design and estimation.  

1. Analytic aim: inference about 𝛃  

2. Descriptive aim: inference about 𝐘𝒔   (complement) 

● We need  𝑓(𝐘|𝐗; 𝛃) for inference about 𝐘𝒔  

● Further, for 3,  𝑓(𝐘|𝐗, 𝐙; 𝛃),  Z indicates availability on 

the frame (binary: missing/not missing) 
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1. Sample selection ignorability criterion:  

                    𝑓 𝐈𝑠 𝐘𝑠, 𝐗 = 𝑓 𝐈𝑠 𝐗  

● True also for many nonrandom sampling designs 

(Little 1982, Smith 1983) 

2. To be able to ignore nonresponse:   

𝑓 𝑱𝑟 𝐈𝑠, 𝐘𝑠, 𝐗 = 𝑓 𝑱𝑟 𝐈𝑠, 𝐗  

3. To be able to ignore frame availability:   

𝑓 𝐘 𝐙, 𝐗; 𝛃 = 𝑓 𝐘 𝐗; 𝛃  

(Little 1982, Smith 1983, Valliant et al. 2003) 
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● We restrict attention to ignorable sampling designs; 

nonrandom samples must be ignorable 

● I will argue: it is sampling method 3 that is different.  

● Does criterion 3 hold in practice? Sometimes it 

does, sometimes it does not. See e.g. Baker et al. 

(2013), Callegaro et al. (2014), Craig et al. (2013), 

Gotway Crawford (2013), Erens et al. (2014), 

Martinsson (2013), Sjöström (2012), Yeager et al. 

(2011), etc. 

 

Dan Hedlin, Department of Statistics 10 



On balanced samples 

● What is balance?  

●   𝒙 𝑠 = 𝒙 𝑟   “Response set balance” 

 

Dan Hedlin, Department of Statistics 11 



A balanced sample is good to have 
 

● 𝑦 𝑠 − 𝑦 𝑟 = 𝒙 𝑠 − 𝒙 𝑟 ´𝜷 𝑟 + 𝜷 𝑠 − 𝜷 𝑟
′
𝒙 𝒔 

(Särndal & Lundquist 2014) 

● Does small 𝒙 𝑠 − 𝒙 𝑟  imply small 𝜷 𝑠 − 𝜷 𝑟 ? 

● The answer is “in most cases, probably yes”  

(Särndal & Lundquist 2014, Sec. 6) 
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● So what is the causal mechanism  

small 𝒙 𝑠 − 𝒙 𝑟  -> small 𝜷 𝑠 − 𝜷 𝑟 ? 

Loosely speaking, it is: Small variance of response 

propensities (in groups defined by x) (Särndal & Lundquist 

2014) 

● Note that we know 𝒙 𝑠, 𝒙 𝑟 and that we can manipulate 

𝒙 𝑟   by adaptive sampling  

(Schouten et al. 2013, Särndal & Lundquist 2014) 

● They start with a random sample. Necessary? 
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Paralleling the reasoning in Särndal & 
Lundquist (2014) 

Let  

● U  be the  population, with 𝒙 known for all units 

● 𝒓  be a non-random sample 

● 𝒔 a random sample that you never drew 

Define 

● 𝑡 = 𝒙 𝑟 − 𝒙 𝑼
′𝒃𝑟   (known) 

● 𝑣 = 𝒃𝑟 − 𝒃𝑠
′𝒙 𝑼   (unknown; it is 𝒃𝑠 that is unkown) 

where…  
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● 𝐽𝑘 =  
1 if  𝑘 ∈ 𝑟
0 if  𝑘 ∉ 𝑟

  

 

● 𝒃𝑟 =  𝐽𝑘𝒙𝑘𝒙𝑘
′

𝑠
−1  𝐽𝑘𝒙𝑘𝑦𝑘𝑠  

 

● 𝒃𝑠 =  𝒙𝑘𝒙𝑘
′

𝑠
−1  𝒙𝑘𝑦𝑘𝑠  

 

● Aim: reduce 𝑦 𝑠 − 𝑦 𝑟 = 𝑡 + 𝑣 
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● Often feasible (?) to reduce 𝑡 by reducing  𝒙 𝑟 − 𝒙 𝑈  

through some form of adaptive sampling 

● If the 𝐽𝑘 are constant, then 𝒃𝑟=𝒃𝑠 

● If the variance among the  𝐽𝑘 is small, 𝒃𝑟 should be 

fairly close to 𝒃𝑠 

● Either reduce 𝒙 𝑟 − 𝒙 𝑈 or make the variance among 

the  𝐽𝑘 small. 
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Representativeness 

● Meaning of ’a response set is representative (of 

some target population)’? 

● Roughly: zero variance among the  𝐽𝑘 (Schouten et 

al. 2012) 

● Barry Schouten and co-workers proposed an ‘R-

indicator’ to follow variance among the  𝐽𝑘 while 

collecting data 
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Conclusions and further issues 

● Suppose you are successful in balancing the set of 

responses. Does it matter whether you have started 

from a random sample or a nonrandom, ignorable 

sample? It would seem that it does not. 

● A more practical issue: If you strive for balancing 

the response set, is it easier to start from a random 

sample?  

● What is best, balancing response set or adjusting 

through estimation? Some evidence that balancing 

is slightly better (Schouten et al. 2014) You can do both 

(Särndal 2011) 
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● Is it practicably doable to achieve balance? 

● Of course, there is a broader picture (Schouten et al. 

2012) 
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