European Health Interview Survey in Latvia – Challenges and Opportunities

Mārtiņš Liberts

Central Statistical Bureau of Latvia

25 August 2015

European Health Interview Survey

- ► Reliable data on:
 - health status
 - health care
 - health determinants
- from all EU member states
- ► on regular bases

The First Wave of EHIS

- Gentlemen's agreement
- ▶ 17 EU member states:
 - Austria, Belgium, Bulgaria, Cyprus, Czech republic, Estonia, France, Germany, Greece, Hungary, Latvia, Malta, Poland, Romania, Slovakia, Slovenia, Spain

▶ 2006-2009

The Second Wave of EHIS

- Regulation (EC) No 1338/2008 of the European Parliament and of the Council of 16 December 2008 on Community statistics on public health and health and safety at work
- every five years statistics on health status, access and use of healthcare and health determinants
- Commission Regulation (EU) No 141/2013 of 19 February 2013 implementing Regulation (EC) No 1338/2008
- ► European Health Interview Survey Manual

EHIS in Latvia

- ► The first wave was done in 2008
- ▶ The second wave was done in 2014

Population Frame

- ► The population frame was made as a list of individuals
- Data sources:
 - Statistical Dwelling Register base for the frame (list of individuals)
 - Population statistics for over-coverage reduction
 - National Health Service indication if individual has used national health services
 - ► Population Census 2011 additional contact information

Precision Requirements

- Precision requirements are defined with minimum effective sample size for estimating the population parameter "percentage of people severely limited in daily activities"
- ► it is 4555 for Latvia (defined for each country in the implementation regulation)
- sample size should be at least 4555 if simple random sampling of individuals is used (full response and frame without over-coverage errors).

Precision Requirements

- Minimum effective sample size can be expressed in terms of the coefficient of variation (CV)
- ► Input:
 - Minimum effective sample size: $n_e = 4555$ (defined by the regulation)
 - Population size: N = 1711928 (residents of private households in age 15+) computed from the population frame
 - ► Parameter of interest: p̂ = 0.106 estimated from The European Health and Social Integration Survey (EHSIS) 2012

Precision Requirements

Expected population variation:

$$s^{2} = \frac{N}{N-1}\hat{p}\left(1-\hat{p}\right) = 0.0950332$$

Corresponding variation, standard error and CV:

$$\operatorname{var}\left(\hat{p}\right) = \frac{1 - \frac{n_e}{N}}{n_e}s^2 = 0.0000208$$

se
$$(\hat{p}) = \sqrt{\operatorname{var}(\hat{p})} = 0.00456$$

cv $(\hat{p}) = \frac{\operatorname{se}(\hat{p})}{\hat{p}} = 0.043 = 4.3\%$

CAPI / CATI

- The contact phone number was known for 57% of individuals in the population frame
- The population frame was divided into two groups (master strata):
 - ► CAPI population part surveyed by personal interviews
 - ► CATI population part surveyed by phone

Sampling design

- ► Sample size: 11 340
- Different sampling designs were chosen:
 - CAPI two stage sampling to balance the cost and precision (sample size 6252)
 - CATI one stage sampling to increase precision (sample size 5088)

Sampling design – CAPI

- ► The 1st stage:
 - Stratification by the degree of urbanisation (four strata)
 - Systematic π ps sampling of census counting areas
 - Ordering by geographical location in each stratum
 - ► Sample size: 1042 PSUs
- ► The 2nd stage:
 - Sample size: six persons in each PSU
 - ► Systematic sampling of individuals in each sampled PSU
 - ► Ordering by NHS, gender, age, random number

Sampling design – CATI

- ► The 1st stage:
 - ► Stratification by NHS and seven age groups (14 strata)
 - Systematic sampling of individuals
 - Ordering by region and gender in each stratum

Expected precision

- Expected precision for the estimate of population parameter:
 - ▶ population size (population frame),
 - ► population variation (EHSIS data),
 - response rate (EHSIS data)
 - design effect (EHSIS data: deff = 2 for CAPI, deff = 1 for CATI)
 - sample allocation

$$\operatorname{Var}_{\mathsf{exp}}(\hat{p}) = \sum_{h=1}^{H} N_h^2 \frac{1 - \frac{n_h r_h}{N_h}}{n_h r_h} s_h^2 \operatorname{deff}_h(\hat{p})$$

► It was 3.6% (precision requirements were 4.3%)

Weighting

- There are two sources for auxiliary information:
 - Population frame many auxiliary variables
 - Population statistics more precise population counts
- The aim was to use both available sources of auxiliary information in weighting of EHIS

Weighting

- Auxiliary information population counts by:
 - ► Gender
 - Age groups
 - Region
 - Education level
 - Usage of public health services
 - Household size
 - ► Economic activity (employed, unemployed, ...)
 - Degree of urbanisation (DEGURBA)

Two step weighting

- ► The 1st step:
 - The population frame was calibrated to the population statistics
- ► The 2nd step:
 - Additional calibration variables were introduced
 - Calibration totals were computed as weighted sums of calibration variables from the population frame

Two step weighting

- Auxiliary vector $oldsymbol{x}_i = oldsymbol{\left(oldsymbol{x}_i^A, oldsymbol{x}_i^B
 ight)'}$
- ► Frame totals:

•
$$\boldsymbol{X}^A = \sum_U \boldsymbol{x}^A_i$$

•
$$X^B = \sum_U x_i^B$$

- Additional totals $ilde{m{X}}^A$ are available
- ▶ Totals $ilde{m{X}}^A$ are more precise if compared to $m{X}^A$

Frame calibration

- Frame calibration to known population totals $ilde{m{X}}^A$
- Input for calibration:
 - Design weights: $d_i^F = 1$
 - Calibration variables: x_i^A
 - \blacktriangleright Totals: $ilde{m{X}}^A$
- Result of frame calibration:
 - Frame calibration weights g^F_i
 - Properties: $\sum_U oldsymbol{x}_i^A d_i^F g_i^F = \sum_U oldsymbol{x}_i^A g_i^F = ilde{oldsymbol{X}}^A$
- $\tilde{\boldsymbol{X}}^B = \sum_U \boldsymbol{x}^B_i g^F_i$

Calibration of respondents

- Respondents can be linked to the population frame through the ID number
- Input for calibration:
 - Design weights with non-response correction: $d_i^R = \frac{1}{\pi_i p_i^R}$

$$ullet$$
 Calibration variables: $oldsymbol{x}_i = ig(oldsymbol{x}_i^A,oldsymbol{x}_i^Big)'$

$$ullet$$
 Totals: $ilde{m{X}} = \left(ilde{m{X}}^A, ilde{m{X}}^B
ight)' = \sum_U m{x}_i g_i^F$

- Result of calibration:
 - Calibration weights g_i^R

• Properties:
$$\sum_{s_R} oldsymbol{x}_i d_i^R g_i^R = ilde{oldsymbol{X}}$$

Design Effect

- ► Two components:
 - ► Sampling effect:

$$\underset{\mathsf{sam}}{\operatorname{deff}}\left(\hat{\boldsymbol{\Theta}}\right) = \frac{\operatorname{Var}\left(\hat{\boldsymbol{\Theta}} \middle| \mathsf{current}, \, \mathsf{HT}\right)}{\operatorname{Var}\left(\hat{\boldsymbol{\Theta}} \middle| \mathsf{SRS}, \, \mathsf{HT}\right)}$$

► Sampling effect:

$$\operatorname{deff}_{\mathsf{est}}\left(\hat{\boldsymbol{\Theta}}\right) = \frac{\operatorname{Var}\left(\hat{\boldsymbol{\Theta}} \middle| \mathsf{current, cal}\right)}{\operatorname{Var}\left(\hat{\boldsymbol{\Theta}} \middle| \mathsf{current, HT}\right)}$$

Design Effect

► Design effect:

$$\begin{split} \operatorname{deff}\left(\hat{\Theta}\right) &= \operatorname{deff}_{\mathsf{sam}}\left(\hat{\Theta}\right) \cdot \operatorname{deff}_{\mathsf{est}}\left(\hat{\Theta}\right) \\ &= \frac{\operatorname{Var}\left(\hat{\Theta}|\mathsf{current},\,\mathsf{HT}\right)}{\operatorname{Var}\left(\hat{\Theta}|\mathsf{SRS},\,\mathsf{HT}\right)} \cdot \frac{\operatorname{Var}\left(\hat{\Theta}|\mathsf{current},\,\mathsf{cal}\right)}{\operatorname{Var}\left(\hat{\Theta}|\mathsf{current},\,\mathsf{HT}\right)} \\ &= \frac{\operatorname{Var}\left(\hat{\Theta}|\mathsf{current},\,\mathsf{cal}\right)}{\operatorname{Var}\left(\hat{\Theta}|\mathsf{SRS},\,\mathsf{HT}\right)} \end{split}$$

Results

- The main population parameter "percentage of people severely limited in daily activities" was estimated as 0.104 (it was 0.106 in EHSIS 2012)
- Coefficient of variation for the estimate is 3.0 % (calibration effect is taken into account)
- ► The design effect is 0.717 where:
 - The sampling effect is 0.817
 - ► The estimation effect is 0.877

Results

Total sample size is 11340:

- ► Over-coverage cases: 378 (3%)
- ► Eligible cases: 10962 (97%)
 - ► Non-response cases: 3885 (35%)
 - ► Response cases: 7077 (65%)
 - Item non-response cases: 8
 - ► Item response cases: 7069

Effective sample size is 9858 (requirement is 4555)

$$n_{\rm eff} = \frac{n_{\rm resp}}{\rm deff}\left(\Theta\right)$$

Concludions

- Combination of one stage and two stage sampling designs:
 - ► Improvement of precision the sampling effect is 0.817
 - Increase in interview travelling costs (820 cases were transferred from CATI to CAPI)

Concludions

- Combination of one stage and two stage sampling designs:
 - ► Improvement of precision the sampling effect is 0.817
 - Increase in interview travelling costs (820 cases were transferred from CATI to CAPI)
- Two step weighting:
 - All available auxiliary information (individual level and population level) has been used
 - ► The estimation effect is 0.877

Concludions

- Combination of one stage and two stage sampling designs:
 - ► Improvement of precision the sampling effect is 0.817
 - Increase in interview travelling costs (820 cases were transferred from CATI to CAPI)
- Two step weighting:
 - All available auxiliary information (individual level and population level) has been used
 - The estimation effect is 0.877
- The precision requirements are fulfilled (effective sample size is 9858)

Thank you!

Data Collection Modes

Mode	NA	CAPI	CATI	CAWI
CAPI	46	5679	163	406
CATI	0	820	3743	483